ac: declare an enum for the OOB select field on GFX10
[mesa.git] / src / amd / vulkan / radv_device.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "dirent.h"
29 #include <errno.h>
30 #include <fcntl.h>
31 #include <linux/audit.h>
32 #include <linux/bpf.h>
33 #include <linux/filter.h>
34 #include <linux/seccomp.h>
35 #include <linux/unistd.h>
36 #include <stdbool.h>
37 #include <stddef.h>
38 #include <stdio.h>
39 #include <string.h>
40 #include <sys/prctl.h>
41 #include <sys/wait.h>
42 #include <unistd.h>
43 #include <fcntl.h>
44 #include <llvm/Config/llvm-config.h>
45
46 #include "radv_debug.h"
47 #include "radv_private.h"
48 #include "radv_shader.h"
49 #include "radv_cs.h"
50 #include "util/disk_cache.h"
51 #include "vk_util.h"
52 #include <xf86drm.h>
53 #include <amdgpu.h>
54 #include <amdgpu_drm.h>
55 #include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
56 #include "ac_llvm_util.h"
57 #include "vk_format.h"
58 #include "sid.h"
59 #include "git_sha1.h"
60 #include "util/build_id.h"
61 #include "util/debug.h"
62 #include "util/mesa-sha1.h"
63 #include "util/timespec.h"
64 #include "util/u_atomic.h"
65 #include "compiler/glsl_types.h"
66 #include "util/xmlpool.h"
67
68 static struct radv_timeline_point *
69 radv_timeline_find_point_at_least_locked(struct radv_device *device,
70 struct radv_timeline *timeline,
71 uint64_t p);
72
73 static struct radv_timeline_point *
74 radv_timeline_add_point_locked(struct radv_device *device,
75 struct radv_timeline *timeline,
76 uint64_t p);
77
78 static void
79 radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
80 struct list_head *processing_list);
81
82 static
83 void radv_destroy_semaphore_part(struct radv_device *device,
84 struct radv_semaphore_part *part);
85
86 static int
87 radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
88 {
89 struct mesa_sha1 ctx;
90 unsigned char sha1[20];
91 unsigned ptr_size = sizeof(void*);
92
93 memset(uuid, 0, VK_UUID_SIZE);
94 _mesa_sha1_init(&ctx);
95
96 if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx) ||
97 !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
98 return -1;
99
100 _mesa_sha1_update(&ctx, &family, sizeof(family));
101 _mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
102 _mesa_sha1_final(&ctx, sha1);
103
104 memcpy(uuid, sha1, VK_UUID_SIZE);
105 return 0;
106 }
107
108 static void
109 radv_get_driver_uuid(void *uuid)
110 {
111 ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
112 }
113
114 static void
115 radv_get_device_uuid(struct radeon_info *info, void *uuid)
116 {
117 ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
118 }
119
120 static uint64_t
121 radv_get_visible_vram_size(struct radv_physical_device *device)
122 {
123 return MIN2(device->rad_info.vram_size, device->rad_info.vram_vis_size);
124 }
125
126 static uint64_t
127 radv_get_vram_size(struct radv_physical_device *device)
128 {
129 return device->rad_info.vram_size - radv_get_visible_vram_size(device);
130 }
131
132 static bool
133 radv_is_mem_type_vram(enum radv_mem_type type)
134 {
135 return type == RADV_MEM_TYPE_VRAM ||
136 type == RADV_MEM_TYPE_VRAM_UNCACHED;
137 }
138
139 static bool
140 radv_is_mem_type_vram_visible(enum radv_mem_type type)
141 {
142 return type == RADV_MEM_TYPE_VRAM_CPU_ACCESS ||
143 type == RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED;
144 }
145 static bool
146 radv_is_mem_type_gtt_wc(enum radv_mem_type type)
147 {
148 return type == RADV_MEM_TYPE_GTT_WRITE_COMBINE ||
149 type == RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED;
150 }
151
152 static bool
153 radv_is_mem_type_gtt_cached(enum radv_mem_type type)
154 {
155 return type == RADV_MEM_TYPE_GTT_CACHED ||
156 type == RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED;
157 }
158
159 static bool
160 radv_is_mem_type_uncached(enum radv_mem_type type)
161 {
162 return type == RADV_MEM_TYPE_VRAM_UNCACHED ||
163 type == RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED ||
164 type == RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED ||
165 type == RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED;
166 }
167
168 static void
169 radv_physical_device_init_mem_types(struct radv_physical_device *device)
170 {
171 STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS);
172 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
173 uint64_t vram_size = radv_get_vram_size(device);
174 int vram_index = -1, visible_vram_index = -1, gart_index = -1;
175 device->memory_properties.memoryHeapCount = 0;
176 if (vram_size > 0) {
177 vram_index = device->memory_properties.memoryHeapCount++;
178 device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap) {
179 .size = vram_size,
180 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
181 };
182 }
183 if (visible_vram_size) {
184 visible_vram_index = device->memory_properties.memoryHeapCount++;
185 device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap) {
186 .size = visible_vram_size,
187 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
188 };
189 }
190 if (device->rad_info.gart_size > 0) {
191 gart_index = device->memory_properties.memoryHeapCount++;
192 device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap) {
193 .size = device->rad_info.gart_size,
194 .flags = device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
195 };
196 }
197
198 STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES);
199 unsigned type_count = 0;
200 if (vram_index >= 0) {
201 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM;
202 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
203 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
204 .heapIndex = vram_index,
205 };
206 }
207 if (gart_index >= 0 && device->rad_info.has_dedicated_vram) {
208 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE;
209 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
210 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
211 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
212 .heapIndex = gart_index,
213 };
214 }
215 if (visible_vram_index >= 0) {
216 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM_CPU_ACCESS;
217 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
218 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
219 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
220 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
221 .heapIndex = visible_vram_index,
222 };
223 }
224 if (gart_index >= 0 && !device->rad_info.has_dedicated_vram) {
225 /* Put GTT after visible VRAM for GPUs without dedicated VRAM
226 * as they have identical property flags, and according to the
227 * spec, for types with identical flags, the one with greater
228 * performance must be given a lower index. */
229 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE;
230 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
231 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
232 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
233 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
234 .heapIndex = gart_index,
235 };
236 }
237 if (gart_index >= 0) {
238 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_CACHED;
239 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
240 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
242 VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
243 (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT),
244 .heapIndex = gart_index,
245 };
246 }
247 device->memory_properties.memoryTypeCount = type_count;
248
249 if (device->rad_info.has_l2_uncached) {
250 for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
251 VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
252
253 if ((mem_type.propertyFlags & (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
254 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
255 mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
256 enum radv_mem_type mem_type_id;
257
258 switch (device->mem_type_indices[i]) {
259 case RADV_MEM_TYPE_VRAM:
260 mem_type_id = RADV_MEM_TYPE_VRAM_UNCACHED;
261 break;
262 case RADV_MEM_TYPE_VRAM_CPU_ACCESS:
263 mem_type_id = RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED;
264 break;
265 case RADV_MEM_TYPE_GTT_WRITE_COMBINE:
266 mem_type_id = RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED;
267 break;
268 case RADV_MEM_TYPE_GTT_CACHED:
269 mem_type_id = RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED;
270 break;
271 default:
272 unreachable("invalid memory type");
273 }
274
275 VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
276 VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
277 VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
278
279 device->mem_type_indices[type_count] = mem_type_id;
280 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
281 .propertyFlags = property_flags,
282 .heapIndex = mem_type.heapIndex,
283 };
284 }
285 }
286 device->memory_properties.memoryTypeCount = type_count;
287 }
288 }
289
290 static void
291 radv_handle_env_var_force_family(struct radv_physical_device *device)
292 {
293 const char *family = getenv("RADV_FORCE_FAMILY");
294 unsigned i;
295
296 if (!family)
297 return;
298
299 for (i = CHIP_TAHITI; i < CHIP_LAST; i++) {
300 if (!strcmp(family, ac_get_llvm_processor_name(i))) {
301 /* Override family and chip_class. */
302 device->rad_info.family = i;
303
304 if (i >= CHIP_NAVI10)
305 device->rad_info.chip_class = GFX10;
306 else if (i >= CHIP_VEGA10)
307 device->rad_info.chip_class = GFX9;
308 else if (i >= CHIP_TONGA)
309 device->rad_info.chip_class = GFX8;
310 else if (i >= CHIP_BONAIRE)
311 device->rad_info.chip_class = GFX7;
312 else
313 device->rad_info.chip_class = GFX6;
314
315 return;
316 }
317 }
318
319 fprintf(stderr, "radv: Unknown family: %s\n", family);
320 exit(1);
321 }
322
323 static VkResult
324 radv_physical_device_init(struct radv_physical_device *device,
325 struct radv_instance *instance,
326 drmDevicePtr drm_device)
327 {
328 const char *path = drm_device->nodes[DRM_NODE_RENDER];
329 VkResult result;
330 drmVersionPtr version;
331 int fd;
332 int master_fd = -1;
333
334 fd = open(path, O_RDWR | O_CLOEXEC);
335 if (fd < 0) {
336 if (instance->debug_flags & RADV_DEBUG_STARTUP)
337 radv_logi("Could not open device '%s'", path);
338
339 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
340 }
341
342 version = drmGetVersion(fd);
343 if (!version) {
344 close(fd);
345
346 if (instance->debug_flags & RADV_DEBUG_STARTUP)
347 radv_logi("Could not get the kernel driver version for device '%s'", path);
348
349 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
350 "failed to get version %s: %m", path);
351 }
352
353 if (strcmp(version->name, "amdgpu")) {
354 drmFreeVersion(version);
355 close(fd);
356
357 if (instance->debug_flags & RADV_DEBUG_STARTUP)
358 radv_logi("Device '%s' is not using the amdgpu kernel driver.", path);
359
360 return VK_ERROR_INCOMPATIBLE_DRIVER;
361 }
362 drmFreeVersion(version);
363
364 if (instance->debug_flags & RADV_DEBUG_STARTUP)
365 radv_logi("Found compatible device '%s'.", path);
366
367 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
368 device->instance = instance;
369
370 device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags,
371 instance->perftest_flags);
372 if (!device->ws) {
373 result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
374 goto fail;
375 }
376
377 if (instance->enabled_extensions.KHR_display) {
378 master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
379 if (master_fd >= 0) {
380 uint32_t accel_working = 0;
381 struct drm_amdgpu_info request = {
382 .return_pointer = (uintptr_t)&accel_working,
383 .return_size = sizeof(accel_working),
384 .query = AMDGPU_INFO_ACCEL_WORKING
385 };
386
387 if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof (struct drm_amdgpu_info)) < 0 || !accel_working) {
388 close(master_fd);
389 master_fd = -1;
390 }
391 }
392 }
393
394 device->master_fd = master_fd;
395 device->local_fd = fd;
396 device->ws->query_info(device->ws, &device->rad_info);
397
398 radv_handle_env_var_force_family(device);
399
400 device->use_aco = instance->perftest_flags & RADV_PERFTEST_ACO;
401 if (device->rad_info.chip_class < GFX7 && device->use_aco) {
402 fprintf(stderr, "WARNING: disabling ACO on unsupported GPUs.\n");
403 device->use_aco = false;
404 }
405
406 snprintf(device->name, sizeof(device->name),
407 "AMD RADV%s %s (LLVM " MESA_LLVM_VERSION_STRING ")", device->use_aco ? "/ACO" : "",
408 device->rad_info.name);
409
410 if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
411 device->ws->destroy(device->ws);
412 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
413 "cannot generate UUID");
414 goto fail;
415 }
416
417 /* These flags affect shader compilation. */
418 uint64_t shader_env_flags =
419 (device->instance->perftest_flags & RADV_PERFTEST_SISCHED ? 0x1 : 0) |
420 (device->use_aco ? 0x2 : 0);
421
422 /* The gpu id is already embedded in the uuid so we just pass "radv"
423 * when creating the cache.
424 */
425 char buf[VK_UUID_SIZE * 2 + 1];
426 disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
427 device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags);
428
429 if (device->rad_info.chip_class < GFX8 ||
430 device->rad_info.chip_class > GFX9)
431 fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
432
433 radv_get_driver_uuid(&device->driver_uuid);
434 radv_get_device_uuid(&device->rad_info, &device->device_uuid);
435
436 device->out_of_order_rast_allowed = device->rad_info.has_out_of_order_rast &&
437 !(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
438
439 device->dcc_msaa_allowed =
440 (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
441
442 device->use_shader_ballot = (device->use_aco && device->rad_info.chip_class >= GFX8) ||
443 (device->instance->perftest_flags & RADV_PERFTEST_SHADER_BALLOT);
444
445 device->use_ngg = device->rad_info.chip_class >= GFX10 &&
446 device->rad_info.family != CHIP_NAVI14 &&
447 !(device->instance->debug_flags & RADV_DEBUG_NO_NGG);
448 if (device->use_aco && device->use_ngg) {
449 fprintf(stderr, "WARNING: disabling NGG because ACO is used.\n");
450 device->use_ngg = false;
451 }
452
453 device->use_ngg_streamout = false;
454
455 /* Determine the number of threads per wave for all stages. */
456 device->cs_wave_size = 64;
457 device->ps_wave_size = 64;
458 device->ge_wave_size = 64;
459
460 if (device->rad_info.chip_class >= GFX10) {
461 if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
462 device->cs_wave_size = 32;
463
464 /* For pixel shaders, wave64 is recommanded. */
465 if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
466 device->ps_wave_size = 32;
467
468 if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
469 device->ge_wave_size = 32;
470 }
471
472 radv_physical_device_init_mem_types(device);
473 radv_fill_device_extension_table(device, &device->supported_extensions);
474
475 device->bus_info = *drm_device->businfo.pci;
476
477 if ((device->instance->debug_flags & RADV_DEBUG_INFO))
478 ac_print_gpu_info(&device->rad_info);
479
480 /* The WSI is structured as a layer on top of the driver, so this has
481 * to be the last part of initialization (at least until we get other
482 * semi-layers).
483 */
484 result = radv_init_wsi(device);
485 if (result != VK_SUCCESS) {
486 device->ws->destroy(device->ws);
487 vk_error(instance, result);
488 goto fail;
489 }
490
491 return VK_SUCCESS;
492
493 fail:
494 close(fd);
495 if (master_fd != -1)
496 close(master_fd);
497 return result;
498 }
499
500 static void
501 radv_physical_device_finish(struct radv_physical_device *device)
502 {
503 radv_finish_wsi(device);
504 device->ws->destroy(device->ws);
505 disk_cache_destroy(device->disk_cache);
506 close(device->local_fd);
507 if (device->master_fd != -1)
508 close(device->master_fd);
509 }
510
511 static void *
512 default_alloc_func(void *pUserData, size_t size, size_t align,
513 VkSystemAllocationScope allocationScope)
514 {
515 return malloc(size);
516 }
517
518 static void *
519 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
520 size_t align, VkSystemAllocationScope allocationScope)
521 {
522 return realloc(pOriginal, size);
523 }
524
525 static void
526 default_free_func(void *pUserData, void *pMemory)
527 {
528 free(pMemory);
529 }
530
531 static const VkAllocationCallbacks default_alloc = {
532 .pUserData = NULL,
533 .pfnAllocation = default_alloc_func,
534 .pfnReallocation = default_realloc_func,
535 .pfnFree = default_free_func,
536 };
537
538 static const struct debug_control radv_debug_options[] = {
539 {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
540 {"nodcc", RADV_DEBUG_NO_DCC},
541 {"shaders", RADV_DEBUG_DUMP_SHADERS},
542 {"nocache", RADV_DEBUG_NO_CACHE},
543 {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
544 {"nohiz", RADV_DEBUG_NO_HIZ},
545 {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
546 {"allbos", RADV_DEBUG_ALL_BOS},
547 {"noibs", RADV_DEBUG_NO_IBS},
548 {"spirv", RADV_DEBUG_DUMP_SPIRV},
549 {"vmfaults", RADV_DEBUG_VM_FAULTS},
550 {"zerovram", RADV_DEBUG_ZERO_VRAM},
551 {"syncshaders", RADV_DEBUG_SYNC_SHADERS},
552 {"nosisched", RADV_DEBUG_NO_SISCHED},
553 {"preoptir", RADV_DEBUG_PREOPTIR},
554 {"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
555 {"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
556 {"info", RADV_DEBUG_INFO},
557 {"errors", RADV_DEBUG_ERRORS},
558 {"startup", RADV_DEBUG_STARTUP},
559 {"checkir", RADV_DEBUG_CHECKIR},
560 {"nothreadllvm", RADV_DEBUG_NOTHREADLLVM},
561 {"nobinning", RADV_DEBUG_NOBINNING},
562 {"noloadstoreopt", RADV_DEBUG_NO_LOAD_STORE_OPT},
563 {"nongg", RADV_DEBUG_NO_NGG},
564 {"noshaderballot", RADV_DEBUG_NO_SHADER_BALLOT},
565 {"allentrypoints", RADV_DEBUG_ALL_ENTRYPOINTS},
566 {"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
567 {"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
568 {NULL, 0}
569 };
570
571 const char *
572 radv_get_debug_option_name(int id)
573 {
574 assert(id < ARRAY_SIZE(radv_debug_options) - 1);
575 return radv_debug_options[id].string;
576 }
577
578 static const struct debug_control radv_perftest_options[] = {
579 {"nobatchchain", RADV_PERFTEST_NO_BATCHCHAIN},
580 {"sisched", RADV_PERFTEST_SISCHED},
581 {"localbos", RADV_PERFTEST_LOCAL_BOS},
582 {"dccmsaa", RADV_PERFTEST_DCC_MSAA},
583 {"bolist", RADV_PERFTEST_BO_LIST},
584 {"shader_ballot", RADV_PERFTEST_SHADER_BALLOT},
585 {"tccompatcmask", RADV_PERFTEST_TC_COMPAT_CMASK},
586 {"cswave32", RADV_PERFTEST_CS_WAVE_32},
587 {"pswave32", RADV_PERFTEST_PS_WAVE_32},
588 {"gewave32", RADV_PERFTEST_GE_WAVE_32},
589 {"dfsm", RADV_PERFTEST_DFSM},
590 {"aco", RADV_PERFTEST_ACO},
591 {NULL, 0}
592 };
593
594 const char *
595 radv_get_perftest_option_name(int id)
596 {
597 assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
598 return radv_perftest_options[id].string;
599 }
600
601 static void
602 radv_handle_per_app_options(struct radv_instance *instance,
603 const VkApplicationInfo *info)
604 {
605 const char *name = info ? info->pApplicationName : NULL;
606
607 if (!name)
608 return;
609
610 if (!strcmp(name, "Talos - Linux - 32bit") ||
611 !strcmp(name, "Talos - Linux - 64bit")) {
612 if (!(instance->debug_flags & RADV_DEBUG_NO_SISCHED)) {
613 /* Force enable LLVM sisched for Talos because it looks
614 * safe and it gives few more FPS.
615 */
616 instance->perftest_flags |= RADV_PERFTEST_SISCHED;
617 }
618 } else if (!strcmp(name, "DOOM_VFR")) {
619 /* Work around a Doom VFR game bug */
620 instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
621 } else if (!strcmp(name, "MonsterHunterWorld.exe")) {
622 /* Workaround for a WaW hazard when LLVM moves/merges
623 * load/store memory operations.
624 * See https://reviews.llvm.org/D61313
625 */
626 if (LLVM_VERSION_MAJOR < 9)
627 instance->debug_flags |= RADV_DEBUG_NO_LOAD_STORE_OPT;
628 } else if (!strcmp(name, "Wolfenstein: Youngblood")) {
629 if (!(instance->debug_flags & RADV_DEBUG_NO_SHADER_BALLOT) &&
630 !(instance->perftest_flags & RADV_PERFTEST_ACO)) {
631 /* Force enable VK_AMD_shader_ballot because it looks
632 * safe and it gives a nice boost (+20% on Vega 56 at
633 * this time). It also prevents corruption on LLVM.
634 */
635 instance->perftest_flags |= RADV_PERFTEST_SHADER_BALLOT;
636 }
637 } else if (!strcmp(name, "Fledge")) {
638 /*
639 * Zero VRAM for "The Surge 2"
640 *
641 * This avoid a hang when when rendering any level. Likely
642 * uninitialized data in an indirect draw.
643 */
644 instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
645 }
646 }
647
648 static int radv_get_instance_extension_index(const char *name)
649 {
650 for (unsigned i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; ++i) {
651 if (strcmp(name, radv_instance_extensions[i].extensionName) == 0)
652 return i;
653 }
654 return -1;
655 }
656
657 static const char radv_dri_options_xml[] =
658 DRI_CONF_BEGIN
659 DRI_CONF_SECTION_PERFORMANCE
660 DRI_CONF_ADAPTIVE_SYNC("true")
661 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
662 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
663 DRI_CONF_SECTION_END
664 DRI_CONF_END;
665
666 static void radv_init_dri_options(struct radv_instance *instance)
667 {
668 driParseOptionInfo(&instance->available_dri_options, radv_dri_options_xml);
669 driParseConfigFiles(&instance->dri_options,
670 &instance->available_dri_options,
671 0, "radv", NULL,
672 instance->engineName,
673 instance->engineVersion);
674 }
675
676 VkResult radv_CreateInstance(
677 const VkInstanceCreateInfo* pCreateInfo,
678 const VkAllocationCallbacks* pAllocator,
679 VkInstance* pInstance)
680 {
681 struct radv_instance *instance;
682 VkResult result;
683
684 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
685
686 uint32_t client_version;
687 if (pCreateInfo->pApplicationInfo &&
688 pCreateInfo->pApplicationInfo->apiVersion != 0) {
689 client_version = pCreateInfo->pApplicationInfo->apiVersion;
690 } else {
691 client_version = VK_API_VERSION_1_0;
692 }
693
694 const char *engine_name = NULL;
695 uint32_t engine_version = 0;
696 if (pCreateInfo->pApplicationInfo) {
697 engine_name = pCreateInfo->pApplicationInfo->pEngineName;
698 engine_version = pCreateInfo->pApplicationInfo->engineVersion;
699 }
700
701 instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
702 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
703 if (!instance)
704 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
705
706 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
707
708 if (pAllocator)
709 instance->alloc = *pAllocator;
710 else
711 instance->alloc = default_alloc;
712
713 instance->apiVersion = client_version;
714 instance->physicalDeviceCount = -1;
715
716 /* Get secure compile thread count. NOTE: We cap this at 32 */
717 #define MAX_SC_PROCS 32
718 char *num_sc_threads = getenv("RADV_SECURE_COMPILE_THREADS");
719 if (num_sc_threads)
720 instance->num_sc_threads = MIN2(strtoul(num_sc_threads, NULL, 10), MAX_SC_PROCS);
721
722 instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"),
723 radv_debug_options);
724
725 /* Disable memory cache when secure compile is set */
726 if (radv_device_use_secure_compile(instance))
727 instance->debug_flags |= RADV_DEBUG_NO_MEMORY_CACHE;
728
729 instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"),
730 radv_perftest_options);
731
732 if (instance->perftest_flags & RADV_PERFTEST_ACO)
733 fprintf(stderr, "WARNING: Experimental compiler backend enabled. Here be dragons! Incorrect rendering, GPU hangs and/or resets are likely\n");
734
735 if (instance->debug_flags & RADV_DEBUG_STARTUP)
736 radv_logi("Created an instance");
737
738 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
739 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
740 int index = radv_get_instance_extension_index(ext_name);
741
742 if (index < 0 || !radv_supported_instance_extensions.extensions[index]) {
743 vk_free2(&default_alloc, pAllocator, instance);
744 return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT);
745 }
746
747 instance->enabled_extensions.extensions[index] = true;
748 }
749
750 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
751 if (result != VK_SUCCESS) {
752 vk_free2(&default_alloc, pAllocator, instance);
753 return vk_error(instance, result);
754 }
755
756 instance->engineName = vk_strdup(&instance->alloc, engine_name,
757 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
758 instance->engineVersion = engine_version;
759
760 glsl_type_singleton_init_or_ref();
761
762 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
763
764 radv_init_dri_options(instance);
765 radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo);
766
767 *pInstance = radv_instance_to_handle(instance);
768
769 return VK_SUCCESS;
770 }
771
772 void radv_DestroyInstance(
773 VkInstance _instance,
774 const VkAllocationCallbacks* pAllocator)
775 {
776 RADV_FROM_HANDLE(radv_instance, instance, _instance);
777
778 if (!instance)
779 return;
780
781 for (int i = 0; i < instance->physicalDeviceCount; ++i) {
782 radv_physical_device_finish(instance->physicalDevices + i);
783 }
784
785 vk_free(&instance->alloc, instance->engineName);
786
787 VG(VALGRIND_DESTROY_MEMPOOL(instance));
788
789 glsl_type_singleton_decref();
790
791 driDestroyOptionCache(&instance->dri_options);
792 driDestroyOptionInfo(&instance->available_dri_options);
793
794 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
795
796 vk_free(&instance->alloc, instance);
797 }
798
799 static VkResult
800 radv_enumerate_devices(struct radv_instance *instance)
801 {
802 /* TODO: Check for more devices ? */
803 drmDevicePtr devices[8];
804 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
805 int max_devices;
806
807 instance->physicalDeviceCount = 0;
808
809 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
810
811 if (instance->debug_flags & RADV_DEBUG_STARTUP)
812 radv_logi("Found %d drm nodes", max_devices);
813
814 if (max_devices < 1)
815 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
816
817 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
818 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
819 devices[i]->bustype == DRM_BUS_PCI &&
820 devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
821
822 result = radv_physical_device_init(instance->physicalDevices +
823 instance->physicalDeviceCount,
824 instance,
825 devices[i]);
826 if (result == VK_SUCCESS)
827 ++instance->physicalDeviceCount;
828 else if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
829 break;
830 }
831 }
832 drmFreeDevices(devices, max_devices);
833
834 return result;
835 }
836
837 VkResult radv_EnumeratePhysicalDevices(
838 VkInstance _instance,
839 uint32_t* pPhysicalDeviceCount,
840 VkPhysicalDevice* pPhysicalDevices)
841 {
842 RADV_FROM_HANDLE(radv_instance, instance, _instance);
843 VkResult result;
844
845 if (instance->physicalDeviceCount < 0) {
846 result = radv_enumerate_devices(instance);
847 if (result != VK_SUCCESS &&
848 result != VK_ERROR_INCOMPATIBLE_DRIVER)
849 return result;
850 }
851
852 if (!pPhysicalDevices) {
853 *pPhysicalDeviceCount = instance->physicalDeviceCount;
854 } else {
855 *pPhysicalDeviceCount = MIN2(*pPhysicalDeviceCount, instance->physicalDeviceCount);
856 for (unsigned i = 0; i < *pPhysicalDeviceCount; ++i)
857 pPhysicalDevices[i] = radv_physical_device_to_handle(instance->physicalDevices + i);
858 }
859
860 return *pPhysicalDeviceCount < instance->physicalDeviceCount ? VK_INCOMPLETE
861 : VK_SUCCESS;
862 }
863
864 VkResult radv_EnumeratePhysicalDeviceGroups(
865 VkInstance _instance,
866 uint32_t* pPhysicalDeviceGroupCount,
867 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
868 {
869 RADV_FROM_HANDLE(radv_instance, instance, _instance);
870 VkResult result;
871
872 if (instance->physicalDeviceCount < 0) {
873 result = radv_enumerate_devices(instance);
874 if (result != VK_SUCCESS &&
875 result != VK_ERROR_INCOMPATIBLE_DRIVER)
876 return result;
877 }
878
879 if (!pPhysicalDeviceGroupProperties) {
880 *pPhysicalDeviceGroupCount = instance->physicalDeviceCount;
881 } else {
882 *pPhysicalDeviceGroupCount = MIN2(*pPhysicalDeviceGroupCount, instance->physicalDeviceCount);
883 for (unsigned i = 0; i < *pPhysicalDeviceGroupCount; ++i) {
884 pPhysicalDeviceGroupProperties[i].physicalDeviceCount = 1;
885 pPhysicalDeviceGroupProperties[i].physicalDevices[0] = radv_physical_device_to_handle(instance->physicalDevices + i);
886 pPhysicalDeviceGroupProperties[i].subsetAllocation = false;
887 }
888 }
889 return *pPhysicalDeviceGroupCount < instance->physicalDeviceCount ? VK_INCOMPLETE
890 : VK_SUCCESS;
891 }
892
893 void radv_GetPhysicalDeviceFeatures(
894 VkPhysicalDevice physicalDevice,
895 VkPhysicalDeviceFeatures* pFeatures)
896 {
897 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
898 memset(pFeatures, 0, sizeof(*pFeatures));
899
900 *pFeatures = (VkPhysicalDeviceFeatures) {
901 .robustBufferAccess = true,
902 .fullDrawIndexUint32 = true,
903 .imageCubeArray = true,
904 .independentBlend = true,
905 .geometryShader = true,
906 .tessellationShader = true,
907 .sampleRateShading = true,
908 .dualSrcBlend = true,
909 .logicOp = true,
910 .multiDrawIndirect = true,
911 .drawIndirectFirstInstance = true,
912 .depthClamp = true,
913 .depthBiasClamp = true,
914 .fillModeNonSolid = true,
915 .depthBounds = true,
916 .wideLines = true,
917 .largePoints = true,
918 .alphaToOne = true,
919 .multiViewport = true,
920 .samplerAnisotropy = true,
921 .textureCompressionETC2 = radv_device_supports_etc(pdevice),
922 .textureCompressionASTC_LDR = false,
923 .textureCompressionBC = true,
924 .occlusionQueryPrecise = true,
925 .pipelineStatisticsQuery = true,
926 .vertexPipelineStoresAndAtomics = true,
927 .fragmentStoresAndAtomics = true,
928 .shaderTessellationAndGeometryPointSize = true,
929 .shaderImageGatherExtended = true,
930 .shaderStorageImageExtendedFormats = true,
931 .shaderStorageImageMultisample = pdevice->rad_info.chip_class >= GFX8,
932 .shaderUniformBufferArrayDynamicIndexing = true,
933 .shaderSampledImageArrayDynamicIndexing = true,
934 .shaderStorageBufferArrayDynamicIndexing = true,
935 .shaderStorageImageArrayDynamicIndexing = true,
936 .shaderStorageImageReadWithoutFormat = true,
937 .shaderStorageImageWriteWithoutFormat = true,
938 .shaderClipDistance = true,
939 .shaderCullDistance = true,
940 .shaderFloat64 = true,
941 .shaderInt64 = true,
942 .shaderInt16 = pdevice->rad_info.chip_class >= GFX9 && !pdevice->use_aco,
943 .sparseBinding = true,
944 .variableMultisampleRate = true,
945 .inheritedQueries = true,
946 };
947 }
948
949 void radv_GetPhysicalDeviceFeatures2(
950 VkPhysicalDevice physicalDevice,
951 VkPhysicalDeviceFeatures2 *pFeatures)
952 {
953 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
954 vk_foreach_struct(ext, pFeatures->pNext) {
955 switch (ext->sType) {
956 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
957 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
958 features->variablePointersStorageBuffer = true;
959 features->variablePointers = true;
960 break;
961 }
962 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
963 VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures*)ext;
964 features->multiview = true;
965 features->multiviewGeometryShader = true;
966 features->multiviewTessellationShader = true;
967 break;
968 }
969 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
970 VkPhysicalDeviceShaderDrawParametersFeatures *features =
971 (VkPhysicalDeviceShaderDrawParametersFeatures*)ext;
972 features->shaderDrawParameters = true;
973 break;
974 }
975 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
976 VkPhysicalDeviceProtectedMemoryFeatures *features =
977 (VkPhysicalDeviceProtectedMemoryFeatures*)ext;
978 features->protectedMemory = false;
979 break;
980 }
981 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
982 VkPhysicalDevice16BitStorageFeatures *features =
983 (VkPhysicalDevice16BitStorageFeatures*)ext;
984 bool enabled = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
985 features->storageBuffer16BitAccess = enabled;
986 features->uniformAndStorageBuffer16BitAccess = enabled;
987 features->storagePushConstant16 = enabled;
988 features->storageInputOutput16 = enabled && LLVM_VERSION_MAJOR >= 9;
989 break;
990 }
991 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
992 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
993 (VkPhysicalDeviceSamplerYcbcrConversionFeatures*)ext;
994 features->samplerYcbcrConversion = true;
995 break;
996 }
997 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
998 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
999 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT*)ext;
1000 features->shaderInputAttachmentArrayDynamicIndexing = true;
1001 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1002 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1003 features->shaderUniformBufferArrayNonUniformIndexing = true;
1004 features->shaderSampledImageArrayNonUniformIndexing = true;
1005 features->shaderStorageBufferArrayNonUniformIndexing = true;
1006 features->shaderStorageImageArrayNonUniformIndexing = true;
1007 features->shaderInputAttachmentArrayNonUniformIndexing = true;
1008 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1009 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1010 features->descriptorBindingUniformBufferUpdateAfterBind = true;
1011 features->descriptorBindingSampledImageUpdateAfterBind = true;
1012 features->descriptorBindingStorageImageUpdateAfterBind = true;
1013 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1014 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1015 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1016 features->descriptorBindingUpdateUnusedWhilePending = true;
1017 features->descriptorBindingPartiallyBound = true;
1018 features->descriptorBindingVariableDescriptorCount = true;
1019 features->runtimeDescriptorArray = true;
1020 break;
1021 }
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1023 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1024 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1025 features->conditionalRendering = true;
1026 features->inheritedConditionalRendering = false;
1027 break;
1028 }
1029 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1030 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1031 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1032 features->vertexAttributeInstanceRateDivisor = true;
1033 features->vertexAttributeInstanceRateZeroDivisor = true;
1034 break;
1035 }
1036 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1037 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1038 (VkPhysicalDeviceTransformFeedbackFeaturesEXT*)ext;
1039 features->transformFeedback = true;
1040 features->geometryStreams = !pdevice->use_ngg_streamout;
1041 break;
1042 }
1043 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1044 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1045 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1046 features->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7;
1047 break;
1048 }
1049 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
1050 VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
1051 (VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
1052 features->memoryPriority = true;
1053 break;
1054 }
1055 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1056 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
1057 (VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
1058 features->bufferDeviceAddress = true;
1059 features->bufferDeviceAddressCaptureReplay = false;
1060 features->bufferDeviceAddressMultiDevice = false;
1061 break;
1062 }
1063 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1064 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features =
1065 (VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *)ext;
1066 features->bufferDeviceAddress = true;
1067 features->bufferDeviceAddressCaptureReplay = false;
1068 features->bufferDeviceAddressMultiDevice = false;
1069 break;
1070 }
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1072 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1073 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1074 features->depthClipEnable = true;
1075 break;
1076 }
1077 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1078 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1079 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1080 features->hostQueryReset = true;
1081 break;
1082 }
1083 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1084 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1085 (VkPhysicalDevice8BitStorageFeaturesKHR*)ext;
1086 bool enabled = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1087 features->storageBuffer8BitAccess = enabled;
1088 features->uniformAndStorageBuffer8BitAccess = enabled;
1089 features->storagePushConstant8 = enabled;
1090 break;
1091 }
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR: {
1093 VkPhysicalDeviceShaderFloat16Int8FeaturesKHR *features =
1094 (VkPhysicalDeviceShaderFloat16Int8FeaturesKHR*)ext;
1095 features->shaderFloat16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1096 features->shaderInt8 = !pdevice->use_aco;
1097 break;
1098 }
1099 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1100 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features =
1101 (VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *)ext;
1102 features->shaderBufferInt64Atomics = LLVM_VERSION_MAJOR >= 9;
1103 features->shaderSharedInt64Atomics = LLVM_VERSION_MAJOR >= 9;
1104 break;
1105 }
1106 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1107 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features =
1108 (VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *)ext;
1109 features->shaderDemoteToHelperInvocation = pdevice->use_aco;
1110 break;
1111 }
1112 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1113 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1114 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1115
1116 features->inlineUniformBlock = true;
1117 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1118 break;
1119 }
1120 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1121 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1122 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1123 features->computeDerivativeGroupQuads = false;
1124 features->computeDerivativeGroupLinear = true;
1125 break;
1126 }
1127 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1128 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1129 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT*)ext;
1130 features->ycbcrImageArrays = true;
1131 break;
1132 }
1133 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1134 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1135 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1136 features->uniformBufferStandardLayout = true;
1137 break;
1138 }
1139 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1140 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1141 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1142 features->indexTypeUint8 = pdevice->rad_info.chip_class >= GFX8;
1143 break;
1144 }
1145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1146 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1147 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1148 features->imagelessFramebuffer = true;
1149 break;
1150 }
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1152 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1153 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1154 features->pipelineExecutableInfo = true;
1155 break;
1156 }
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1158 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1159 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1160 features->shaderSubgroupClock = true;
1161 features->shaderDeviceClock = false;
1162 break;
1163 }
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1165 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1166 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1167 features->texelBufferAlignment = true;
1168 break;
1169 }
1170 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1171 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1172 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1173 features->timelineSemaphore = true;
1174 break;
1175 }
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1177 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1178 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1179 features->subgroupSizeControl = true;
1180 features->computeFullSubgroups = true;
1181 break;
1182 }
1183 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
1184 VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
1185 (VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
1186 features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
1187 break;
1188 }
1189 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1190 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1191 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1192 features->shaderSubgroupExtendedTypes = true;
1193 break;
1194 }
1195 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1196 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1197 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1198 features->separateDepthStencilLayouts = true;
1199 break;
1200 }
1201 default:
1202 break;
1203 }
1204 }
1205 return radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1206 }
1207
1208 static size_t
1209 radv_max_descriptor_set_size()
1210 {
1211 /* make sure that the entire descriptor set is addressable with a signed
1212 * 32-bit int. So the sum of all limits scaled by descriptor size has to
1213 * be at most 2 GiB. the combined image & samples object count as one of
1214 * both. This limit is for the pipeline layout, not for the set layout, but
1215 * there is no set limit, so we just set a pipeline limit. I don't think
1216 * any app is going to hit this soon. */
1217 return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS
1218 - MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
1219 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1220 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1221 32 /* sampler, largest when combined with image */ +
1222 64 /* sampled image */ +
1223 64 /* storage image */);
1224 }
1225
1226 void radv_GetPhysicalDeviceProperties(
1227 VkPhysicalDevice physicalDevice,
1228 VkPhysicalDeviceProperties* pProperties)
1229 {
1230 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1231 VkSampleCountFlags sample_counts = 0xf;
1232
1233 size_t max_descriptor_set_size = radv_max_descriptor_set_size();
1234
1235 VkPhysicalDeviceLimits limits = {
1236 .maxImageDimension1D = (1 << 14),
1237 .maxImageDimension2D = (1 << 14),
1238 .maxImageDimension3D = (1 << 11),
1239 .maxImageDimensionCube = (1 << 14),
1240 .maxImageArrayLayers = (1 << 11),
1241 .maxTexelBufferElements = 128 * 1024 * 1024,
1242 .maxUniformBufferRange = UINT32_MAX,
1243 .maxStorageBufferRange = UINT32_MAX,
1244 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1245 .maxMemoryAllocationCount = UINT32_MAX,
1246 .maxSamplerAllocationCount = 64 * 1024,
1247 .bufferImageGranularity = 64, /* A cache line */
1248 .sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */
1249 .maxBoundDescriptorSets = MAX_SETS,
1250 .maxPerStageDescriptorSamplers = max_descriptor_set_size,
1251 .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
1252 .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
1253 .maxPerStageDescriptorSampledImages = max_descriptor_set_size,
1254 .maxPerStageDescriptorStorageImages = max_descriptor_set_size,
1255 .maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
1256 .maxPerStageResources = max_descriptor_set_size,
1257 .maxDescriptorSetSamplers = max_descriptor_set_size,
1258 .maxDescriptorSetUniformBuffers = max_descriptor_set_size,
1259 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
1260 .maxDescriptorSetStorageBuffers = max_descriptor_set_size,
1261 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
1262 .maxDescriptorSetSampledImages = max_descriptor_set_size,
1263 .maxDescriptorSetStorageImages = max_descriptor_set_size,
1264 .maxDescriptorSetInputAttachments = max_descriptor_set_size,
1265 .maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
1266 .maxVertexInputBindings = MAX_VBS,
1267 .maxVertexInputAttributeOffset = 2047,
1268 .maxVertexInputBindingStride = 2048,
1269 .maxVertexOutputComponents = 128,
1270 .maxTessellationGenerationLevel = 64,
1271 .maxTessellationPatchSize = 32,
1272 .maxTessellationControlPerVertexInputComponents = 128,
1273 .maxTessellationControlPerVertexOutputComponents = 128,
1274 .maxTessellationControlPerPatchOutputComponents = 120,
1275 .maxTessellationControlTotalOutputComponents = 4096,
1276 .maxTessellationEvaluationInputComponents = 128,
1277 .maxTessellationEvaluationOutputComponents = 128,
1278 .maxGeometryShaderInvocations = 127,
1279 .maxGeometryInputComponents = 64,
1280 .maxGeometryOutputComponents = 128,
1281 .maxGeometryOutputVertices = 256,
1282 .maxGeometryTotalOutputComponents = 1024,
1283 .maxFragmentInputComponents = 128,
1284 .maxFragmentOutputAttachments = 8,
1285 .maxFragmentDualSrcAttachments = 1,
1286 .maxFragmentCombinedOutputResources = 8,
1287 .maxComputeSharedMemorySize = 32768,
1288 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1289 .maxComputeWorkGroupInvocations = 1024,
1290 .maxComputeWorkGroupSize = {
1291 1024,
1292 1024,
1293 1024
1294 },
1295 .subPixelPrecisionBits = 8,
1296 .subTexelPrecisionBits = 8,
1297 .mipmapPrecisionBits = 8,
1298 .maxDrawIndexedIndexValue = UINT32_MAX,
1299 .maxDrawIndirectCount = UINT32_MAX,
1300 .maxSamplerLodBias = 16,
1301 .maxSamplerAnisotropy = 16,
1302 .maxViewports = MAX_VIEWPORTS,
1303 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1304 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1305 .viewportSubPixelBits = 8,
1306 .minMemoryMapAlignment = 4096, /* A page */
1307 .minTexelBufferOffsetAlignment = 4,
1308 .minUniformBufferOffsetAlignment = 4,
1309 .minStorageBufferOffsetAlignment = 4,
1310 .minTexelOffset = -32,
1311 .maxTexelOffset = 31,
1312 .minTexelGatherOffset = -32,
1313 .maxTexelGatherOffset = 31,
1314 .minInterpolationOffset = -2,
1315 .maxInterpolationOffset = 2,
1316 .subPixelInterpolationOffsetBits = 8,
1317 .maxFramebufferWidth = (1 << 14),
1318 .maxFramebufferHeight = (1 << 14),
1319 .maxFramebufferLayers = (1 << 10),
1320 .framebufferColorSampleCounts = sample_counts,
1321 .framebufferDepthSampleCounts = sample_counts,
1322 .framebufferStencilSampleCounts = sample_counts,
1323 .framebufferNoAttachmentsSampleCounts = sample_counts,
1324 .maxColorAttachments = MAX_RTS,
1325 .sampledImageColorSampleCounts = sample_counts,
1326 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1327 .sampledImageDepthSampleCounts = sample_counts,
1328 .sampledImageStencilSampleCounts = sample_counts,
1329 .storageImageSampleCounts = pdevice->rad_info.chip_class >= GFX8 ? sample_counts : VK_SAMPLE_COUNT_1_BIT,
1330 .maxSampleMaskWords = 1,
1331 .timestampComputeAndGraphics = true,
1332 .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
1333 .maxClipDistances = 8,
1334 .maxCullDistances = 8,
1335 .maxCombinedClipAndCullDistances = 8,
1336 .discreteQueuePriorities = 2,
1337 .pointSizeRange = { 0.0, 8192.0 },
1338 .lineWidthRange = { 0.0, 7.9921875 },
1339 .pointSizeGranularity = (1.0 / 8.0),
1340 .lineWidthGranularity = (1.0 / 128.0),
1341 .strictLines = false, /* FINISHME */
1342 .standardSampleLocations = true,
1343 .optimalBufferCopyOffsetAlignment = 128,
1344 .optimalBufferCopyRowPitchAlignment = 128,
1345 .nonCoherentAtomSize = 64,
1346 };
1347
1348 *pProperties = (VkPhysicalDeviceProperties) {
1349 .apiVersion = radv_physical_device_api_version(pdevice),
1350 .driverVersion = vk_get_driver_version(),
1351 .vendorID = ATI_VENDOR_ID,
1352 .deviceID = pdevice->rad_info.pci_id,
1353 .deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1354 .limits = limits,
1355 .sparseProperties = {0},
1356 };
1357
1358 strcpy(pProperties->deviceName, pdevice->name);
1359 memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
1360 }
1361
1362 void radv_GetPhysicalDeviceProperties2(
1363 VkPhysicalDevice physicalDevice,
1364 VkPhysicalDeviceProperties2 *pProperties)
1365 {
1366 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1367 radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1368
1369 vk_foreach_struct(ext, pProperties->pNext) {
1370 switch (ext->sType) {
1371 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1372 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1373 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1374 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1375 break;
1376 }
1377 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1378 VkPhysicalDeviceIDProperties *properties = (VkPhysicalDeviceIDProperties*)ext;
1379 memcpy(properties->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1380 memcpy(properties->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1381 properties->deviceLUIDValid = false;
1382 break;
1383 }
1384 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1385 VkPhysicalDeviceMultiviewProperties *properties = (VkPhysicalDeviceMultiviewProperties*)ext;
1386 properties->maxMultiviewViewCount = MAX_VIEWS;
1387 properties->maxMultiviewInstanceIndex = INT_MAX;
1388 break;
1389 }
1390 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1391 VkPhysicalDevicePointClippingProperties *properties =
1392 (VkPhysicalDevicePointClippingProperties*)ext;
1393 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1394 break;
1395 }
1396 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
1397 VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
1398 (VkPhysicalDeviceDiscardRectanglePropertiesEXT*)ext;
1399 properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
1400 break;
1401 }
1402 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1403 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
1404 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1405 properties->minImportedHostPointerAlignment = 4096;
1406 break;
1407 }
1408 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1409 VkPhysicalDeviceSubgroupProperties *properties =
1410 (VkPhysicalDeviceSubgroupProperties*)ext;
1411 properties->subgroupSize = RADV_SUBGROUP_SIZE;
1412 properties->supportedStages = VK_SHADER_STAGE_ALL;
1413 properties->supportedOperations =
1414 VK_SUBGROUP_FEATURE_BASIC_BIT |
1415 VK_SUBGROUP_FEATURE_VOTE_BIT |
1416 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1417 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1418 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1419 VK_SUBGROUP_FEATURE_QUAD_BIT;
1420 if (pdevice->rad_info.chip_class == GFX8 ||
1421 pdevice->rad_info.chip_class == GFX9) {
1422 properties->supportedOperations |=
1423 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1424 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
1425 }
1426 properties->quadOperationsInAllStages = true;
1427 break;
1428 }
1429 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1430 VkPhysicalDeviceMaintenance3Properties *properties =
1431 (VkPhysicalDeviceMaintenance3Properties*)ext;
1432 properties->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
1433 properties->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
1434 break;
1435 }
1436 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1437 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1438 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1439 /* GFX6-8 only support single channel min/max filter. */
1440 properties->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9;
1441 properties->filterMinmaxSingleComponentFormats = true;
1442 break;
1443 }
1444 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
1445 VkPhysicalDeviceShaderCorePropertiesAMD *properties =
1446 (VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
1447
1448 /* Shader engines. */
1449 properties->shaderEngineCount =
1450 pdevice->rad_info.max_se;
1451 properties->shaderArraysPerEngineCount =
1452 pdevice->rad_info.max_sh_per_se;
1453 properties->computeUnitsPerShaderArray =
1454 pdevice->rad_info.num_good_cu_per_sh;
1455 properties->simdPerComputeUnit = 4;
1456 properties->wavefrontsPerSimd =
1457 pdevice->rad_info.family == CHIP_TONGA ||
1458 pdevice->rad_info.family == CHIP_ICELAND ||
1459 pdevice->rad_info.family == CHIP_POLARIS10 ||
1460 pdevice->rad_info.family == CHIP_POLARIS11 ||
1461 pdevice->rad_info.family == CHIP_POLARIS12 ||
1462 pdevice->rad_info.family == CHIP_VEGAM ? 8 : 10;
1463 properties->wavefrontSize = 64;
1464
1465 /* SGPR. */
1466 properties->sgprsPerSimd =
1467 pdevice->rad_info.num_physical_sgprs_per_simd;
1468 properties->minSgprAllocation =
1469 pdevice->rad_info.chip_class >= GFX8 ? 16 : 8;
1470 properties->maxSgprAllocation =
1471 pdevice->rad_info.family == CHIP_TONGA ||
1472 pdevice->rad_info.family == CHIP_ICELAND ? 96 : 104;
1473 properties->sgprAllocationGranularity =
1474 pdevice->rad_info.chip_class >= GFX8 ? 16 : 8;
1475
1476 /* VGPR. */
1477 properties->vgprsPerSimd = RADV_NUM_PHYSICAL_VGPRS;
1478 properties->minVgprAllocation = 4;
1479 properties->maxVgprAllocation = 256;
1480 properties->vgprAllocationGranularity = 4;
1481 break;
1482 }
1483 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
1484 VkPhysicalDeviceShaderCoreProperties2AMD *properties =
1485 (VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
1486
1487 properties->shaderCoreFeatures = 0;
1488 properties->activeComputeUnitCount =
1489 pdevice->rad_info.num_good_compute_units;
1490 break;
1491 }
1492 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1493 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
1494 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1495 properties->maxVertexAttribDivisor = UINT32_MAX;
1496 break;
1497 }
1498 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1499 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1500 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT*)ext;
1501 properties->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
1502 properties->shaderUniformBufferArrayNonUniformIndexingNative = false;
1503 properties->shaderSampledImageArrayNonUniformIndexingNative = false;
1504 properties->shaderStorageBufferArrayNonUniformIndexingNative = false;
1505 properties->shaderStorageImageArrayNonUniformIndexingNative = false;
1506 properties->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1507 properties->robustBufferAccessUpdateAfterBind = false;
1508 properties->quadDivergentImplicitLod = false;
1509
1510 size_t max_descriptor_set_size = radv_max_descriptor_set_size();
1511 properties->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
1512 properties->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1513 properties->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1514 properties->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
1515 properties->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
1516 properties->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
1517 properties->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
1518 properties->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
1519 properties->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1520 properties->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
1521 properties->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1522 properties->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
1523 properties->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
1524 properties->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
1525 properties->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
1526 break;
1527 }
1528 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1529 VkPhysicalDeviceProtectedMemoryProperties *properties =
1530 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1531 properties->protectedNoFault = false;
1532 break;
1533 }
1534 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
1535 VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
1536 (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
1537 properties->primitiveOverestimationSize = 0;
1538 properties->maxExtraPrimitiveOverestimationSize = 0;
1539 properties->extraPrimitiveOverestimationSizeGranularity = 0;
1540 properties->primitiveUnderestimation = false;
1541 properties->conservativePointAndLineRasterization = false;
1542 properties->degenerateTrianglesRasterized = false;
1543 properties->degenerateLinesRasterized = false;
1544 properties->fullyCoveredFragmentShaderInputVariable = false;
1545 properties->conservativeRasterizationPostDepthCoverage = false;
1546 break;
1547 }
1548 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1549 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1550 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1551 properties->pciDomain = pdevice->bus_info.domain;
1552 properties->pciBus = pdevice->bus_info.bus;
1553 properties->pciDevice = pdevice->bus_info.dev;
1554 properties->pciFunction = pdevice->bus_info.func;
1555 break;
1556 }
1557 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1558 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1559 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1560
1561 driver_props->driverID = VK_DRIVER_ID_MESA_RADV_KHR;
1562 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR, "radv");
1563 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1564 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1
1565 " (LLVM " MESA_LLVM_VERSION_STRING ")");
1566
1567 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1568 .major = 1,
1569 .minor = 1,
1570 .subminor = 2,
1571 .patch = 0,
1572 };
1573 break;
1574 }
1575 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1576 VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
1577 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1578 properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
1579 properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
1580 properties->maxTransformFeedbackBufferSize = UINT32_MAX;
1581 properties->maxTransformFeedbackStreamDataSize = 512;
1582 properties->maxTransformFeedbackBufferDataSize = UINT32_MAX;
1583 properties->maxTransformFeedbackBufferDataStride = 512;
1584 properties->transformFeedbackQueries = !pdevice->use_ngg_streamout;
1585 properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout;
1586 properties->transformFeedbackRasterizationStreamSelect = false;
1587 properties->transformFeedbackDraw = true;
1588 break;
1589 }
1590 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1591 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1592 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1593
1594 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1595 props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
1596 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
1597 props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
1598 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
1599 break;
1600 }
1601 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
1602 VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
1603 (VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
1604 properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT |
1605 VK_SAMPLE_COUNT_4_BIT |
1606 VK_SAMPLE_COUNT_8_BIT;
1607 properties->maxSampleLocationGridSize = (VkExtent2D){ 2 , 2 };
1608 properties->sampleLocationCoordinateRange[0] = 0.0f;
1609 properties->sampleLocationCoordinateRange[1] = 0.9375f;
1610 properties->sampleLocationSubPixelBits = 4;
1611 properties->variableSampleLocations = false;
1612 break;
1613 }
1614 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1615 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1616 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1617
1618 /* We support all of the depth resolve modes */
1619 properties->supportedDepthResolveModes =
1620 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1621 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1622 VK_RESOLVE_MODE_MIN_BIT_KHR |
1623 VK_RESOLVE_MODE_MAX_BIT_KHR;
1624
1625 /* Average doesn't make sense for stencil so we don't support that */
1626 properties->supportedStencilResolveModes =
1627 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1628 VK_RESOLVE_MODE_MIN_BIT_KHR |
1629 VK_RESOLVE_MODE_MAX_BIT_KHR;
1630
1631 properties->independentResolveNone = true;
1632 properties->independentResolve = true;
1633 break;
1634 }
1635 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1636 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *properties =
1637 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1638 properties->storageTexelBufferOffsetAlignmentBytes = 4;
1639 properties->storageTexelBufferOffsetSingleTexelAlignment = true;
1640 properties->uniformTexelBufferOffsetAlignmentBytes = 4;
1641 properties->uniformTexelBufferOffsetSingleTexelAlignment = true;
1642 break;
1643 }
1644 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1645 VkPhysicalDeviceFloatControlsPropertiesKHR *properties =
1646 (VkPhysicalDeviceFloatControlsPropertiesKHR *)ext;
1647
1648 /* On AMD hardware, denormals and rounding modes for
1649 * fp16/fp64 are controlled by the same config
1650 * register.
1651 */
1652 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
1653 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
1654
1655 /* Do not allow both preserving and flushing denorms
1656 * because different shaders in the same pipeline can
1657 * have different settings and this won't work for
1658 * merged shaders. To make it work, this requires LLVM
1659 * support for changing the register. The same logic
1660 * applies for the rounding modes because they are
1661 * configured with the same config register.
1662 * TODO: we can enable a lot of these for ACO when it
1663 * supports all stages
1664 */
1665 properties->shaderDenormFlushToZeroFloat32 = true;
1666 properties->shaderDenormPreserveFloat32 = false;
1667 properties->shaderRoundingModeRTEFloat32 = true;
1668 properties->shaderRoundingModeRTZFloat32 = false;
1669 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1670
1671 properties->shaderDenormFlushToZeroFloat16 = false;
1672 properties->shaderDenormPreserveFloat16 = pdevice->rad_info.chip_class >= GFX8;
1673 properties->shaderRoundingModeRTEFloat16 = pdevice->rad_info.chip_class >= GFX8;
1674 properties->shaderRoundingModeRTZFloat16 = false;
1675 properties->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.chip_class >= GFX8;
1676
1677 properties->shaderDenormFlushToZeroFloat64 = false;
1678 properties->shaderDenormPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
1679 properties->shaderRoundingModeRTEFloat64 = pdevice->rad_info.chip_class >= GFX8;
1680 properties->shaderRoundingModeRTZFloat64 = false;
1681 properties->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
1682 break;
1683 }
1684 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1685 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *props =
1686 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1687 props->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1688 break;
1689 }
1690 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1691 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1692 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1693 props->minSubgroupSize = 64;
1694 props->maxSubgroupSize = 64;
1695 props->maxComputeWorkgroupSubgroups = UINT32_MAX;
1696 props->requiredSubgroupSizeStages = 0;
1697
1698 if (pdevice->rad_info.chip_class >= GFX10) {
1699 /* Only GFX10+ supports wave32. */
1700 props->minSubgroupSize = 32;
1701 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1702 }
1703 break;
1704 }
1705 default:
1706 break;
1707 }
1708 }
1709 }
1710
1711 static void radv_get_physical_device_queue_family_properties(
1712 struct radv_physical_device* pdevice,
1713 uint32_t* pCount,
1714 VkQueueFamilyProperties** pQueueFamilyProperties)
1715 {
1716 int num_queue_families = 1;
1717 int idx;
1718 if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
1719 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
1720 num_queue_families++;
1721
1722 if (pQueueFamilyProperties == NULL) {
1723 *pCount = num_queue_families;
1724 return;
1725 }
1726
1727 if (!*pCount)
1728 return;
1729
1730 idx = 0;
1731 if (*pCount >= 1) {
1732 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
1733 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1734 VK_QUEUE_COMPUTE_BIT |
1735 VK_QUEUE_TRANSFER_BIT |
1736 VK_QUEUE_SPARSE_BINDING_BIT,
1737 .queueCount = 1,
1738 .timestampValidBits = 64,
1739 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
1740 };
1741 idx++;
1742 }
1743
1744 if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
1745 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
1746 if (*pCount > idx) {
1747 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
1748 .queueFlags = VK_QUEUE_COMPUTE_BIT |
1749 VK_QUEUE_TRANSFER_BIT |
1750 VK_QUEUE_SPARSE_BINDING_BIT,
1751 .queueCount = pdevice->rad_info.num_rings[RING_COMPUTE],
1752 .timestampValidBits = 64,
1753 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
1754 };
1755 idx++;
1756 }
1757 }
1758 *pCount = idx;
1759 }
1760
1761 void radv_GetPhysicalDeviceQueueFamilyProperties(
1762 VkPhysicalDevice physicalDevice,
1763 uint32_t* pCount,
1764 VkQueueFamilyProperties* pQueueFamilyProperties)
1765 {
1766 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1767 if (!pQueueFamilyProperties) {
1768 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
1769 return;
1770 }
1771 VkQueueFamilyProperties *properties[] = {
1772 pQueueFamilyProperties + 0,
1773 pQueueFamilyProperties + 1,
1774 pQueueFamilyProperties + 2,
1775 };
1776 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
1777 assert(*pCount <= 3);
1778 }
1779
1780 void radv_GetPhysicalDeviceQueueFamilyProperties2(
1781 VkPhysicalDevice physicalDevice,
1782 uint32_t* pCount,
1783 VkQueueFamilyProperties2 *pQueueFamilyProperties)
1784 {
1785 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1786 if (!pQueueFamilyProperties) {
1787 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
1788 return;
1789 }
1790 VkQueueFamilyProperties *properties[] = {
1791 &pQueueFamilyProperties[0].queueFamilyProperties,
1792 &pQueueFamilyProperties[1].queueFamilyProperties,
1793 &pQueueFamilyProperties[2].queueFamilyProperties,
1794 };
1795 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
1796 assert(*pCount <= 3);
1797 }
1798
1799 void radv_GetPhysicalDeviceMemoryProperties(
1800 VkPhysicalDevice physicalDevice,
1801 VkPhysicalDeviceMemoryProperties *pMemoryProperties)
1802 {
1803 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
1804
1805 *pMemoryProperties = physical_device->memory_properties;
1806 }
1807
1808 static void
1809 radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
1810 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1811 {
1812 RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
1813 VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
1814 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
1815 uint64_t vram_size = radv_get_vram_size(device);
1816 uint64_t gtt_size = device->rad_info.gart_size;
1817 uint64_t heap_budget, heap_usage;
1818
1819 /* For all memory heaps, the computation of budget is as follow:
1820 * heap_budget = heap_size - global_heap_usage + app_heap_usage
1821 *
1822 * The Vulkan spec 1.1.97 says that the budget should include any
1823 * currently allocated device memory.
1824 *
1825 * Note that the application heap usages are not really accurate (eg.
1826 * in presence of shared buffers).
1827 */
1828 for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
1829 uint32_t heap_index = device->memory_properties.memoryTypes[i].heapIndex;
1830
1831 if (radv_is_mem_type_vram(device->mem_type_indices[i])) {
1832 heap_usage = device->ws->query_value(device->ws,
1833 RADEON_ALLOCATED_VRAM);
1834
1835 heap_budget = vram_size -
1836 device->ws->query_value(device->ws, RADEON_VRAM_USAGE) +
1837 heap_usage;
1838
1839 memoryBudget->heapBudget[heap_index] = heap_budget;
1840 memoryBudget->heapUsage[heap_index] = heap_usage;
1841 } else if (radv_is_mem_type_vram_visible(device->mem_type_indices[i])) {
1842 heap_usage = device->ws->query_value(device->ws,
1843 RADEON_ALLOCATED_VRAM_VIS);
1844
1845 heap_budget = visible_vram_size -
1846 device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
1847 heap_usage;
1848
1849 memoryBudget->heapBudget[heap_index] = heap_budget;
1850 memoryBudget->heapUsage[heap_index] = heap_usage;
1851 } else if (radv_is_mem_type_gtt_wc(device->mem_type_indices[i])) {
1852 heap_usage = device->ws->query_value(device->ws,
1853 RADEON_ALLOCATED_GTT);
1854
1855 heap_budget = gtt_size -
1856 device->ws->query_value(device->ws, RADEON_GTT_USAGE) +
1857 heap_usage;
1858
1859 memoryBudget->heapBudget[heap_index] = heap_budget;
1860 memoryBudget->heapUsage[heap_index] = heap_usage;
1861 }
1862 }
1863
1864 /* The heapBudget and heapUsage values must be zero for array elements
1865 * greater than or equal to
1866 * VkPhysicalDeviceMemoryProperties::memoryHeapCount.
1867 */
1868 for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
1869 memoryBudget->heapBudget[i] = 0;
1870 memoryBudget->heapUsage[i] = 0;
1871 }
1872 }
1873
1874 void radv_GetPhysicalDeviceMemoryProperties2(
1875 VkPhysicalDevice physicalDevice,
1876 VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
1877 {
1878 radv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1879 &pMemoryProperties->memoryProperties);
1880
1881 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
1882 vk_find_struct(pMemoryProperties->pNext,
1883 PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
1884 if (memory_budget)
1885 radv_get_memory_budget_properties(physicalDevice, memory_budget);
1886 }
1887
1888 VkResult radv_GetMemoryHostPointerPropertiesEXT(
1889 VkDevice _device,
1890 VkExternalMemoryHandleTypeFlagBits handleType,
1891 const void *pHostPointer,
1892 VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
1893 {
1894 RADV_FROM_HANDLE(radv_device, device, _device);
1895
1896 switch (handleType)
1897 {
1898 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
1899 const struct radv_physical_device *physical_device = device->physical_device;
1900 uint32_t memoryTypeBits = 0;
1901 for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
1902 if (radv_is_mem_type_gtt_cached(physical_device->mem_type_indices[i])) {
1903 memoryTypeBits = (1 << i);
1904 break;
1905 }
1906 }
1907 pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
1908 return VK_SUCCESS;
1909 }
1910 default:
1911 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
1912 }
1913 }
1914
1915 static enum radeon_ctx_priority
1916 radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj)
1917 {
1918 /* Default to MEDIUM when a specific global priority isn't requested */
1919 if (!pObj)
1920 return RADEON_CTX_PRIORITY_MEDIUM;
1921
1922 switch(pObj->globalPriority) {
1923 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1924 return RADEON_CTX_PRIORITY_REALTIME;
1925 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1926 return RADEON_CTX_PRIORITY_HIGH;
1927 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1928 return RADEON_CTX_PRIORITY_MEDIUM;
1929 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1930 return RADEON_CTX_PRIORITY_LOW;
1931 default:
1932 unreachable("Illegal global priority value");
1933 return RADEON_CTX_PRIORITY_INVALID;
1934 }
1935 }
1936
1937 static int
1938 radv_queue_init(struct radv_device *device, struct radv_queue *queue,
1939 uint32_t queue_family_index, int idx,
1940 VkDeviceQueueCreateFlags flags,
1941 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority)
1942 {
1943 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1944 queue->device = device;
1945 queue->queue_family_index = queue_family_index;
1946 queue->queue_idx = idx;
1947 queue->priority = radv_get_queue_global_priority(global_priority);
1948 queue->flags = flags;
1949
1950 queue->hw_ctx = device->ws->ctx_create(device->ws, queue->priority);
1951 if (!queue->hw_ctx)
1952 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1953
1954 list_inithead(&queue->pending_submissions);
1955 pthread_mutex_init(&queue->pending_mutex, NULL);
1956
1957 return VK_SUCCESS;
1958 }
1959
1960 static void
1961 radv_queue_finish(struct radv_queue *queue)
1962 {
1963 pthread_mutex_destroy(&queue->pending_mutex);
1964
1965 if (queue->hw_ctx)
1966 queue->device->ws->ctx_destroy(queue->hw_ctx);
1967
1968 if (queue->initial_full_flush_preamble_cs)
1969 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
1970 if (queue->initial_preamble_cs)
1971 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
1972 if (queue->continue_preamble_cs)
1973 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
1974 if (queue->descriptor_bo)
1975 queue->device->ws->buffer_destroy(queue->descriptor_bo);
1976 if (queue->scratch_bo)
1977 queue->device->ws->buffer_destroy(queue->scratch_bo);
1978 if (queue->esgs_ring_bo)
1979 queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
1980 if (queue->gsvs_ring_bo)
1981 queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
1982 if (queue->tess_rings_bo)
1983 queue->device->ws->buffer_destroy(queue->tess_rings_bo);
1984 if (queue->gds_bo)
1985 queue->device->ws->buffer_destroy(queue->gds_bo);
1986 if (queue->gds_oa_bo)
1987 queue->device->ws->buffer_destroy(queue->gds_oa_bo);
1988 if (queue->compute_scratch_bo)
1989 queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
1990 }
1991
1992 static void
1993 radv_bo_list_init(struct radv_bo_list *bo_list)
1994 {
1995 pthread_mutex_init(&bo_list->mutex, NULL);
1996 bo_list->list.count = bo_list->capacity = 0;
1997 bo_list->list.bos = NULL;
1998 }
1999
2000 static void
2001 radv_bo_list_finish(struct radv_bo_list *bo_list)
2002 {
2003 free(bo_list->list.bos);
2004 pthread_mutex_destroy(&bo_list->mutex);
2005 }
2006
2007 static VkResult radv_bo_list_add(struct radv_device *device,
2008 struct radeon_winsys_bo *bo)
2009 {
2010 struct radv_bo_list *bo_list = &device->bo_list;
2011
2012 if (bo->is_local)
2013 return VK_SUCCESS;
2014
2015 if (unlikely(!device->use_global_bo_list))
2016 return VK_SUCCESS;
2017
2018 pthread_mutex_lock(&bo_list->mutex);
2019 if (bo_list->list.count == bo_list->capacity) {
2020 unsigned capacity = MAX2(4, bo_list->capacity * 2);
2021 void *data = realloc(bo_list->list.bos, capacity * sizeof(struct radeon_winsys_bo*));
2022
2023 if (!data) {
2024 pthread_mutex_unlock(&bo_list->mutex);
2025 return VK_ERROR_OUT_OF_HOST_MEMORY;
2026 }
2027
2028 bo_list->list.bos = (struct radeon_winsys_bo**)data;
2029 bo_list->capacity = capacity;
2030 }
2031
2032 bo_list->list.bos[bo_list->list.count++] = bo;
2033 pthread_mutex_unlock(&bo_list->mutex);
2034 return VK_SUCCESS;
2035 }
2036
2037 static void radv_bo_list_remove(struct radv_device *device,
2038 struct radeon_winsys_bo *bo)
2039 {
2040 struct radv_bo_list *bo_list = &device->bo_list;
2041
2042 if (bo->is_local)
2043 return;
2044
2045 if (unlikely(!device->use_global_bo_list))
2046 return;
2047
2048 pthread_mutex_lock(&bo_list->mutex);
2049 for(unsigned i = 0; i < bo_list->list.count; ++i) {
2050 if (bo_list->list.bos[i] == bo) {
2051 bo_list->list.bos[i] = bo_list->list.bos[bo_list->list.count - 1];
2052 --bo_list->list.count;
2053 break;
2054 }
2055 }
2056 pthread_mutex_unlock(&bo_list->mutex);
2057 }
2058
2059 static void
2060 radv_device_init_gs_info(struct radv_device *device)
2061 {
2062 device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class,
2063 device->physical_device->rad_info.family);
2064 }
2065
2066 static int radv_get_device_extension_index(const char *name)
2067 {
2068 for (unsigned i = 0; i < RADV_DEVICE_EXTENSION_COUNT; ++i) {
2069 if (strcmp(name, radv_device_extensions[i].extensionName) == 0)
2070 return i;
2071 }
2072 return -1;
2073 }
2074
2075 static int
2076 radv_get_int_debug_option(const char *name, int default_value)
2077 {
2078 const char *str;
2079 int result;
2080
2081 str = getenv(name);
2082 if (!str) {
2083 result = default_value;
2084 } else {
2085 char *endptr;
2086
2087 result = strtol(str, &endptr, 0);
2088 if (str == endptr) {
2089 /* No digits founs. */
2090 result = default_value;
2091 }
2092 }
2093
2094 return result;
2095 }
2096
2097 static int install_seccomp_filter() {
2098
2099 struct sock_filter filter[] = {
2100 /* Check arch is 64bit x86 */
2101 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, arch))),
2102 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, AUDIT_ARCH_X86_64, 0, 12),
2103
2104 /* Futex is required for mutex locks */
2105 #if defined __NR__newselect
2106 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2107 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR__newselect, 11, 0),
2108 #elif defined __NR_select
2109 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2110 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_select, 11, 0),
2111 #else
2112 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2113 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_pselect6, 11, 0),
2114 #endif
2115
2116 /* Allow system exit calls for the forked process */
2117 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2118 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_exit_group, 9, 0),
2119
2120 /* Allow system read calls */
2121 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2122 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_read, 7, 0),
2123
2124 /* Allow system write calls */
2125 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2126 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_write, 5, 0),
2127
2128 /* Allow system brk calls (we need this for malloc) */
2129 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2130 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_brk, 3, 0),
2131
2132 /* Futex is required for mutex locks */
2133 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2134 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_futex, 1, 0),
2135
2136 /* Return error if we hit a system call not on the whitelist */
2137 BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ERRNO | (EPERM & SECCOMP_RET_DATA)),
2138
2139 /* Allow whitelisted system calls */
2140 BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ALLOW),
2141 };
2142
2143 struct sock_fprog prog = {
2144 .len = (unsigned short)(sizeof(filter) / sizeof(filter[0])),
2145 .filter = filter,
2146 };
2147
2148 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
2149 return -1;
2150
2151 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog))
2152 return -1;
2153
2154 return 0;
2155 }
2156
2157 /* Helper function with timeout support for reading from the pipe between
2158 * processes used for secure compile.
2159 */
2160 bool radv_sc_read(int fd, void *buf, size_t size, bool timeout)
2161 {
2162 fd_set fds;
2163 struct timeval tv;
2164
2165 FD_ZERO(&fds);
2166 FD_SET(fd, &fds);
2167
2168 while (true) {
2169 /* We can't rely on the value of tv after calling select() so
2170 * we must reset it on each iteration of the loop.
2171 */
2172 tv.tv_sec = 5;
2173 tv.tv_usec = 0;
2174
2175 int rval = select(fd + 1, &fds, NULL, NULL, timeout ? &tv : NULL);
2176
2177 if (rval == -1) {
2178 /* select error */
2179 return false;
2180 } else if (rval) {
2181 ssize_t bytes_read = read(fd, buf, size);
2182 if (bytes_read < 0)
2183 return false;
2184
2185 buf += bytes_read;
2186 size -= bytes_read;
2187 if (size == 0)
2188 return true;
2189 } else {
2190 /* select timeout */
2191 return false;
2192 }
2193 }
2194 }
2195
2196 static bool radv_close_all_fds(const int *keep_fds, int keep_fd_count)
2197 {
2198 DIR *d;
2199 struct dirent *dir;
2200 d = opendir("/proc/self/fd");
2201 if (!d)
2202 return false;
2203 int dir_fd = dirfd(d);
2204
2205 while ((dir = readdir(d)) != NULL) {
2206 if (dir->d_name[0] == '.')
2207 continue;
2208
2209 int fd = atoi(dir->d_name);
2210 if (fd == dir_fd)
2211 continue;
2212
2213 bool keep = false;
2214 for (int i = 0; !keep && i < keep_fd_count; ++i)
2215 if (keep_fds[i] == fd)
2216 keep = true;
2217
2218 if (keep)
2219 continue;
2220
2221 close(fd);
2222 }
2223 closedir(d);
2224 return true;
2225 }
2226
2227 static bool secure_compile_open_fifo_fds(struct radv_secure_compile_state *sc,
2228 int *fd_server, int *fd_client,
2229 unsigned process, bool make_fifo)
2230 {
2231 bool result = false;
2232 char *fifo_server_path = NULL;
2233 char *fifo_client_path = NULL;
2234
2235 if (asprintf(&fifo_server_path, "/tmp/radv_server_%s_%u", sc->uid, process) == -1)
2236 goto open_fifo_exit;
2237
2238 if (asprintf(&fifo_client_path, "/tmp/radv_client_%s_%u", sc->uid, process) == -1)
2239 goto open_fifo_exit;
2240
2241 if (make_fifo) {
2242 int file1 = mkfifo(fifo_server_path, 0666);
2243 if(file1 < 0)
2244 goto open_fifo_exit;
2245
2246 int file2 = mkfifo(fifo_client_path, 0666);
2247 if(file2 < 0)
2248 goto open_fifo_exit;
2249 }
2250
2251 *fd_server = open(fifo_server_path, O_RDWR);
2252 if(*fd_server < 1)
2253 goto open_fifo_exit;
2254
2255 *fd_client = open(fifo_client_path, O_RDWR);
2256 if(*fd_client < 1) {
2257 close(*fd_server);
2258 goto open_fifo_exit;
2259 }
2260
2261 result = true;
2262
2263 open_fifo_exit:
2264 free(fifo_server_path);
2265 free(fifo_client_path);
2266
2267 return result;
2268 }
2269
2270 static void run_secure_compile_device(struct radv_device *device, unsigned process,
2271 int fd_idle_device_output)
2272 {
2273 int fd_secure_input;
2274 int fd_secure_output;
2275 bool fifo_result = secure_compile_open_fifo_fds(device->sc_state,
2276 &fd_secure_input,
2277 &fd_secure_output,
2278 process, false);
2279
2280 enum radv_secure_compile_type sc_type;
2281
2282 const int needed_fds[] = {
2283 fd_secure_input,
2284 fd_secure_output,
2285 fd_idle_device_output,
2286 };
2287
2288 if (!fifo_result || !radv_close_all_fds(needed_fds, ARRAY_SIZE(needed_fds)) ||
2289 install_seccomp_filter() == -1) {
2290 sc_type = RADV_SC_TYPE_INIT_FAILURE;
2291 } else {
2292 sc_type = RADV_SC_TYPE_INIT_SUCCESS;
2293 device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input;
2294 device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output;
2295 }
2296
2297 write(fd_idle_device_output, &sc_type, sizeof(sc_type));
2298
2299 if (sc_type == RADV_SC_TYPE_INIT_FAILURE)
2300 goto secure_compile_exit;
2301
2302 while (true) {
2303 radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false);
2304
2305 if (sc_type == RADV_SC_TYPE_COMPILE_PIPELINE) {
2306 struct radv_pipeline *pipeline;
2307 bool sc_read = true;
2308
2309 pipeline = vk_zalloc2(&device->alloc, NULL, sizeof(*pipeline), 8,
2310 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2311
2312 pipeline->device = device;
2313
2314 /* Read pipeline layout */
2315 struct radv_pipeline_layout layout;
2316 sc_read = radv_sc_read(fd_secure_input, &layout, sizeof(struct radv_pipeline_layout), true);
2317 sc_read &= radv_sc_read(fd_secure_input, &layout.num_sets, sizeof(uint32_t), true);
2318 if (!sc_read)
2319 goto secure_compile_exit;
2320
2321 for (uint32_t set = 0; set < layout.num_sets; set++) {
2322 uint32_t layout_size;
2323 sc_read &= radv_sc_read(fd_secure_input, &layout_size, sizeof(uint32_t), true);
2324 if (!sc_read)
2325 goto secure_compile_exit;
2326
2327 layout.set[set].layout = malloc(layout_size);
2328 layout.set[set].layout->layout_size = layout_size;
2329 sc_read &= radv_sc_read(fd_secure_input, layout.set[set].layout,
2330 layout.set[set].layout->layout_size, true);
2331 }
2332
2333 pipeline->layout = &layout;
2334
2335 /* Read pipeline key */
2336 struct radv_pipeline_key key;
2337 sc_read &= radv_sc_read(fd_secure_input, &key, sizeof(struct radv_pipeline_key), true);
2338
2339 /* Read pipeline create flags */
2340 VkPipelineCreateFlags flags;
2341 sc_read &= radv_sc_read(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags), true);
2342
2343 /* Read stage and shader information */
2344 uint32_t num_stages;
2345 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
2346 sc_read &= radv_sc_read(fd_secure_input, &num_stages, sizeof(uint32_t), true);
2347 if (!sc_read)
2348 goto secure_compile_exit;
2349
2350 for (uint32_t i = 0; i < num_stages; i++) {
2351
2352 /* Read stage */
2353 gl_shader_stage stage;
2354 sc_read &= radv_sc_read(fd_secure_input, &stage, sizeof(gl_shader_stage), true);
2355
2356 VkPipelineShaderStageCreateInfo *pStage = calloc(1, sizeof(VkPipelineShaderStageCreateInfo));
2357
2358 /* Read entry point name */
2359 size_t name_size;
2360 sc_read &= radv_sc_read(fd_secure_input, &name_size, sizeof(size_t), true);
2361 if (!sc_read)
2362 goto secure_compile_exit;
2363
2364 char *ep_name = malloc(name_size);
2365 sc_read &= radv_sc_read(fd_secure_input, ep_name, name_size, true);
2366 pStage->pName = ep_name;
2367
2368 /* Read shader module */
2369 size_t module_size;
2370 sc_read &= radv_sc_read(fd_secure_input, &module_size, sizeof(size_t), true);
2371 if (!sc_read)
2372 goto secure_compile_exit;
2373
2374 struct radv_shader_module *module = malloc(module_size);
2375 sc_read &= radv_sc_read(fd_secure_input, module, module_size, true);
2376 pStage->module = radv_shader_module_to_handle(module);
2377
2378 /* Read specialization info */
2379 bool has_spec_info;
2380 sc_read &= radv_sc_read(fd_secure_input, &has_spec_info, sizeof(bool), true);
2381 if (!sc_read)
2382 goto secure_compile_exit;
2383
2384 if (has_spec_info) {
2385 VkSpecializationInfo *specInfo = malloc(sizeof(VkSpecializationInfo));
2386 pStage->pSpecializationInfo = specInfo;
2387
2388 sc_read &= radv_sc_read(fd_secure_input, &specInfo->dataSize, sizeof(size_t), true);
2389 if (!sc_read)
2390 goto secure_compile_exit;
2391
2392 void *si_data = malloc(specInfo->dataSize);
2393 sc_read &= radv_sc_read(fd_secure_input, si_data, specInfo->dataSize, true);
2394 specInfo->pData = si_data;
2395
2396 sc_read &= radv_sc_read(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t), true);
2397 if (!sc_read)
2398 goto secure_compile_exit;
2399
2400 VkSpecializationMapEntry *mapEntries = malloc(sizeof(VkSpecializationMapEntry) * specInfo->mapEntryCount);
2401 for (uint32_t j = 0; j < specInfo->mapEntryCount; j++) {
2402 sc_read &= radv_sc_read(fd_secure_input, &mapEntries[j], sizeof(VkSpecializationMapEntry), true);
2403 if (!sc_read)
2404 goto secure_compile_exit;
2405 }
2406
2407 specInfo->pMapEntries = mapEntries;
2408 }
2409
2410 pStages[stage] = pStage;
2411 }
2412
2413 /* Compile the shaders */
2414 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
2415 radv_create_shaders(pipeline, device, NULL, &key, pStages, flags, NULL, stage_feedbacks);
2416
2417 /* free memory allocated above */
2418 for (uint32_t set = 0; set < layout.num_sets; set++)
2419 free(layout.set[set].layout);
2420
2421 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2422 if (!pStages[i])
2423 continue;
2424
2425 free((void *) pStages[i]->pName);
2426 free(radv_shader_module_from_handle(pStages[i]->module));
2427 if (pStages[i]->pSpecializationInfo) {
2428 free((void *) pStages[i]->pSpecializationInfo->pData);
2429 free((void *) pStages[i]->pSpecializationInfo->pMapEntries);
2430 free((void *) pStages[i]->pSpecializationInfo);
2431 }
2432 free((void *) pStages[i]);
2433 }
2434
2435 vk_free(&device->alloc, pipeline);
2436
2437 sc_type = RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED;
2438 write(fd_secure_output, &sc_type, sizeof(sc_type));
2439
2440 } else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) {
2441 goto secure_compile_exit;
2442 }
2443 }
2444
2445 secure_compile_exit:
2446 close(fd_secure_input);
2447 close(fd_secure_output);
2448 close(fd_idle_device_output);
2449 _exit(0);
2450 }
2451
2452 static enum radv_secure_compile_type fork_secure_compile_device(struct radv_device *device, unsigned process)
2453 {
2454 int fd_secure_input[2];
2455 int fd_secure_output[2];
2456
2457 /* create pipe descriptors (used to communicate between processes) */
2458 if (pipe(fd_secure_input) == -1 || pipe(fd_secure_output) == -1)
2459 return RADV_SC_TYPE_INIT_FAILURE;
2460
2461
2462 int sc_pid;
2463 if ((sc_pid = fork()) == 0) {
2464 device->sc_state->secure_compile_thread_counter = process;
2465 run_secure_compile_device(device, process, fd_secure_output[1]);
2466 } else {
2467 if (sc_pid == -1)
2468 return RADV_SC_TYPE_INIT_FAILURE;
2469
2470 /* Read the init result returned from the secure process */
2471 enum radv_secure_compile_type sc_type;
2472 bool sc_read = radv_sc_read(fd_secure_output[0], &sc_type, sizeof(sc_type), true);
2473
2474 if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read) {
2475 close(fd_secure_input[0]);
2476 close(fd_secure_input[1]);
2477 close(fd_secure_output[1]);
2478 close(fd_secure_output[0]);
2479 int status;
2480 waitpid(sc_pid, &status, 0);
2481
2482 return RADV_SC_TYPE_INIT_FAILURE;
2483 } else {
2484 assert(sc_type == RADV_SC_TYPE_INIT_SUCCESS);
2485 write(device->sc_state->secure_compile_processes[process].fd_secure_output, &sc_type, sizeof(sc_type));
2486
2487 close(fd_secure_input[0]);
2488 close(fd_secure_input[1]);
2489 close(fd_secure_output[1]);
2490 close(fd_secure_output[0]);
2491
2492 int status;
2493 waitpid(sc_pid, &status, 0);
2494 }
2495 }
2496
2497 return RADV_SC_TYPE_INIT_SUCCESS;
2498 }
2499
2500 /* Run a bare bones fork of a device that was forked right after its creation.
2501 * This device will have low overhead when it is forked again before each
2502 * pipeline compilation. This device sits idle and its only job is to fork
2503 * itself.
2504 */
2505 static void run_secure_compile_idle_device(struct radv_device *device, unsigned process,
2506 int fd_secure_input, int fd_secure_output)
2507 {
2508 enum radv_secure_compile_type sc_type = RADV_SC_TYPE_INIT_SUCCESS;
2509 device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input;
2510 device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output;
2511
2512 write(fd_secure_output, &sc_type, sizeof(sc_type));
2513
2514 while (true) {
2515 radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false);
2516
2517 if (sc_type == RADV_SC_TYPE_FORK_DEVICE) {
2518 sc_type = fork_secure_compile_device(device, process);
2519
2520 if (sc_type == RADV_SC_TYPE_INIT_FAILURE)
2521 goto secure_compile_exit;
2522
2523 } else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) {
2524 goto secure_compile_exit;
2525 }
2526 }
2527
2528 secure_compile_exit:
2529 close(fd_secure_input);
2530 close(fd_secure_output);
2531 _exit(0);
2532 }
2533
2534 static void destroy_secure_compile_device(struct radv_device *device, unsigned process)
2535 {
2536 int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input;
2537
2538 enum radv_secure_compile_type sc_type = RADV_SC_TYPE_DESTROY_DEVICE;
2539 write(fd_secure_input, &sc_type, sizeof(sc_type));
2540
2541 close(device->sc_state->secure_compile_processes[process].fd_secure_input);
2542 close(device->sc_state->secure_compile_processes[process].fd_secure_output);
2543
2544 int status;
2545 waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0);
2546 }
2547
2548 static VkResult fork_secure_compile_idle_device(struct radv_device *device)
2549 {
2550 device->sc_state = vk_zalloc(&device->alloc,
2551 sizeof(struct radv_secure_compile_state),
2552 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2553
2554 mtx_init(&device->sc_state->secure_compile_mutex, mtx_plain);
2555
2556 pid_t upid = getpid();
2557 time_t seconds = time(NULL);
2558
2559 char *uid;
2560 if (asprintf(&uid, "%ld_%ld", (long) upid, (long) seconds) == -1)
2561 return VK_ERROR_INITIALIZATION_FAILED;
2562
2563 device->sc_state->uid = uid;
2564
2565 uint8_t sc_threads = device->instance->num_sc_threads;
2566 int fd_secure_input[MAX_SC_PROCS][2];
2567 int fd_secure_output[MAX_SC_PROCS][2];
2568
2569 /* create pipe descriptors (used to communicate between processes) */
2570 for (unsigned i = 0; i < sc_threads; i++) {
2571 if (pipe(fd_secure_input[i]) == -1 ||
2572 pipe(fd_secure_output[i]) == -1) {
2573 return VK_ERROR_INITIALIZATION_FAILED;
2574 }
2575 }
2576
2577 device->sc_state->secure_compile_processes = vk_zalloc(&device->alloc,
2578 sizeof(struct radv_secure_compile_process) * sc_threads, 8,
2579 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2580
2581 for (unsigned process = 0; process < sc_threads; process++) {
2582 if ((device->sc_state->secure_compile_processes[process].sc_pid = fork()) == 0) {
2583 device->sc_state->secure_compile_thread_counter = process;
2584 run_secure_compile_idle_device(device, process, fd_secure_input[process][0], fd_secure_output[process][1]);
2585 } else {
2586 if (device->sc_state->secure_compile_processes[process].sc_pid == -1)
2587 return VK_ERROR_INITIALIZATION_FAILED;
2588
2589 /* Read the init result returned from the secure process */
2590 enum radv_secure_compile_type sc_type;
2591 bool sc_read = radv_sc_read(fd_secure_output[process][0], &sc_type, sizeof(sc_type), true);
2592
2593 bool fifo_result;
2594 if (sc_read && sc_type == RADV_SC_TYPE_INIT_SUCCESS) {
2595 fifo_result = secure_compile_open_fifo_fds(device->sc_state,
2596 &device->sc_state->secure_compile_processes[process].fd_server,
2597 &device->sc_state->secure_compile_processes[process].fd_client,
2598 process, true);
2599
2600 device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input[process][1];
2601 device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output[process][0];
2602 }
2603
2604 if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read || !fifo_result) {
2605 close(fd_secure_input[process][0]);
2606 close(fd_secure_input[process][1]);
2607 close(fd_secure_output[process][1]);
2608 close(fd_secure_output[process][0]);
2609 int status;
2610 waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0);
2611
2612 /* Destroy any forks that were created sucessfully */
2613 for (unsigned i = 0; i < process; i++) {
2614 destroy_secure_compile_device(device, i);
2615 }
2616
2617 return VK_ERROR_INITIALIZATION_FAILED;
2618 }
2619 }
2620 }
2621 return VK_SUCCESS;
2622 }
2623
2624 static VkResult
2625 radv_create_pthread_cond(pthread_cond_t *cond)
2626 {
2627 pthread_condattr_t condattr;
2628 if (pthread_condattr_init(&condattr)) {
2629 return VK_ERROR_INITIALIZATION_FAILED;
2630 }
2631
2632 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC)) {
2633 pthread_condattr_destroy(&condattr);
2634 return VK_ERROR_INITIALIZATION_FAILED;
2635 }
2636 if (pthread_cond_init(cond, &condattr)) {
2637 pthread_condattr_destroy(&condattr);
2638 return VK_ERROR_INITIALIZATION_FAILED;
2639 }
2640 pthread_condattr_destroy(&condattr);
2641 return VK_SUCCESS;
2642 }
2643
2644 VkResult radv_CreateDevice(
2645 VkPhysicalDevice physicalDevice,
2646 const VkDeviceCreateInfo* pCreateInfo,
2647 const VkAllocationCallbacks* pAllocator,
2648 VkDevice* pDevice)
2649 {
2650 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
2651 VkResult result;
2652 struct radv_device *device;
2653
2654 bool keep_shader_info = false;
2655
2656 /* Check enabled features */
2657 if (pCreateInfo->pEnabledFeatures) {
2658 VkPhysicalDeviceFeatures supported_features;
2659 radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2660 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2661 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2662 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2663 for (uint32_t i = 0; i < num_features; i++) {
2664 if (enabled_feature[i] && !supported_feature[i])
2665 return vk_error(physical_device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
2666 }
2667 }
2668
2669 device = vk_zalloc2(&physical_device->instance->alloc, pAllocator,
2670 sizeof(*device), 8,
2671 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2672 if (!device)
2673 return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2674
2675 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2676 device->instance = physical_device->instance;
2677 device->physical_device = physical_device;
2678
2679 device->ws = physical_device->ws;
2680 if (pAllocator)
2681 device->alloc = *pAllocator;
2682 else
2683 device->alloc = physical_device->instance->alloc;
2684
2685 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2686 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
2687 int index = radv_get_device_extension_index(ext_name);
2688 if (index < 0 || !physical_device->supported_extensions.extensions[index]) {
2689 vk_free(&device->alloc, device);
2690 return vk_error(physical_device->instance, VK_ERROR_EXTENSION_NOT_PRESENT);
2691 }
2692
2693 device->enabled_extensions.extensions[index] = true;
2694 }
2695
2696 keep_shader_info = device->enabled_extensions.AMD_shader_info;
2697
2698 /* With update after bind we can't attach bo's to the command buffer
2699 * from the descriptor set anymore, so we have to use a global BO list.
2700 */
2701 device->use_global_bo_list =
2702 (device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
2703 device->enabled_extensions.EXT_descriptor_indexing ||
2704 device->enabled_extensions.EXT_buffer_device_address ||
2705 device->enabled_extensions.KHR_buffer_device_address;
2706
2707 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2708 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2709
2710 mtx_init(&device->shader_slab_mutex, mtx_plain);
2711 list_inithead(&device->shader_slabs);
2712
2713 radv_bo_list_init(&device->bo_list);
2714
2715 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2716 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
2717 uint32_t qfi = queue_create->queueFamilyIndex;
2718 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
2719 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2720
2721 assert(!global_priority || device->physical_device->rad_info.has_ctx_priority);
2722
2723 device->queues[qfi] = vk_alloc(&device->alloc,
2724 queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2725 if (!device->queues[qfi]) {
2726 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2727 goto fail;
2728 }
2729
2730 memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
2731
2732 device->queue_count[qfi] = queue_create->queueCount;
2733
2734 for (unsigned q = 0; q < queue_create->queueCount; q++) {
2735 result = radv_queue_init(device, &device->queues[qfi][q],
2736 qfi, q, queue_create->flags,
2737 global_priority);
2738 if (result != VK_SUCCESS)
2739 goto fail;
2740 }
2741 }
2742
2743 device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 &&
2744 !(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
2745
2746 /* Disable DFSM by default. As of 2019-09-15 Talos on Low is still 3% slower on Raven. */
2747 device->dfsm_allowed = device->pbb_allowed &&
2748 (device->instance->perftest_flags & RADV_PERFTEST_DFSM);
2749
2750 device->always_use_syncobj = device->physical_device->rad_info.has_syncobj_wait_for_submit;
2751
2752 /* The maximum number of scratch waves. Scratch space isn't divided
2753 * evenly between CUs. The number is only a function of the number of CUs.
2754 * We can decrease the constant to decrease the scratch buffer size.
2755 *
2756 * sctx->scratch_waves must be >= the maximum possible size of
2757 * 1 threadgroup, so that the hw doesn't hang from being unable
2758 * to start any.
2759 *
2760 * The recommended value is 4 per CU at most. Higher numbers don't
2761 * bring much benefit, but they still occupy chip resources (think
2762 * async compute). I've seen ~2% performance difference between 4 and 32.
2763 */
2764 uint32_t max_threads_per_block = 2048;
2765 device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units,
2766 max_threads_per_block / 64);
2767
2768 device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
2769
2770 if (device->physical_device->rad_info.chip_class >= GFX7) {
2771 /* If the KMD allows it (there is a KMD hw register for it),
2772 * allow launching waves out-of-order.
2773 */
2774 device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
2775 }
2776
2777 radv_device_init_gs_info(device);
2778
2779 device->tess_offchip_block_dw_size =
2780 device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
2781
2782 if (getenv("RADV_TRACE_FILE")) {
2783 const char *filename = getenv("RADV_TRACE_FILE");
2784
2785 keep_shader_info = true;
2786
2787 if (!radv_init_trace(device))
2788 goto fail;
2789
2790 fprintf(stderr, "*****************************************************************************\n");
2791 fprintf(stderr, "* WARNING: RADV_TRACE_FILE is costly and should only be used for debugging! *\n");
2792 fprintf(stderr, "*****************************************************************************\n");
2793
2794 fprintf(stderr, "Trace file will be dumped to %s\n", filename);
2795 radv_dump_enabled_options(device, stderr);
2796 }
2797
2798 /* Temporarily disable secure compile while we create meta shaders, etc */
2799 uint8_t sc_threads = device->instance->num_sc_threads;
2800 if (sc_threads)
2801 device->instance->num_sc_threads = 0;
2802
2803 device->keep_shader_info = keep_shader_info;
2804 result = radv_device_init_meta(device);
2805 if (result != VK_SUCCESS)
2806 goto fail;
2807
2808 radv_device_init_msaa(device);
2809
2810 for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
2811 device->empty_cs[family] = device->ws->cs_create(device->ws, family);
2812 switch (family) {
2813 case RADV_QUEUE_GENERAL:
2814 radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
2815 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_LOAD_ENABLE(1));
2816 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_SHADOW_ENABLE(1));
2817 break;
2818 case RADV_QUEUE_COMPUTE:
2819 radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
2820 radeon_emit(device->empty_cs[family], 0);
2821 break;
2822 }
2823 device->ws->cs_finalize(device->empty_cs[family]);
2824 }
2825
2826 if (device->physical_device->rad_info.chip_class >= GFX7)
2827 cik_create_gfx_config(device);
2828
2829 VkPipelineCacheCreateInfo ci;
2830 ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
2831 ci.pNext = NULL;
2832 ci.flags = 0;
2833 ci.pInitialData = NULL;
2834 ci.initialDataSize = 0;
2835 VkPipelineCache pc;
2836 result = radv_CreatePipelineCache(radv_device_to_handle(device),
2837 &ci, NULL, &pc);
2838 if (result != VK_SUCCESS)
2839 goto fail_meta;
2840
2841 device->mem_cache = radv_pipeline_cache_from_handle(pc);
2842
2843 result = radv_create_pthread_cond(&device->timeline_cond);
2844 if (result != VK_SUCCESS)
2845 goto fail_mem_cache;
2846
2847 device->force_aniso =
2848 MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
2849 if (device->force_aniso >= 0) {
2850 fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
2851 1 << util_logbase2(device->force_aniso));
2852 }
2853
2854 /* Fork device for secure compile as required */
2855 device->instance->num_sc_threads = sc_threads;
2856 if (radv_device_use_secure_compile(device->instance)) {
2857
2858 result = fork_secure_compile_idle_device(device);
2859 if (result != VK_SUCCESS)
2860 goto fail_meta;
2861 }
2862
2863 *pDevice = radv_device_to_handle(device);
2864 return VK_SUCCESS;
2865
2866 fail_mem_cache:
2867 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
2868 fail_meta:
2869 radv_device_finish_meta(device);
2870 fail:
2871 radv_bo_list_finish(&device->bo_list);
2872
2873 if (device->trace_bo)
2874 device->ws->buffer_destroy(device->trace_bo);
2875
2876 if (device->gfx_init)
2877 device->ws->buffer_destroy(device->gfx_init);
2878
2879 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
2880 for (unsigned q = 0; q < device->queue_count[i]; q++)
2881 radv_queue_finish(&device->queues[i][q]);
2882 if (device->queue_count[i])
2883 vk_free(&device->alloc, device->queues[i]);
2884 }
2885
2886 vk_free(&device->alloc, device);
2887 return result;
2888 }
2889
2890 void radv_DestroyDevice(
2891 VkDevice _device,
2892 const VkAllocationCallbacks* pAllocator)
2893 {
2894 RADV_FROM_HANDLE(radv_device, device, _device);
2895
2896 if (!device)
2897 return;
2898
2899 if (device->trace_bo)
2900 device->ws->buffer_destroy(device->trace_bo);
2901
2902 if (device->gfx_init)
2903 device->ws->buffer_destroy(device->gfx_init);
2904
2905 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
2906 for (unsigned q = 0; q < device->queue_count[i]; q++)
2907 radv_queue_finish(&device->queues[i][q]);
2908 if (device->queue_count[i])
2909 vk_free(&device->alloc, device->queues[i]);
2910 if (device->empty_cs[i])
2911 device->ws->cs_destroy(device->empty_cs[i]);
2912 }
2913 radv_device_finish_meta(device);
2914
2915 VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
2916 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
2917
2918 radv_destroy_shader_slabs(device);
2919
2920 pthread_cond_destroy(&device->timeline_cond);
2921 radv_bo_list_finish(&device->bo_list);
2922 if (radv_device_use_secure_compile(device->instance)) {
2923 for (unsigned i = 0; i < device->instance->num_sc_threads; i++ ) {
2924 destroy_secure_compile_device(device, i);
2925 }
2926 }
2927
2928 if (device->sc_state) {
2929 free(device->sc_state->uid);
2930 vk_free(&device->alloc, device->sc_state->secure_compile_processes);
2931 }
2932 vk_free(&device->alloc, device->sc_state);
2933 vk_free(&device->alloc, device);
2934 }
2935
2936 VkResult radv_EnumerateInstanceLayerProperties(
2937 uint32_t* pPropertyCount,
2938 VkLayerProperties* pProperties)
2939 {
2940 if (pProperties == NULL) {
2941 *pPropertyCount = 0;
2942 return VK_SUCCESS;
2943 }
2944
2945 /* None supported at this time */
2946 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
2947 }
2948
2949 VkResult radv_EnumerateDeviceLayerProperties(
2950 VkPhysicalDevice physicalDevice,
2951 uint32_t* pPropertyCount,
2952 VkLayerProperties* pProperties)
2953 {
2954 if (pProperties == NULL) {
2955 *pPropertyCount = 0;
2956 return VK_SUCCESS;
2957 }
2958
2959 /* None supported at this time */
2960 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
2961 }
2962
2963 void radv_GetDeviceQueue2(
2964 VkDevice _device,
2965 const VkDeviceQueueInfo2* pQueueInfo,
2966 VkQueue* pQueue)
2967 {
2968 RADV_FROM_HANDLE(radv_device, device, _device);
2969 struct radv_queue *queue;
2970
2971 queue = &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex];
2972 if (pQueueInfo->flags != queue->flags) {
2973 /* From the Vulkan 1.1.70 spec:
2974 *
2975 * "The queue returned by vkGetDeviceQueue2 must have the same
2976 * flags value from this structure as that used at device
2977 * creation time in a VkDeviceQueueCreateInfo instance. If no
2978 * matching flags were specified at device creation time then
2979 * pQueue will return VK_NULL_HANDLE."
2980 */
2981 *pQueue = VK_NULL_HANDLE;
2982 return;
2983 }
2984
2985 *pQueue = radv_queue_to_handle(queue);
2986 }
2987
2988 void radv_GetDeviceQueue(
2989 VkDevice _device,
2990 uint32_t queueFamilyIndex,
2991 uint32_t queueIndex,
2992 VkQueue* pQueue)
2993 {
2994 const VkDeviceQueueInfo2 info = (VkDeviceQueueInfo2) {
2995 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2996 .queueFamilyIndex = queueFamilyIndex,
2997 .queueIndex = queueIndex
2998 };
2999
3000 radv_GetDeviceQueue2(_device, &info, pQueue);
3001 }
3002
3003 static void
3004 fill_geom_tess_rings(struct radv_queue *queue,
3005 uint32_t *map,
3006 bool add_sample_positions,
3007 uint32_t esgs_ring_size,
3008 struct radeon_winsys_bo *esgs_ring_bo,
3009 uint32_t gsvs_ring_size,
3010 struct radeon_winsys_bo *gsvs_ring_bo,
3011 uint32_t tess_factor_ring_size,
3012 uint32_t tess_offchip_ring_offset,
3013 uint32_t tess_offchip_ring_size,
3014 struct radeon_winsys_bo *tess_rings_bo)
3015 {
3016 uint32_t *desc = &map[4];
3017
3018 if (esgs_ring_bo) {
3019 uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
3020
3021 /* stride 0, num records - size, add tid, swizzle, elsize4,
3022 index stride 64 */
3023 desc[0] = esgs_va;
3024 desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) |
3025 S_008F04_SWIZZLE_ENABLE(true);
3026 desc[2] = esgs_ring_size;
3027 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3028 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3029 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3030 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3031 S_008F0C_INDEX_STRIDE(3) |
3032 S_008F0C_ADD_TID_ENABLE(1);
3033