ac: rename min_vgpr_alloc to min_wave64_vgpr_alloc
[mesa.git] / src / amd / vulkan / radv_device.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "dirent.h"
29 #include <errno.h>
30 #include <fcntl.h>
31 #include <linux/audit.h>
32 #include <linux/bpf.h>
33 #include <linux/filter.h>
34 #include <linux/seccomp.h>
35 #include <linux/unistd.h>
36 #include <stdbool.h>
37 #include <stddef.h>
38 #include <stdio.h>
39 #include <string.h>
40 #include <sys/prctl.h>
41 #include <sys/wait.h>
42 #include <unistd.h>
43 #include <fcntl.h>
44 #include <llvm/Config/llvm-config.h>
45
46 #include "radv_debug.h"
47 #include "radv_private.h"
48 #include "radv_shader.h"
49 #include "radv_cs.h"
50 #include "util/disk_cache.h"
51 #include "vk_util.h"
52 #include <xf86drm.h>
53 #include <amdgpu.h>
54 #include <amdgpu_drm.h>
55 #include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
56 #include "winsys/null/radv_null_winsys_public.h"
57 #include "ac_llvm_util.h"
58 #include "vk_format.h"
59 #include "sid.h"
60 #include "git_sha1.h"
61 #include "util/build_id.h"
62 #include "util/debug.h"
63 #include "util/mesa-sha1.h"
64 #include "util/timespec.h"
65 #include "util/u_atomic.h"
66 #include "compiler/glsl_types.h"
67 #include "util/xmlpool.h"
68
69 static struct radv_timeline_point *
70 radv_timeline_find_point_at_least_locked(struct radv_device *device,
71 struct radv_timeline *timeline,
72 uint64_t p);
73
74 static struct radv_timeline_point *
75 radv_timeline_add_point_locked(struct radv_device *device,
76 struct radv_timeline *timeline,
77 uint64_t p);
78
79 static void
80 radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
81 struct list_head *processing_list);
82
83 static
84 void radv_destroy_semaphore_part(struct radv_device *device,
85 struct radv_semaphore_part *part);
86
87 static int
88 radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
89 {
90 struct mesa_sha1 ctx;
91 unsigned char sha1[20];
92 unsigned ptr_size = sizeof(void*);
93
94 memset(uuid, 0, VK_UUID_SIZE);
95 _mesa_sha1_init(&ctx);
96
97 if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx) ||
98 !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
99 return -1;
100
101 _mesa_sha1_update(&ctx, &family, sizeof(family));
102 _mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
103 _mesa_sha1_final(&ctx, sha1);
104
105 memcpy(uuid, sha1, VK_UUID_SIZE);
106 return 0;
107 }
108
109 static void
110 radv_get_driver_uuid(void *uuid)
111 {
112 ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
113 }
114
115 static void
116 radv_get_device_uuid(struct radeon_info *info, void *uuid)
117 {
118 ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
119 }
120
121 static uint64_t
122 radv_get_visible_vram_size(struct radv_physical_device *device)
123 {
124 return MIN2(device->rad_info.vram_size, device->rad_info.vram_vis_size);
125 }
126
127 static uint64_t
128 radv_get_vram_size(struct radv_physical_device *device)
129 {
130 return device->rad_info.vram_size - radv_get_visible_vram_size(device);
131 }
132
133 static bool
134 radv_is_mem_type_vram(enum radv_mem_type type)
135 {
136 return type == RADV_MEM_TYPE_VRAM ||
137 type == RADV_MEM_TYPE_VRAM_UNCACHED;
138 }
139
140 static bool
141 radv_is_mem_type_vram_visible(enum radv_mem_type type)
142 {
143 return type == RADV_MEM_TYPE_VRAM_CPU_ACCESS ||
144 type == RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED;
145 }
146 static bool
147 radv_is_mem_type_gtt_wc(enum radv_mem_type type)
148 {
149 return type == RADV_MEM_TYPE_GTT_WRITE_COMBINE ||
150 type == RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED;
151 }
152
153 static bool
154 radv_is_mem_type_gtt_cached(enum radv_mem_type type)
155 {
156 return type == RADV_MEM_TYPE_GTT_CACHED ||
157 type == RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED;
158 }
159
160 static bool
161 radv_is_mem_type_uncached(enum radv_mem_type type)
162 {
163 return type == RADV_MEM_TYPE_VRAM_UNCACHED ||
164 type == RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED ||
165 type == RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED ||
166 type == RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED;
167 }
168
169 static void
170 radv_physical_device_init_mem_types(struct radv_physical_device *device)
171 {
172 STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS);
173 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
174 uint64_t vram_size = radv_get_vram_size(device);
175 int vram_index = -1, visible_vram_index = -1, gart_index = -1;
176 device->memory_properties.memoryHeapCount = 0;
177 if (vram_size > 0) {
178 vram_index = device->memory_properties.memoryHeapCount++;
179 device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap) {
180 .size = vram_size,
181 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
182 };
183 }
184 if (visible_vram_size) {
185 visible_vram_index = device->memory_properties.memoryHeapCount++;
186 device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap) {
187 .size = visible_vram_size,
188 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
189 };
190 }
191 if (device->rad_info.gart_size > 0) {
192 gart_index = device->memory_properties.memoryHeapCount++;
193 device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap) {
194 .size = device->rad_info.gart_size,
195 .flags = device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
196 };
197 }
198
199 STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES);
200 unsigned type_count = 0;
201 if (vram_index >= 0) {
202 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM;
203 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
204 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
205 .heapIndex = vram_index,
206 };
207 }
208 if (gart_index >= 0 && device->rad_info.has_dedicated_vram) {
209 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE;
210 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
211 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
212 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
213 .heapIndex = gart_index,
214 };
215 }
216 if (visible_vram_index >= 0) {
217 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM_CPU_ACCESS;
218 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
219 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
220 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
221 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
222 .heapIndex = visible_vram_index,
223 };
224 }
225 if (gart_index >= 0 && !device->rad_info.has_dedicated_vram) {
226 /* Put GTT after visible VRAM for GPUs without dedicated VRAM
227 * as they have identical property flags, and according to the
228 * spec, for types with identical flags, the one with greater
229 * performance must be given a lower index. */
230 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE;
231 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
232 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
233 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
234 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
235 .heapIndex = gart_index,
236 };
237 }
238 if (gart_index >= 0) {
239 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_CACHED;
240 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
241 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
242 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
243 VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
244 (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT),
245 .heapIndex = gart_index,
246 };
247 }
248 device->memory_properties.memoryTypeCount = type_count;
249
250 if (device->rad_info.has_l2_uncached) {
251 for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
252 VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
253
254 if ((mem_type.propertyFlags & (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
255 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
256 mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
257 enum radv_mem_type mem_type_id;
258
259 switch (device->mem_type_indices[i]) {
260 case RADV_MEM_TYPE_VRAM:
261 mem_type_id = RADV_MEM_TYPE_VRAM_UNCACHED;
262 break;
263 case RADV_MEM_TYPE_VRAM_CPU_ACCESS:
264 mem_type_id = RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED;
265 break;
266 case RADV_MEM_TYPE_GTT_WRITE_COMBINE:
267 mem_type_id = RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED;
268 break;
269 case RADV_MEM_TYPE_GTT_CACHED:
270 mem_type_id = RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED;
271 break;
272 default:
273 unreachable("invalid memory type");
274 }
275
276 VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
277 VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
278 VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
279
280 device->mem_type_indices[type_count] = mem_type_id;
281 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
282 .propertyFlags = property_flags,
283 .heapIndex = mem_type.heapIndex,
284 };
285 }
286 }
287 device->memory_properties.memoryTypeCount = type_count;
288 }
289 }
290
291 static VkResult
292 radv_physical_device_init(struct radv_physical_device *device,
293 struct radv_instance *instance,
294 drmDevicePtr drm_device)
295 {
296 VkResult result;
297 int fd = -1;
298 int master_fd = -1;
299
300 if (drm_device) {
301 const char *path = drm_device->nodes[DRM_NODE_RENDER];
302 drmVersionPtr version;
303
304 fd = open(path, O_RDWR | O_CLOEXEC);
305 if (fd < 0) {
306 if (instance->debug_flags & RADV_DEBUG_STARTUP)
307 radv_logi("Could not open device '%s'", path);
308
309 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
310 }
311
312 version = drmGetVersion(fd);
313 if (!version) {
314 close(fd);
315
316 if (instance->debug_flags & RADV_DEBUG_STARTUP)
317 radv_logi("Could not get the kernel driver version for device '%s'", path);
318
319 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
320 "failed to get version %s: %m", path);
321 }
322
323 if (strcmp(version->name, "amdgpu")) {
324 drmFreeVersion(version);
325 close(fd);
326
327 if (instance->debug_flags & RADV_DEBUG_STARTUP)
328 radv_logi("Device '%s' is not using the amdgpu kernel driver.", path);
329
330 return VK_ERROR_INCOMPATIBLE_DRIVER;
331 }
332 drmFreeVersion(version);
333
334 if (instance->debug_flags & RADV_DEBUG_STARTUP)
335 radv_logi("Found compatible device '%s'.", path);
336 }
337
338 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
339 device->instance = instance;
340
341 if (drm_device) {
342 device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags,
343 instance->perftest_flags);
344 } else {
345 device->ws = radv_null_winsys_create();
346 }
347
348 if (!device->ws) {
349 result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
350 goto fail;
351 }
352
353 if (drm_device && instance->enabled_extensions.KHR_display) {
354 master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
355 if (master_fd >= 0) {
356 uint32_t accel_working = 0;
357 struct drm_amdgpu_info request = {
358 .return_pointer = (uintptr_t)&accel_working,
359 .return_size = sizeof(accel_working),
360 .query = AMDGPU_INFO_ACCEL_WORKING
361 };
362
363 if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof (struct drm_amdgpu_info)) < 0 || !accel_working) {
364 close(master_fd);
365 master_fd = -1;
366 }
367 }
368 }
369
370 device->master_fd = master_fd;
371 device->local_fd = fd;
372 device->ws->query_info(device->ws, &device->rad_info);
373
374 device->use_aco = instance->perftest_flags & RADV_PERFTEST_ACO;
375
376 snprintf(device->name, sizeof(device->name),
377 "AMD RADV%s %s (LLVM " MESA_LLVM_VERSION_STRING ")", device->use_aco ? "/ACO" : "",
378 device->rad_info.name);
379
380 if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
381 device->ws->destroy(device->ws);
382 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
383 "cannot generate UUID");
384 goto fail;
385 }
386
387 /* These flags affect shader compilation. */
388 uint64_t shader_env_flags = (device->use_aco ? 0x2 : 0);
389
390 /* The gpu id is already embedded in the uuid so we just pass "radv"
391 * when creating the cache.
392 */
393 char buf[VK_UUID_SIZE * 2 + 1];
394 disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
395 device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags);
396
397 if (device->rad_info.chip_class < GFX8)
398 fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
399
400 radv_get_driver_uuid(&device->driver_uuid);
401 radv_get_device_uuid(&device->rad_info, &device->device_uuid);
402
403 device->out_of_order_rast_allowed = device->rad_info.has_out_of_order_rast &&
404 !(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
405
406 device->dcc_msaa_allowed =
407 (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
408
409 device->use_shader_ballot = (device->use_aco && device->rad_info.chip_class >= GFX8) ||
410 (device->instance->perftest_flags & RADV_PERFTEST_SHADER_BALLOT);
411
412 device->use_ngg = device->rad_info.chip_class >= GFX10 &&
413 device->rad_info.family != CHIP_NAVI14 &&
414 !(device->instance->debug_flags & RADV_DEBUG_NO_NGG);
415 if (device->use_aco && device->use_ngg) {
416 fprintf(stderr, "WARNING: disabling NGG because ACO is used.\n");
417 device->use_ngg = false;
418 }
419
420 device->use_ngg_streamout = false;
421
422 /* Determine the number of threads per wave for all stages. */
423 device->cs_wave_size = 64;
424 device->ps_wave_size = 64;
425 device->ge_wave_size = 64;
426
427 if (device->rad_info.chip_class >= GFX10) {
428 if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
429 device->cs_wave_size = 32;
430
431 /* For pixel shaders, wave64 is recommanded. */
432 if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
433 device->ps_wave_size = 32;
434
435 if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
436 device->ge_wave_size = 32;
437 }
438
439 radv_physical_device_init_mem_types(device);
440 radv_fill_device_extension_table(device, &device->supported_extensions);
441
442 if (drm_device)
443 device->bus_info = *drm_device->businfo.pci;
444
445 if ((device->instance->debug_flags & RADV_DEBUG_INFO))
446 ac_print_gpu_info(&device->rad_info);
447
448 /* The WSI is structured as a layer on top of the driver, so this has
449 * to be the last part of initialization (at least until we get other
450 * semi-layers).
451 */
452 result = radv_init_wsi(device);
453 if (result != VK_SUCCESS) {
454 device->ws->destroy(device->ws);
455 vk_error(instance, result);
456 goto fail;
457 }
458
459 return VK_SUCCESS;
460
461 fail:
462 close(fd);
463 if (master_fd != -1)
464 close(master_fd);
465 return result;
466 }
467
468 static void
469 radv_physical_device_finish(struct radv_physical_device *device)
470 {
471 radv_finish_wsi(device);
472 device->ws->destroy(device->ws);
473 disk_cache_destroy(device->disk_cache);
474 close(device->local_fd);
475 if (device->master_fd != -1)
476 close(device->master_fd);
477 }
478
479 static void *
480 default_alloc_func(void *pUserData, size_t size, size_t align,
481 VkSystemAllocationScope allocationScope)
482 {
483 return malloc(size);
484 }
485
486 static void *
487 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
488 size_t align, VkSystemAllocationScope allocationScope)
489 {
490 return realloc(pOriginal, size);
491 }
492
493 static void
494 default_free_func(void *pUserData, void *pMemory)
495 {
496 free(pMemory);
497 }
498
499 static const VkAllocationCallbacks default_alloc = {
500 .pUserData = NULL,
501 .pfnAllocation = default_alloc_func,
502 .pfnReallocation = default_realloc_func,
503 .pfnFree = default_free_func,
504 };
505
506 static const struct debug_control radv_debug_options[] = {
507 {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
508 {"nodcc", RADV_DEBUG_NO_DCC},
509 {"shaders", RADV_DEBUG_DUMP_SHADERS},
510 {"nocache", RADV_DEBUG_NO_CACHE},
511 {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
512 {"nohiz", RADV_DEBUG_NO_HIZ},
513 {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
514 {"allbos", RADV_DEBUG_ALL_BOS},
515 {"noibs", RADV_DEBUG_NO_IBS},
516 {"spirv", RADV_DEBUG_DUMP_SPIRV},
517 {"vmfaults", RADV_DEBUG_VM_FAULTS},
518 {"zerovram", RADV_DEBUG_ZERO_VRAM},
519 {"syncshaders", RADV_DEBUG_SYNC_SHADERS},
520 {"preoptir", RADV_DEBUG_PREOPTIR},
521 {"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
522 {"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
523 {"info", RADV_DEBUG_INFO},
524 {"errors", RADV_DEBUG_ERRORS},
525 {"startup", RADV_DEBUG_STARTUP},
526 {"checkir", RADV_DEBUG_CHECKIR},
527 {"nothreadllvm", RADV_DEBUG_NOTHREADLLVM},
528 {"nobinning", RADV_DEBUG_NOBINNING},
529 {"noloadstoreopt", RADV_DEBUG_NO_LOAD_STORE_OPT},
530 {"nongg", RADV_DEBUG_NO_NGG},
531 {"noshaderballot", RADV_DEBUG_NO_SHADER_BALLOT},
532 {"allentrypoints", RADV_DEBUG_ALL_ENTRYPOINTS},
533 {"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
534 {"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
535 {NULL, 0}
536 };
537
538 const char *
539 radv_get_debug_option_name(int id)
540 {
541 assert(id < ARRAY_SIZE(radv_debug_options) - 1);
542 return radv_debug_options[id].string;
543 }
544
545 static const struct debug_control radv_perftest_options[] = {
546 {"localbos", RADV_PERFTEST_LOCAL_BOS},
547 {"dccmsaa", RADV_PERFTEST_DCC_MSAA},
548 {"bolist", RADV_PERFTEST_BO_LIST},
549 {"shader_ballot", RADV_PERFTEST_SHADER_BALLOT},
550 {"tccompatcmask", RADV_PERFTEST_TC_COMPAT_CMASK},
551 {"cswave32", RADV_PERFTEST_CS_WAVE_32},
552 {"pswave32", RADV_PERFTEST_PS_WAVE_32},
553 {"gewave32", RADV_PERFTEST_GE_WAVE_32},
554 {"dfsm", RADV_PERFTEST_DFSM},
555 {"aco", RADV_PERFTEST_ACO},
556 {NULL, 0}
557 };
558
559 const char *
560 radv_get_perftest_option_name(int id)
561 {
562 assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
563 return radv_perftest_options[id].string;
564 }
565
566 static void
567 radv_handle_per_app_options(struct radv_instance *instance,
568 const VkApplicationInfo *info)
569 {
570 const char *name = info ? info->pApplicationName : NULL;
571
572 if (!name)
573 return;
574
575 if (!strcmp(name, "DOOM_VFR")) {
576 /* Work around a Doom VFR game bug */
577 instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
578 } else if (!strcmp(name, "MonsterHunterWorld.exe")) {
579 /* Workaround for a WaW hazard when LLVM moves/merges
580 * load/store memory operations.
581 * See https://reviews.llvm.org/D61313
582 */
583 if (LLVM_VERSION_MAJOR < 9)
584 instance->debug_flags |= RADV_DEBUG_NO_LOAD_STORE_OPT;
585 } else if (!strcmp(name, "Wolfenstein: Youngblood")) {
586 if (!(instance->debug_flags & RADV_DEBUG_NO_SHADER_BALLOT) &&
587 !(instance->perftest_flags & RADV_PERFTEST_ACO)) {
588 /* Force enable VK_AMD_shader_ballot because it looks
589 * safe and it gives a nice boost (+20% on Vega 56 at
590 * this time). It also prevents corruption on LLVM.
591 */
592 instance->perftest_flags |= RADV_PERFTEST_SHADER_BALLOT;
593 }
594 } else if (!strcmp(name, "Fledge")) {
595 /*
596 * Zero VRAM for "The Surge 2"
597 *
598 * This avoid a hang when when rendering any level. Likely
599 * uninitialized data in an indirect draw.
600 */
601 instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
602 }
603 }
604
605 static int radv_get_instance_extension_index(const char *name)
606 {
607 for (unsigned i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; ++i) {
608 if (strcmp(name, radv_instance_extensions[i].extensionName) == 0)
609 return i;
610 }
611 return -1;
612 }
613
614 static const char radv_dri_options_xml[] =
615 DRI_CONF_BEGIN
616 DRI_CONF_SECTION_PERFORMANCE
617 DRI_CONF_ADAPTIVE_SYNC("true")
618 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
619 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
620 DRI_CONF_SECTION_END
621
622 DRI_CONF_SECTION_DEBUG
623 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
624 DRI_CONF_SECTION_END
625 DRI_CONF_END;
626
627 static void radv_init_dri_options(struct radv_instance *instance)
628 {
629 driParseOptionInfo(&instance->available_dri_options, radv_dri_options_xml);
630 driParseConfigFiles(&instance->dri_options,
631 &instance->available_dri_options,
632 0, "radv", NULL,
633 instance->engineName,
634 instance->engineVersion);
635 }
636
637 VkResult radv_CreateInstance(
638 const VkInstanceCreateInfo* pCreateInfo,
639 const VkAllocationCallbacks* pAllocator,
640 VkInstance* pInstance)
641 {
642 struct radv_instance *instance;
643 VkResult result;
644
645 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
646
647 uint32_t client_version;
648 if (pCreateInfo->pApplicationInfo &&
649 pCreateInfo->pApplicationInfo->apiVersion != 0) {
650 client_version = pCreateInfo->pApplicationInfo->apiVersion;
651 } else {
652 client_version = VK_API_VERSION_1_0;
653 }
654
655 const char *engine_name = NULL;
656 uint32_t engine_version = 0;
657 if (pCreateInfo->pApplicationInfo) {
658 engine_name = pCreateInfo->pApplicationInfo->pEngineName;
659 engine_version = pCreateInfo->pApplicationInfo->engineVersion;
660 }
661
662 instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
663 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
664 if (!instance)
665 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
666
667 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
668
669 if (pAllocator)
670 instance->alloc = *pAllocator;
671 else
672 instance->alloc = default_alloc;
673
674 instance->apiVersion = client_version;
675 instance->physicalDeviceCount = -1;
676
677 /* Get secure compile thread count. NOTE: We cap this at 32 */
678 #define MAX_SC_PROCS 32
679 char *num_sc_threads = getenv("RADV_SECURE_COMPILE_THREADS");
680 if (num_sc_threads)
681 instance->num_sc_threads = MIN2(strtoul(num_sc_threads, NULL, 10), MAX_SC_PROCS);
682
683 instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"),
684 radv_debug_options);
685
686 /* Disable memory cache when secure compile is set */
687 if (radv_device_use_secure_compile(instance))
688 instance->debug_flags |= RADV_DEBUG_NO_MEMORY_CACHE;
689
690 instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"),
691 radv_perftest_options);
692
693 if (instance->perftest_flags & RADV_PERFTEST_ACO)
694 fprintf(stderr, "WARNING: Experimental compiler backend enabled. Here be dragons! Incorrect rendering, GPU hangs and/or resets are likely\n");
695
696 if (instance->debug_flags & RADV_DEBUG_STARTUP)
697 radv_logi("Created an instance");
698
699 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
700 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
701 int index = radv_get_instance_extension_index(ext_name);
702
703 if (index < 0 || !radv_supported_instance_extensions.extensions[index]) {
704 vk_free2(&default_alloc, pAllocator, instance);
705 return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT);
706 }
707
708 instance->enabled_extensions.extensions[index] = true;
709 }
710
711 bool unchecked = instance->debug_flags & RADV_DEBUG_ALL_ENTRYPOINTS;
712
713 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
714 /* Vulkan requires that entrypoints for extensions which have
715 * not been enabled must not be advertised.
716 */
717 if (!unchecked &&
718 !radv_instance_entrypoint_is_enabled(i, instance->apiVersion,
719 &instance->enabled_extensions)) {
720 instance->dispatch.entrypoints[i] = NULL;
721 } else {
722 instance->dispatch.entrypoints[i] =
723 radv_instance_dispatch_table.entrypoints[i];
724 }
725 }
726
727 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
728 /* Vulkan requires that entrypoints for extensions which have
729 * not been enabled must not be advertised.
730 */
731 if (!unchecked &&
732 !radv_physical_device_entrypoint_is_enabled(i, instance->apiVersion,
733 &instance->enabled_extensions)) {
734 instance->physical_device_dispatch.entrypoints[i] = NULL;
735 } else {
736 instance->physical_device_dispatch.entrypoints[i] =
737 radv_physical_device_dispatch_table.entrypoints[i];
738 }
739 }
740
741 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
742 /* Vulkan requires that entrypoints for extensions which have
743 * not been enabled must not be advertised.
744 */
745 if (!unchecked &&
746 !radv_device_entrypoint_is_enabled(i, instance->apiVersion,
747 &instance->enabled_extensions, NULL)) {
748 instance->device_dispatch.entrypoints[i] = NULL;
749 } else {
750 instance->device_dispatch.entrypoints[i] =
751 radv_device_dispatch_table.entrypoints[i];
752 }
753 }
754
755 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
756 if (result != VK_SUCCESS) {
757 vk_free2(&default_alloc, pAllocator, instance);
758 return vk_error(instance, result);
759 }
760
761 instance->engineName = vk_strdup(&instance->alloc, engine_name,
762 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
763 instance->engineVersion = engine_version;
764
765 glsl_type_singleton_init_or_ref();
766
767 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
768
769 radv_init_dri_options(instance);
770 radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo);
771
772 *pInstance = radv_instance_to_handle(instance);
773
774 return VK_SUCCESS;
775 }
776
777 void radv_DestroyInstance(
778 VkInstance _instance,
779 const VkAllocationCallbacks* pAllocator)
780 {
781 RADV_FROM_HANDLE(radv_instance, instance, _instance);
782
783 if (!instance)
784 return;
785
786 for (int i = 0; i < instance->physicalDeviceCount; ++i) {
787 radv_physical_device_finish(instance->physicalDevices + i);
788 }
789
790 vk_free(&instance->alloc, instance->engineName);
791
792 VG(VALGRIND_DESTROY_MEMPOOL(instance));
793
794 glsl_type_singleton_decref();
795
796 driDestroyOptionCache(&instance->dri_options);
797 driDestroyOptionInfo(&instance->available_dri_options);
798
799 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
800
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 radv_enumerate_devices(struct radv_instance *instance)
806 {
807 /* TODO: Check for more devices ? */
808 drmDevicePtr devices[8];
809 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
810 int max_devices;
811
812 instance->physicalDeviceCount = 0;
813
814 if (getenv("RADV_FORCE_FAMILY")) {
815 /* When RADV_FORCE_FAMILY is set, the driver creates a nul
816 * device that allows to test the compiler without having an
817 * AMDGPU instance.
818 */
819 result = radv_physical_device_init(instance->physicalDevices +
820 instance->physicalDeviceCount,
821 instance, NULL);
822
823 ++instance->physicalDeviceCount;
824 return VK_SUCCESS;
825 }
826
827 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
828
829 if (instance->debug_flags & RADV_DEBUG_STARTUP)
830 radv_logi("Found %d drm nodes", max_devices);
831
832 if (max_devices < 1)
833 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
834
835 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
836 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
837 devices[i]->bustype == DRM_BUS_PCI &&
838 devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
839
840 result = radv_physical_device_init(instance->physicalDevices +
841 instance->physicalDeviceCount,
842 instance,
843 devices[i]);
844 if (result == VK_SUCCESS)
845 ++instance->physicalDeviceCount;
846 else if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
847 break;
848 }
849 }
850 drmFreeDevices(devices, max_devices);
851
852 return result;
853 }
854
855 VkResult radv_EnumeratePhysicalDevices(
856 VkInstance _instance,
857 uint32_t* pPhysicalDeviceCount,
858 VkPhysicalDevice* pPhysicalDevices)
859 {
860 RADV_FROM_HANDLE(radv_instance, instance, _instance);
861 VkResult result;
862
863 if (instance->physicalDeviceCount < 0) {
864 result = radv_enumerate_devices(instance);
865 if (result != VK_SUCCESS &&
866 result != VK_ERROR_INCOMPATIBLE_DRIVER)
867 return result;
868 }
869
870 if (!pPhysicalDevices) {
871 *pPhysicalDeviceCount = instance->physicalDeviceCount;
872 } else {
873 *pPhysicalDeviceCount = MIN2(*pPhysicalDeviceCount, instance->physicalDeviceCount);
874 for (unsigned i = 0; i < *pPhysicalDeviceCount; ++i)
875 pPhysicalDevices[i] = radv_physical_device_to_handle(instance->physicalDevices + i);
876 }
877
878 return *pPhysicalDeviceCount < instance->physicalDeviceCount ? VK_INCOMPLETE
879 : VK_SUCCESS;
880 }
881
882 VkResult radv_EnumeratePhysicalDeviceGroups(
883 VkInstance _instance,
884 uint32_t* pPhysicalDeviceGroupCount,
885 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
886 {
887 RADV_FROM_HANDLE(radv_instance, instance, _instance);
888 VkResult result;
889
890 if (instance->physicalDeviceCount < 0) {
891 result = radv_enumerate_devices(instance);
892 if (result != VK_SUCCESS &&
893 result != VK_ERROR_INCOMPATIBLE_DRIVER)
894 return result;
895 }
896
897 if (!pPhysicalDeviceGroupProperties) {
898 *pPhysicalDeviceGroupCount = instance->physicalDeviceCount;
899 } else {
900 *pPhysicalDeviceGroupCount = MIN2(*pPhysicalDeviceGroupCount, instance->physicalDeviceCount);
901 for (unsigned i = 0; i < *pPhysicalDeviceGroupCount; ++i) {
902 pPhysicalDeviceGroupProperties[i].physicalDeviceCount = 1;
903 pPhysicalDeviceGroupProperties[i].physicalDevices[0] = radv_physical_device_to_handle(instance->physicalDevices + i);
904 pPhysicalDeviceGroupProperties[i].subsetAllocation = false;
905 }
906 }
907 return *pPhysicalDeviceGroupCount < instance->physicalDeviceCount ? VK_INCOMPLETE
908 : VK_SUCCESS;
909 }
910
911 void radv_GetPhysicalDeviceFeatures(
912 VkPhysicalDevice physicalDevice,
913 VkPhysicalDeviceFeatures* pFeatures)
914 {
915 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
916 memset(pFeatures, 0, sizeof(*pFeatures));
917
918 *pFeatures = (VkPhysicalDeviceFeatures) {
919 .robustBufferAccess = true,
920 .fullDrawIndexUint32 = true,
921 .imageCubeArray = true,
922 .independentBlend = true,
923 .geometryShader = true,
924 .tessellationShader = true,
925 .sampleRateShading = true,
926 .dualSrcBlend = true,
927 .logicOp = true,
928 .multiDrawIndirect = true,
929 .drawIndirectFirstInstance = true,
930 .depthClamp = true,
931 .depthBiasClamp = true,
932 .fillModeNonSolid = true,
933 .depthBounds = true,
934 .wideLines = true,
935 .largePoints = true,
936 .alphaToOne = true,
937 .multiViewport = true,
938 .samplerAnisotropy = true,
939 .textureCompressionETC2 = radv_device_supports_etc(pdevice),
940 .textureCompressionASTC_LDR = false,
941 .textureCompressionBC = true,
942 .occlusionQueryPrecise = true,
943 .pipelineStatisticsQuery = true,
944 .vertexPipelineStoresAndAtomics = true,
945 .fragmentStoresAndAtomics = true,
946 .shaderTessellationAndGeometryPointSize = true,
947 .shaderImageGatherExtended = true,
948 .shaderStorageImageExtendedFormats = true,
949 .shaderStorageImageMultisample = true,
950 .shaderUniformBufferArrayDynamicIndexing = true,
951 .shaderSampledImageArrayDynamicIndexing = true,
952 .shaderStorageBufferArrayDynamicIndexing = true,
953 .shaderStorageImageArrayDynamicIndexing = true,
954 .shaderStorageImageReadWithoutFormat = true,
955 .shaderStorageImageWriteWithoutFormat = true,
956 .shaderClipDistance = true,
957 .shaderCullDistance = true,
958 .shaderFloat64 = true,
959 .shaderInt64 = true,
960 .shaderInt16 = pdevice->rad_info.chip_class >= GFX9 && !pdevice->use_aco,
961 .sparseBinding = true,
962 .variableMultisampleRate = true,
963 .inheritedQueries = true,
964 };
965 }
966
967 void radv_GetPhysicalDeviceFeatures2(
968 VkPhysicalDevice physicalDevice,
969 VkPhysicalDeviceFeatures2 *pFeatures)
970 {
971 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
972 vk_foreach_struct(ext, pFeatures->pNext) {
973 switch (ext->sType) {
974 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
975 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
976 features->variablePointersStorageBuffer = true;
977 features->variablePointers = true;
978 break;
979 }
980 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
981 VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures*)ext;
982 features->multiview = true;
983 features->multiviewGeometryShader = true;
984 features->multiviewTessellationShader = true;
985 break;
986 }
987 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
988 VkPhysicalDeviceShaderDrawParametersFeatures *features =
989 (VkPhysicalDeviceShaderDrawParametersFeatures*)ext;
990 features->shaderDrawParameters = true;
991 break;
992 }
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
994 VkPhysicalDeviceProtectedMemoryFeatures *features =
995 (VkPhysicalDeviceProtectedMemoryFeatures*)ext;
996 features->protectedMemory = false;
997 break;
998 }
999 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1000 VkPhysicalDevice16BitStorageFeatures *features =
1001 (VkPhysicalDevice16BitStorageFeatures*)ext;
1002 bool enabled = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1003 features->storageBuffer16BitAccess = enabled;
1004 features->uniformAndStorageBuffer16BitAccess = enabled;
1005 features->storagePushConstant16 = enabled;
1006 features->storageInputOutput16 = enabled && LLVM_VERSION_MAJOR >= 9;
1007 break;
1008 }
1009 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1010 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1011 (VkPhysicalDeviceSamplerYcbcrConversionFeatures*)ext;
1012 features->samplerYcbcrConversion = true;
1013 break;
1014 }
1015 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES: {
1016 VkPhysicalDeviceDescriptorIndexingFeatures *features =
1017 (VkPhysicalDeviceDescriptorIndexingFeatures*)ext;
1018 features->shaderInputAttachmentArrayDynamicIndexing = true;
1019 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1020 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1021 features->shaderUniformBufferArrayNonUniformIndexing = true;
1022 features->shaderSampledImageArrayNonUniformIndexing = true;
1023 features->shaderStorageBufferArrayNonUniformIndexing = true;
1024 features->shaderStorageImageArrayNonUniformIndexing = true;
1025 features->shaderInputAttachmentArrayNonUniformIndexing = true;
1026 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1027 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1028 features->descriptorBindingUniformBufferUpdateAfterBind = true;
1029 features->descriptorBindingSampledImageUpdateAfterBind = true;
1030 features->descriptorBindingStorageImageUpdateAfterBind = true;
1031 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1032 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1033 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1034 features->descriptorBindingUpdateUnusedWhilePending = true;
1035 features->descriptorBindingPartiallyBound = true;
1036 features->descriptorBindingVariableDescriptorCount = true;
1037 features->runtimeDescriptorArray = true;
1038 break;
1039 }
1040 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1041 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1042 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1043 features->conditionalRendering = true;
1044 features->inheritedConditionalRendering = false;
1045 break;
1046 }
1047 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1048 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1049 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1050 features->vertexAttributeInstanceRateDivisor = true;
1051 features->vertexAttributeInstanceRateZeroDivisor = true;
1052 break;
1053 }
1054 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1055 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1056 (VkPhysicalDeviceTransformFeedbackFeaturesEXT*)ext;
1057 features->transformFeedback = true;
1058 features->geometryStreams = !pdevice->use_ngg_streamout;
1059 break;
1060 }
1061 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: {
1062 VkPhysicalDeviceScalarBlockLayoutFeatures *features =
1063 (VkPhysicalDeviceScalarBlockLayoutFeatures *)ext;
1064 features->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7;
1065 break;
1066 }
1067 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
1068 VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
1069 (VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
1070 features->memoryPriority = true;
1071 break;
1072 }
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1074 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
1075 (VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
1076 features->bufferDeviceAddress = true;
1077 features->bufferDeviceAddressCaptureReplay = false;
1078 features->bufferDeviceAddressMultiDevice = false;
1079 break;
1080 }
1081 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES: {
1082 VkPhysicalDeviceBufferDeviceAddressFeatures *features =
1083 (VkPhysicalDeviceBufferDeviceAddressFeatures *)ext;
1084 features->bufferDeviceAddress = true;
1085 features->bufferDeviceAddressCaptureReplay = false;
1086 features->bufferDeviceAddressMultiDevice = false;
1087 break;
1088 }
1089 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1090 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1091 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1092 features->depthClipEnable = true;
1093 break;
1094 }
1095 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES: {
1096 VkPhysicalDeviceHostQueryResetFeatures *features =
1097 (VkPhysicalDeviceHostQueryResetFeatures *)ext;
1098 features->hostQueryReset = true;
1099 break;
1100 }
1101 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES: {
1102 VkPhysicalDevice8BitStorageFeatures *features =
1103 (VkPhysicalDevice8BitStorageFeatures *)ext;
1104 bool enabled = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1105 features->storageBuffer8BitAccess = enabled;
1106 features->uniformAndStorageBuffer8BitAccess = enabled;
1107 features->storagePushConstant8 = enabled;
1108 break;
1109 }
1110 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES: {
1111 VkPhysicalDeviceShaderFloat16Int8Features *features =
1112 (VkPhysicalDeviceShaderFloat16Int8Features*)ext;
1113 features->shaderFloat16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1114 features->shaderInt8 = !pdevice->use_aco;
1115 break;
1116 }
1117 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES: {
1118 VkPhysicalDeviceShaderAtomicInt64Features *features =
1119 (VkPhysicalDeviceShaderAtomicInt64Features *)ext;
1120 features->shaderBufferInt64Atomics = LLVM_VERSION_MAJOR >= 9;
1121 features->shaderSharedInt64Atomics = LLVM_VERSION_MAJOR >= 9;
1122 break;
1123 }
1124 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1125 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features =
1126 (VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *)ext;
1127 features->shaderDemoteToHelperInvocation = pdevice->use_aco;
1128 break;
1129 }
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1131 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1132 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1133
1134 features->inlineUniformBlock = true;
1135 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1136 break;
1137 }
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1139 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1140 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1141 features->computeDerivativeGroupQuads = false;
1142 features->computeDerivativeGroupLinear = true;
1143 break;
1144 }
1145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1146 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1147 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT*)ext;
1148 features->ycbcrImageArrays = true;
1149 break;
1150 }
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES: {
1152 VkPhysicalDeviceUniformBufferStandardLayoutFeatures *features =
1153 (VkPhysicalDeviceUniformBufferStandardLayoutFeatures *)ext;
1154 features->uniformBufferStandardLayout = true;
1155 break;
1156 }
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1158 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1159 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1160 features->indexTypeUint8 = pdevice->rad_info.chip_class >= GFX8;
1161 break;
1162 }
1163 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES: {
1164 VkPhysicalDeviceImagelessFramebufferFeatures *features =
1165 (VkPhysicalDeviceImagelessFramebufferFeatures *)ext;
1166 features->imagelessFramebuffer = true;
1167 break;
1168 }
1169 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1170 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1171 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1172 features->pipelineExecutableInfo = true;
1173 break;
1174 }
1175 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1176 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1177 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1178 features->shaderSubgroupClock = true;
1179 features->shaderDeviceClock = false;
1180 break;
1181 }
1182 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1183 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1184 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1185 features->texelBufferAlignment = true;
1186 break;
1187 }
1188 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES: {
1189 VkPhysicalDeviceTimelineSemaphoreFeatures *features =
1190 (VkPhysicalDeviceTimelineSemaphoreFeatures *) ext;
1191 features->timelineSemaphore = true;
1192 break;
1193 }
1194 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1195 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1196 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1197 features->subgroupSizeControl = true;
1198 features->computeFullSubgroups = true;
1199 break;
1200 }
1201 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
1202 VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
1203 (VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
1204 features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
1205 break;
1206 }
1207 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES: {
1208 VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *features =
1209 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *)ext;
1210 features->shaderSubgroupExtendedTypes = true;
1211 break;
1212 }
1213 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1214 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1215 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1216 features->separateDepthStencilLayouts = true;
1217 break;
1218 }
1219 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES: {
1220 VkPhysicalDeviceVulkan11Features *features =
1221 (VkPhysicalDeviceVulkan11Features *)ext;
1222 features->storageBuffer16BitAccess = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1223 features->uniformAndStorageBuffer16BitAccess = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1224 features->storagePushConstant16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1225 features->storageInputOutput16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco && LLVM_VERSION_MAJOR >= 9;
1226 features->multiview = true;
1227 features->multiviewGeometryShader = true;
1228 features->multiviewTessellationShader = true;
1229 features->variablePointersStorageBuffer = true;
1230 features->variablePointers = true;
1231 features->protectedMemory = false;
1232 features->samplerYcbcrConversion = true;
1233 features->shaderDrawParameters = true;
1234 break;
1235 }
1236 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES: {
1237 VkPhysicalDeviceVulkan12Features *features =
1238 (VkPhysicalDeviceVulkan12Features *)ext;
1239 features->samplerMirrorClampToEdge = true;
1240 features->drawIndirectCount = true;
1241 features->storageBuffer8BitAccess = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1242 features->uniformAndStorageBuffer8BitAccess = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1243 features->storagePushConstant8 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1244 features->shaderBufferInt64Atomics = LLVM_VERSION_MAJOR >= 9;
1245 features->shaderSharedInt64Atomics = LLVM_VERSION_MAJOR >= 9;
1246 features->shaderFloat16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco;
1247 features->shaderInt8 = !pdevice->use_aco;
1248 features->descriptorIndexing = true;
1249 features->shaderInputAttachmentArrayDynamicIndexing = true;
1250 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1251 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1252 features->shaderUniformBufferArrayNonUniformIndexing = true;
1253 features->shaderSampledImageArrayNonUniformIndexing = true;
1254 features->shaderStorageBufferArrayNonUniformIndexing = true;
1255 features->shaderStorageImageArrayNonUniformIndexing = true;
1256 features->shaderInputAttachmentArrayNonUniformIndexing = true;
1257 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1258 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1259 features->descriptorBindingUniformBufferUpdateAfterBind = true;
1260 features->descriptorBindingSampledImageUpdateAfterBind = true;
1261 features->descriptorBindingStorageImageUpdateAfterBind = true;
1262 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1263 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1264 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1265 features->descriptorBindingUpdateUnusedWhilePending = true;
1266 features->descriptorBindingPartiallyBound = true;
1267 features->descriptorBindingVariableDescriptorCount = true;
1268 features->runtimeDescriptorArray = true;
1269 features->samplerFilterMinmax = true;
1270 features->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7;
1271 features->imagelessFramebuffer = true;
1272 features->uniformBufferStandardLayout = true;
1273 features->shaderSubgroupExtendedTypes = true;
1274 features->separateDepthStencilLayouts = true;
1275 features->hostQueryReset = true;
1276 features->timelineSemaphore = pdevice->rad_info.has_syncobj_wait_for_submit;
1277 features->bufferDeviceAddress = true;
1278 features->bufferDeviceAddressCaptureReplay = false;
1279 features->bufferDeviceAddressMultiDevice = false;
1280 features->vulkanMemoryModel = false;
1281 features->vulkanMemoryModelDeviceScope = false;
1282 features->vulkanMemoryModelAvailabilityVisibilityChains = false;
1283 features->shaderOutputViewportIndex = true;
1284 features->shaderOutputLayer = true;
1285 features->subgroupBroadcastDynamicId = true;
1286 break;
1287 }
1288 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1289 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1290 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1291 features->rectangularLines = false;
1292 features->bresenhamLines = true;
1293 features->smoothLines = false;
1294 features->stippledRectangularLines = false;
1295 features->stippledBresenhamLines = true;
1296 features->stippledSmoothLines = false;
1297 break;
1298 }
1299 default:
1300 break;
1301 }
1302 }
1303 return radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1304 }
1305
1306 static size_t
1307 radv_max_descriptor_set_size()
1308 {
1309 /* make sure that the entire descriptor set is addressable with a signed
1310 * 32-bit int. So the sum of all limits scaled by descriptor size has to
1311 * be at most 2 GiB. the combined image & samples object count as one of
1312 * both. This limit is for the pipeline layout, not for the set layout, but
1313 * there is no set limit, so we just set a pipeline limit. I don't think
1314 * any app is going to hit this soon. */
1315 return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS
1316 - MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
1317 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1318 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1319 32 /* sampler, largest when combined with image */ +
1320 64 /* sampled image */ +
1321 64 /* storage image */);
1322 }
1323
1324 void radv_GetPhysicalDeviceProperties(
1325 VkPhysicalDevice physicalDevice,
1326 VkPhysicalDeviceProperties* pProperties)
1327 {
1328 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1329 VkSampleCountFlags sample_counts = 0xf;
1330
1331 size_t max_descriptor_set_size = radv_max_descriptor_set_size();
1332
1333 VkPhysicalDeviceLimits limits = {
1334 .maxImageDimension1D = (1 << 14),
1335 .maxImageDimension2D = (1 << 14),
1336 .maxImageDimension3D = (1 << 11),
1337 .maxImageDimensionCube = (1 << 14),
1338 .maxImageArrayLayers = (1 << 11),
1339 .maxTexelBufferElements = 128 * 1024 * 1024,
1340 .maxUniformBufferRange = UINT32_MAX,
1341 .maxStorageBufferRange = UINT32_MAX,
1342 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1343 .maxMemoryAllocationCount = UINT32_MAX,
1344 .maxSamplerAllocationCount = 64 * 1024,
1345 .bufferImageGranularity = 64, /* A cache line */
1346 .sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */
1347 .maxBoundDescriptorSets = MAX_SETS,
1348 .maxPerStageDescriptorSamplers = max_descriptor_set_size,
1349 .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
1350 .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
1351 .maxPerStageDescriptorSampledImages = max_descriptor_set_size,
1352 .maxPerStageDescriptorStorageImages = max_descriptor_set_size,
1353 .maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
1354 .maxPerStageResources = max_descriptor_set_size,
1355 .maxDescriptorSetSamplers = max_descriptor_set_size,
1356 .maxDescriptorSetUniformBuffers = max_descriptor_set_size,
1357 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
1358 .maxDescriptorSetStorageBuffers = max_descriptor_set_size,
1359 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
1360 .maxDescriptorSetSampledImages = max_descriptor_set_size,
1361 .maxDescriptorSetStorageImages = max_descriptor_set_size,
1362 .maxDescriptorSetInputAttachments = max_descriptor_set_size,
1363 .maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
1364 .maxVertexInputBindings = MAX_VBS,
1365 .maxVertexInputAttributeOffset = 2047,
1366 .maxVertexInputBindingStride = 2048,
1367 .maxVertexOutputComponents = 128,
1368 .maxTessellationGenerationLevel = 64,
1369 .maxTessellationPatchSize = 32,
1370 .maxTessellationControlPerVertexInputComponents = 128,
1371 .maxTessellationControlPerVertexOutputComponents = 128,
1372 .maxTessellationControlPerPatchOutputComponents = 120,
1373 .maxTessellationControlTotalOutputComponents = 4096,
1374 .maxTessellationEvaluationInputComponents = 128,
1375 .maxTessellationEvaluationOutputComponents = 128,
1376 .maxGeometryShaderInvocations = 127,
1377 .maxGeometryInputComponents = 64,
1378 .maxGeometryOutputComponents = 128,
1379 .maxGeometryOutputVertices = 256,
1380 .maxGeometryTotalOutputComponents = 1024,
1381 .maxFragmentInputComponents = 128,
1382 .maxFragmentOutputAttachments = 8,
1383 .maxFragmentDualSrcAttachments = 1,
1384 .maxFragmentCombinedOutputResources = 8,
1385 .maxComputeSharedMemorySize = 32768,
1386 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1387 .maxComputeWorkGroupInvocations = 1024,
1388 .maxComputeWorkGroupSize = {
1389 1024,
1390 1024,
1391 1024
1392 },
1393 .subPixelPrecisionBits = 8,
1394 .subTexelPrecisionBits = 8,
1395 .mipmapPrecisionBits = 8,
1396 .maxDrawIndexedIndexValue = UINT32_MAX,
1397 .maxDrawIndirectCount = UINT32_MAX,
1398 .maxSamplerLodBias = 16,
1399 .maxSamplerAnisotropy = 16,
1400 .maxViewports = MAX_VIEWPORTS,
1401 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1402 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1403 .viewportSubPixelBits = 8,
1404 .minMemoryMapAlignment = 4096, /* A page */
1405 .minTexelBufferOffsetAlignment = 4,
1406 .minUniformBufferOffsetAlignment = 4,
1407 .minStorageBufferOffsetAlignment = 4,
1408 .minTexelOffset = -32,
1409 .maxTexelOffset = 31,
1410 .minTexelGatherOffset = -32,
1411 .maxTexelGatherOffset = 31,
1412 .minInterpolationOffset = -2,
1413 .maxInterpolationOffset = 2,
1414 .subPixelInterpolationOffsetBits = 8,
1415 .maxFramebufferWidth = (1 << 14),
1416 .maxFramebufferHeight = (1 << 14),
1417 .maxFramebufferLayers = (1 << 10),
1418 .framebufferColorSampleCounts = sample_counts,
1419 .framebufferDepthSampleCounts = sample_counts,
1420 .framebufferStencilSampleCounts = sample_counts,
1421 .framebufferNoAttachmentsSampleCounts = sample_counts,
1422 .maxColorAttachments = MAX_RTS,
1423 .sampledImageColorSampleCounts = sample_counts,
1424 .sampledImageIntegerSampleCounts = sample_counts,
1425 .sampledImageDepthSampleCounts = sample_counts,
1426 .sampledImageStencilSampleCounts = sample_counts,
1427 .storageImageSampleCounts = sample_counts,
1428 .maxSampleMaskWords = 1,
1429 .timestampComputeAndGraphics = true,
1430 .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
1431 .maxClipDistances = 8,
1432 .maxCullDistances = 8,
1433 .maxCombinedClipAndCullDistances = 8,
1434 .discreteQueuePriorities = 2,
1435 .pointSizeRange = { 0.0, 8192.0 },
1436 .lineWidthRange = { 0.0, 8192.0 },
1437 .pointSizeGranularity = (1.0 / 8.0),
1438 .lineWidthGranularity = (1.0 / 8.0),
1439 .strictLines = false, /* FINISHME */
1440 .standardSampleLocations = true,
1441 .optimalBufferCopyOffsetAlignment = 128,
1442 .optimalBufferCopyRowPitchAlignment = 128,
1443 .nonCoherentAtomSize = 64,
1444 };
1445
1446 *pProperties = (VkPhysicalDeviceProperties) {
1447 .apiVersion = radv_physical_device_api_version(pdevice),
1448 .driverVersion = vk_get_driver_version(),
1449 .vendorID = ATI_VENDOR_ID,
1450 .deviceID = pdevice->rad_info.pci_id,
1451 .deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1452 .limits = limits,
1453 .sparseProperties = {0},
1454 };
1455
1456 strcpy(pProperties->deviceName, pdevice->name);
1457 memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
1458 }
1459
1460 static void
1461 radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
1462 VkPhysicalDeviceVulkan11Properties *p)
1463 {
1464 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1465
1466 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1467 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1468 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1469 /* The LUID is for Windows. */
1470 p->deviceLUIDValid = false;
1471 p->deviceNodeMask = 0;
1472
1473 p->subgroupSize = RADV_SUBGROUP_SIZE;
1474 p->subgroupSupportedStages = VK_SHADER_STAGE_ALL;
1475 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1476 VK_SUBGROUP_FEATURE_VOTE_BIT |
1477 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1478 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1479 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1480 VK_SUBGROUP_FEATURE_QUAD_BIT;
1481
1482 if (pdevice->rad_info.chip_class == GFX8 ||
1483 pdevice->rad_info.chip_class == GFX9) {
1484 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1485 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
1486 }
1487 p->subgroupQuadOperationsInAllStages = true;
1488
1489 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1490 p->maxMultiviewViewCount = MAX_VIEWS;
1491 p->maxMultiviewInstanceIndex = INT_MAX;
1492 p->protectedNoFault = false;
1493 p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
1494 p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
1495 }
1496
1497 static void
1498 radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
1499 VkPhysicalDeviceVulkan12Properties *p)
1500 {
1501 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1502
1503 p->driverID = VK_DRIVER_ID_MESA_RADV;
1504 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
1505 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE,
1506 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1
1507 " (LLVM " MESA_LLVM_VERSION_STRING ")");
1508 p->conformanceVersion = (VkConformanceVersion) {
1509 .major = 1,
1510 .minor = 2,
1511 .subminor = 0,
1512 .patch = 0,
1513 };
1514
1515 /* On AMD hardware, denormals and rounding modes for fp16/fp64 are
1516 * controlled by the same config register.
1517 */
1518 p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
1519 p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
1520
1521 /* Do not allow both preserving and flushing denorms because different
1522 * shaders in the same pipeline can have different settings and this
1523 * won't work for merged shaders. To make it work, this requires LLVM
1524 * support for changing the register. The same logic applies for the
1525 * rounding modes because they are configured with the same config
1526 * register. TODO: we can enable a lot of these for ACO when it
1527 * supports all stages.
1528 */
1529 p->shaderDenormFlushToZeroFloat32 = true;
1530 p->shaderDenormPreserveFloat32 = false;
1531 p->shaderRoundingModeRTEFloat32 = true;
1532 p->shaderRoundingModeRTZFloat32 = false;
1533 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1534
1535 p->shaderDenormFlushToZeroFloat16 = false;
1536 p->shaderDenormPreserveFloat16 = pdevice->rad_info.chip_class >= GFX8;
1537 p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.chip_class >= GFX8;
1538 p->shaderRoundingModeRTZFloat16 = false;
1539 p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.chip_class >= GFX8;
1540
1541 p->shaderDenormFlushToZeroFloat64 = false;
1542 p->shaderDenormPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
1543 p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.chip_class >= GFX8;
1544 p->shaderRoundingModeRTZFloat64 = false;
1545 p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
1546
1547 p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
1548 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1549 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1550 p->shaderStorageBufferArrayNonUniformIndexingNative = false;
1551 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1552 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1553 p->robustBufferAccessUpdateAfterBind = false;
1554 p->quadDivergentImplicitLod = false;
1555
1556 size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
1557 MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
1558 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1559 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1560 32 /* sampler, largest when combined with image */ +
1561 64 /* sampled image */ +
1562 64 /* storage image */);
1563 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
1564 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1565 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1566 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
1567 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
1568 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
1569 p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
1570 p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
1571 p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1572 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
1573 p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1574 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
1575 p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
1576 p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
1577 p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
1578
1579 /* We support all of the depth resolve modes */
1580 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1581 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1582 VK_RESOLVE_MODE_MIN_BIT_KHR |
1583 VK_RESOLVE_MODE_MAX_BIT_KHR;
1584
1585 /* Average doesn't make sense for stencil so we don't support that */
1586 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1587 VK_RESOLVE_MODE_MIN_BIT_KHR |
1588 VK_RESOLVE_MODE_MAX_BIT_KHR;
1589
1590 p->independentResolveNone = true;
1591 p->independentResolve = true;
1592
1593 /* GFX6-8 only support single channel min/max filter. */
1594 p->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9;
1595 p->filterMinmaxSingleComponentFormats = true;
1596
1597 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1598
1599 p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
1600 }
1601
1602 void radv_GetPhysicalDeviceProperties2(
1603 VkPhysicalDevice physicalDevice,
1604 VkPhysicalDeviceProperties2 *pProperties)
1605 {
1606 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1607 radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1608
1609 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1610 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1611 };
1612 radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1613
1614 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1615 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1616 };
1617 radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1618
1619 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1620 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1621 sizeof(core_##major##_##minor.core_property))
1622
1623 #define CORE_PROPERTY(major, minor, property) \
1624 CORE_RENAMED_PROPERTY(major, minor, property, property)
1625
1626 vk_foreach_struct(ext, pProperties->pNext) {
1627 switch (ext->sType) {
1628 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1629 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1630 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1631 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1632 break;
1633 }
1634 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1635 VkPhysicalDeviceIDProperties *properties = (VkPhysicalDeviceIDProperties*)ext;
1636 CORE_PROPERTY(1, 1, deviceUUID);
1637 CORE_PROPERTY(1, 1, driverUUID);
1638 CORE_PROPERTY(1, 1, deviceLUID);
1639 CORE_PROPERTY(1, 1, deviceLUIDValid);
1640 break;
1641 }
1642 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1643 VkPhysicalDeviceMultiviewProperties *properties = (VkPhysicalDeviceMultiviewProperties*)ext;
1644 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1645 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1646 break;
1647 }
1648 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1649 VkPhysicalDevicePointClippingProperties *properties =
1650 (VkPhysicalDevicePointClippingProperties*)ext;
1651 CORE_PROPERTY(1, 1, pointClippingBehavior);
1652 break;
1653 }
1654 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
1655 VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
1656 (VkPhysicalDeviceDiscardRectanglePropertiesEXT*)ext;
1657 properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
1658 break;
1659 }
1660 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1661 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
1662 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1663 properties->minImportedHostPointerAlignment = 4096;
1664 break;
1665 }
1666 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1667 VkPhysicalDeviceSubgroupProperties *properties =
1668 (VkPhysicalDeviceSubgroupProperties*)ext;
1669 CORE_PROPERTY(1, 1, subgroupSize);
1670 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1671 subgroupSupportedStages);
1672 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1673 subgroupSupportedOperations);
1674 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
1675 subgroupQuadOperationsInAllStages);
1676 break;
1677 }
1678 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1679 VkPhysicalDeviceMaintenance3Properties *properties =
1680 (VkPhysicalDeviceMaintenance3Properties*)ext;
1681 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1682 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1683 break;
1684 }
1685 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES: {
1686 VkPhysicalDeviceSamplerFilterMinmaxProperties *properties =
1687 (VkPhysicalDeviceSamplerFilterMinmaxProperties *)ext;
1688 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1689 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1690 break;
1691 }
1692 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
1693 VkPhysicalDeviceShaderCorePropertiesAMD *properties =
1694 (VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
1695
1696 /* Shader engines. */
1697 properties->shaderEngineCount =
1698 pdevice->rad_info.max_se;
1699 properties->shaderArraysPerEngineCount =
1700 pdevice->rad_info.max_sh_per_se;
1701 properties->computeUnitsPerShaderArray =
1702 pdevice->rad_info.num_good_cu_per_sh;
1703 properties->simdPerComputeUnit =
1704 pdevice->rad_info.num_simd_per_compute_unit;
1705 properties->wavefrontsPerSimd =
1706 pdevice->rad_info.max_wave64_per_simd;
1707 properties->wavefrontSize = 64;
1708
1709 /* SGPR. */
1710 properties->sgprsPerSimd =
1711 pdevice->rad_info.num_physical_sgprs_per_simd;
1712 properties->minSgprAllocation =
1713 pdevice->rad_info.min_sgpr_alloc;
1714 properties->maxSgprAllocation =
1715 pdevice->rad_info.max_sgpr_alloc;
1716 properties->sgprAllocationGranularity =
1717 pdevice->rad_info.sgpr_alloc_granularity;
1718
1719 /* VGPR. */
1720 properties->vgprsPerSimd =
1721 pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
1722 properties->minVgprAllocation =
1723 pdevice->rad_info.min_wave64_vgpr_alloc;
1724 properties->maxVgprAllocation =
1725 pdevice->rad_info.max_vgpr_alloc;
1726 properties->vgprAllocationGranularity =
1727 pdevice->rad_info.wave64_vgpr_alloc_granularity;
1728 break;
1729 }
1730 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
1731 VkPhysicalDeviceShaderCoreProperties2AMD *properties =
1732 (VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
1733
1734 properties->shaderCoreFeatures = 0;
1735 properties->activeComputeUnitCount =
1736 pdevice->rad_info.num_good_compute_units;
1737 break;
1738 }
1739 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1740 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
1741 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1742 properties->maxVertexAttribDivisor = UINT32_MAX;
1743 break;
1744 }
1745 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES: {
1746 VkPhysicalDeviceDescriptorIndexingProperties *properties =
1747 (VkPhysicalDeviceDescriptorIndexingProperties*)ext;
1748 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1749 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1750 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1751 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1752 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1753 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1754 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1755 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1756 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1757 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1758 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1759 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1760 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1761 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1762 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1763 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1764 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1765 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1766 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1767 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1768 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1769 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1770 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1771 break;
1772 }
1773 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1774 VkPhysicalDeviceProtectedMemoryProperties *properties =
1775 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1776 CORE_PROPERTY(1, 1, protectedNoFault);
1777 break;
1778 }
1779 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
1780 VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
1781 (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
1782 properties->primitiveOverestimationSize = 0;
1783 properties->maxExtraPrimitiveOverestimationSize = 0;
1784 properties->extraPrimitiveOverestimationSizeGranularity = 0;
1785 properties->primitiveUnderestimation = false;
1786 properties->conservativePointAndLineRasterization = false;
1787 properties->degenerateTrianglesRasterized = false;
1788 properties->degenerateLinesRasterized = false;
1789 properties->fullyCoveredFragmentShaderInputVariable = false;
1790 properties->conservativeRasterizationPostDepthCoverage = false;
1791 break;
1792 }
1793 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1794 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1795 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1796 properties->pciDomain = pdevice->bus_info.domain;
1797 properties->pciBus = pdevice->bus_info.bus;
1798 properties->pciDevice = pdevice->bus_info.dev;
1799 properties->pciFunction = pdevice->bus_info.func;
1800 break;
1801 }
1802 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES: {
1803 VkPhysicalDeviceDriverProperties *properties =
1804 (VkPhysicalDeviceDriverProperties *) ext;
1805 CORE_PROPERTY(1, 2, driverID);
1806 CORE_PROPERTY(1, 2, driverName);
1807 CORE_PROPERTY(1, 2, driverInfo);
1808 CORE_PROPERTY(1, 2, conformanceVersion);
1809 break;
1810 }
1811 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1812 VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
1813 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1814 properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
1815 properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
1816 properties->maxTransformFeedbackBufferSize = UINT32_MAX;
1817 properties->maxTransformFeedbackStreamDataSize = 512;
1818 properties->maxTransformFeedbackBufferDataSize = UINT32_MAX;
1819 properties->maxTransformFeedbackBufferDataStride = 512;
1820 properties->transformFeedbackQueries = !pdevice->use_ngg_streamout;
1821 properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout;
1822 properties->transformFeedbackRasterizationStreamSelect = false;
1823 properties->transformFeedbackDraw = true;
1824 break;
1825 }
1826 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1827 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1828 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1829
1830 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1831 props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
1832 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
1833 props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
1834 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
1835 break;
1836 }
1837 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
1838 VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
1839 (VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
1840 properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT |
1841 VK_SAMPLE_COUNT_4_BIT |
1842 VK_SAMPLE_COUNT_8_BIT;
1843 properties->maxSampleLocationGridSize = (VkExtent2D){ 2 , 2 };
1844 properties->sampleLocationCoordinateRange[0] = 0.0f;
1845 properties->sampleLocationCoordinateRange[1] = 0.9375f;
1846 properties->sampleLocationSubPixelBits = 4;
1847 properties->variableSampleLocations = false;
1848 break;
1849 }
1850 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES: {
1851 VkPhysicalDeviceDepthStencilResolveProperties *properties =
1852 (VkPhysicalDeviceDepthStencilResolveProperties *)ext;
1853 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1854 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1855 CORE_PROPERTY(1, 2, independentResolveNone);
1856 CORE_PROPERTY(1, 2, independentResolve);
1857 break;
1858 }
1859 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1860 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *properties =
1861 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1862 properties->storageTexelBufferOffsetAlignmentBytes = 4;
1863 properties->storageTexelBufferOffsetSingleTexelAlignment = true;
1864 properties->uniformTexelBufferOffsetAlignmentBytes = 4;
1865 properties->uniformTexelBufferOffsetSingleTexelAlignment = true;
1866 break;
1867 }
1868 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES : {
1869 VkPhysicalDeviceFloatControlsProperties *properties =
1870 (VkPhysicalDeviceFloatControlsProperties *)ext;
1871 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
1872 CORE_PROPERTY(1, 2, roundingModeIndependence);
1873 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
1874 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
1875 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
1876 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
1877 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
1878 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
1879 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
1880 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
1881 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
1882 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
1883 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
1884 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
1885 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
1886 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
1887 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
1888 break;
1889 }
1890 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES: {
1891 VkPhysicalDeviceTimelineSemaphoreProperties *properties =
1892 (VkPhysicalDeviceTimelineSemaphoreProperties *) ext;
1893 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
1894 break;
1895 }
1896 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1897 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1898 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1899 props->minSubgroupSize = 64;
1900 props->maxSubgroupSize = 64;
1901 props->maxComputeWorkgroupSubgroups = UINT32_MAX;
1902 props->requiredSubgroupSizeStages = 0;
1903
1904 if (pdevice->rad_info.chip_class >= GFX10) {
1905 /* Only GFX10+ supports wave32. */
1906 props->minSubgroupSize = 32;
1907 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1908 }
1909 break;
1910 }
1911 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
1912 radv_get_physical_device_properties_1_1(pdevice, (void *)ext);
1913 break;
1914 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
1915 radv_get_physical_device_properties_1_2(pdevice, (void *)ext);
1916 break;
1917 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1918 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1919 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1920 props->lineSubPixelPrecisionBits = 4;
1921 break;
1922 }
1923 default:
1924 break;
1925 }
1926 }
1927 }
1928
1929 static void radv_get_physical_device_queue_family_properties(
1930 struct radv_physical_device* pdevice,
1931 uint32_t* pCount,
1932 VkQueueFamilyProperties** pQueueFamilyProperties)
1933 {
1934 int num_queue_families = 1;
1935 int idx;
1936 if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
1937 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
1938 num_queue_families++;
1939
1940 if (pQueueFamilyProperties == NULL) {
1941 *pCount = num_queue_families;
1942 return;
1943 }
1944
1945 if (!*pCount)
1946 return;
1947
1948 idx = 0;
1949 if (*pCount >= 1) {
1950 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
1951 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1952 VK_QUEUE_COMPUTE_BIT |
1953 VK_QUEUE_TRANSFER_BIT |
1954 VK_QUEUE_SPARSE_BINDING_BIT,
1955 .queueCount = 1,
1956 .timestampValidBits = 64,
1957 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
1958 };
1959 idx++;
1960 }
1961
1962 if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
1963 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
1964 if (*pCount > idx) {
1965 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
1966 .queueFlags = VK_QUEUE_COMPUTE_BIT |
1967 VK_QUEUE_TRANSFER_BIT |
1968 VK_QUEUE_SPARSE_BINDING_BIT,
1969 .queueCount = pdevice->rad_info.num_rings[RING_COMPUTE],
1970 .timestampValidBits = 64,
1971 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
1972 };
1973 idx++;
1974 }
1975 }
1976 *pCount = idx;
1977 }
1978
1979 void radv_GetPhysicalDeviceQueueFamilyProperties(
1980 VkPhysicalDevice physicalDevice,
1981 uint32_t* pCount,
1982 VkQueueFamilyProperties* pQueueFamilyProperties)
1983 {
1984 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1985 if (!pQueueFamilyProperties) {
1986 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
1987 return;
1988 }
1989 VkQueueFamilyProperties *properties[] = {
1990 pQueueFamilyProperties + 0,
1991 pQueueFamilyProperties + 1,
1992 pQueueFamilyProperties + 2,
1993 };
1994 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
1995 assert(*pCount <= 3);
1996 }
1997
1998 void radv_GetPhysicalDeviceQueueFamilyProperties2(
1999 VkPhysicalDevice physicalDevice,
2000 uint32_t* pCount,
2001 VkQueueFamilyProperties2 *pQueueFamilyProperties)
2002 {
2003 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
2004 if (!pQueueFamilyProperties) {
2005 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
2006 return;
2007 }
2008 VkQueueFamilyProperties *properties[] = {
2009 &pQueueFamilyProperties[0].queueFamilyProperties,
2010 &pQueueFamilyProperties[1].queueFamilyProperties,
2011 &pQueueFamilyProperties[2].queueFamilyProperties,
2012 };
2013 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
2014 assert(*pCount <= 3);
2015 }
2016
2017 void radv_GetPhysicalDeviceMemoryProperties(
2018 VkPhysicalDevice physicalDevice,
2019 VkPhysicalDeviceMemoryProperties *pMemoryProperties)
2020 {
2021 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
2022
2023 *pMemoryProperties = physical_device->memory_properties;
2024 }
2025
2026 static void
2027 radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
2028 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2029 {
2030 RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
2031 VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
2032 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
2033 uint64_t vram_size = radv_get_vram_size(device);
2034 uint64_t gtt_size = device->rad_info.gart_size;
2035 uint64_t heap_budget, heap_usage;
2036
2037 /* For all memory heaps, the computation of budget is as follow:
2038 * heap_budget = heap_size - global_heap_usage + app_heap_usage
2039 *
2040 * The Vulkan spec 1.1.97 says that the budget should include any
2041 * currently allocated device memory.
2042 *
2043 * Note that the application heap usages are not really accurate (eg.
2044 * in presence of shared buffers).
2045 */
2046 for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
2047 uint32_t heap_index = device->memory_properties.memoryTypes[i].heapIndex;
2048
2049 if (radv_is_mem_type_vram(device->mem_type_indices[i])) {
2050 heap_usage = device->ws->query_value(device->ws,
2051 RADEON_ALLOCATED_VRAM);
2052
2053 heap_budget = vram_size -
2054 device->ws->query_value(device->ws, RADEON_VRAM_USAGE) +
2055 heap_usage;
2056
2057 memoryBudget->heapBudget[heap_index] = heap_budget;
2058 memoryBudget->heapUsage[heap_index] = heap_usage;
2059 } else if (radv_is_mem_type_vram_visible(device->mem_type_indices[i])) {
2060 heap_usage = device->ws->query_value(device->ws,
2061 RADEON_ALLOCATED_VRAM_VIS);
2062
2063 heap_budget = visible_vram_size -
2064 device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
2065 heap_usage;
2066
2067 memoryBudget->heapBudget[heap_index] = heap_budget;
2068 memoryBudget->heapUsage[heap_index] = heap_usage;
2069 } else if (radv_is_mem_type_gtt_wc(device->mem_type_indices[i])) {
2070 heap_usage = device->ws->query_value(device->ws,
2071 RADEON_ALLOCATED_GTT);
2072
2073 heap_budget = gtt_size -
2074 device->ws->query_value(device->ws, RADEON_GTT_USAGE) +
2075 heap_usage;
2076
2077 memoryBudget->heapBudget[heap_index] = heap_budget;
2078 memoryBudget->heapUsage[heap_index] = heap_usage;
2079 }
2080 }
2081
2082 /* The heapBudget and heapUsage values must be zero for array elements
2083 * greater than or equal to
2084 * VkPhysicalDeviceMemoryProperties::memoryHeapCount.
2085 */
2086 for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
2087 memoryBudget->heapBudget[i] = 0;
2088 memoryBudget->heapUsage[i] = 0;
2089 }
2090 }
2091
2092 void radv_GetPhysicalDeviceMemoryProperties2(
2093 VkPhysicalDevice physicalDevice,
2094 VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
2095 {
2096 radv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2097 &pMemoryProperties->memoryProperties);
2098
2099 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
2100 vk_find_struct(pMemoryProperties->pNext,
2101 PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
2102 if (memory_budget)
2103 radv_get_memory_budget_properties(physicalDevice, memory_budget);
2104 }
2105
2106 VkResult radv_GetMemoryHostPointerPropertiesEXT(
2107 VkDevice _device,
2108 VkExternalMemoryHandleTypeFlagBits handleType,
2109 const void *pHostPointer,
2110 VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
2111 {
2112 RADV_FROM_HANDLE(radv_device, device, _device);
2113
2114 switch (handleType)
2115 {
2116 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2117 const struct radv_physical_device *physical_device = device->physical_device;
2118 uint32_t memoryTypeBits = 0;
2119 for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
2120 if (radv_is_mem_type_gtt_cached(physical_device->mem_type_indices[i])) {
2121 memoryTypeBits = (1 << i);
2122 break;
2123 }
2124 }
2125 pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
2126 return VK_SUCCESS;
2127 }
2128 default:
2129 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2130 }
2131 }
2132
2133 static enum radeon_ctx_priority
2134 radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj)
2135 {
2136 /* Default to MEDIUM when a specific global priority isn't requested */
2137 if (!pObj)
2138 return RADEON_CTX_PRIORITY_MEDIUM;
2139
2140 switch(pObj->globalPriority) {
2141 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2142 return RADEON_CTX_PRIORITY_REALTIME;
2143 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2144 return RADEON_CTX_PRIORITY_HIGH;
2145 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2146 return RADEON_CTX_PRIORITY_MEDIUM;
2147 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2148 return RADEON_CTX_PRIORITY_LOW;
2149 default:
2150 unreachable("Illegal global priority value");
2151 return RADEON_CTX_PRIORITY_INVALID;
2152 }
2153 }
2154
2155 static int
2156 radv_queue_init(struct radv_device *device, struct radv_queue *queue,
2157 uint32_t queue_family_index, int idx,
2158 VkDeviceQueueCreateFlags flags,
2159 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority)
2160 {
2161 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2162 queue->device = device;
2163 queue->queue_family_index = queue_family_index;
2164 queue->queue_idx = idx;
2165 queue->priority = radv_get_queue_global_priority(global_priority);
2166 queue->flags = flags;
2167
2168 queue->hw_ctx = device->ws->ctx_create(device->ws, queue->priority);
2169 if (!queue->hw_ctx)
2170 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2171
2172 list_inithead(&queue->pending_submissions);
2173 pthread_mutex_init(&queue->pending_mutex, NULL);
2174
2175 return VK_SUCCESS;
2176 }
2177
2178 static void
2179 radv_queue_finish(struct radv_queue *queue)
2180 {
2181 pthread_mutex_destroy(&queue->pending_mutex);
2182
2183 if (queue->hw_ctx)
2184 queue->device->ws->ctx_destroy(queue->hw_ctx);
2185
2186 if (queue->initial_full_flush_preamble_cs)
2187 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
2188 if (queue->initial_preamble_cs)
2189 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
2190 if (queue->continue_preamble_cs)
2191 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
2192 if (queue->descriptor_bo)
2193 queue->device->ws->buffer_destroy(queue->descriptor_bo);
2194 if (queue->scratch_bo)
2195 queue->device->ws->buffer_destroy(queue->scratch_bo);
2196 if (queue->esgs_ring_bo)
2197 queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
2198 if (queue->gsvs_ring_bo)
2199 queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
2200 if (queue->tess_rings_bo)
2201 queue->device->ws->buffer_destroy(queue->tess_rings_bo);
2202 if (queue->gds_bo)
2203 queue->device->ws->buffer_destroy(queue->gds_bo);
2204 if (queue->gds_oa_bo)
2205 queue->device->ws->buffer_destroy(queue->gds_oa_bo);
2206 if (queue->compute_scratch_bo)
2207 queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
2208 }
2209
2210 static void
2211 radv_bo_list_init(struct radv_bo_list *bo_list)
2212 {
2213 pthread_mutex_init(&bo_list->mutex, NULL);
2214 bo_list->list.count = bo_list->capacity = 0;
2215 bo_list->list.bos = NULL;
2216 }
2217
2218 static void
2219 radv_bo_list_finish(struct radv_bo_list *bo_list)
2220 {
2221 free(bo_list->list.bos);
2222 pthread_mutex_destroy(&bo_list->mutex);
2223 }
2224
2225 static VkResult radv_bo_list_add(struct radv_device *device,
2226 struct radeon_winsys_bo *bo)
2227 {
2228 struct radv_bo_list *bo_list = &device->bo_list;
2229
2230 if (bo->is_local)
2231 return VK_SUCCESS;
2232
2233 if (unlikely(!device->use_global_bo_list))
2234 return VK_SUCCESS;
2235
2236 pthread_mutex_lock(&bo_list->mutex);
2237 if (bo_list->list.count == bo_list->capacity) {
2238 unsigned capacity = MAX2(4, bo_list->capacity * 2);
2239 void *data = realloc(bo_list->list.bos, capacity * sizeof(struct radeon_winsys_bo*));
2240
2241 if (!data) {
2242 pthread_mutex_unlock(&bo_list->mutex);
2243 return VK_ERROR_OUT_OF_HOST_MEMORY;
2244 }
2245
2246 bo_list->list.bos = (struct radeon_winsys_bo**)data;
2247 bo_list->capacity = capacity;
2248 }
2249
2250 bo_list->list.bos[bo_list->list.count++] = bo;
2251 pthread_mutex_unlock(&bo_list->mutex);
2252 return VK_SUCCESS;
2253 }
2254
2255 static void radv_bo_list_remove(struct radv_device *device,
2256 struct radeon_winsys_bo *bo)
2257 {
2258 struct radv_bo_list *bo_list = &device->bo_list;
2259
2260 if (bo->is_local)
2261 return;
2262
2263 if (unlikely(!device->use_global_bo_list))
2264 return;
2265
2266 pthread_mutex_lock(&bo_list->mutex);
2267 for(unsigned i = 0; i < bo_list->list.count; ++i) {
2268 if (bo_list->list.bos[i] == bo) {
2269 bo_list->list.bos[i] = bo_list->list.bos[bo_list->list.count - 1];
2270 --bo_list->list.count;
2271 break;
2272 }
2273 }
2274 pthread_mutex_unlock(&bo_list->mutex);
2275 }
2276
2277 static void
2278 radv_device_init_gs_info(struct radv_device *device)
2279 {
2280 device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class,
2281 device->physical_device->rad_info.family);
2282 }
2283
2284 static int radv_get_device_extension_index(const char *name)
2285 {
2286 for (unsigned i = 0; i < RADV_DEVICE_EXTENSION_COUNT; ++i) {
2287 if (strcmp(name, radv_device_extensions[i].extensionName) == 0)
2288 return i;
2289 }
2290 return -1;
2291 }
2292
2293 static int
2294 radv_get_int_debug_option(const char *name, int default_value)
2295 {
2296 const char *str;
2297 int result;
2298
2299 str = getenv(name);
2300 if (!str) {
2301 result = default_value;
2302 } else {
2303 char *endptr;
2304
2305 result = strtol(str, &endptr, 0);
2306 if (str == endptr) {
2307 /* No digits founs. */
2308 result = default_value;
2309 }
2310 }
2311
2312 return result;
2313 }
2314
2315 static int install_seccomp_filter() {
2316
2317 struct sock_filter filter[] = {
2318 /* Check arch is 64bit x86 */
2319 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, arch))),
2320 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, AUDIT_ARCH_X86_64, 0, 12),
2321
2322 /* Futex is required for mutex locks */
2323 #if defined __NR__newselect
2324 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2325 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR__newselect, 11, 0),
2326 #elif defined __NR_select
2327 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2328 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_select, 11, 0),
2329 #else
2330 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2331 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_pselect6, 11, 0),
2332 #endif
2333
2334 /* Allow system exit calls for the forked process */
2335 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2336 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_exit_group, 9, 0),
2337
2338 /* Allow system read calls */
2339 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2340 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_read, 7, 0),
2341
2342 /* Allow system write calls */
2343 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2344 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_write, 5, 0),
2345
2346 /* Allow system brk calls (we need this for malloc) */
2347 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2348 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_brk, 3, 0),
2349
2350 /* Futex is required for mutex locks */
2351 BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))),
2352 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_futex, 1, 0),
2353
2354 /* Return error if we hit a system call not on the whitelist */
2355 BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ERRNO | (EPERM & SECCOMP_RET_DATA)),
2356
2357 /* Allow whitelisted system calls */
2358 BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ALLOW),
2359 };
2360
2361 struct sock_fprog prog = {
2362 .len = (unsigned short)(sizeof(filter) / sizeof(filter[0])),
2363 .filter = filter,
2364 };
2365
2366 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
2367 return -1;
2368
2369 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog))
2370 return -1;
2371
2372 return 0;
2373 }
2374
2375 /* Helper function with timeout support for reading from the pipe between
2376 * processes used for secure compile.
2377 */
2378 bool radv_sc_read(int fd, void *buf, size_t size, bool timeout)
2379 {
2380 fd_set fds;
2381 struct timeval tv;
2382
2383 FD_ZERO(&fds);
2384 FD_SET(fd, &fds);
2385
2386 while (true) {
2387 /* We can't rely on the value of tv after calling select() so
2388 * we must reset it on each iteration of the loop.
2389 */
2390 tv.tv_sec = 5;
2391 tv.tv_usec = 0;
2392
2393 int rval = select(fd + 1, &fds, NULL, NULL, timeout ? &tv : NULL);
2394
2395 if (rval == -1) {
2396 /* select error */
2397 return false;
2398 } else if (rval) {
2399 ssize_t bytes_read = read(fd, buf, size);
2400 if (bytes_read < 0)
2401 return false;
2402
2403 buf += bytes_read;
2404 size -= bytes_read;
2405 if (size == 0)
2406 return true;
2407 } else {
2408 /* select timeout */
2409 return false;
2410 }
2411 }
2412 }
2413
2414 static bool radv_close_all_fds(const int *keep_fds, int keep_fd_count)
2415 {
2416 DIR *d;
2417 struct dirent *dir;
2418 d = opendir("/proc/self/fd");
2419 if (!d)
2420 return false;
2421 int dir_fd = dirfd(d);
2422
2423 while ((dir = readdir(d)) != NULL) {
2424 if (dir->d_name[0] == '.')
2425 continue;
2426
2427 int fd = atoi(dir->d_name);
2428 if (fd == dir_fd)
2429 continue;
2430
2431 bool keep = false;
2432 for (int i = 0; !keep && i < keep_fd_count; ++i)
2433 if (keep_fds[i] == fd)
2434 keep = true;
2435
2436 if (keep)
2437 continue;
2438
2439 close(fd);
2440 }
2441 closedir(d);
2442 return true;
2443 }
2444
2445 static bool secure_compile_open_fifo_fds(struct radv_secure_compile_state *sc,
2446 int *fd_server, int *fd_client,
2447 unsigned process, bool make_fifo)
2448 {
2449 bool result = false;
2450 char *fifo_server_path = NULL;
2451 char *fifo_client_path = NULL;
2452
2453 if (asprintf(&fifo_server_path, "/tmp/radv_server_%s_%u", sc->uid, process) == -1)
2454 goto open_fifo_exit;
2455
2456 if (asprintf(&fifo_client_path, "/tmp/radv_client_%s_%u", sc->uid, process) == -1)
2457 goto open_fifo_exit;
2458
2459 if (make_fifo) {
2460 int file1 = mkfifo(fifo_server_path, 0666);
2461 if(file1 < 0)
2462 goto open_fifo_exit;
2463
2464 int file2 = mkfifo(fifo_client_path, 0666);
2465 if(file2 < 0)
2466 goto open_fifo_exit;
2467 }
2468
2469 *fd_server = open(fifo_server_path, O_RDWR);
2470 if(*fd_server < 1)
2471 goto open_fifo_exit;
2472
2473 *fd_client = open(fifo_client_path, O_RDWR);
2474 if(*fd_client < 1) {
2475 close(*fd_server);
2476 goto open_fifo_exit;
2477 }
2478
2479 result = true;
2480
2481 open_fifo_exit:
2482 free(fifo_server_path);
2483 free(fifo_client_path);
2484
2485 return result;
2486 }
2487
2488 static void run_secure_compile_device(struct radv_device *device, unsigned process,
2489 int fd_idle_device_output)
2490 {
2491 int fd_secure_input;
2492 int fd_secure_output;
2493 bool fifo_result = secure_compile_open_fifo_fds(device->sc_state,
2494 &fd_secure_input,
2495 &fd_secure_output,
2496 process, false);
2497
2498 enum radv_secure_compile_type sc_type;
2499
2500 const int needed_fds[] = {
2501 fd_secure_input,
2502 fd_secure_output,
2503 fd_idle_device_output,
2504 };
2505
2506 if (!fifo_result || !radv_close_all_fds(needed_fds, ARRAY_SIZE(needed_fds)) ||
2507 install_seccomp_filter() == -1) {
2508 sc_type = RADV_SC_TYPE_INIT_FAILURE;
2509 } else {
2510 sc_type = RADV_SC_TYPE_INIT_SUCCESS;
2511 device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input;
2512 device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output;
2513 }
2514
2515 write(fd_idle_device_output, &sc_type, sizeof(sc_type));
2516
2517 if (sc_type == RADV_SC_TYPE_INIT_FAILURE)
2518 goto secure_compile_exit;
2519
2520 while (true) {
2521 radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false);
2522
2523 if (sc_type == RADV_SC_TYPE_COMPILE_PIPELINE) {
2524 struct radv_pipeline *pipeline;
2525 bool sc_read = true;
2526
2527 pipeline = vk_zalloc2(&device->alloc, NULL, sizeof(*pipeline), 8,
2528 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2529
2530 pipeline->device = device;
2531
2532 /* Read pipeline layout */
2533 struct radv_pipeline_layout layout;
2534 sc_read = radv_sc_read(fd_secure_input, &layout, sizeof(struct radv_pipeline_layout), true);
2535 sc_read &= radv_sc_read(fd_secure_input, &layout.num_sets, sizeof(uint32_t), true);
2536 if (!sc_read)
2537 goto secure_compile_exit;
2538
2539 for (uint32_t set = 0; set < layout.num_sets; set++) {
2540 uint32_t layout_size;
2541 sc_read &= radv_sc_read(fd_secure_input, &layout_size, sizeof(uint32_t), true);
2542 if (!sc_read)
2543 goto secure_compile_exit;
2544
2545 layout.set[set].layout = malloc(layout_size);
2546 layout.set[set].layout->layout_size = layout_size;
2547 sc_read &= radv_sc_read(fd_secure_input, layout.set[set].layout,
2548 layout.set[set].layout->layout_size, true);
2549 }
2550
2551 pipeline->layout = &layout;
2552
2553 /* Read pipeline key */
2554 struct radv_pipeline_key key;
2555 sc_read &= radv_sc_read(fd_secure_input, &key, sizeof(struct radv_pipeline_key), true);
2556
2557 /* Read pipeline create flags */
2558 VkPipelineCreateFlags flags;
2559 sc_read &= radv_sc_read(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags), true);
2560
2561 /* Read stage and shader information */
2562 uint32_t num_stages;
2563 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
2564 sc_read &= radv_sc_read(fd_secure_input, &num_stages, sizeof(uint32_t), true);
2565 if (!sc_read)
2566 goto secure_compile_exit;
2567
2568 for (uint32_t i = 0; i < num_stages; i++) {
2569
2570 /* Read stage */
2571 gl_shader_stage stage;
2572 sc_read &= radv_sc_read(fd_secure_input, &stage, sizeof(gl_shader_stage), true);
2573
2574 VkPipelineShaderStageCreateInfo *pStage = calloc(1, sizeof(VkPipelineShaderStageCreateInfo));
2575
2576 /* Read entry point name */
2577 size_t name_size;
2578 sc_read &= radv_sc_read(fd_secure_input, &name_size, sizeof(size_t), true);
2579 if (!sc_read)
2580 goto secure_compile_exit;
2581
2582 char *ep_name = malloc(name_size);
2583 sc_read &= radv_sc_read(fd_secure_input, ep_name, name_size, true);
2584 pStage->pName = ep_name;
2585
2586 /* Read shader module */
2587 size_t module_size;
2588 sc_read &= radv_sc_read(fd_secure_input, &module_size, sizeof(size_t), true);
2589 if (!sc_read)
2590 goto secure_compile_exit;
2591
2592 struct radv_shader_module *module = malloc(module_size);
2593 sc_read &= radv_sc_read(fd_secure_input, module, module_size, true);
2594 pStage->module = radv_shader_module_to_handle(module);
2595
2596 /* Read specialization info */
2597 bool has_spec_info;
2598 sc_read &= radv_sc_read(fd_secure_input, &has_spec_info, sizeof(bool), true);
2599 if (!sc_read)
2600 goto secure_compile_exit;
2601
2602 if (has_spec_info) {
2603 VkSpecializationInfo *specInfo = malloc(sizeof(VkSpecializationInfo));
2604 pStage->pSpecializationInfo = specInfo;
2605
2606 sc_read &= radv_sc_read(fd_secure_input, &specInfo->dataSize, sizeof(size_t), true);
2607 if (!sc_read)
2608 goto secure_compile_exit;
2609
2610 void *si_data = malloc(specInfo->dataSize);
2611 sc_read &= radv_sc_read(fd_secure_input, si_data, specInfo->dataSize, true);
2612 specInfo->pData = si_data;
2613
2614 sc_read &= radv_sc_read(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t), true);
2615 if (!sc_read)
2616 goto secure_compile_exit;
2617
2618 VkSpecializationMapEntry *mapEntries = malloc(sizeof(VkSpecializationMapEntry) * specInfo->mapEntryCount);
2619 for (uint32_t j = 0; j < specInfo->mapEntryCount; j++) {
2620 sc_read &= radv_sc_read(fd_secure_input, &mapEntries[j], sizeof(VkSpecializationMapEntry), true);
2621 if (!sc_read)
2622 goto secure_compile_exit;
2623 }
2624
2625 specInfo->pMapEntries = mapEntries;
2626 }
2627
2628 pStages[stage] = pStage;
2629 }
2630
2631 /* Compile the shaders */
2632 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
2633 radv_create_shaders(pipeline, device, NULL, &key, pStages, flags, NULL, stage_feedbacks);
2634
2635 /* free memory allocated above */
2636 for (uint32_t set = 0; set < layout.num_sets; set++)
2637 free(layout.set[set].layout);
2638
2639 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2640 if (!pStages[i])
2641 continue;
2642
2643 free((void *) pStages[i]->pName);
2644 free(radv_shader_module_from_handle(pStages[i]->module));
2645 if (pStages[i]->pSpecializationInfo) {
2646 free((void *) pStages[i]->pSpecializationInfo->pData);
2647 free((void *) pStages[i]->pSpecializationInfo->pMapEntries);
2648 free((void *) pStages[i]->pSpecializationInfo);
2649 }
2650 free((void *) pStages[i]);
2651 }
2652
2653 vk_free(&device->alloc, pipeline);
2654
2655 sc_type = RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED;
2656 write(fd_secure_output, &sc_type, sizeof(sc_type));
2657
2658 } else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) {
2659 goto secure_compile_exit;
2660 }
2661 }
2662
2663 secure_compile_exit:
2664 close(fd_secure_input);
2665 close(fd_secure_output);
2666 close(fd_idle_device_output);
2667 _exit(0);
2668 }
2669
2670 static enum radv_secure_compile_type fork_secure_compile_device(struct radv_device *device, unsigned process)
2671 {
2672 int fd_secure_input[2];
2673 int fd_secure_output[2];
2674
2675 /* create pipe descriptors (used to communicate between processes) */
2676 if (pipe(fd_secure_input) == -1 || pipe(fd_secure_output) == -1)
2677 return RADV_SC_TYPE_INIT_FAILURE;
2678
2679
2680 int sc_pid;
2681 if ((sc_pid = fork()) == 0) {
2682 device->sc_state->secure_compile_thread_counter = process;
2683 run_secure_compile_device(device, process, fd_secure_output[1]);
2684 } else {
2685 if (sc_pid == -1)
2686 return RADV_SC_TYPE_INIT_FAILURE;
2687
2688 /* Read the init result returned from the secure process */
2689 enum radv_secure_compile_type sc_type;
2690 bool sc_read = radv_sc_read(fd_secure_output[0], &sc_type, sizeof(sc_type), true);
2691
2692 if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read) {
2693 close(fd_secure_input[0]);
2694 close(fd_secure_input[1]);
2695 close(fd_secure_output[1]);
2696 close(fd_secure_output[0]);
2697 int status;
2698 waitpid(sc_pid, &status, 0);
2699
2700 return RADV_SC_TYPE_INIT_FAILURE;
2701 } else {
2702 assert(sc_type == RADV_SC_TYPE_INIT_SUCCESS);
2703 write(device->sc_state->secure_compile_processes[process].fd_secure_output, &sc_type, sizeof(sc_type));
2704
2705 close(fd_secure_input[0]);
2706 close(fd_secure_input[1]);
2707 close(fd_secure_output[1]);
2708 close(fd_secure_output[0]);
2709
2710 int status;
2711 waitpid(sc_pid, &status, 0);
2712 }
2713 }
2714
2715 return RADV_SC_TYPE_INIT_SUCCESS;
2716 }
2717
2718 /* Run a bare bones fork of a device that was forked right after its creation.
2719 * This device will have low overhead when it is forked again before each
2720 * pipeline compilation. This device sits idle and its only job is to fork
2721 * itself.
2722 */
2723 static void run_secure_compile_idle_device(struct radv_device *device, unsigned process,
2724 int fd_secure_input, int fd_secure_output)
2725 {
2726 enum radv_secure_compile_type sc_type = RADV_SC_TYPE_INIT_SUCCESS;
2727 device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input;
2728 device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output;
2729
2730 write(fd_secure_output, &sc_type, sizeof(sc_type));
2731
2732 while (true) {
2733 radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false);
2734
2735 if (sc_type == RADV_SC_TYPE_FORK_DEVICE) {
2736 sc_type = fork_secure_compile_device(device, process);
2737
2738 if (sc_type == RADV_SC_TYPE_INIT_FAILURE)
2739 goto secure_compile_exit;
2740
2741 } else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) {
2742 goto secure_compile_exit;
2743 }
2744 }
2745
2746 secure_compile_exit:
2747 close(fd_secure_input);
2748 close(fd_secure_output);
2749 _exit(0);
2750 }
2751
2752 static void destroy_secure_compile_device(struct radv_device *device, unsigned process)
2753 {
2754 int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input;
2755
2756 enum radv_secure_compile_type sc_type = RADV_SC_TYPE_DESTROY_DEVICE;
2757 write(fd_secure_input, &sc_type, sizeof(sc_type));
2758
2759 close(device->sc_state->secure_compile_processes[process].fd_secure_input);
2760 close(device->sc_state->secure_compile_processes[process].fd_secure_output);
2761
2762 int status;
2763 waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0);
2764 }
2765
2766 static VkResult fork_secure_compile_idle_device(struct radv_device *device)
2767 {
2768 device->sc_state = vk_zalloc(&device->alloc,
2769 sizeof(struct radv_secure_compile_state),
2770 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2771
2772 mtx_init(&device->sc_state->secure_compile_mutex, mtx_plain);
2773
2774 pid_t upid = getpid();
2775 time_t seconds = time(NULL);
2776
2777 char *uid;
2778 if (asprintf(&uid, "%ld_%ld", (long) upid, (long) seconds) == -1)
2779 return VK_ERROR_INITIALIZATION_FAILED;
2780
2781 device->sc_state->uid = uid;
2782
2783 uint8_t sc_threads = device->instance->num_sc_threads;
2784 int fd_secure_input[MAX_SC_PROCS][2];
2785 int fd_secure_output[MAX_SC_PROCS][2];
2786
2787 /* create pipe descriptors (used to communicate between processes) */
2788 for (unsigned i = 0; i < sc_threads; i++) {
2789 if (pipe(fd_secure_input[i]) == -1 ||
2790 pipe(fd_secure_output[i]) == -1) {
2791 return VK_ERROR_INITIALIZATION_FAILED;
2792 }
2793 }
2794
2795 device->sc_state->secure_compile_processes = vk_zalloc(&device->alloc,
2796 sizeof(struct radv_secure_compile_process) * sc_threads, 8,
2797 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2798
2799 for (unsigned process = 0; process < sc_threads; process++) {
2800 if ((device->sc_state->secure_compile_processes[process].sc_pid = fork()) == 0) {
2801 device->sc_state->secure_compile_thread_counter = process;
2802 run_secure_compile_idle_device(device, process, fd_secure_input[process][0], fd_secure_output[process][1]);
2803 } else {
2804 if (device->sc_state->secure_compile_processes[process].sc_pid == -1)
2805 return VK_ERROR_INITIALIZATION_FAILED;
2806
2807 /* Read the init result returned from the secure process */
2808 enum radv_secure_compile_type sc_type;
2809 bool sc_read = radv_sc_read(fd_secure_output[process][0], &sc_type, sizeof(sc_type), true);
2810
2811 bool fifo_result;
2812 if (sc_read && sc_type == RADV_SC_TYPE_INIT_SUCCESS) {
2813 fifo_result = secure_compile_open_fifo_fds(device->sc_state,
2814 &device->sc_state->secure_compile_processes[process].fd_server,
2815 &device->sc_state->secure_compile_processes[process].fd_client,
2816 process, true);
2817
2818 device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input[process][1];
2819 device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output[process][0];
2820 }
2821
2822 if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read || !fifo_result) {
2823 close(fd_secure_input[process][0]);
2824 close(fd_secure_input[process][1]);
2825 close(fd_secure_output[process][1]);
2826 close(fd_secure_output[process][0]);
2827 int status;
2828 waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0);
2829
2830 /* Destroy any forks that were created sucessfully */
2831 for (unsigned i = 0; i < process; i++) {
2832 destroy_secure_compile_device(device, i);
2833 }
2834
2835 return VK_ERROR_INITIALIZATION_FAILED;
2836 }
2837 }
2838 }
2839 return VK_SUCCESS;
2840 }
2841
2842 static void
2843 radv_device_init_dispatch(struct radv_device *device)
2844 {
2845 const struct radv_instance *instance = device->physical_device->instance;
2846 bool unchecked = instance->debug_flags & RADV_DEBUG_ALL_ENTRYPOINTS;
2847
2848 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2849 /* Vulkan requires that entrypoints for extensions which have not been
2850 * enabled must not be advertised.
2851 */
2852 if (!unchecked &&
2853 !radv_device_entrypoint_is_enabled(i, instance->apiVersion,
2854 &instance->enabled_extensions,
2855 &device->enabled_extensions)) {
2856 device->dispatch.entrypoints[i] = NULL;
2857 } else {
2858 device->dispatch.entrypoints[i] =
2859 radv_device_dispatch_table.entrypoints[i];
2860 }
2861 }
2862 }
2863
2864 static VkResult
2865 radv_create_pthread_cond(pthread_cond_t *cond)
2866 {
2867 pthread_condattr_t condattr;
2868 if (pthread_condattr_init(&condattr)) {
2869 return VK_ERROR_INITIALIZATION_FAILED;
2870 }
2871
2872 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC)) {
2873 pthread_condattr_destroy(&condattr);
2874 return VK_ERROR_INITIALIZATION_FAILED;
2875 }
2876 if (pthread_cond_init(cond, &condattr)) {
2877 pthread_condattr_destroy(&condattr);
2878 return VK_ERROR_INITIALIZATION_FAILED;
2879 }
2880 pthread_condattr_destroy(&condattr);
2881 return VK_SUCCESS;
2882 }
2883
2884 VkResult radv_CreateDevice(
2885 VkPhysicalDevice physicalDevice,
2886 const VkDeviceCreateInfo* pCreateInfo,
2887 const VkAllocationCallbacks* pAllocator,
2888 VkDevice* pDevice)
2889 {
2890 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
2891 VkResult result;
2892 struct radv_device *device;
2893
2894 bool keep_shader_info = false;
2895
2896 /* Check enabled features */
2897 if (pCreateInfo->pEnabledFeatures) {
2898 VkPhysicalDeviceFeatures supported_features;
2899 radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2900 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2901 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2902 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2903 for (uint32_t i = 0; i < num_features; i++) {
2904 if (enabled_feature[i] && !supported_feature[i])
2905 return vk_error(physical_device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
2906 }
2907 }
2908
2909 device = vk_zalloc2(&physical_device->instance->alloc, pAllocator,
2910 sizeof(*device), 8,
2911 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2912 if (!device)
2913 return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2914
2915 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2916 device->instance = physical_device->instance;
2917 device->physical_device = physical_device;
2918
2919 device->ws = physical_device->ws;
2920 if (pAllocator)
2921 device->alloc = *pAllocator;
2922 else
2923 device->alloc = physical_device->instance->alloc;
2924
2925 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2926 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
2927 int index = radv_get_device_extension_index(ext_name);
2928 if (index < 0 || !physical_device->supported_extensions.extensions[index]) {
2929 vk_free(&device->alloc, device);
2930 return vk_error(physical_device->instance, VK_ERROR_EXTENSION_NOT_PRESENT);
2931 }
2932
2933 device->enabled_extensions.extensions[index] = true;
2934 }
2935
2936 radv_device_init_dispatch(device);
2937
2938 keep_shader_info = device->enabled_extensions.AMD_shader_info;
2939
2940 /* With update after bind we can't attach bo's to the command buffer
2941 * from the descriptor set anymore, so we have to use a global BO list.
2942 */
2943 device->use_global_bo_list =
2944 (device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
2945 device->enabled_extensions.EXT_descriptor_indexing ||
2946 device->enabled_extensions.EXT_buffer_device_address ||
2947 device->enabled_extensions.KHR_buffer_device_address;
2948
2949 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2950 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2951
2952 mtx_init(&device->shader_slab_mutex, mtx_plain);
2953 list_inithead(&device->shader_slabs);
2954
2955 radv_bo_list_init(&device->bo_list);
2956
2957 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2958 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
2959 uint32_t qfi = queue_create->queueFamilyIndex;
2960 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
2961 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2962
2963 assert(!global_priority || device->physical_device->rad_info.has_ctx_priority);
2964
2965 device->queues[qfi] = vk_alloc(&device->alloc,
2966 queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2967 if (!device->queues[qfi]) {
2968 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2969 goto fail;
2970 }
2971
2972 memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
2973
2974 device->queue_count[qfi] = queue_create->queueCount;
2975
2976 for (unsigned q = 0; q < queue_create->queueCount; q++) {
2977 result = radv_queue_init(device, &device->queues[qfi][q],
2978 qfi, q, queue_create->flags,
2979 global_priority);
2980 if (result != VK_SUCCESS)
2981 goto fail;
2982 }
2983 }
2984
2985 device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 &&
2986 !(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
2987
2988 /* Disable DFSM by default. As of 2019-09-15 Talos on Low is still 3% slower on Raven. */
2989 device->dfsm_allowed = device->pbb_allowed &&
2990 (device->instance->perftest_flags & RADV_PERFTEST_DFSM);
2991
2992 device->always_use_syncobj = device->physical_device->rad_info.has_syncobj_wait_for_submit;
2993
2994 /* The maximum number of scratch waves. Scratch space isn't divided
2995 * evenly between CUs. The number is only a function of the number of CUs.
2996 * We can decrease the constant to decrease the scratch buffer size.
2997 *
2998 * sctx->scratch_waves must be >= the maximum possible size of
2999 * 1 threadgroup, so that the hw doesn't hang from being unable
3000 * to start any.
3001 *
3002 * The recommended value is 4 per CU at most. Higher numbers don't
3003 * bring much benefit, but they still occupy chip resources (think
3004 * async compute). I've seen ~2% performance difference between 4 and 32.
3005 */
3006 uint32_t max_threads_per_block = 2048;
3007 device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units,
3008 max_threads_per_block / 64);
3009
3010 device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
3011
3012 if (device->physical_device->rad_info.chip_class >= GFX7) {
3013 /* If the KMD allows it (there is a KMD hw register for it),
3014 * allow launching waves out-of-order.
3015 */
3016 device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
3017 }
3018
3019 radv_device_init_gs_info(device);
3020
3021 device->tess_offchip_block_dw_size =
3022 device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
3023
3024 if (getenv("RADV_TRACE_FILE")) {
3025 const char *filename = getenv("RADV_TRACE_FILE");
3026
3027 keep_shader_info = true;
3028
3029 if (!radv_init_trace(device))
3030 goto fail;
3031
3032 fprintf(stderr, "*****************************************************************************\n");
3033 fprintf(stderr, "* WARNING: RADV_TRACE_FILE is costly and should only be used for debugging! *\n");
3034 fprintf(stderr, "*****************************************************************************\n");
3035
3036 fprintf(stderr, "Trace file will be dumped to %s\n", filename);
3037 radv_dump_enabled_options(device, stderr);
3038 }
3039
3040 int radv_thread_trace = radv_get_int_debug_option("RADV_THREAD_TRACE", -1);
3041 if (radv_thread_trace >= 0) {
3042 fprintf(stderr, "******************************************************************************\n");
3043 fprintf(stderr, "* WARNING: Thread trace support is experimental and only supported on GFX9+! *\n");
3044 fprintf(stderr, "******************************************************************************\n");
3045
3046 /* TODO: add support for more ASICs. */
3047 assert(device->physical_device->rad_info.chip_class >= GFX9);
3048
3049 /* Default buffer size set to 1MB per SE. */
3050 device->thread_trace_buffer_size =
3051 radv_get_int_debug_option("RADV_THREAD_TRACE_BUFFER_SIZE", 1024 * 1024);
3052 device->thread_trace_start_frame = radv_thread_trace;
3053
3054 if (!radv_thread_trace_init(device))
3055 goto fail;
3056 }
3057
3058 /* Temporarily disable secure compile while we create meta shaders, etc */
3059 uint8_t sc_threads = device->instance->num_sc_threads;
3060 if (sc_threads)
3061 device->instance->num_sc_threads = 0;
3062
3063 device->keep_shader_info = keep_shader_info;
3064 result = radv_device_init_meta(device);
3065 if (result != VK_SUCCESS)
3066 goto fail;
3067
3068 radv_device_init_msaa(device);
3069
3070 for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
3071 device->empty_cs[family] = device->ws->cs_create(device->ws, family);
3072 switch (family) {
3073 case RADV_QUEUE_GENERAL:
3074 radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
3075 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_LOAD_ENABLE(1));
3076 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_SHADOW_ENABLE(1));
3077 break;
3078 case RADV_QUEUE_COMPUTE:
3079 radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
3080 radeon_emit(device->empty_cs[family], 0);
3081 break;
3082 }
3083 device->ws->cs_finalize(device->empty_cs[family]);
3084 }
3085
3086 if (device->physical_device->rad_info.chip_class >= GFX7)
3087 cik_create_gfx_config(device);
3088
3089 VkPipelineCacheCreateInfo ci;
3090 ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
3091 ci.pNext = NULL;
3092 ci.flags = 0;
3093 ci.pInitialData = NULL;
3094 ci.initialDataSize = 0;
3095 VkPipelineCache pc;
3096 result = radv_CreatePipelineCache(radv_device_to_handle(device),
3097 &ci, NULL, &pc);
3098 if (result != VK_SUCCESS)
3099 goto fail_meta;
3100
3101 device->mem_cache = radv_pipeline_cache_from_handle(pc);
3102
3103 result = radv_create_pthread_cond(&device->timeline_cond);
3104 if (result != VK_SUCCESS)
3105 goto fail_mem_cache;
3106
3107 device->force_aniso =
3108 MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
3109 if (device->force_aniso >= 0) {
3110 fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
3111 1 << util_logbase2(device->force_aniso));
3112 }
3113
3114 /* Fork device for secure compile as required */
3115 device->instance->num_sc_threads = sc_threads;
3116 if (radv_device_use_secure_compile(device->instance)) {
3117
3118 result = fork_secure_compile_idle_device(device);
3119 if (result != VK_SUCCESS)
3120 goto fail_meta;
3121 }
3122
3123 *pDevice = radv_device_to_handle(device);
3124 return VK_SUCCESS;
3125
3126 fail_mem_cache:
3127 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
3128 fail_meta:
3129 radv_device_finish_meta(device);
3130 fail:
3131 radv_bo_list_finish(&device->bo_list);
3132
3133 radv_thread_trace_finish(device);
3134
3135 if (device->trace_bo)
3136 device->ws->buffer_destroy(device->trace_bo);
3137
3138 if (device->gfx_init)
3139 device->ws->buffer_destroy(device->gfx_init);
3140
3141 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
3142 for (unsigned q = 0; q < device->queue_count[i]; q++)
3143 radv_queue_finish(&device->queues[i][q]);
3144 if (device->queue_count[i])
3145 vk_free(&device->alloc, device->queues[i]);
3146 }
3147
3148 vk_free(&device->alloc, device);
3149 return result;
3150 }
3151
3152 void radv_DestroyDevice(
3153 VkDevice _device,
3154 const VkAllocationCallbacks* pAllocator)
3155 {
3156 RADV_FROM_HANDLE(radv_device, device, _device);
3157
3158 if (!device)
3159 return;
3160
3161 if (device->trace_bo)
3162 device->ws->buffer_destroy(device->trace_bo);
3163
3164 if (device->gfx_init)
3165 device->ws->buffer_destroy(device->gfx_init);
3166
3167 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
3168 for (unsigned q = 0; q < device->queue_count[i]; q++)
3169 radv_queue_finish(&device->queues[i][q]);
3170 if (device->queue_count[i])
3171 vk_free(&device->alloc, device->queues[i]);
3172 if (device->empty_cs[i])
3173 device->ws->cs_destroy(device->empty_cs[i]);
3174 }
3175 radv_device_finish_meta(device);
3176
3177 VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
3178 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
3179
3180 radv_destroy_shader_slabs(device);
3181
3182 pthread_cond_destroy(&device->timeline_cond);
3183 radv_bo_list_finish(&device->bo_list);
3184
3185 radv_thread_trace_finish(device);
3186
3187 if (radv_device_use_secure_compile(device->instance)) {
3188 for (unsigned i = 0; i < device->instance->num_sc_threads; i++ ) {
3189 destroy_secure_compile_device(device, i);
3190 }
3191 }
3192
3193 if (device->sc_state) {
3194 free(device->sc_state->uid);
3195 vk_free(&device->alloc, device->sc_state->secure_compile_processes);
3196 }
3197 vk_free(&device->alloc, device->sc_state);
3198 vk_free(&device->alloc, device);
3199 }
3200
3201 VkResult radv_EnumerateInstanceLayerProperties(
3202 uint32_t* pPropertyCount,
3203 VkLayerProperties* pProperties)
3204 {
3205 if (pProperties == NULL) {
3206 *pPropertyCount = 0;
3207 return VK_SUCCESS;
3208 }
3209
3210 /* None supported at this time */
3211 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
3212 }
3213
3214 VkResult radv_EnumerateDeviceLayerProperties(
3215 VkPhysicalDevice physicalDevice,
3216 uint32_t* pPropertyCount,
3217 VkLayerProperties* pProperties)
3218 {
3219 if (pProperties == NULL) {
3220 *pPropertyCount = 0;
3221 return VK_SUCCESS;
3222 }
3223
3224 /* None supported at this time */
3225 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
3226 }
3227
3228 void radv_GetDeviceQueue2(
3229 VkDevice _device,
3230 const VkDeviceQueueInfo2* pQueueInfo,
3231 VkQueue* pQueue)
3232 {
3233 RADV_FROM_HANDLE(radv_device, device, _device);
3234 struct radv_queue *queue;
3235
3236 queue = &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex];
3237 if (pQueueInfo->flags != queue->flags) {
3238 /* From the Vulkan 1.1.70 spec:
3239 *
3240 * "The queue returned by vkGetDeviceQueue2 must have the same
3241 * flags value from this structure as that used at device
3242 * creation time in a VkDeviceQueueCreateInfo instance. If no
3243 * matching flags were specified at device creation time then
3244 * pQueue will return VK_NULL_HANDLE."
3245 */
3246 *pQueue = VK_NULL_HANDLE;
3247 return;
3248 }
3249
3250 *pQueue = radv_queue_to_handle(queue);
3251 }
3252
3253 void radv_GetDeviceQueue(
3254 VkDevice _device,
3255 uint32_t queueFamilyIndex,
3256 uint32_t queueIndex,
3257 VkQueue* pQueue)
3258 {
3259 const VkDeviceQueueInfo2 info = (VkDeviceQueueInfo2) {
3260 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3261 .queueFamilyIndex = queueFamilyIndex,
3262 .queueIndex = queueIndex
3263 };
3264
3265 radv_GetDeviceQueue2(_device, &info, pQueue);
3266 }
3267
3268 static void
3269 fill_geom_tess_rings(struct radv_queue *queue,
3270 uint32_t *map,
3271 bool add_sample_positions,
3272 uint32_t esgs_ring_size,
3273 struct radeon_winsys_bo *esgs_ring_bo,
3274 uint32_t gsvs_ring_size,
3275 struct radeon_winsys_bo *gsvs_ring_bo,
3276 uint32_t tess_factor_ring_size,
3277 uint32_t tess_offchip_ring_offset,
3278 uint32_t tess_offchip_ring_size,
3279 struct radeon_winsys_bo *tess_rings_bo)
3280 {
3281 uint32_t *desc = &map[4];
3282
3283 if (esgs_ring_bo) {
3284 uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
3285
3286 /* stride 0, num records - size, add tid, swizzle, elsize4,
3287 index stride 64 */
3288 desc[0] = esgs_va;
3289 desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) |
3290 S_008F04_SWIZZLE_ENABLE(true);
3291 desc[2] = esgs_ring_size;
3292 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3293 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3294 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3295 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3296 S_008F0C_INDEX_STRIDE(3) |
3297 S_008F0C_ADD_TID_ENABLE(1);
3298
3299 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3300 desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3301 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
3302 S_008F0C_RESOURCE_LEVEL(1);
3303 } else {
3304 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3305 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
3306 S_008F0C_ELEMENT_SIZE(1);
3307 }
3308
3309 /* GS entry for ES->GS ring */
3310 /* stride 0, num records - size, elsize0,
3311 index stride 0 */
3312 desc[4] = esgs_va;
3313 desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
3314 desc[6] = esgs_ring_size;
3315 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3316 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3317 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3318 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3319
3320 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3321 desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3322 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
3323 S_008F0C_RESOURCE_LEVEL(1);
3324 } else {
3325 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3326 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3327 }
3328 }
3329
3330 desc += 8;
3331
3332 if (gsvs_ring_bo) {
3333 uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
3334
3335 /* VS entry for GS->VS ring */
3336 /* stride 0, num records - size, elsize0,
3337 index stride 0 */
3338 desc[0] = gsvs_va;
3339 desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
3340 desc[2] = gsvs_ring_size;
3341 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3342 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3343 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3344 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3345
3346 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3347 desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3348 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
3349 S_008F0C_RESOURCE_LEVEL(1);
3350 } else {
3351 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3352 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3353 }
3354
3355 /* stride gsvs_itemsize, num records 64
3356 elsize 4, index stride 16 */
3357 /* shader will patch stride and desc[2] */
3358 desc[4] = gsvs_va;
3359 desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32) |
3360 S_008F04_SWIZZLE_ENABLE(1);
3361 desc[6] = 0;
3362 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3363 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3364 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3365 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3366 S_008F0C_INDEX_STRIDE(1) |
3367 S_008F0C_ADD_TID_ENABLE(true);
3368
3369 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3370 desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3371 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) |
3372 S_008F0C_RESOURCE_LEVEL(1);
3373 } else {
3374 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3375 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
3376 S_008F0C_ELEMENT_SIZE(1);
3377 }
3378
3379 }
3380
3381 desc += 8;
3382
3383 if (tess_rings_bo) {
3384 uint64_t tess_va = radv_buffer_get_va(tess_rings_bo);
3385 uint64_t tess_offchip_va = tess_va + tess_offchip_ring_offset;
3386
3387 desc[0] = tess_va;
3388 desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32);
3389 desc[2] = tess_factor_ring_size;
3390 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3391 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3392 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3393 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3394
3395 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3396 desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3397 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3398 S_008F0C_RESOURCE_LEVEL(1);
3399 } else {
3400 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3401 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3402 }
3403
3404 desc[4] = tess_offchip_va;
3405 desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32);
3406 desc[6] = tess_offchip_ring_size;
3407 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3408 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3409 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3410 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3411
3412 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3413 desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3414 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3415 S_008F0C_RESOURCE_LEVEL(1);
3416 } else {
3417 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3418 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3419 }
3420 }
3421
3422 desc += 8;
3423
3424 if (add_sample_positions) {
3425 /* add sample positions after all rings */
3426 memcpy(desc, queue->device->sample_locations_1x, 8);
3427 desc += 2;
3428 memcpy(desc, queue->device->sample_locations_2x, 16);
3429 desc += 4;
3430 memcpy(desc, queue->device->sample_locations_4x, 32);
3431 desc += 8;
3432 memcpy(desc, queue->device->sample_locations_8x, 64);
3433 }
3434 }
3435
3436 static unsigned
3437 radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p)
3438 {
3439 bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= GFX7 &&
3440 device->physical_device->rad_info.family != CHIP_CARRIZO &&
3441 device->physical_device->rad_info.family != CHIP_STONEY;
3442 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
3443 unsigned max_offchip_buffers;
3444 unsigned offchip_granularity;
3445 unsigned hs_offchip_param;
3446
3447 /*
3448 * Per RadeonSI:
3449 * This must be one less than the maximum number due to a hw limitation.
3450 * Various hardware bugs need thGFX7
3451 *
3452 * Per AMDVLK:
3453 * Vega10 should limit max_offchip_buffers to 508 (4 * 127).
3454 * Gfx7 should limit max_offchip_buffers to 508
3455 * Gfx6 should limit max_offchip_buffers to 126 (2 * 63)
3456 *
3457 * Follow AMDVLK here.
3458 */
3459 if (device->physical_device->rad_info.chip_class >= GFX10) {
3460 max_offchip_buffers_per_se = 256;
3461 } else if (device->physical_device->rad_info.family == CHIP_VEGA10 ||
3462 device->physical_device->rad_info.chip_class == GFX7 ||
3463 device->physical_device->rad_info.chip_class == GFX6)
3464 --max_offchip_buffers_per_se;
3465
3466 max_offchip_buffers = max_offchip_buffers_per_se *
3467 device->physical_device->rad_info.max_se;
3468
3469 /* Hawaii has a bug with offchip buffers > 256 that can be worked
3470 * around by setting 4K granularity.
3471 */
3472 if (device->tess_offchip_block_dw_size == 4096) {
3473 assert(device->physical_device->rad_info.family == CHIP_HAWAII);
3474 offchip_granularity = V_03093C_X_4K_DWORDS;
3475 } else {
3476 assert(device->tess_offchip_block_dw_size == 8192);
3477 offchip_granularity = V_03093C_X_8K_DWORDS;
3478 }
3479
3480 switch (device->physical_device->rad_info.chip_class) {
3481 case GFX6:
3482 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
3483 break;
3484 case GFX7:
3485 case GFX8:
3486 case GFX9:
3487 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
3488 break;
3489 case GFX10:
3490 break;
3491 default:
3492 break;
3493 }
3494
3495 *max_offchip_buffers_p = max_offchip_buffers;
3496 if (device->physical_device->rad_info.chip_class >= GFX7) {
3497 if (device->physical_device->rad_info.chip_class >= GFX8)
3498 --max_offchip_buffers;
3499 hs_offchip_param =
3500 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
3501 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity);
3502 } else {
3503 hs_offchip_param =
3504 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
3505 }
3506 return hs_offchip_param;
3507 }
3508
3509 static void
3510 radv_emit_gs_ring_sizes(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3511 struct radeon_winsys_bo *esgs_ring_bo,
3512 uint32_t esgs_ring_size,
3513 struct radeon_winsys_bo *gsvs_ring_bo,
3514 uint32_t gsvs_ring_size)
3515 {
3516 if (!esgs_ring_bo && !gsvs_ring_bo)
3517 return;
3518
3519 if (esgs_ring_bo)
3520 radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo);
3521
3522 if (gsvs_ring_bo)
3523 radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo);
3524
3525 if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
3526 radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
3527 radeon_emit(cs, esgs_ring_size >> 8);
3528 radeon_emit(cs, gsvs_ring_size >> 8);
3529 } else {
3530 radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
3531 radeon_emit(cs, esgs_ring_size >> 8);
3532 radeon_emit(cs, gsvs_ring_size >> 8);
3533 }
3534 }
3535
3536 static void
3537 radv_emit_tess_factor_ring(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3538 unsigned hs_offchip_param, unsigned tf_ring_size,
3539 struct radeon_winsys_bo *tess_rings_bo)
3540 {
3541 uint64_t tf_va;
3542
3543 if (!tess_rings_bo)
3544 return;
3545
3546 tf_va = radv_buffer_get_va(tess_rings_bo);
3547
3548 radv_cs_add_buffer(queue->device->ws, cs, tess_rings_bo);
3549
3550 if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
3551 radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE,
3552 S_030938_SIZE(tf_ring_size / 4));
3553 radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE,
3554 tf_va >> 8);
3555
3556 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3557 radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3558 S_030984_BASE_HI(tf_va >> 40));
3559 } else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
3560 radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI,
3561 S_030944_BASE_HI(tf_va >> 40));
3562 }
3563 radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM,
3564 hs_offchip_param);
3565 } else {
3566 radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE,
3567 S_008988_SIZE(tf_ring_size / 4));
3568 radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE,
3569 tf_va >> 8);
3570 radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM,
3571 hs_offchip_param);
3572 }
3573 }
3574
3575 static void
3576 radv_emit_graphics_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3577 uint32_t size_per_wave, uint32_t waves,
3578 struct radeon_winsys_bo *scratch_bo)
3579 {
3580 if (queue->queue_family_index != RADV_QUEUE_GENERAL)
3581 return;
3582
3583 if (!scratch_bo)
3584 return;
3585
3586 radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
3587
3588 radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE,
3589 S_0286E8_WAVES(waves) |
3590 S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 1024)));
3591 }
3592
3593 static void
3594 radv_emit_compute_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3595 uint32_t size_per_wave, uint32_t waves,
3596 struct radeon_winsys_bo *compute_scratch_bo)
3597 {
3598 uint64_t scratch_va;
3599
3600 if (!compute_scratch_bo)
3601 return;
3602
3603 scratch_va = radv_buffer_get_va(compute_scratch_bo);
3604
3605 radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo);
3606
3607 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
3608 radeon_emit(cs, scratch_va);
3609 radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
3610 S_008F04_SWIZZLE_ENABLE(1));
3611
3612 radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
3613 S_00B860_WAVES(waves) |
3614 S_00B860_WAVESIZE(round_up_u32(size_per_wave, 1024)));
3615 }
3616
3617 static void
3618 radv_emit_global_shader_pointers(struct radv_queue *queue,
3619 struct radeon_cmdbuf *cs,
3620 struct radeon_winsys_bo *descriptor_bo)
3621 {
3622 uint64_t va;
3623
3624 if (!descriptor_bo)
3625 return;
3626
3627 va = radv_buffer_get_va(descriptor_bo);
3628
3629 radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo);
3630
3631 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3632 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
3633 R_00B130_SPI_SHADER_USER_DATA_VS_0,
3634 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
3635 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
3636
3637 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
3638 radv_emit_shader_pointer(queue->device, cs, regs[i],
3639 va, true);
3640 }
3641 } else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
3642 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
3643 R_00B130_SPI_SHADER_USER_DATA_VS_0,
3644 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
3645 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
3646
3647 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
3648 radv_emit_shader_pointer(queue->device, cs, regs[i],
3649 va, true);
3650 }
3651 } else {
3652 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
3653 R_00B130_SPI_SHADER_USER_DATA_VS_0,
3654 R_00B230_SPI_SHADER_USER_DATA_GS_0,
3655 R_00B330_SPI_SHADER_USER_DATA_ES_0,
3656 R_00B430_SPI_SHADER_USER_DATA_HS_0,
3657 R_00B530_SPI_SHADER_USER_DATA_LS_0};
3658
3659 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
3660 radv_emit_shader_pointer(queue->device, cs, regs[i],
3661 va, true);
3662 }
3663 }
3664 }
3665
3666 static void
3667 radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
3668 {
3669 struct radv_device *device = queue->device;
3670
3671 if (device->gfx_init) {
3672 uint64_t va = radv_buffer_get_va(device->gfx_init);
3673
3674 radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
3675 radeon_emit(cs, va);
3676 radeon_emit(cs, va >> 32);
3677 radeon_emit(cs, device->gfx_init_size_dw & 0xffff);
3678
3679 radv_cs_add_buffer(device->ws, cs, device->gfx_init);
3680 } else {
3681 struct radv_physical_device *physical_device = device->physical_device;
3682 si_emit_graphics(physical_device, cs);
3683 }
3684 }
3685
3686 static void
3687 radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
3688 {
3689 struct radv_physical_device *physical_device = queue->device->physical_device;
3690 si_emit_compute(physical_device, cs);
3691 }
3692
3693 static VkResult
3694 radv_get_preamble_cs(struct radv_queue *queue,
3695 uint32_t scratch_size_per_wave,
3696 uint32_t scratch_waves,
3697 uint32_t compute_scratch_size_per_wave,
3698 uint32_t compute_scratch_waves,
3699 uint32_t esgs_ring_size,
3700 uint32_t gsvs_ring_size,
3701 bool needs_tess_rings,
3702 bool needs_gds,
3703 bool needs_gds_oa,
3704 bool needs_sample_positions,
3705 struct radeon_cmdbuf **initial_full_flush_preamble_cs,
3706 struct radeon_cmdbuf **initial_preamble_cs,
3707 struct radeon_cmdbuf **continue_preamble_cs)
3708 {
3709 struct radeon_winsys_bo *scratch_bo = NULL;
3710 struct radeon_winsys_bo *descriptor_bo = NULL;
3711 struct radeon_winsys_bo *compute_scratch_bo = NULL;
3712 struct radeon_winsys_bo *esgs_ring_bo = NULL;
3713 struct radeon_winsys_bo *gsvs_ring_bo = NULL;
3714 struct radeon_winsys_bo *tess_rings_bo = NULL;
3715 struct radeon_winsys_bo *gds_bo = NULL;
3716 struct radeon_winsys_bo *gds_oa_bo = NULL;
3717 struct radeon_cmdbuf *dest_cs[3] = {0};
3718 bool add_tess_rings = false, add_gds = false, add_gds_oa = false, add_sample_positions = false;
3719 unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0;
3720 unsigned max_offchip_buffers;
3721 unsigned hs_offchip_param = 0;
3722 unsigned tess_offchip_ring_offset;
3723 uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
3724 if (!queue->has_tess_rings) {
3725 if (needs_tess_rings)
3726 add_tess_rings = true;
3727 }
3728 if (!queue->has_gds) {
3729 if (needs_gds)
3730 add_gds = true;
3731 }
3732 if (!queue->has_gds_oa) {
3733 if (needs_gds_oa)
3734 add_gds_oa = true;
3735 }
3736 if (!queue->has_sample_positions) {
3737 if (needs_sample_positions)
3738 add_sample_positions = true;
3739 }
3740 tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se;
3741 hs_offchip_param = radv_get_hs_offchip_param(queue->device,
3742 &max_offchip_buffers);
3743 tess_offchip_ring_offset = align(tess_factor_ring_size, 64 * 1024);
3744 tess_offchip_ring_size = max_offchip_buffers *
3745 queue->device->tess_offchip_block_dw_size * 4;
3746
3747 scratch_size_per_wave = MAX2(scratch_size_per_wave, queue->scratch_size_per_wave);
3748 if (scratch_size_per_wave)
3749 scratch_waves = MIN2(scratch_waves, UINT32_MAX / scratch_size_per_wave);
3750 else
3751 scratch_waves = 0;
3752
3753 compute_scratch_size_per_wave = MAX2(compute_scratch_size_per_wave, queue->compute_scratch_size_per_wave);
3754 if (compute_scratch_size_per_wave)
3755 compute_scratch_waves = MIN2(compute_scratch_waves, UINT32_MAX / compute_scratch_size_per_wave);
3756 else
3757 compute_scratch_waves = 0;
3758
3759 if (scratch_size_per_wave <= queue->scratch_size_per_wave &&
3760 scratch_waves <= queue->scratch_waves &&
3761 compute_scratch_size_per_wave <= queue->compute_scratch_size_per_wave &&
3762 compute_scratch_waves <= queue->compute_scratch_waves &&
3763 esgs_ring_size <= queue->esgs_ring_size &&
3764 gsvs_ring_size <= queue->gsvs_ring_size &&
3765 !add_tess_rings && !add_gds && !add_gds_oa && !add_sample_positions &&
3766 queue->initial_preamble_cs) {
3767 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
3768 *initial_preamble_cs = queue->initial_preamble_cs;
3769 *continue_preamble_cs = queue->continue_preamble_cs;
3770 if (!scratch_size_per_wave && !compute_scratch_size_per_wave &&
3771 !esgs_ring_size && !gsvs_ring_size && !needs_tess_rings &&
3772 !needs_gds && !needs_gds_oa && !needs_sample_positions)
3773 *continue_preamble_cs = NULL;
3774 return VK_SUCCESS;
3775 }
3776
3777 uint32_t scratch_size = scratch_size_per_wave * scratch_waves;
3778 uint32_t queue_scratch_size = queue->scratch_size_per_wave * queue->scratch_waves;
3779 if (scratch_size > queue_scratch_size) {
3780 scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
3781 scratch_size,
3782 4096,
3783 RADEON_DOMAIN_VRAM,
3784 ring_bo_flags,
3785 RADV_BO_PRIORITY_SCRATCH);
3786 if (!scratch_bo)
3787 goto fail;
3788 } else
3789 scratch_bo = queue->scratch_bo;
3790
3791 uint32_t compute_scratch_size = compute_scratch_size_per_wave * compute_scratch_waves;
3792 uint32_t compute_queue_scratch_size = queue->compute_scratch_size_per_wave * queue->compute_scratch_waves;
3793 if (compute_scratch_size > compute_queue_scratch_size) {
3794 compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
3795 compute_scratch_size,
3796 4096,
3797 RADEON_DOMAIN_VRAM,
3798 ring_bo_flags,
3799 RADV_BO_PRIORITY_SCRATCH);
3800 if (!compute_scratch_bo)
3801 goto fail;
3802
3803 } else
3804 compute_scratch_bo = queue->compute_scratch_bo;
3805
3806 if (esgs_ring_size > queue->esgs_ring_size) {
3807 esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
3808 esgs_ring_size,
3809 4096,
3810 RADEON_DOMAIN_VRAM,
3811 ring_bo_flags,
3812 RADV_BO_PRIORITY_SCRATCH);
3813 if (!esgs_ring_bo)
3814 goto fail;
3815 } else {
3816 esgs_ring_bo = queue->esgs_ring_bo;
3817 esgs_ring_size = queue->esgs_ring_size;
3818 }
3819
3820 if (gsvs_ring_size > queue->gsvs_ring_size) {
3821 gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
3822 gsvs_ring_size,
3823 4096,
3824 RADEON_DOMAIN_VRAM,
3825 ring_bo_flags,
3826 RADV_BO_PRIORITY_SCRATCH);
3827 if (!gsvs_ring_bo)
3828 goto fail;
3829 } else {
3830 gsvs_ring_bo = queue->gsvs_ring_bo;
3831 gsvs_ring_size = queue->gsvs_ring_size;
3832 }
3833
3834 if (add_tess_rings) {
3835 tess_rings_bo = queue->device->ws->buffer_create(queue->device->ws,
3836 tess_offchip_ring_offset + tess_offchip_ring_size,
3837 256,
3838 RADEON_DOMAIN_VRAM,
3839 ring_bo_flags,
3840 RADV_BO_PRIORITY_SCRATCH);
3841 if (!tess_rings_bo)
3842 goto fail;
3843 } else {
3844 tess_rings_bo = queue->tess_rings_bo;
3845 }
3846
3847 if (add_gds) {
3848 assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
3849
3850 /* 4 streamout GDS counters.
3851 * We need 256B (64 dw) of GDS, otherwise streamout hangs.
3852 */
3853 gds_bo = queue->device->ws->buffer_create(queue->device->ws,
3854 256, 4,
3855 RADEON_DOMAIN_GDS,
3856 ring_bo_flags,
3857 RADV_BO_PRIORITY_SCRATCH);
3858 if (!gds_bo)
3859 goto fail;
3860 } else {
3861 gds_bo = queue->gds_bo;
3862 }
3863
3864 if (add_gds_oa) {
3865 assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
3866
3867 gds_oa_bo = queue->device->ws->buffer_create(queue->device->ws,
3868 4, 1,
3869 RADEON_DOMAIN_OA,
3870 ring_bo_flags,
3871 RADV_BO_PRIORITY_SCRATCH);
3872 if (!gds_oa_bo)
3873 goto fail;
3874 } else {
3875 gds_oa_bo = queue->gds_oa_bo;
3876 }
3877
3878 if (scratch_bo != queue->scratch_bo ||
3879 esgs_ring_bo != queue->esgs_ring_bo ||
3880 gsvs_ring_bo != queue->gsvs_ring_bo ||
3881 tess_rings_bo != queue->tess_rings_bo ||
3882 add_sample_positions) {
3883 uint32_t size = 0;
3884 if (gsvs_ring_bo || esgs_ring_bo ||
3885 tess_rings_bo || add_sample_positions) {
3886 size = 112; /* 2 dword + 2 padding + 4 dword * 6 */
3887 if (add_sample_positions)
3888 size += 128; /* 64+32+16+8 = 120 bytes */
3889 }
3890 else if (scratch_bo)
3891 size = 8; /* 2 dword */
3892
3893 descriptor_bo = queue->device->ws->buffer_create(queue->device->ws,
3894 size,
3895 4096,
3896 RADEON_DOMAIN_VRAM,
3897 RADEON_FLAG_CPU_ACCESS |
3898 RADEON_FLAG_NO_INTERPROCESS_SHARING |
3899 RADEON_FLAG_READ_ONLY,
3900 RADV_BO_PRIORITY_DESCRIPTOR);
3901 if (!descriptor_bo)
3902 goto fail;
3903 } else
3904 descriptor_bo = queue->descriptor_bo;
3905
3906 if (descriptor_bo != queue->descriptor_bo) {
3907 uint32_t *map = (uint32_t*)queue->device->ws->buffer_map(descriptor_bo);
3908
3909 if (scratch_bo) {
3910 uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
3911 uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
3912 S_008F04_SWIZZLE_ENABLE(1);
3913 map[0] = scratch_va;
3914 map[1] = rsrc1;
3915 }
3916
3917 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || add_sample_positions)
3918 fill_geom_tess_rings(queue, map, add_sample_positions,
3919 esgs_ring_size, esgs_ring_bo,
3920 gsvs_ring_size, gsvs_ring_bo,
3921 tess_factor_ring_size,
3922 tess_offchip_ring_offset,
3923 tess_offchip_ring_size,
3924 tess_rings_bo);
3925
3926 queue->device->ws->buffer_unmap(descriptor_bo);
3927 }
3928
3929 for(int i = 0; i < 3; ++i) {
3930 struct radeon_cmdbuf *cs = NULL;
3931 cs = queue->device->ws->cs_create(queue->device->ws,
3932 queue->queue_family_index ? RING_COMPUTE : RING_GFX);
3933 if (!cs)
3934 goto fail;
3935
3936 dest_cs[i] = cs;
3937
3938 if (scratch_bo)
3939 radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
3940
3941 /* Emit initial configuration. */
3942 switch (queue->queue_family_index) {
3943 case RADV_QUEUE_GENERAL:
3944 radv_init_graphics_state(cs, queue);
3945 break;
3946 case RADV_QUEUE_COMPUTE:
3947 radv_init_compute_state(cs, queue);
3948 break;
3949 case RADV_QUEUE_TRANSFER:
3950 break;
3951 }
3952
3953 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo) {
3954 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3955 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3956
3957 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3958 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3959 }
3960
3961 radv_emit_gs_ring_sizes(queue, cs, esgs_ring_bo, esgs_ring_size,
3962 gsvs_ring_bo, gsvs_ring_size);
3963 radv_emit_tess_factor_ring(queue, cs, hs_offchip_param,
3964 tess_factor_ring_size, tess_rings_bo);
3965 radv_emit_global_shader_pointers(queue, cs, descriptor_bo);
3966 radv_emit_compute_scratch(queue, cs, compute_scratch_size_per_wave,
3967 compute_scratch_waves, compute_scratch_bo);
3968 radv_emit_graphics_scratch(queue, cs, scratch_size_per_wave,
3969 scratch_waves, scratch_bo);
3970
3971 if (gds_bo)
3972 radv_cs_add_buffer(queue->device->ws, cs, gds_bo);
3973 if (gds_oa_bo)
3974 radv_cs_add_buffer(queue->device->ws, cs, gds_oa_bo);
3975
3976 if (queue->device->trace_bo)
3977 radv_cs_add_buffer(queue->device->ws, cs, queue->device->trace_bo);
3978
3979 if (i == 0) {
3980 si_cs_emit_cache_flush(cs,
3981 queue->device->physical_device->rad_info.chip_class,
3982 NULL, 0,
3983 queue->queue_family_index == RING_COMPUTE &&
3984 queue->device->physical_device->rad_info.chip_class >= GFX7,
3985 (queue->queue_family_index == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) |
3986 RADV_CMD_FLAG_INV_ICACHE |
3987 RADV_CMD_FLAG_INV_SCACHE |
3988 RADV_CMD_FLAG_INV_VCACHE |
3989 RADV_CMD_FLAG_INV_L2 |
3990 RADV_CMD_FLAG_START_PIPELINE_STATS, 0);
3991 } else if (i == 1) {
3992 si_cs_emit_cache_flush(cs,
3993 queue->device->physical_device->rad_info.chip_class,
3994 NULL, 0,
3995 queue->queue_family_index == RING_COMPUTE &&
3996 queue->device->physical_device->rad_info.chip_class >= GFX7,
3997 RADV_CMD_FLAG_INV_ICACHE |
3998 RADV_CMD_FLAG_INV_SCACHE |
3999 RADV_CMD_FLAG_INV_VCACHE |
4000 RADV_CMD_FLAG_INV_L2 |
4001 RADV_CMD_FLAG_START_PIPELINE_STATS, 0);
4002 }
4003
4004 if (!queue->device->ws->cs_finalize(cs))
4005 goto fail;
4006 }
4007
4008 if (queue->initial_full_flush_preamble_cs)
4009 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
4010
4011 if (queue->initial_preamble_cs)
4012 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
4013
4014 if (queue->continue_preamble_cs)
4015 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
4016
4017 queue->initial_full_flush_preamble_cs = dest_cs[0];
4018 queue->initial_preamble_cs = dest_cs[1];
4019 queue->continue_preamble_cs = dest_cs[2];
4020
4021 if (scratch_bo != queue->scratch_bo) {
4022 if (queue->scratch_bo)
4023 queue->device->ws->buffer_destroy(queue->scratch_bo);
4024 queue->scratch_bo = scratch_bo;
4025 }
4026 queue->scratch_size_per_wave = scratch_size_per_wave;
4027 queue->scratch_waves = scratch_waves;
4028
4029 if (compute_scratch_bo != queue->compute_scratch_bo) {
4030 if (queue->compute_scratch_bo)
4031 queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
4032 queue->compute_scratch_bo = compute_scratch_bo;
4033 }
4034 queue->compute_scratch_size_per_wave = compute_scratch_size_per_wave;
4035 queue->compute_scratch_waves = compute_scratch_waves;
4036
4037 if (esgs_ring_bo != queue->esgs_ring_bo) {
4038 if (queue->esgs_ring_bo)
4039 queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
4040 queue->esgs_ring_bo = esgs_ring_bo;
4041 queue->esgs_ring_size = esgs_ring_size;
4042 }
4043
4044 if (gsvs_ring_bo != queue->gsvs_ring_bo) {
4045 if (queue->gsvs_ring_bo)
4046 queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
4047 queue->gsvs_ring_bo = gsvs_ring_bo;
4048 queue->gsvs_ring_size = gsvs_ring_size;
4049 }
4050
4051 if (tess_rings_bo != queue->tess_rings_bo) {
4052 queue->tess_rings_bo = tess_rings_bo;
4053 queue->has_tess_rings = true;
4054 }
4055
4056 if (gds_bo != queue->gds_bo) {
4057 queue->gds_bo = gds_bo;
4058 queue->has_gds = true;
4059 }
4060
4061 if (gds_oa_bo != queue->gds_oa_bo) {
4062 queue->gds_oa_bo = gds_oa_bo;
4063 queue->has_gds_oa = true;
4064 }
4065
4066 if (descriptor_bo != queue->descriptor_bo) {
4067 if (queue->descriptor_bo)
4068 queue->device->ws->buffer_destroy(queue->descriptor_bo);
4069
4070 queue->descriptor_bo = descriptor_bo;
4071 }
4072
4073 if (add_sample_positions)
4074 queue->has_sample_positions = true;
4075
4076 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
4077 *initial_preamble_cs = queue->initial_preamble_cs;
4078 *continue_preamble_cs = queue->continue_preamble_cs;
4079 if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
4080 *continue_preamble_cs = NULL;
4081 return VK_SUCCESS;
4082 fail:
4083 for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
4084 if (dest_cs[i])
4085 queue->device->ws->cs_destroy(dest_cs[i]);
4086 if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
4087 queue->device->ws->buffer_destroy(descriptor_bo);
4088 if (scratch_bo && scratch_bo != queue->scratch_bo)
4089 queue->device->ws->buffer_destroy(scratch_bo);
4090 if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
4091 queue->device->ws->buffer_destroy(compute_scratch_bo);
4092 if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
4093 queue->device->ws->buffer_destroy(esgs_ring_bo);
4094 if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
4095 queue->device->ws->buffer_destroy(gsvs_ring_bo);
4096 if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
4097 queue->device->ws->buffer_destroy(tess_rings_bo);
4098 if (gds_bo && gds_bo != queue->gds_bo)
4099 queue->device->ws->buffer_destroy(gds_bo);
4100 if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo)
4101 queue->device->ws->buffer_destroy(gds_oa_bo);
4102
4103 return vk_error(queue->device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
4104 }
4105
4106 static VkResult radv_alloc_sem_counts(struct radv_device *device,
4107 struct radv_winsys_sem_counts *counts,
4108 int num_sems,
4109 struct radv_semaphore_part **sems,
4110 const uint64_t *timeline_values,
4111 VkFence _fence,
4112 bool is_signal)
4113 {
4114 int syncobj_idx = 0, sem_idx = 0;
4115
4116 if (num_sems == 0 && _fence == VK_NULL_HANDLE)
4117 return VK_SUCCESS;
4118
4119 for (uint32_t i = 0; i < num_sems; i++) {
4120 switch(sems[i]->kind) {
4121 case RADV_SEMAPHORE_SYNCOBJ:
4122 counts->syncobj_count++;
4123 break;
4124 case RADV_SEMAPHORE_WINSYS:
4125 counts->sem_count++;
4126 break;
4127 case RADV_SEMAPHORE_NONE:
4128 break;
4129 case RADV_SEMAPHORE_TIMELINE:
4130 counts->syncobj_count++;
4131 break;
4132 }
4133 }
4134
4135 if (_fence != VK_NULL_HANDLE) {
4136 RADV_FROM_HANDLE(radv_fence, fence, _fence);
4137 if (fence->temp_syncobj || fence->syncobj)
4138 counts->syncobj_count++;
4139 }
4140
4141 if (counts->syncobj_count) {
4142 counts->syncobj = (uint32_t *)malloc(sizeof(uint32_t) * counts->syncobj_count);
4143 if (!counts->syncobj)
4144 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4145 }
4146
4147 if (counts->sem_count) {
4148 counts->sem = (struct radeon_winsys_sem **)malloc(sizeof(struct radeon_winsys_sem *) * counts->sem_count);
4149 if (!counts->sem) {
4150 free(counts->syncobj);
4151 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4152 }
4153 }
4154
4155 for (uint32_t i = 0; i < num_sems; i++) {
4156 switch(sems[i]->kind) {
4157 case RADV_SEMAPHORE_NONE:
4158 unreachable("Empty semaphore");
4159 break;
4160 case RADV_SEMAPHORE_SYNCOBJ:
4161 counts->syncobj[syncobj_idx++] = sems[i]->syncobj;
4162 break;
4163 case RADV_SEMAPHORE_WINSYS:
4164 counts->sem[sem_idx++] = sems[i]->ws_sem;
4165 break;
4166 case RADV_SEMAPHORE_TIMELINE: {
4167 pthread_mutex_lock(&sems[i]->timeline.mutex);
4168 struct radv_timeline_point *point = NULL;
4169 if (is_signal) {
4170 point = radv_timeline_add_point_locked(device, &sems[i]->timeline, timeline_values[i]);
4171 } else {
4172 point = radv_timeline_find_point_at_least_locked(device, &sems[i]->timeline, timeline_values[i]);
4173 }
4174
4175 pthread_mutex_unlock(&sems[i]->timeline.mutex);
4176
4177 if (point) {
4178 counts->syncobj[syncobj_idx++] = point->syncobj;
4179 } else {
4180 /* Explicitly remove the semaphore so we might not find
4181 * a point later post-submit. */
4182 sems[i] = NULL;
4183 }
4184 break;
4185 }
4186 }
4187 }
4188
4189 if (_fence != VK_NULL_HANDLE) {
4190 RADV_FROM_HANDLE(radv_fence, fence, _fence);
4191 if (fence->temp_syncobj)
4192 counts->syncobj[syncobj_idx++] = fence->temp_syncobj;
4193 else if (fence->syncobj)
4194 counts->syncobj[syncobj_idx++] = fence->syncobj;
4195 }
4196
4197 assert(syncobj_idx <= counts->syncobj_count);
4198 counts->syncobj_count = syncobj_idx;
4199
4200 return VK_SUCCESS;
4201 }
4202
4203 static void
4204 radv_free_sem_info(struct radv_winsys_sem_info *sem_info)
4205 {
4206 free(sem_info->wait.syncobj);
4207 free(sem_info->wait.sem);
4208 free(sem_info->signal.syncobj);
4209 free(sem_info->signal.sem);
4210 }
4211
4212
4213 static void radv_free_temp_syncobjs(struct radv_device *device,
4214 int num_sems,
4215 struct radv_semaphore_part *sems)
4216 {
4217 for (uint32_t i = 0; i < num_sems; i++) {
4218 radv_destroy_semaphore_part(device, sems + i);
4219 }
4220 }
4221
4222 static VkResult
4223 radv_alloc_sem_info(struct radv_device *device,
4224 struct radv_winsys_sem_info *sem_info,
4225 int num_wait_sems,
4226 struct radv_semaphore_part **wait_sems,
4227 const uint64_t *wait_values,
4228 int num_signal_sems,
4229 struct radv_semaphore_part **signal_sems,
4230 const uint64_t *signal_values,
4231 VkFence fence)
4232 {
4233 VkResult ret;
4234 memset(sem_info, 0, sizeof(*sem_info));
4235
4236 ret = radv_alloc_sem_counts(device, &sem_info->wait, num_wait_sems, wait_sems, wait_values, VK_NULL_HANDLE, false);
4237 if (ret)
4238 return ret;
4239 ret = radv_alloc_sem_counts(device, &sem_info->signal, num_signal_sems, signal_sems, signal_values, fence, true);
4240 if (ret)
4241 radv_free_sem_info(sem_info);
4242
4243 /* caller can override these */
4244 sem_info->cs_emit_wait = true;
4245 sem_info->cs_emit_signal = true;
4246 return ret;
4247 }
4248
4249 static void
4250 radv_finalize_timelines(struct radv_device *device,
4251 uint32_t num_wait_sems,
4252 struct radv_semaphore_part **wait_sems,
4253 const uint64_t *wait_values,
4254 uint32_t num_signal_sems,
4255 struct radv_semaphore_part **signal_sems,
4256 const uint64_t *signal_values,
4257 struct list_head *processing_list)
4258 {
4259 for (uint32_t i = 0; i < num_wait_sems; ++i) {
4260 if (wait_sems[i] && wait_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
4261 pthread_mutex_lock(&wait_sems[i]->timeline.mutex);
4262 struct radv_timeline_point *point =
4263 radv_timeline_find_point_at_least_locked(device, &wait_sems[i]->timeline, wait_values[i]);
4264 point->wait_count -= 2;
4265 pthread_mutex_unlock(&wait_sems[i]->timeline.mutex);
4266 }
4267 }
4268 for (uint32_t i = 0; i < num_signal_sems; ++i) {
4269 if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
4270 pthread_mutex_lock(&signal_sems[i]->timeline.mutex);
4271 struct radv_timeline_point *point =
4272 radv_timeline_find_point_at_least_locked(device, &signal_sems[i]->timeline, signal_values[i]);
4273 signal_sems[i]->timeline.highest_submitted =
4274 MAX2(signal_sems[i]->timeline.highest_submitted, point->value);
4275 point->wait_count -= 2;
4276 radv_timeline_trigger_waiters_locked(&signal_sems[i]->timeline, processing_list);
4277 pthread_mutex_unlock(&signal_sems[i]->timeline.mutex);
4278 }
4279 }
4280 }
4281
4282 static void
4283 radv_sparse_buffer_bind_memory(struct radv_device *device,
4284 const VkSparseBufferMemoryBindInfo *bind)
4285 {
4286 RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
4287
4288 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4289 struct radv_device_memory *mem = NULL;
4290
4291 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4292 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4293
4294 device->ws->buffer_virtual_bind(buffer->bo,
4295 bind->pBinds[i].resourceOffset,
4296 bind->pBinds[i].size,
4297 mem ? mem->bo : NULL,
4298 bind->pBinds[i].memoryOffset);
4299 }
4300 }
4301
4302 static void
4303 radv_sparse_image_opaque_bind_memory(struct radv_device *device,
4304 const VkSparseImageOpaqueMemoryBindInfo *bind)
4305 {
4306 RADV_FROM_HANDLE(radv_image, image, bind->image);
4307
4308 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4309 struct radv_device_memory *mem = NULL;
4310
4311 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4312 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4313
4314 device->ws->buffer_virtual_bind(image->bo,
4315 bind->pBinds[i].resourceOffset,
4316 bind->pBinds[i].size,
4317 mem ? mem->bo : NULL,
4318 bind->pBinds[i].memoryOffset);
4319 }
4320 }
4321
4322 static VkResult
4323 radv_get_preambles(struct radv_queue *queue,
4324 const VkCommandBuffer *cmd_buffers,
4325 uint32_t cmd_buffer_count,
4326 struct radeon_cmdbuf **initial_full_flush_preamble_cs,
4327 struct radeon_cmdbuf **initial_preamble_cs,
4328 struct radeon_cmdbuf **continue_preamble_cs)
4329 {
4330 uint32_t scratch_size_per_wave = 0, waves_wanted = 0;
4331 uint32_t compute_scratch_size_per_wave = 0, compute_waves_wanted = 0;
4332 uint32_t esgs_ring_size = 0, gsvs_ring_size = 0;
4333 bool tess_rings_needed = false;
4334 bool gds_needed = false;
4335 bool gds_oa_needed = false;
4336 bool sample_positions_needed = false;
4337
4338 for (uint32_t j = 0; j < cmd_buffer_count; j++) {
4339 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
4340 cmd_buffers[j]);
4341
4342 scratch_size_per_wave = MAX2(scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed);
4343 waves_wanted = MAX2(waves_wanted, cmd_buffer->scratch_waves_wanted);
4344 compute_scratch_size_per_wave = MAX2(compute_scratch_size_per_wave,
4345 cmd_buffer->compute_scratch_size_per_wave_needed);
4346 compute_waves_wanted = MAX2(compute_waves_wanted,
4347 cmd_buffer->compute_scratch_waves_wanted);
4348 esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
4349 gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
4350 tess_rings_needed |= cmd_buffer->tess_rings_needed;
4351 gds_needed |= cmd_buffer->gds_needed;
4352 gds_oa_needed |= cmd_buffer->gds_oa_needed;
4353 sample_positions_needed |= cmd_buffer->sample_positions_needed;
4354 }
4355
4356 return radv_get_preamble_cs(queue, scratch_size_per_wave, waves_wanted,
4357 compute_scratch_size_per_wave, compute_waves_wanted,
4358 esgs_ring_size, gsvs_ring_size, tess_rings_needed,
4359 gds_needed, gds_oa_needed, sample_positions_needed,
4360 initial_full_flush_preamble_cs,
4361 initial_preamble_cs, continue_preamble_cs);
4362 }
4363
4364 struct radv_deferred_queue_submission {
4365 struct radv_queue *queue;
4366 VkCommandBuffer *cmd_buffers;
4367 uint32_t cmd_buffer_count;
4368
4369 /* Sparse bindings that happen on a queue. */
4370 VkSparseBufferMemoryBindInfo *buffer_binds;
4371 uint32_t buffer_bind_count;
4372 VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
4373 uint32_t image_opaque_bind_count;
4374
4375 bool flush_caches;
4376 VkShaderStageFlags wait_dst_stage_mask;
4377 struct radv_semaphore_part **wait_semaphores;
4378 uint32_t wait_semaphore_count;
4379 struct radv_semaphore_part **signal_semaphores;
4380 uint32_t signal_semaphore_count;
4381 VkFence fence;
4382
4383 uint64_t *wait_values;
4384 uint64_t *signal_values;
4385
4386 struct radv_semaphore_part *temporary_semaphore_parts;
4387 uint32_t temporary_semaphore_part_count;
4388
4389 struct list_head queue_pending_list;
4390 uint32_t submission_wait_count;
4391 struct radv_timeline_waiter *wait_nodes;
4392
4393 struct list_head processing_list;
4394 };
4395
4396 struct radv_queue_submission {
4397 const VkCommandBuffer *cmd_buffers;
4398 uint32_t cmd_buffer_count;
4399
4400 /* Sparse bindings that happen on a queue. */
4401 const VkSparseBufferMemoryBindInfo *buffer_binds;
4402 uint32_t buffer_bind_count;
4403 const VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
4404 uint32_t image_opaque_bind_count;
4405
4406 bool flush_caches;
4407 VkPipelineStageFlags wait_dst_stage_mask;
4408 const VkSemaphore *wait_semaphores;
4409 uint32_t wait_semaphore_count;
4410 const VkSemaphore *signal_semaphores;
4411 uint32_t signal_semaphore_count;
4412 VkFence fence;
4413
4414 const uint64_t *wait_values;
4415 uint32_t wait_value_count;
4416 const uint64_t *signal_values;
4417 uint32_t signal_value_count;
4418 };
4419
4420 static VkResult
4421 radv_create_deferred_submission(struct radv_queue *queue,
4422 const struct radv_queue_submission *submission,
4423 struct radv_deferred_queue_submission **out)
4424 {
4425 struct radv_deferred_queue_submission *deferred = NULL;
4426 size_t size = sizeof(struct radv_deferred_queue_submission);
4427
4428 uint32_t temporary_count = 0;
4429 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4430 RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
4431 if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE)
4432 ++temporary_count;
4433 }
4434
4435 size += submission->cmd_buffer_count * sizeof(VkCommandBuffer);
4436 size += submission->buffer_bind_count * sizeof(VkSparseBufferMemoryBindInfo);
4437 size += submission->image_opaque_bind_count * sizeof(VkSparseImageOpaqueMemoryBindInfo);
4438 size += submission->wait_semaphore_count * sizeof(struct radv_semaphore_part *);
4439 size += temporary_count * sizeof(struct radv_semaphore_part);
4440 size += submission->signal_semaphore_count * sizeof(struct radv_semaphore_part *);
4441 size += submission->wait_value_count * sizeof(uint64_t);
4442 size += submission->signal_value_count * sizeof(uint64_t);
4443 size += submission->wait_semaphore_count * sizeof(struct radv_timeline_waiter);
4444
4445 deferred = calloc(1, size);
4446 if (!deferred)
4447 return VK_ERROR_OUT_OF_HOST_MEMORY;
4448
4449 deferred->queue = queue;
4450
4451 deferred->cmd_buffers = (void*)(deferred + 1);
4452 deferred->cmd_buffer_count = submission->cmd_buffer_count;
4453 memcpy(deferred->cmd_buffers, submission->cmd_buffers,
4454 submission->cmd_buffer_count * sizeof(*deferred->cmd_buffers));
4455
4456 deferred->buffer_binds = (void*)(deferred->cmd_buffers + submission->cmd_buffer_count);
4457 deferred->buffer_bind_count = submission->buffer_bind_count;
4458 memcpy(deferred->buffer_binds, submission->buffer_binds,
4459 submission->buffer_bind_count * sizeof(*deferred->buffer_binds));
4460
4461 deferred->image_opaque_binds = (void*)(deferred->buffer_binds + submission->buffer_bind_count);
4462 deferred->image_opaque_bind_count = submission->image_opaque_bind_count;
4463 memcpy(deferred->image_opaque_binds, submission->image_opaque_binds,
4464 submission->image_opaque_bind_count * sizeof(*deferred->image_opaque_binds));
4465
4466 deferred->flush_caches = submission->flush_caches;
4467 deferred->wait_dst_stage_mask = submission->wait_dst_stage_mask;
4468
4469 deferred->wait_semaphores = (void*)(deferred->image_opaque_binds + deferred->image_opaque_bind_count);
4470 deferred->wait_semaphore_count = submission->wait_semaphore_count;
4471
4472 deferred->signal_semaphores = (void*)(deferred->wait_semaphores + deferred->wait_semaphore_count);
4473 deferred->signal_semaphore_count = submission->signal_semaphore_count;
4474
4475 deferred->fence = submission->fence;
4476
4477 deferred->temporary_semaphore_parts = (void*)(deferred->signal_semaphores + deferred->signal_semaphore_count);
4478 deferred->temporary_semaphore_part_count = temporary_count;
4479
4480 uint32_t temporary_idx = 0;
4481 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4482 RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
4483 if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
4484 deferred->wait_semaphores[i] = &deferred->temporary_semaphore_parts[temporary_idx];
4485 deferred->temporary_semaphore_parts[temporary_idx] = semaphore->temporary;
4486 semaphore->temporary.kind = RADV_SEMAPHORE_NONE;
4487 ++temporary_idx;
4488 } else
4489 deferred->wait_semaphores[i] = &semaphore->permanent;
4490 }
4491
4492 for (uint32_t i = 0; i < submission->signal_semaphore_count; ++i) {
4493 RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->signal_semaphores[i]);
4494 if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
4495 deferred->signal_semaphores[i] = &semaphore->temporary;
4496 } else {
4497 deferred->signal_semaphores[i] = &semaphore->permanent;
4498 }
4499 }
4500
4501 deferred->wait_values = (void*)(deferred->temporary_semaphore_parts + temporary_count);
4502 memcpy(deferred->wait_values, submission->wait_values, submission->wait_value_count * sizeof(uint64_t));
4503 deferred->signal_values = deferred->wait_values + submission->wait_value_count;
4504 memcpy(deferred->signal_values, submission->signal_values, submission->signal_value_count * sizeof(uint64_t));
4505
4506 deferred->wait_nodes = (void*)(deferred->signal_values + submission->signal_value_count);
4507 /* This is worst-case. radv_queue_enqueue_submission will fill in further, but this
4508 * ensure the submission is not accidentally triggered early when adding wait timelines. */
4509 deferred->submission_wait_count = 1 + submission->wait_semaphore_count;
4510
4511 *out = deferred;
4512 return VK_SUCCESS;
4513 }
4514
4515 static void
4516 radv_queue_enqueue_submission(struct radv_deferred_queue_submission *submission,
4517 struct list_head *processing_list)
4518 {
4519 uint32_t wait_cnt = 0;
4520 struct radv_timeline_waiter *waiter = submission->wait_nodes;
4521 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4522 if (submission->wait_semaphores[i]->kind == RADV_SEMAPHORE_TIMELINE) {
4523 pthread_mutex_lock(&submission->wait_semaphores[i]->timeline.mutex);
4524 if (submission->wait_semaphores[i]->timeline.highest_submitted < submission->wait_values[i]) {
4525 ++wait_cnt;
4526 waiter->value = submission->wait_values[i];
4527 waiter->submission = submission;
4528 list_addtail(&waiter->list, &submission->wait_semaphores[i]->timeline.waiters);
4529 ++waiter;
4530 }
4531 pthread_mutex_unlock(&submission->wait_semaphores[i]->timeline.mutex);
4532 }
4533 }
4534
4535 pthread_mutex_lock(&submission->queue->pending_mutex);
4536
4537 bool is_first = list_is_empty(&submission->queue->pending_submissions);
4538 list_addtail(&submission->queue_pending_list, &submission->queue->pending_submissions);
4539
4540 pthread_mutex_unlock(&submission->queue->pending_mutex);
4541
4542 /* If there is already a submission in the queue, that will decrement the counter by 1 when
4543 * submitted, but if the queue was empty, we decrement ourselves as there is no previous
4544 * submission. */
4545 uint32_t decrement = submission->wait_semaphore_count - wait_cnt + (is_first ? 1 : 0);
4546 if (__atomic_sub_fetch(&submission->submission_wait_count, decrement, __ATOMIC_ACQ_REL) == 0) {
4547 list_addtail(&submission->processing_list, processing_list);
4548 }
4549 }
4550
4551 static void
4552 radv_queue_submission_update_queue(struct radv_deferred_queue_submission *submission,
4553 struct list_head *processing_list)
4554 {
4555 pthread_mutex_lock(&submission->queue->pending_mutex);
4556 list_del(&submission->queue_pending_list);
4557
4558 /* trigger the next submission in the queue. */
4559 if (!list_is_empty(&submission->queue->pending_submissions)) {
4560 struct radv_deferred_queue_submission *next_submission =
4561 list_first_entry(&submission->queue->pending_submissions,
4562 struct radv_deferred_queue_submission,
4563 queue_pending_list);
4564 if (p_atomic_dec_zero(&next_submission->submission_wait_count)) {
4565 list_addtail(&next_submission->processing_list, processing_list);
4566 }
4567 }
4568 pthread_mutex_unlock(&submission->queue->pending_mutex);
4569
4570 pthread_cond_broadcast(&submission->queue->device->timeline_cond);
4571 }
4572
4573 static VkResult
4574 radv_queue_submit_deferred(struct radv_deferred_queue_submission *submission,
4575 struct list_head *processing_list)
4576 {
4577 RADV_FROM_HANDLE(radv_fence, fence, submission->fence);
4578 struct radv_queue *queue = submission->queue;
4579 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
4580 uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
4581 struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
4582 bool do_flush = submission->flush_caches || submission->wait_dst_stage_mask;
4583 bool can_patch = true;
4584 uint32_t advance;
4585 struct radv_winsys_sem_info sem_info;
4586 VkResult result;
4587 int ret;
4588 struct radeon_cmdbuf *initial_preamble_cs = NULL;
4589 struct radeon_cmdbuf *initial_flush_preamble_cs = NULL;
4590 struct radeon_cmdbuf *continue_preamble_cs = NULL;
4591
4592 result = radv_get_preambles(queue, submission->cmd_buffers,
4593 submission->cmd_buffer_count,
4594 &initial_preamble_cs,
4595 &initial_flush_preamble_cs,
4596 &continue_preamble_cs);
4597 if (result != VK_SUCCESS)
4598 goto fail;
4599
4600 result = radv_alloc_sem_info(queue->device,
4601 &sem_info,
4602 submission->wait_semaphore_count,
4603 submission->wait_semaphores,
4604 submission->wait_values,
4605 submission->signal_semaphore_count,
4606 submission->signal_semaphores,
4607 submission->signal_values,
4608 submission->fence);
4609 if (result != VK_SUCCESS)
4610 goto fail;
4611
4612 for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) {
4613 radv_sparse_buffer_bind_memory(queue->device,
4614 submission->buffer_binds + i);
4615 }
4616
4617 for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) {
4618 radv_sparse_image_opaque_bind_memory(queue->device,
4619 submission->image_opaque_binds + i);
4620 }
4621
4622 if (!submission->cmd_buffer_count) {
4623 ret = queue->device->ws->cs_submit(ctx, queue->queue_idx,
4624 &queue->device->empty_cs[queue->queue_family_index],
4625 1, NULL, NULL,
4626 &sem_info, NULL,
4627 false, base_fence);
4628 if (ret) {
4629 radv_loge("failed to submit CS\n");
4630 abort();
4631 }
4632
4633 goto success;
4634 } else {
4635 struct radeon_cmdbuf **cs_array = malloc(sizeof(struct radeon_cmdbuf *) *
4636 (submission->cmd_buffer_count));
4637
4638 for (uint32_t j = 0; j < submission->cmd_buffer_count; j++) {
4639 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, submission->cmd_buffers[j]);
4640 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
4641
4642 cs_array[j] = cmd_buffer->cs;
4643 if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
4644 can_patch = false;
4645
4646 cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
4647 }
4648
4649 for (uint32_t j = 0; j < submission->cmd_buffer_count; j += advance) {
4650 struct radeon_cmdbuf *initial_preamble = (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs;
4651 const struct radv_winsys_bo_list *bo_list = NULL;
4652
4653 advance = MIN2(max_cs_submission,
4654 submission->cmd_buffer_count - j);
4655
4656 if (queue->device->trace_bo)
4657 *queue->device->trace_id_ptr = 0;
4658
4659 sem_info.cs_emit_wait = j == 0;
4660 sem_info.cs_emit_signal = j + advance == submission->cmd_buffer_count;
4661
4662 if (unlikely(queue->device->use_global_bo_list)) {
4663 pthread_mutex_lock(&queue->device->bo_list.mutex);
4664 bo_list = &queue->device->bo_list.list;
4665 }
4666
4667 ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j,
4668 advance, initial_preamble, continue_preamble_cs,
4669 &sem_info, bo_list,
4670 can_patch, base_fence);
4671
4672 if (unlikely(queue->device->use_global_bo_list))
4673 pthread_mutex_unlock(&queue->device->bo_list.mutex);
4674
4675 if (ret) {
4676 radv_loge("failed to submit CS\n");
4677 abort();
4678 }
4679 if (queue->device->trace_bo) {
4680 radv_check_gpu_hangs(queue, cs_array[j]);
4681 }
4682 }
4683
4684 free(cs_array);
4685 }
4686
4687 success:
4688 radv_free_temp_syncobjs(queue->device,
4689 submission->temporary_semaphore_part_count,
4690 submission->temporary_semaphore_parts);
4691 radv_finalize_timelines(queue->device,
4692 submission->wait_semaphore_count,
4693 submission->wait_semaphores,
4694 submission->wait_values,
4695 submission->signal_semaphore_count,
4696 submission->signal_semaphores,
4697 submission->signal_values,
4698 processing_list);
4699 /* Has to happen after timeline finalization to make sure the
4700 * condition variable is only triggered when timelines and queue have
4701 * been updated. */
4702 radv_queue_submission_update_queue(submission, processing_list);
4703 radv_free_sem_info(&sem_info);
4704 free(submission);
4705 return VK_SUCCESS;
4706
4707 fail:
4708 radv_free_temp_syncobjs(queue->device,
4709 submission->temporary_semaphore_part_count,
4710 submission->temporary_semaphore_parts);
4711 free(submission);
4712 return VK_ERROR_DEVICE_LOST;
4713 }
4714
4715 static VkResult
4716 radv_process_submissions(struct list_head *processing_list)
4717 {
4718 while(!list_is_empty(processing_list)) {
4719 struct radv_deferred_queue_submission *submission =
4720 list_first_entry(processing_list, struct radv_deferred_queue_submission, processing_list);
4721 list_del(&submission->processing_list);
4722
4723 VkResult result = radv_queue_submit_deferred(submission, processing_list);
4724 if (result != VK_SUCCESS)
4725 return result;
4726 }
4727 return VK_SUCCESS;
4728 }
4729
4730 static VkResult radv_queue_submit(struct radv_queue *queue,
4731 const struct radv_queue_submission *submission)
4732 {
4733 struct radv_deferred_queue_submission *deferred = NULL;
4734
4735 VkResult result = radv_create_deferred_submission(queue, submission, &deferred);
4736 if (result != VK_SUCCESS)
4737 return result;
4738
4739 struct list_head processing_list;
4740 list_inithead(&processing_list);
4741
4742 radv_queue_enqueue_submission(deferred, &processing_list);
4743 return radv_process_submissions(&processing_list);
4744 }
4745
4746 bool
4747 radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs)
4748 {
4749 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
4750 struct radv_winsys_sem_info sem_info;
4751 VkResult result;
4752 int ret;
4753
4754 result = radv_alloc_sem_info(queue->device, &sem_info, 0, NULL, 0, 0,
4755 0, NULL, VK_NULL_HANDLE);
4756 if (result != VK_SUCCESS)
4757 return false;
4758
4759 ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, &cs, 1, NULL,
4760 NULL, &sem_info, NULL, false, NULL);
4761 radv_free_sem_info(&sem_info);
4762 return !ret;
4763 }
4764
4765 /* Signals fence as soon as all the work currently put on queue is done. */
4766 static VkResult radv_signal_fence(struct radv_queue *queue,
4767 VkFence fence)
4768 {
4769 return radv_queue_submit(queue, &(struct radv_queue_submission) {
4770 .fence = fence
4771 });
4772 }
4773
4774 static bool radv_submit_has_effects(const VkSubmitInfo *info)
4775 {
4776 return info->commandBufferCount ||
4777 info->waitSemaphoreCount ||
4778 info->signalSemaphoreCount;
4779 }
4780
4781 VkResult radv_QueueSubmit(
4782 VkQueue _queue,
4783 uint32_t submitCount,
4784 const VkSubmitInfo* pSubmits,
4785 VkFence fence)
4786 {
4787 RADV_FROM_HANDLE(radv_queue, queue, _queue);
4788 VkResult result;
4789 uint32_t fence_idx = 0;
4790 bool flushed_caches = false;
4791
4792 if (fence != VK_NULL_HANDLE) {
4793 for (uint32_t i = 0; i < submitCount; ++i)
4794 if (radv_submit_has_effects(pSubmits + i))
4795 fence_idx = i;
4796 } else
4797 fence_idx = UINT32_MAX;
4798
4799 for (uint32_t i = 0; i < submitCount; i++) {
4800 if (!radv_submit_has_effects(pSubmits + i) && fence_idx != i)
4801 continue;
4802
4803 VkPipelineStageFlags wait_dst_stage_mask = 0;
4804 for (unsigned j = 0; j < pSubmits[i].waitSemaphoreCount; ++j) {
4805 wait_dst_stage_mask |= pSubmits[i].pWaitDstStageMask[j];
4806 }
4807
4808 const VkTimelineSemaphoreSubmitInfo *timeline_info =
4809 vk_find_struct_const(pSubmits[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
4810
4811 result = radv_queue_submit(queue, &(struct radv_queue_submission) {
4812 .cmd_buffers = pSubmits[i].pCommandBuffers,
4813 .cmd_buffer_count = pSubmits[i].commandBufferCount,
4814 .wait_dst_stage_mask = wait_dst_stage_mask,
4815 .flush_caches = !flushed_caches,
4816 .wait_semaphores = pSubmits[i].pWaitSemaphores,
4817 .wait_semaphore_count = pSubmits[i].waitSemaphoreCount,
4818 .signal_semaphores = pSubmits[i].pSignalSemaphores,
4819 .signal_semaphore_count = pSubmits[i].signalSemaphoreCount,
4820 .fence = i == fence_idx ? fence : VK_NULL_HANDLE,
4821 .wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
4822 .wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues ? timeline_info->waitSemaphoreValueCount : 0,
4823 .signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
4824 .signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues ? timeline_info->signalSemaphoreValueCount : 0,
4825 });
4826 if (result != VK_SUCCESS)
4827 return result;
4828
4829 flushed_caches = true;
4830 }
4831
4832 if (fence != VK_NULL_HANDLE && !submitCount) {
4833 result = radv_signal_fence(queue, fence);
4834 if (result != VK_SUCCESS)
4835 return result;
4836 }
4837
4838 return VK_SUCCESS;
4839 }
4840
4841 VkResult radv_QueueWaitIdle(
4842 VkQueue _queue)
4843 {
4844 RADV_FROM_HANDLE(radv_queue, queue, _queue);
4845
4846 pthread_mutex_lock(&queue->pending_mutex);
4847 while (!list_is_empty(&queue->pending_submissions)) {
4848 pthread_cond_wait(&queue->device->timeline_cond, &queue->pending_mutex);
4849 }
4850 pthread_mutex_unlock(&queue->pending_mutex);
4851
4852 queue->device->ws->ctx_wait_idle(queue->hw_ctx,
4853 radv_queue_family_to_ring(queue->queue_family_index),
4854 queue->queue_idx);
4855 return VK_SUCCESS;
4856 }
4857
4858 VkResult radv_DeviceWaitIdle(
4859 VkDevice _device)
4860 {
4861 RADV_FROM_HANDLE(radv_device, device, _device);
4862
4863 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
4864 for (unsigned q = 0; q < device->queue_count[i]; q++) {
4865 radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q]));
4866 }
4867 }
4868 return VK_SUCCESS;
4869 }
4870
4871 VkResult radv_EnumerateInstanceExtensionProperties(
4872 const char* pLayerName,
4873 uint32_t* pPropertyCount,
4874 VkExtensionProperties* pProperties)
4875 {
4876 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
4877
4878 for (int i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; i++) {
4879 if (radv_supported_instance_extensions.extensions[i]) {
4880 vk_outarray_append(&out, prop) {
4881 *prop = radv_instance_extensions[i];
4882 }
4883 }
4884 }
4885
4886 return vk_outarray_status(&out);
4887 }
4888
4889 VkResult radv_EnumerateDeviceExtensionProperties(
4890 VkPhysicalDevice physicalDevice,
4891 const char* pLayerName,
4892 uint32_t* pPropertyCount,
4893 VkExtensionProperties* pProperties)
4894 {
4895 RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
4896 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
4897
4898 for (int i = 0; i < RADV_DEVICE_EXTENSION_COUNT; i++) {
4899 if (device->supported_extensions.extensions[i]) {
4900 vk_outarray_append(&out, prop) {
4901 *prop = radv_device_extensions[i];
4902 }
4903 }
4904 }
4905
4906 return vk_outarray_status(&out);
4907 }
4908
4909 PFN_vkVoidFunction radv_GetInstanceProcAddr(
4910 VkInstance _instance,
4911 const char* pName)
4912 {
4913 RADV_FROM_HANDLE(radv_instance, instance, _instance);
4914
4915 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
4916 * when we have to return valid function pointers, NULL, or it's left
4917 * undefined. See the table for exact details.
4918 */
4919 if (pName == NULL)
4920 return NULL;
4921
4922 #define LOOKUP_RADV_ENTRYPOINT(entrypoint) \
4923 if (strcmp(pName, "vk" #entrypoint) == 0) \
4924 return (PFN_vkVoidFunction)radv_##entrypoint
4925
4926 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
4927 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceLayerProperties);
4928 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceVersion);
4929 LOOKUP_RADV_ENTRYPOINT(CreateInstance);
4930
4931 #undef LOOKUP_RADV_ENTRYPOINT
4932
4933 if (instance == NULL)
4934 return NULL;
4935
4936 int idx = radv_get_instance_entrypoint_index(pName);
4937 if (idx >= 0)
4938 return instance->dispatch.entrypoints[idx];
4939
4940 idx = radv_get_physical_device_entrypoint_index(pName);
4941 if (idx >= 0)
4942 return instance->physical_device_dispatch.entrypoints[idx];
4943
4944 idx = radv_get_device_entrypoint_index(pName);
4945 if (idx >= 0)
4946 return instance->device_dispatch.entrypoints[idx];
4947
4948 return NULL;
4949 }
4950
4951 /* The loader wants us to expose a second GetInstanceProcAddr function
4952 * to work around certain LD_PRELOAD issues seen in apps.
4953 */
4954 PUBLIC
4955 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
4956 VkInstance instance,
4957 const char* pName);
4958
4959 PUBLIC
4960 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
4961 VkInstance instance,
4962 const char* pName)
4963 {
4964 return radv_GetInstanceProcAddr(instance, pName);
4965 }
4966
4967 PUBLIC
4968 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
4969 VkInstance _instance,
4970 const char* pName);
4971
4972 PUBLIC
4973 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
4974 VkInstance _instance,
4975 const char* pName)
4976 {
4977 RADV_FROM_HANDLE(radv_instance, instance, _instance);
4978
4979 if (!pName || !instance)
4980 return NULL;
4981
4982 int idx = radv_get_physical_device_entrypoint_index(pName);
4983 if (idx < 0)
4984 return NULL;
4985
4986 return instance->physical_device_dispatch.entrypoints[idx];
4987 }
4988
4989 PFN_vkVoidFunction radv_GetDeviceProcAddr(
4990 VkDevice _device,
4991 const char* pName)
4992 {
4993 RADV_FROM_HANDLE(radv_device, device, _device);
4994
4995 if (!device || !pName)
4996 return NULL;
4997
4998 int idx = radv_get_device_entrypoint_index(pName);
4999 if (idx < 0)
5000 return NULL;
5001
5002 return device->dispatch.entrypoints[idx];
5003 }
5004
5005 bool radv_get_memory_fd(struct radv_device *device,
5006 struct radv_device_memory *memory,
5007 int *pFD)
5008 {
5009 struct radeon_bo_metadata metadata;
5010
5011 if (memory->image) {
5012 if (memory->image->tiling != VK_IMAGE_TILING_LINEAR)
5013 radv_init_metadata(device, memory->image, &metadata);
5014 device->ws->buffer_set_metadata(memory->bo, &metadata);
5015 }
5016
5017 return device->ws->buffer_get_fd(device->ws, memory->bo,
5018 pFD);
5019 }
5020
5021
5022 static void radv_free_memory(struct radv_device *device,
5023 const VkAllocationCallbacks* pAllocator,
5024 struct radv_device_memory *mem)
5025 {
5026 if (mem == NULL)
5027 return;
5028
5029 #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
5030 if (mem->android_hardware_buffer)
5031 AHardwareBuffer_release(mem->android_hardware_buffer);
5032 #endif
5033
5034 if (mem->bo) {
5035 radv_bo_list_remove(device, mem->bo);
5036 device->ws->buffer_destroy(mem->bo);
5037 mem->bo = NULL;
5038 }
5039
5040 vk_free2(&device->alloc, pAllocator, mem);
5041 }
5042
5043 static VkResult radv_alloc_memory(struct radv_device *device,
5044 const VkMemoryAllocateInfo* pAllocateInfo,
5045 const VkAllocationCallbacks* pAllocator,
5046 VkDeviceMemory* pMem)
5047 {
5048 struct radv_device_memory *mem;
5049 VkResult result;
5050 enum radeon_bo_domain domain;
5051 uint32_t flags = 0;
5052 enum radv_mem_type mem_type_index = device->physical_device->mem_type_indices[pAllocateInfo->memoryTypeIndex];
5053
5054 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
5055
5056 const VkImportMemoryFdInfoKHR *import_info =
5057 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
5058 const VkMemoryDedicatedAllocateInfo *dedicate_info =
5059 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
5060 const VkExportMemoryAllocateInfo *export_info =
5061 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
5062 const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info =
5063 vk_find_struct_const(pAllocateInfo->pNext,
5064 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
5065 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
5066 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
5067
5068 const struct wsi_memory_allocate_info *wsi_info =
5069 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
5070
5071 if (pAllocateInfo->allocationSize == 0 && !ahb_import_info &&
5072 !(export_info && (export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) {
5073 /* Apparently, this is allowed */
5074 *pMem = VK_NULL_HANDLE;
5075 return VK_SUCCESS;
5076 }
5077
5078 mem = vk_zalloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
5079 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5080 if (mem == NULL)
5081 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5082
5083 if (wsi_info && wsi_info->implicit_sync)
5084 flags |= RADEON_FLAG_IMPLICIT_SYNC;
5085
5086 if (dedicate_info) {
5087 mem->image = radv_image_from_handle(dedicate_info->image);
5088 mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
5089 } else {
5090 mem->image = NULL;
5091 mem->buffer = NULL;
5092 }
5093
5094 float priority_float = 0.5;
5095 const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
5096 vk_find_struct_const(pAllocateInfo->pNext,
5097 MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
5098 if (priority_ext)
5099 priority_float = priority_ext->priority;
5100
5101 unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
5102 (int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
5103
5104 mem->user_ptr = NULL;
5105 mem->bo = NULL;
5106
5107 #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
5108 mem->android_hardware_buffer = NULL;
5109 #endif
5110
5111 if (ahb_import_info) {
5112 result = radv_import_ahb_memory(device, mem, priority, ahb_import_info);
5113 if (result != VK_SUCCESS)
5114 goto fail;
5115 } else if(export_info && (export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
5116 result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo);
5117 if (result != VK_SUCCESS)
5118 goto fail;
5119 } else if (import_info) {
5120 assert(import_info->handleType ==
5121 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
5122 import_info->handleType ==
5123 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
5124 mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd,
5125 priority, NULL);
5126 if (!mem->bo) {
5127 result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
5128 goto fail;
5129 } else {
5130 close(import_info->fd);
5131 }
5132 } else if (host_ptr_info) {
5133 assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
5134 assert(radv_is_mem_type_gtt_cached(mem_type_index));
5135 mem->bo = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
5136 pAllocateInfo->allocationSize,
5137 priority);
5138 if (!mem->bo) {
5139 result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
5140 goto fail;
5141 } else {
5142 mem->user_ptr = host_ptr_info->pHostPointer;
5143 }
5144 } else {
5145 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
5146 if (radv_is_mem_type_gtt_wc(mem_type_index) ||
5147 radv_is_mem_type_gtt_cached(mem_type_index))
5148 domain = RADEON_DOMAIN_GTT;
5149 else
5150 domain = RADEON_DOMAIN_VRAM;
5151
5152 if (radv_is_mem_type_vram(mem_type_index))
5153 flags |= RADEON_FLAG_NO_CPU_ACCESS;
5154 else
5155 flags |= RADEON_FLAG_CPU_ACCESS;
5156
5157 if (radv_is_mem_type_gtt_wc(mem_type_index))
5158 flags |= RADEON_FLAG_GTT_WC;
5159
5160 if (!dedicate_info && !import_info && (!export_info || !export_info->handleTypes)) {
5161 flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
5162 if (device->use_global_bo_list) {
5163 flags |= RADEON_FLAG_PREFER_LOCAL_BO;
5164 }
5165 }
5166
5167 if (radv_is_mem_type_uncached(mem_type_index)) {
5168 assert(device->physical_device->rad_info.has_l2_uncached);
5169 flags |= RADEON_FLAG_VA_UNCACHED;
5170 }
5171
5172 mem->bo = device->ws->buffer_create(device->ws, alloc_size, device->physical_device->rad_info.max_alignment,
5173 domain, flags, priority);
5174
5175 if (!mem->bo) {
5176 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
5177 goto fail;
5178 }
5179 mem->type_index = mem_type_index;
5180 }
5181
5182 result = radv_bo_list_add(device, mem->bo);
5183 if (result != VK_SUCCESS)
5184 goto fail;
5185
5186 *pMem = radv_device_memory_to_handle(mem);
5187
5188 return VK_SUCCESS;
5189
5190 fail:
5191 radv_free_memory(device, pAllocator,mem);
5192
5193 return result;
5194 }
5195
5196 VkResult radv_AllocateMemory(
5197 VkDevice _device,
5198 const VkMemoryAllocateInfo* pAllocateInfo,
5199 const VkAllocationCallbacks* pAllocator,
5200 VkDeviceMemory* pMem)
5201 {
5202 RADV_FROM_HANDLE(radv_device, device, _device);
5203 return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
5204 }
5205
5206 void radv_FreeMemory(
5207 VkDevice _device,
5208 VkDeviceMemory _mem,
5209 const VkAllocationCallbacks* pAllocator)
5210 {
5211 RADV_FROM_HANDLE(radv_device, device, _device);
5212 RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
5213
5214 radv_free_memory(device, pAllocator, mem);
5215 }
5216
5217 VkResult radv_MapMemory(
5218 VkDevice _device,
5219 VkDeviceMemory _memory,
5220 VkDeviceSize offset,
5221 VkDeviceSize size,
5222 VkMemoryMapFlags flags,
5223 void** ppData)
5224 {
5225 RADV_FROM_HANDLE(radv_device, device, _device);
5226 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
5227
5228 if (mem == NULL) {
5229 *ppData = NULL;
5230 return VK_SUCCESS;
5231 }
5232
5233 if (mem->user_ptr)
5234 *ppData = mem->user_ptr;
5235 else
5236 *ppData = device->ws->buffer_map(mem->bo);
5237
5238 if (*ppData) {
5239 *ppData += offset;
5240 return VK_SUCCESS;
5241 }
5242
5243 return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED);
5244 }
5245
5246 void radv_UnmapMemory(
5247 VkDevice _device,
5248 VkDeviceMemory _memory)
5249 {
5250 RADV_FROM_HANDLE(radv_device, device, _device);
5251 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
5252
5253 if (mem == NULL)
5254 return;
5255
5256 if (mem->user_ptr == NULL)
5257 device->ws->buffer_unmap(mem->bo);
5258 }
5259
5260 VkResult radv_FlushMappedMemoryRanges(
5261 VkDevice _device,
5262 uint32_t memoryRangeCount,
5263 const VkMappedMemoryRange* pMemoryRanges)
5264 {
5265 return VK_SUCCESS;
5266 }
5267
5268 VkResult radv_InvalidateMappedMemoryRanges(
5269 VkDevice _device,
5270 uint32_t memoryRangeCount,
5271 const VkMappedMemoryRange* pMemoryRanges)
5272 {
5273 return VK_SUCCESS;
5274 }
5275
5276 void radv_GetBufferMemoryRequirements(
5277 VkDevice _device,
5278 VkBuffer _buffer,
5279 VkMemoryRequirements* pMemoryRequirements)
5280 {
5281 RADV_FROM_HANDLE(radv_device, device, _device);
5282 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
5283
5284 pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
5285
5286 if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
5287 pMemoryRequirements->alignment = 4096;
5288 else
5289 pMemoryRequirements->alignment = 16;
5290
5291 pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment);
5292 }
5293
5294 void radv_GetBufferMemoryRequirements2(
5295 VkDevice device,
5296 const VkBufferMemoryRequirementsInfo2 *pInfo,
5297 VkMemoryRequirements2 *pMemoryRequirements)
5298 {
5299 radv_GetBufferMemoryRequirements(device, pInfo->buffer,
5300 &pMemoryRequirements->memoryRequirements);
5301 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
5302 switch (ext->sType) {
5303 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
5304 VkMemoryDedicatedRequirements *req =
5305 (VkMemoryDedicatedRequirements *) ext;
5306 req->requiresDedicatedAllocation = false;
5307 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
5308 break;
5309 }
5310 default:
5311 break;
5312 }
5313 }
5314 }
5315
5316 void radv_GetImageMemoryRequirements(
5317 VkDevice _device,
5318 VkImage _image,
5319 VkMemoryRequirements* pMemoryRequirements)
5320 {
5321 RADV_FROM_HANDLE(radv_device, device, _device);
5322 RADV_FROM_HANDLE(radv_image, image, _image);
5323
5324 pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
5325
5326 pMemoryRequirements->size = image->size;
5327 pMemoryRequirements->alignment = image->alignment;
5328 }
5329
5330 void radv_GetImageMemoryRequirements2(
5331 VkDevice device,
5332 const VkImageMemoryRequirementsInfo2 *pInfo,
5333 VkMemoryRequirements2 *pMemoryRequirements)
5334 {
5335 radv_GetImageMemoryRequirements(device, pInfo->image,
5336 &pMemoryRequirements->memoryRequirements);
5337
5338 RADV_FROM_HANDLE(radv_image, image, pInfo->image);
5339
5340 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
5341 switch (ext->sType) {
5342 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
5343 VkMemoryDedicatedRequirements *req =
5344 (VkMemoryDedicatedRequirements *) ext;
5345 req->requiresDedicatedAllocation = image->shareable &&
5346 image->tiling != VK_IMAGE_TILING_LINEAR;
5347 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
5348 break;
5349 }
5350 default:
5351 break;
5352 }
5353 }
5354 }
5355
5356 void radv_GetImageSparseMemoryRequirements(
5357 VkDevice device,
5358 VkImage image,
5359 uint32_t* pSparseMemoryRequirementCount,
5360 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
5361 {
5362 stub();
5363 }
5364
5365 void radv_GetImageSparseMemoryRequirements2(
5366 VkDevice device,
5367 const VkImageSparseMemoryRequirementsInfo2 *pInfo,
5368 uint32_t* pSparseMemoryRequirementCount,
5369 VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements)
5370 {
5371 stub();
5372 }
5373
5374 void radv_GetDeviceMemoryCommitment(
5375 VkDevice device,
5376 VkDeviceMemory memory,
5377 VkDeviceSize* pCommittedMemoryInBytes)
5378 {
5379 *pCommittedMemoryInBytes = 0;
5380 }
5381
5382 VkResult radv_BindBufferMemory2(VkDevice device,
5383 uint32_t bindInfoCount,
5384 const VkBindBufferMemoryInfo *pBindInfos)
5385 {
5386 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5387 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
5388 RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
5389
5390 if (mem) {
5391 buffer->bo = mem->bo;
5392 buffer->offset = pBindInfos[i].memoryOffset;
5393 } else {
5394 buffer->bo = NULL;
5395 }
5396 }
5397 return VK_SUCCESS;
5398 }
5399
5400 VkResult radv_BindBufferMemory(
5401 VkDevice device,
5402 VkBuffer buffer,
5403 VkDeviceMemory memory,
5404 VkDeviceSize memoryOffset)
5405 {
5406 const VkBindBufferMemoryInfo info = {
5407 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
5408 .buffer = buffer,
5409 .memory = memory,
5410 .memoryOffset = memoryOffset
5411 };
5412
5413 return radv_BindBufferMemory2(device, 1, &info);
5414 }
5415
5416 VkResult radv_BindImageMemory2(VkDevice device,
5417 uint32_t bindInfoCount,
5418 const VkBindImageMemoryInfo *pBindInfos)
5419 {
5420 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5421 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
5422 RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
5423
5424 if (mem) {
5425 image->bo = mem->bo;
5426 image->offset = pBindInfos[i].memoryOffset;
5427 } else {
5428 image->bo = NULL;
5429 image->offset = 0;
5430 }
5431 }
5432 return VK_SUCCESS;
5433 }
5434
5435
5436 VkResult radv_BindImageMemory(
5437 VkDevice device,
5438 VkImage image,
5439 VkDeviceMemory memory,
5440 VkDeviceSize memoryOffset)
5441 {
5442 const VkBindImageMemoryInfo info = {
5443 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
5444 .image = image,
5445 .memory = memory,
5446 .memoryOffset = memoryOffset
5447 };
5448
5449 return radv_BindImageMemory2(device, 1, &info);
5450 }
5451
5452 static bool radv_sparse_bind_has_effects(const VkBindSparseInfo *info)
5453 {
5454 return info->bufferBindCount ||
5455 info->imageOpaqueBindCount ||
5456 info->imageBindCount ||
5457 info->waitSemaphoreCount ||
5458 info->signalSemaphoreCount;
5459 }
5460
5461 VkResult radv_QueueBindSparse(
5462 VkQueue _queue,
5463 uint32_t bindInfoCount,
5464 const VkBindSparseInfo* pBindInfo,
5465 VkFence fence)
5466 {
5467 RADV_FROM_HANDLE(radv_queue, queue, _queue);
5468 VkResult result;
5469 uint32_t fence_idx = 0;
5470
5471 if (fence != VK_NULL_HANDLE) {
5472 for (uint32_t i = 0; i < bindInfoCount; ++i)
5473 if (radv_sparse_bind_has_effects(pBindInfo + i))
5474 fence_idx = i;
5475 } else
5476 fence_idx = UINT32_MAX;
5477
5478 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5479 if (i != fence_idx && !radv_sparse_bind_has_effects(pBindInfo + i))
5480 continue;
5481
5482 const VkTimelineSemaphoreSubmitInfo *timeline_info =
5483 vk_find_struct_const(pBindInfo[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
5484
5485 VkResult result = radv_queue_submit(queue, &(struct radv_queue_submission) {
5486 .buffer_binds = pBindInfo[i].pBufferBinds,
5487 .buffer_bind_count = pBindInfo[i].bufferBindCount,
5488 .image_opaque_binds = pBindInfo[i].pImageOpaqueBinds,
5489 .image_opaque_bind_count = pBindInfo[i].imageOpaqueBindCount,
5490 .wait_semaphores = pBindInfo[i].pWaitSemaphores,
5491 .wait_semaphore_count = pBindInfo[i].waitSemaphoreCount,
5492 .signal_semaphores = pBindInfo[i].pSignalSemaphores,
5493 .signal_semaphore_count = pBindInfo[i].signalSemaphoreCount,
5494 .fence = i == fence_idx ? fence : VK_NULL_HANDLE,
5495 .wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
5496 .wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues ? timeline_info->waitSemaphoreValueCount : 0,
5497 .signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
5498 .signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues ? timeline_info->signalSemaphoreValueCount : 0,
5499 });
5500
5501 if (result != VK_SUCCESS)
5502 return result;
5503 }
5504
5505 if (fence != VK_NULL_HANDLE && !bindInfoCount) {
5506 result = radv_signal_fence(queue, fence);
5507 if (result != VK_SUCCESS)
5508 return result;
5509 }
5510
5511 return VK_SUCCESS;
5512 }
5513
5514 VkResult radv_CreateFence(
5515 VkDevice _device,
5516 const VkFenceCreateInfo* pCreateInfo,
5517 const VkAllocationCallbacks* pAllocator,
5518 VkFence* pFence)
5519 {
5520 RADV_FROM_HANDLE(radv_device, device, _device);
5521 const VkExportFenceCreateInfo *export =
5522 vk_find_struct_const(pCreateInfo->pNext, EXPORT_FENCE_CREATE_INFO);
5523 VkExternalFenceHandleTypeFlags handleTypes =
5524 export ? export->handleTypes : 0;
5525
5526 struct radv_fence *fence = vk_alloc2(&device->alloc, pAllocator,
5527 sizeof(*fence), 8,
5528 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5529
5530 if (!fence)
5531 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5532
5533 fence->fence_wsi = NULL;
5534 fence->temp_syncobj = 0;
5535 if (device->always_use_syncobj || handleTypes) {
5536 int ret = device->ws->create_syncobj(device->ws, &fence->syncobj);
5537 if (ret) {
5538 vk_free2(&device->alloc, pAllocator, fence);
5539 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5540 }
5541 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
5542 device->ws->signal_syncobj(device->ws, fence->syncobj);
5543 }
5544 fence->fence = NULL;
5545 } else {
5546 fence->fence = device->ws->create_fence();
5547 if (!fence->fence) {
5548 vk_free2(&device->alloc, pAllocator, fence);
5549 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5550 }
5551 fence->syncobj = 0;
5552 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
5553 device->ws->signal_fence(fence->fence);
5554 }
5555
5556 *pFence = radv_fence_to_handle(fence);
5557
5558 return VK_SUCCESS;
5559 }
5560
5561 void radv_DestroyFence(
5562 VkDevice _device,
5563 VkFence _fence,
5564 const VkAllocationCallbacks* pAllocator)
5565 {
5566 RADV_FROM_HANDLE(radv_device, device, _device);
5567 RADV_FROM_HANDLE(radv_fence, fence, _fence);
5568
5569 if (!fence)
5570 return;
5571
5572 if (fence->temp_syncobj)
5573 device->ws->destroy_syncobj(device->ws, fence->temp_syncobj);
5574 if (fence->syncobj)
5575 device->ws->destroy_syncobj(device->ws, fence->syncobj);
5576 if (fence->fence)
5577 device->ws->destroy_fence(fence->fence);
5578 if (fence->fence_wsi)
5579 fence->fence_wsi->destroy(fence->fence_wsi);
5580 vk_free2(&device->alloc, pAllocator, fence);
5581 }
5582
5583
5584 uint64_t radv_get_current_time(void)
5585 {
5586 struct timespec tv;
5587 clock_gettime(CLOCK_MONOTONIC, &tv);
5588 return tv.tv_nsec + tv.tv_sec*1000000000ull;
5589 }
5590
5591 static uint64_t radv_get_absolute_timeout(uint64_t timeout)
5592 {
5593 uint64_t current_time = radv_get_current_time();
5594
5595 timeout = MIN2(UINT64_MAX - current_time, timeout);
5596
5597 return current_time + timeout;
5598 }
5599
5600
5601 static bool radv_all_fences_plain_and_submitted(struct radv_device *device,
5602 uint32_t fenceCount, const VkFence *pFences)
5603 {
5604 for (uint32_t i = 0; i < fenceCount; ++i) {
5605 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5606 if (fence->fence == NULL || fence->syncobj ||
5607 fence->temp_syncobj || fence->fence_wsi ||
5608 (!device->ws->is_fence_waitable(fence->fence)))
5609 return false;
5610 }
5611 return true;
5612 }
5613
5614 static bool radv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences)
5615 {
5616 for (uint32_t i = 0; i < fenceCount; ++i) {
5617 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5618 if (fence->syncobj == 0 && fence->temp_syncobj == 0)
5619 return false;
5620 }
5621 return true;
5622 }
5623
5624 VkResult radv_WaitForFences(
5625 VkDevice _device,
5626 uint32_t fenceCount,
5627 const VkFence* pFences,
5628 VkBool32 waitAll,
5629 uint64_t timeout)
5630 {
5631 RADV_FROM_HANDLE(radv_device, device, _device);
5632 timeout = radv_get_absolute_timeout(timeout);
5633
5634 if (device->always_use_syncobj &&
5635 radv_all_fences_syncobj(fenceCount, pFences))
5636 {
5637 uint32_t *handles = malloc(sizeof(uint32_t) * fenceCount);
5638 if (!handles)
5639 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5640
5641 for (uint32_t i = 0; i < fenceCount; ++i) {
5642 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5643 handles[i] = fence->temp_syncobj ? fence->temp_syncobj : fence->syncobj;
5644 }
5645
5646 bool success = device->ws->wait_syncobj(device->ws, handles, fenceCount, waitAll, timeout);
5647
5648 free(handles);
5649 return success ? VK_SUCCESS : VK_TIMEOUT;
5650 }
5651
5652 if (!waitAll && fenceCount > 1) {
5653 /* Not doing this by default for waitAll, due to needing to allocate twice. */
5654 if (device->physical_device->rad_info.drm_minor >= 10 && radv_all_fences_plain_and_submitted(device, fenceCount, pFences)) {
5655 uint32_t wait_count = 0;
5656 struct radeon_winsys_fence **fences = malloc(sizeof(struct radeon_winsys_fence *) * fenceCount);
5657 if (!fences)
5658 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5659
5660 for (uint32_t i = 0; i < fenceCount; ++i) {
5661 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5662
5663 if (device->ws->fence_wait(device->ws, fence->fence, false, 0)) {
5664 free(fences);
5665 return VK_SUCCESS;
5666 }
5667
5668 fences[wait_count++] = fence->fence;
5669 }
5670
5671 bool success = device->ws->fences_wait(device->ws, fences, wait_count,
5672 waitAll, timeout - radv_get_current_time());
5673
5674 free(fences);
5675 return success ? VK_SUCCESS : VK_TIMEOUT;
5676 }
5677
5678 while(radv_get_current_time() <= timeout) {
5679 for (uint32_t i = 0; i < fenceCount; ++i) {
5680 if (radv_GetFenceStatus(_device, pFences[i]) == VK_SUCCESS)
5681 return VK_SUCCESS;
5682 }
5683 }
5684 return VK_TIMEOUT;
5685 }
5686
5687 for (uint32_t i = 0; i < fenceCount; ++i) {
5688 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5689 bool expired = false;
5690
5691 if (fence->temp_syncobj) {
5692 if (!device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, timeout))
5693 return VK_TIMEOUT;
5694 continue;
5695 }
5696
5697 if (fence->syncobj) {
5698 if (!device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, timeout))
5699 return VK_TIMEOUT;
5700 continue;
5701 }
5702
5703 if (fence->fence) {
5704 if (!device->ws->is_fence_waitable(fence->fence)) {
5705 while(!device->ws->is_fence_waitable(fence->fence) &&
5706 radv_get_current_time() <= timeout)
5707 /* Do nothing */;
5708 }
5709
5710 expired = device->ws->fence_wait(device->ws,
5711 fence->fence,
5712 true, timeout);
5713 if (!expired)
5714 return VK_TIMEOUT;
5715 }
5716
5717 if (fence->fence_wsi) {
5718 VkResult result = fence->fence_wsi->wait(fence->fence_wsi, timeout);
5719 if (result != VK_SUCCESS)
5720 return result;
5721 }
5722 }
5723
5724 return VK_SUCCESS;
5725 }
5726
5727 VkResult radv_ResetFences(VkDevice _device,
5728 uint32_t fenceCount,
5729 const VkFence *pFences)
5730 {
5731 RADV_FROM_HANDLE(radv_device, device, _device);
5732
5733 for (unsigned i = 0; i < fenceCount; ++i) {
5734 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5735 if (fence->fence)
5736 device->ws->reset_fence(fence->fence);
5737
5738 /* Per spec, we first restore the permanent payload, and then reset, so
5739 * having a temp syncobj should not skip resetting the permanent syncobj. */
5740 if (fence->temp_syncobj) {
5741 device->ws->destroy_syncobj(device->ws, fence->temp_syncobj);
5742 fence->temp_syncobj = 0;
5743 }
5744
5745 if (fence->syncobj) {
5746 device->ws->reset_syncobj(device->ws, fence->syncobj);
5747 }
5748 }
5749
5750 return VK_SUCCESS;
5751 }
5752
5753 VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence)
5754 {
5755 RADV_FROM_HANDLE(radv_device, device, _device);
5756 RADV_FROM_HANDLE(radv_fence, fence, _fence);
5757
5758 if (fence->temp_syncobj) {
5759 bool success = device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, 0);
5760 return success ? VK_SUCCESS : VK_NOT_READY;
5761 }
5762
5763 if (fence->syncobj) {
5764 bool success = device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, 0);
5765 return success ? VK_SUCCESS : VK_NOT_READY;
5766 }
5767
5768 if (fence->fence) {
5769 if (!device->ws->fence_wait(device->ws, fence->fence, false, 0))
5770 return VK_NOT_READY;
5771 }
5772 if (fence->fence_wsi) {
5773 VkResult result = fence->fence_wsi->wait(fence->fence_wsi, 0);
5774
5775 if (result != VK_SUCCESS) {
5776 if (result == VK_TIMEOUT)
5777 return VK_NOT_READY;
5778 return result;
5779 }
5780 }
5781 return VK_SUCCESS;
5782 }
5783
5784
5785 // Queue semaphore functions
5786
5787 static void
5788 radv_create_timeline(struct radv_timeline *timeline, uint64_t value)
5789 {
5790 timeline->highest_signaled = value;
5791 timeline->highest_submitted = value;
5792 list_inithead(&timeline->points);
5793 list_inithead(&timeline->free_points);
5794 list_inithead(&timeline->waiters);
5795 pthread_mutex_init(&timeline->mutex, NULL);
5796 }
5797
5798 static void
5799 radv_destroy_timeline(struct radv_device *device,
5800 struct radv_timeline *timeline)
5801 {
5802 list_for_each_entry_safe(struct radv_timeline_point, point,
5803 &timeline->free_points, list) {
5804 list_del(&point->list);
5805 device->ws->destroy_syncobj(device->ws, point->syncobj);
5806 free(point);
5807 }
5808 list_for_each_entry_safe(struct radv_timeline_point, point,
5809 &timeline->points, list) {
5810 list_del(&point->list);
5811 device->ws->destroy_syncobj(device->ws, point->syncobj);
5812 free(point);
5813 }
5814 pthread_mutex_destroy(&timeline->mutex);
5815 }
5816
5817 static void
5818 radv_timeline_gc_locked(struct radv_device *device,
5819 struct radv_timeline *timeline)
5820 {
5821 list_for_each_entry_safe(struct radv_timeline_point, point,
5822 &timeline->points, list) {
5823 if (point->wait_count || point->value > timeline->highest_submitted)
5824 return;
5825
5826 if (device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, 0)) {
5827 timeline->highest_signaled = point->value;
5828 list_del(&point->list);
5829 list_add(&point->list, &timeline->free_points);
5830 }
5831 }
5832 }
5833
5834 static struct radv_timeline_point *
5835 radv_timeline_find_point_at_least_locked(struct radv_device *device,
5836 struct radv_timeline *timeline,
5837 uint64_t p)
5838 {
5839 radv_timeline_gc_locked(device, timeline);
5840
5841 if (p <= timeline->highest_signaled)
5842 return NULL;
5843
5844 list_for_each_entry(struct radv_timeline_point, point,
5845 &timeline->points, list) {
5846 if (point->value >= p) {
5847 ++point->wait_count;
5848 return point;
5849 }
5850 }
5851 return NULL;
5852 }
5853
5854 static struct radv_timeline_point *
5855 radv_timeline_add_point_locked(struct radv_device *device,
5856 struct radv_timeline *timeline,
5857 uint64_t p)
5858 {
5859 radv_timeline_gc_locked(device, timeline);
5860
5861 struct radv_timeline_point *ret = NULL;
5862 struct radv_timeline_point *prev = NULL;
5863
5864 if (p <= timeline->highest_signaled)
5865 return NULL;
5866
5867 list_for_each_entry(struct radv_timeline_point, point,
5868 &timeline->points, list) {
5869 if (point->value == p) {
5870 return NULL;
5871 }
5872
5873 if (point->value < p)
5874 prev = point;
5875 }
5876
5877 if (list_is_empty(&timeline->free_points)) {
5878 ret = malloc(sizeof(struct radv_timeline_point));
5879 device->ws->create_syncobj(device->ws, &ret->syncobj);
5880 } else {
5881 ret = list_first_entry(&timeline->free_points, struct radv_timeline_point, list);
5882 list_del(&ret->list);
5883
5884 device->ws->reset_syncobj(device->ws, ret->syncobj);
5885 }
5886
5887 ret->value = p;
5888 ret->wait_count = 1;
5889
5890 if (prev) {
5891 list_add(&ret->list, &prev->list);
5892 } else {
5893 list_addtail(&ret->list, &timeline->points);
5894 }
5895 return ret;
5896 }
5897
5898
5899 static VkResult
5900 radv_timeline_wait_locked(struct radv_device *device,
5901 struct radv_timeline *timeline,
5902 uint64_t value,
5903 uint64_t abs_timeout)
5904 {
5905 while(timeline->highest_submitted < value) {
5906 struct timespec abstime;
5907 timespec_from_nsec(&abstime, abs_timeout);
5908
5909 pthread_cond_timedwait(&device->timeline_cond, &timeline->mutex, &abstime);
5910
5911 if (radv_get_current_time() >= abs_timeout && timeline->highest_submitted < value)
5912 return VK_TIMEOUT;
5913 }
5914
5915 struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(device, timeline, value);
5916 if (!point)
5917 return VK_SUCCESS;
5918
5919 pthread_mutex_unlock(&timeline->mutex);
5920
5921 bool success = device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, abs_timeout);
5922
5923 pthread_mutex_lock(&timeline->mutex);
5924 point->wait_count--;
5925 return success ? VK_SUCCESS : VK_TIMEOUT;
5926 }
5927
5928 static void
5929 radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
5930 struct list_head *processing_list)
5931 {
5932 list_for_each_entry_safe(struct radv_timeline_waiter, waiter,
5933 &timeline->waiters, list) {
5934 if (waiter->value > timeline->highest_submitted)
5935 continue;
5936
5937 if (p_atomic_dec_zero(&waiter->submission->submission_wait_count)) {
5938 list_addtail(&waiter->submission->processing_list, processing_list);
5939 }
5940 list_del(&waiter->list);
5941 }
5942 }
5943
5944 static
5945 void radv_destroy_semaphore_part(struct radv_device *device,
5946 struct radv_semaphore_part *part)
5947 {
5948 switch(part->kind) {
5949 case RADV_SEMAPHORE_NONE:
5950 break;
5951 case RADV_SEMAPHORE_WINSYS:
5952 device->ws->destroy_sem(part->ws_sem);
5953 break;
5954 case RADV_SEMAPHORE_TIMELINE:
5955 radv_destroy_timeline(device, &part->timeline);
5956 break;
5957 case RADV_SEMAPHORE_SYNCOBJ:
5958 device->ws->destroy_syncobj(device->ws, part->syncobj);
5959 break;
5960 }
5961 part->kind = RADV_SEMAPHORE_NONE;
5962 }
5963
5964 static VkSemaphoreTypeKHR
5965 radv_get_semaphore_type(const void *pNext, uint64_t *initial_value)
5966 {
5967 const VkSemaphoreTypeCreateInfo *type_info =
5968 vk_find_struct_const(pNext, SEMAPHORE_TYPE_CREATE_INFO);
5969
5970 if (!type_info)
5971 return VK_SEMAPHORE_TYPE_BINARY;
5972
5973 if (initial_value)
5974 *initial_value = type_info->initialValue;
5975 return type_info->semaphoreType;
5976 }
5977
5978 VkResult radv_CreateSemaphore(
5979 VkDevice _device,
5980 const VkSemaphoreCreateInfo* pCreateInfo,
5981 const VkAllocationCallbacks* pAllocator,
5982 VkSemaphore* pSemaphore)
5983 {
5984 RADV_FROM_HANDLE(radv_device, device, _device);
5985 const VkExportSemaphoreCreateInfo *export =
5986 vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO);
5987 VkExternalSemaphoreHandleTypeFlags handleTypes =
5988 export ? export->handleTypes : 0;
5989 uint64_t initial_value = 0;
5990 VkSemaphoreTypeKHR type = radv_get_semaphore_type(pCreateInfo->pNext, &initial_value);
5991
5992 struct radv_semaphore *sem = vk_alloc2(&device->alloc, pAllocator,
5993 sizeof(*sem), 8,
5994 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5995 if (!sem)
5996 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5997
5998 sem->temporary.kind = RADV_SEMAPHORE_NONE;
5999 sem->permanent.kind = RADV_SEMAPHORE_NONE;
6000
6001 if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
6002 radv_create_timeline(&sem->permanent.timeline, initial_value);
6003 sem->permanent.kind = RADV_SEMAPHORE_TIMELINE;
6004 } else if (device->always_use_syncobj || handleTypes) {
6005 assert (device->physical_device->rad_info.has_syncobj);
6006 int ret = device->ws->create_syncobj(device->ws, &sem->permanent.syncobj);
6007 if (ret) {
6008 vk_free2(&device->alloc, pAllocator, sem);
6009 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
6010 }
6011 sem->permanent.kind = RADV_SEMAPHORE_SYNCOBJ;
6012 } else {
6013 sem->permanent.ws_sem = device->ws->create_sem(device->ws);
6014 if (!sem->permanent.ws_sem) {
6015 vk_free2(&device->alloc, pAllocator, sem);
6016 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
6017 }
6018 sem->permanent.kind = RADV_SEMAPHORE_WINSYS;
6019 }
6020
6021 *pSemaphore = radv_semaphore_to_handle(sem);
6022 return VK_SUCCESS;
6023 }
6024
6025 void radv_DestroySemaphore(
6026 VkDevice _device,
6027 VkSemaphore _semaphore,
6028 const VkAllocationCallbacks* pAllocator)
6029 {
6030 RADV_FROM_HANDLE(radv_device, device, _device);
6031 RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore);
6032 if (!_semaphore)
6033 return;
6034
6035 radv_destroy_semaphore_part(device, &sem->temporary);
6036 radv_destroy_semaphore_part(device, &sem->permanent);
6037 vk_free2(&device->alloc, pAllocator, sem);
6038 }
6039
6040 VkResult
6041 radv_GetSemaphoreCounterValue(VkDevice _device,
6042 VkSemaphore _semaphore,
6043 uint64_t* pValue)
6044 {
6045 RADV_FROM_HANDLE(radv_device, device, _device);
6046 RADV_FROM_HANDLE(radv_semaphore, semaphore, _semaphore);
6047
6048 struct radv_semaphore_part *part =
6049 semaphore->temporary.kind != RADV_SEMAPHORE_NONE ? &semaphore->temporary : &semaphore->permanent;
6050
6051 switch (part->kind) {
6052 case RADV_SEMAPHORE_TIMELINE: {
6053 pthread_mutex_lock(&part->timeline.mutex);
6054 radv_timeline_gc_locked(device, &part->timeline);
6055 *pValue = part->timeline.highest_signaled;
6056 pthread_mutex_unlock(&part->timeline.mutex);
6057 return VK_SUCCESS;
6058 }
6059 case RADV_SEMAPHORE_NONE:
6060 case RADV_SEMAPHORE_SYNCOBJ:
6061 case RADV_SEMAPHORE_WINSYS:
6062 unreachable("Invalid semaphore type");
6063 }
6064 unreachable("Unhandled semaphore type");
6065 }
6066
6067
6068 static VkResult
6069 radv_wait_timelines(struct radv_device *device,
6070 const VkSemaphoreWaitInfo* pWaitInfo,
6071 uint64_t abs_timeout)
6072 {
6073 if ((pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR) && pWaitInfo->semaphoreCount > 1) {
6074 for (;;) {
6075 for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
6076 RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
6077 pthread_mutex_lock(&semaphore->permanent.timeline.mutex);
6078 VkResult result = radv_timeline_wait_locked(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], 0);
6079 pthread_mutex_unlock(&semaphore->permanent.timeline.mutex);
6080
6081 if (result == VK_SUCCESS)
6082 return VK_SUCCESS;
6083 }
6084 if (radv_get_current_time() > abs_timeout)
6085 return VK_TIMEOUT;
6086 }
6087 }
6088
6089 for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
6090 RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
6091 pthread_mutex_lock(&semaphore->permanent.timeline.mutex);
6092 VkResult result = radv_timeline_wait_locked(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], abs_timeout);
6093 pthread_mutex_unlock(&semaphore->permanent.timeline.mutex);
6094
6095 if (result != VK_SUCCESS)
6096 return result;
6097 }
6098 return VK_SUCCESS;
6099 }
6100 VkResult
6101 radv_WaitSemaphores(VkDevice _device,
6102 const VkSemaphoreWaitInfo* pWaitInfo,
6103 uint64_t timeout)
6104 {
6105 RADV_FROM_HANDLE(radv_device, device, _device);
6106 uint64_t abs_timeout = radv_get_absolute_timeout(timeout);
6107 return radv_wait_timelines(device, pWaitInfo, abs_timeout);
6108 }
6109
6110 VkResult
6111 radv_SignalSemaphore(VkDevice _device,
6112 const VkSemaphoreSignalInfo* pSignalInfo)
6113 {
6114 RADV_FROM_HANDLE(radv_device, device, _device);
6115 RADV_FROM_HANDLE(radv_semaphore, semaphore, pSignalInfo->semaphore);
6116
6117 struct radv_semaphore_part *part =
6118 semaphore->temporary.kind != RADV_SEMAPHORE_NONE ? &semaphore->temporary : &semaphore->permanent;
6119
6120 switch(part->kind) {
6121 case RADV_SEMAPHORE_TIMELINE: {
6122 pthread_mutex_lock(&part->timeline.mutex);
6123 radv_timeline_gc_locked(device, &part->timeline);
6124 part->timeline.highest_submitted = MAX2(part->timeline.highest_submitted, pSignalInfo->value);
6125 part->timeline.highest_signaled = MAX2(part->timeline.highest_signaled, pSignalInfo->value);
6126
6127 struct list_head processing_list;
6128 list_inithead(&processing_list);
6129 radv_timeline_trigger_waiters_locked(&part->timeline, &processing_list);
6130 pthread_mutex_unlock(&part->timeline.mutex);
6131
6132 return radv_process_submissions(&processing_list);
6133 }
6134 case RADV_SEMAPHORE_NONE:
6135 case RADV_SEMAPHORE_SYNCOBJ:
6136 case RADV_SEMAPHORE_WINSYS:
6137 unreachable("Invalid semaphore type");
6138 }
6139 return VK_SUCCESS;
6140 }
6141
6142
6143
6144 VkResult radv_CreateEvent(
6145 VkDevice _device,
6146 const VkEventCreateInfo* pCreateInfo,
6147 const VkAllocationCallbacks* pAllocator,
6148 VkEvent* pEvent)
6149 {
6150 RADV_FROM_HANDLE(radv_device, device, _device);
6151 struct radv_event *event = vk_alloc2(&device->alloc, pAllocator,
6152 sizeof(*event), 8,
6153 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6154
6155 if (!event)
6156 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
6157
6158 event->bo = device->ws->buffer_create(device->ws, 8, 8,
6159 RADEON_DOMAIN_GTT,
6160 RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING,
6161 RADV_BO_PRIORITY_FENCE);
6162 if (!event->bo) {
6163 vk_free2(&device->alloc, pAllocator, event);
6164 return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
6165 }
6166
6167 event->map = (uint64_t*)device->ws->buffer_map(event->bo);
6168
6169 *pEvent = radv_event_to_handle(event);
6170
6171 return VK_SUCCESS;
6172 }
6173
6174 void radv_DestroyEvent(
6175 VkDevice _device,
6176 VkEvent _event,
6177 const VkAllocationCallbacks* pAllocator)
6178 {
6179 RADV_FROM_HANDLE(radv_device, device, _device);
6180 RADV_FROM_HANDLE(radv_event, event, _event);
6181
6182 if (!event)
6183 return;
6184 device->ws->buffer_destroy(event->bo);
6185 vk_free2(&device->alloc, pAllocator, event);
6186 }
6187
6188 VkResult radv_GetEventStatus(
6189 VkDevice _device,
6190 VkEvent _event)
6191 {
6192 RADV_FROM_HANDLE(radv_event, event, _event);
6193
6194 if (*event->map == 1)
6195 return VK_EVENT_SET;
6196 return VK_EVENT_RESET;
6197 }
6198
6199 VkResult radv_SetEvent(
6200 VkDevice _device,
6201 VkEvent _event)
6202 {
6203 RADV_FROM_HANDLE(radv_event, event, _event);
6204 *event->map = 1;
6205
6206 return VK_SUCCESS;
6207 }
6208
6209 VkResult radv_ResetEvent(
6210 VkDevice _device,
6211 VkEvent _event)
6212 {
6213 RADV_FROM_HANDLE(radv_event, event, _event);
6214 *event->map = 0;
6215
6216 return VK_SUCCESS;
6217 }
6218
6219 VkResult radv_CreateBuffer(
6220 VkDevice _device,
6221 const VkBufferCreateInfo* pCreateInfo,
6222 const VkAllocationCallbacks* pAllocator,
6223 VkBuffer* pBuffer)
6224 {
6225 RADV_FROM_HANDLE(radv_device, device, _device);
6226 struct radv_buffer *buffer;
6227
6228 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
6229
6230 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
6231 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6232 if (buffer == NULL)
6233 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
6234
6235 buffer->size = pCreateInfo->size;
6236 buffer->usage = pCreateInfo->usage;
6237 buffer->bo = NULL;
6238 buffer->offset = 0;
6239 buffer->flags = pCreateInfo->flags;
6240
6241 buffer->shareable = vk_find_struct_const(pCreateInfo->pNext,
6242 EXTERNAL_MEMORY_BUFFER_CREATE_INFO) != NULL;
6243
6244 if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
6245 buffer->bo = device->ws->buffer_create(device->ws,
6246 align64(buffer->size, 4096),
6247 4096, 0, RADEON_FLAG_VIRTUAL,
6248 RADV_BO_PRIORITY_VIRTUAL);
6249 if (!buffer->bo) {
6250 vk_free2(&device->alloc, pAllocator, buffer);
6251 return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
6252 }
6253 }
6254
6255 *pBuffer = radv_buffer_to_handle(buffer);
6256
6257 return VK_SUCCESS;
6258 }
6259
6260 void radv_DestroyBuffer(
6261 VkDevice _device,
6262 VkBuffer _buffer,
6263 const VkAllocationCallbacks* pAllocator)
6264 {
6265 RADV_FROM_HANDLE(radv_device, device, _device);
6266 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
6267
6268 if (!buffer)
6269 return;
6270
6271 if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
6272 device->ws->buffer_destroy(buffer->bo);
6273
6274 vk_free2(&device->alloc, pAllocator, buffer);
6275 }
6276
6277 VkDeviceAddress radv_GetBufferDeviceAddress(
6278 VkDevice device,
6279 const VkBufferDeviceAddressInfo* pInfo)
6280 {
6281 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
6282 return radv_buffer_get_va(buffer->bo) + buffer->offset;
6283 }
6284
6285
6286 uint64_t radv_GetBufferOpaqueCaptureAddress(VkDevice device,
6287 const VkBufferDeviceAddressInfo* pInfo)
6288 {
6289 return 0;
6290 }
6291
6292 uint64_t radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
6293 const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo)
6294 {
6295 return 0;
6296 }
6297
6298 static inline unsigned
6299 si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
6300 {
6301 if (stencil)
6302 return plane->surface.u.legacy.stencil_tiling_index[level];
6303 else
6304 return plane->surface.u.legacy.tiling_index[level];
6305 }
6306
6307 static uint32_t radv_surface_max_layer_count(struct radv_image_view *iview)
6308 {
6309 return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth : (iview->base_layer + iview->layer_count);
6310 }
6311
6312 static uint32_t
6313 radv_init_dcc_control_reg(struct radv_device *device,
6314 struct radv_image_view *iview)
6315 {
6316 unsigned max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_256B;
6317 unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B;
6318 unsigned max_compressed_block_size;
6319 unsigned independent_128b_blocks;
6320 unsigned independent_64b_blocks;
6321
6322 if (!radv_dcc_enabled(iview->image, iview->base_mip))
6323 return 0;
6324
6325 if (!device->physical_device->rad_info.has_dedicated_vram) {
6326 /* amdvlk: [min-compressed-block-size] should be set to 32 for
6327 * dGPU and 64 for APU because all of our APUs to date use
6328 * DIMMs which have a request granularity size of 64B while all
6329 * other chips have a 32B request size.
6330 */
6331 min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B;
6332 }
6333
6334 if (device->physical_device->rad_info.chip_class >= GFX10) {
6335 max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
6336 independent_64b_blocks = 0;
6337 independent_128b_blocks = 1;
6338 } else {
6339 independent_128b_blocks = 0;
6340
6341 if (iview->image->info.samples > 1) {
6342 if (iview->image->planes[0].surface.bpe == 1)
6343 max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
6344 else if (iview->image->planes[0].surface.bpe == 2)
6345 max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
6346 }
6347
6348 if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
6349 VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
6350 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
6351 /* If this DCC image is potentially going to be used in texture
6352 * fetches, we need some special settings.
6353 */
6354 independent_64b_blocks = 1;
6355 max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
6356 } else {
6357 /* MAX_UNCOMPRESSED_BLOCK_SIZE must be >=
6358 * MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as
6359 * big as possible for better compression state.
6360 */
6361 independent_64b_blocks = 0;
6362 max_compressed_block_size = max_uncompressed_block_size;
6363 }
6364 }
6365
6366 return S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
6367 S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
6368 S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
6369 S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks) |
6370 S_028C78_INDEPENDENT_128B_BLOCKS(independent_128b_blocks);
6371 }
6372
6373 void
6374 radv_initialise_color_surface(struct radv_device *device,
6375 struct radv_color_buffer_info *cb,
6376 struct radv_image_view *iview)
6377 {
6378 const struct vk_format_description *desc;
6379 unsigned ntype, format, swap, endian;
6380 unsigned blend_clamp = 0, blend_bypass = 0;
6381 uint64_t va;
6382 const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id];
6383 const struct radeon_surf *surf = &plane->surface;
6384
6385 desc = vk_format_description(iview->vk_format);
6386
6387 memset(cb, 0, sizeof(*cb));
6388
6389 /* Intensity is implemented as Red, so treat it that way. */
6390 cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1);
6391
6392 va = radv_buffer_get_va(iview->bo) + iview->image->offset + plane->offset;
6393
6394 cb->cb_color_base = va >> 8;
6395
6396 if (device->physical_device->rad_info.chip_class >= GFX9) {
6397 struct gfx9_surf_meta_flags meta;
6398 if (iview->image->dcc_offset)
6399 meta = surf->u.gfx9.dcc;
6400 else
6401 meta = surf->u.gfx9.cmask;
6402
6403 if (device->physical_device->rad_info.chip_class >= GFX10) {
6404 cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
6405 S_028EE0_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) |
6406 S_028EE0_CMASK_PIPE_ALIGNED(surf->u.gfx9.cmask.pipe_aligned) |
6407 S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.dcc.pipe_aligned);
6408 } else {
6409 cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
6410 S_028C74_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) |
6411 S_028C74_RB_ALIGNED(meta.rb_aligned) |
6412 S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
6413 cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.surf.epitch);
6414 }
6415
6416 cb->cb_color_base += surf->u.gfx9.surf_offset >> 8;
6417 cb->cb_color_base |= surf->tile_swizzle;
6418 } else {
6419 const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip];
6420 unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
6421
6422 cb->cb_color_base += level_info->offset >> 8;
6423 if (level_info->mode == RADEON_SURF_MODE_2D)
6424 cb->cb_color_base |= surf->tile_swizzle;
6425
6426 pitch_tile_max = level_info->nblk_x / 8 - 1;
6427 slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
6428 tile_mode_index = si_tile_mode_index(plane, iview->base_mip, false);
6429
6430 cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
6431 cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
6432 cb->cb_color_cmask_slice = surf->u.legacy.cmask_slice_tile_max;
6433
6434 cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
6435
6436 if (radv_image_has_fmask(iview->image)) {
6437 if (device->physical_device->rad_info.chip_class >= GFX7)
6438 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(surf->u.legacy.fmask.pitch_in_pixels / 8 - 1);
6439 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(surf->u.legacy.fmask.tiling_index);
6440 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(surf->u.legacy.fmask.slice_tile_max);
6441 } else {
6442 /* This must be set for fast clear to work without FMASK. */
6443 if (device->physical_device->rad_info.chip_class >= GFX7)
6444 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
6445 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
6446 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
6447 }
6448 }
6449
6450 /* CMASK variables */
6451 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
6452 va += iview->image->cmask_offset;
6453 cb->cb_color_cmask = va >> 8;
6454
6455 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
6456 va += iview->image->dcc_offset;
6457
6458 if (radv_dcc_enabled(iview->image, iview->base_mip) &&
6459 device->physical_device->rad_info.chip_class <= GFX8)
6460 va += plane->surface.u.legacy.level[iview->base_mip].dcc_offset;
6461
6462 unsigned dcc_tile_swizzle = surf->tile_swizzle;
6463 dcc_tile_swizzle &= (surf->dcc_alignment - 1) >> 8;
6464
6465 cb->cb_dcc_base = va >> 8;
6466 cb->cb_dcc_base |= dcc_tile_swizzle;
6467
6468 /* GFX10 field has the same base shift as the GFX6 field. */
6469 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
6470 cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) |
6471 S_028C6C_SLICE_MAX_GFX10(max_slice);
6472
6473 if (iview->image->info.samples > 1) {
6474 unsigned log_samples = util_logbase2(iview->image->info.samples);
6475
6476 cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) |
6477 S_028C74_NUM_FRAGMENTS(log_samples);
6478 }
6479
6480 if (radv_image_has_fmask(iview->image)) {
6481 va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->fmask_offset;
6482 cb->cb_color_fmask = va >> 8;
6483 cb->cb_color_fmask |= surf->fmask_tile_swizzle;
6484 } else {
6485 cb->cb_color_fmask = cb->cb_color_base;
6486 }
6487
6488 ntype = radv_translate_color_numformat(iview->vk_format,
6489 desc,
6490 vk_format_get_first_non_void_channel(iview->vk_format));
6491 format = radv_translate_colorformat(iview->vk_format);
6492 if (format == V_028C70_COLOR_INVALID || ntype == ~0u)
6493 radv_finishme("Illegal color\n");
6494 swap = radv_translate_colorswap(iview->vk_format, false);
6495 endian = radv_colorformat_endian_swap(format);
6496
6497 /* blend clamp should be set for all NORM/SRGB types */
6498 if (ntype == V_028C70_NUMBER_UNORM ||
6499 ntype == V_028C70_NUMBER_SNORM ||
6500 ntype == V_028C70_NUMBER_SRGB)
6501 blend_clamp = 1;
6502
6503 /* set blend bypass according to docs if SINT/UINT or
6504 8/24 COLOR variants */
6505 if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
6506 format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
6507 format == V_028C70_COLOR_X24_8_32_FLOAT) {
6508 blend_clamp = 0;
6509 blend_bypass = 1;
6510 }
6511 #if 0
6512 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
6513 (format == V_028C70_COLOR_8 ||
6514 format == V_028C70_COLOR_8_8 ||
6515 format == V_028C70_COLOR_8_8_8_8))
6516 ->color_is_int8 = true;
6517 #endif
6518 cb->cb_color_info = S_028C70_FORMAT(format) |
6519 S_028C70_COMP_SWAP(swap) |
6520 S_028C70_BLEND_CLAMP(blend_clamp) |
6521 S_028C70_BLEND_BYPASS(blend_bypass) |
6522 S_028C70_SIMPLE_FLOAT(1) |
6523 S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM &&
6524 ntype != V_028C70_NUMBER_SNORM &&
6525 ntype != V_028C70_NUMBER_SRGB &&
6526 format != V_028C70_COLOR_8_24 &&
6527 format != V_028C70_COLOR_24_8) |
6528 S_028C70_NUMBER_TYPE(ntype) |
6529 S_028C70_ENDIAN(endian);
6530 if (radv_image_has_fmask(iview->image)) {
6531 cb->cb_color_info |= S_028C70_COMPRESSION(1);
6532 if (device->physical_device->rad_info.chip_class == GFX6) {
6533 unsigned fmask_bankh = util_logbase2(surf->u.legacy.fmask.bankh);
6534 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
6535 }
6536
6537 if (radv_image_is_tc_compat_cmask(iview->image)) {
6538 /* Allow the texture block to read FMASK directly
6539 * without decompressing it. This bit must be cleared
6540 * when performing FMASK_DECOMPRESS or DCC_COMPRESS,
6541 * otherwise the operation doesn't happen.
6542 */
6543 cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1);
6544
6545 /* Set CMASK into a tiling format that allows the
6546 * texture block to read it.
6547 */
6548 cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2);
6549 }
6550 }
6551
6552 if (radv_image_has_cmask(iview->image) &&
6553 !(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
6554 cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
6555
6556 if (radv_dcc_enabled(iview->image, iview->base_mip))
6557 cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
6558
6559 cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview);
6560
6561 /* This must be set for fast clear to work without FMASK. */
6562 if (!radv_image_has_fmask(iview->image) &&
6563 device->physical_device->rad_info.chip_class == GFX6) {
6564 unsigned bankh = util_logbase2(surf->u.legacy.bankh);
6565 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
6566 }
6567
6568 if (device->physical_device->rad_info.chip_class >= GFX9) {
6569 const struct vk_format_description *format_desc = vk_format_description(iview->image->vk_format);
6570
6571 unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D ?
6572 (iview->extent.depth - 1) : (iview->image->info.array_size - 1);
6573 unsigned width = iview->extent.width / (iview->plane_id ? format_desc->width_divisor : 1);
6574 unsigned height = iview->extent.height / (iview->plane_id ? format_desc->height_divisor : 1);
6575
6576 if (device->physical_device->rad_info.chip_class >= GFX10) {
6577 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->base_mip);
6578
6579 cb->cb_color_attrib3 |= S_028EE0_MIP0_DEPTH(mip0_depth) |
6580 S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) |
6581 S_028EE0_RESOURCE_LEVEL(1);
6582 } else {
6583 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->base_mip);
6584 cb->cb_color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) |
6585 S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type);
6586 }
6587
6588 cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) |
6589 S_028C68_MIP0_HEIGHT(height - 1) |
6590 S_028C68_MAX_MIP(iview->image->info.levels - 1);
6591 }
6592 }
6593
6594 static unsigned
6595 radv_calc_decompress_on_z_planes(struct radv_device *device,
6596 struct radv_image_view *iview)
6597 {
6598 unsigned max_zplanes = 0;
6599
6600 assert(radv_image_is_tc_compat_htile(iview->image));
6601
6602 if (device->physical_device->rad_info.chip_class >= GFX9) {
6603 /* Default value for 32-bit depth surfaces. */
6604 max_zplanes = 4;
6605
6606 if (iview->vk_format == VK_FORMAT_D16_UNORM &&
6607 iview->image->info.samples > 1)
6608 max_zplanes = 2;
6609
6610 max_zplanes = max_zplanes + 1;
6611 } else {
6612 if (iview->vk_format == VK_FORMAT_D16_UNORM) {
6613 /* Do not enable Z plane compression for 16-bit depth
6614 * surfaces because isn't supported on GFX8. Only
6615 * 32-bit depth surfaces are supported by the hardware.
6616 * This allows to maintain shader compatibility and to
6617 * reduce the number of depth decompressions.
6618 */
6619 max_zplanes = 1;
6620 } else {
6621 if (iview->image->info.samples <= 1)
6622 max_zplanes = 5;
6623 else if (iview->image->info.samples <= 4)
6624 max_zplanes = 3;
6625 else
6626 max_zplanes = 2;
6627 }
6628 }
6629
6630 return max_zplanes;
6631 }
6632
6633 void
6634 radv_initialise_ds_surface(struct radv_device *device,
6635 struct radv_ds_buffer_info *ds,
6636 struct radv_image_view *iview)
6637 {
6638 unsigned level = iview->base_mip;
6639 unsigned format, stencil_format;
6640 uint64_t va, s_offs, z_offs;
6641 bool stencil_only = false;
6642 const struct radv_image_plane *plane = &iview->image->planes[0];
6643 const struct radeon_surf *surf = &plane->surface;
6644
6645 assert(vk_format_get_plane_count(iview->image->vk_format) == 1);
6646
6647 memset(ds, 0, sizeof(*ds));
6648 switch (iview->image->vk_format) {
6649 case VK_FORMAT_D24_UNORM_S8_UINT:
6650 case VK_FORMAT_X8_D24_UNORM_PACK32:
6651 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
6652 ds->offset_scale = 2.0f;
6653 break;
6654 case VK_FORMAT_D16_UNORM:
6655 case VK_FORMAT_D16_UNORM_S8_UINT:
6656 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
6657 ds->offset_scale = 4.0f;
6658 break;
6659 case VK_FORMAT_D32_SFLOAT:
6660 case VK_FORMAT_D32_SFLOAT_S8_UINT:
6661 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) |
6662 S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
6663 ds->offset_scale = 1.0f;
6664 break;
6665 case VK_FORMAT_S8_UINT:
6666 stencil_only = true;
6667 break;
6668 default:
6669 break;
6670 }
6671
6672 format = radv_translate_dbformat(iview->image->vk_format);
6673 stencil_format = surf->has_stencil ?
6674 V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
6675
6676 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
6677 ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) |
6678 S_028008_SLICE_MAX(max_slice);
6679 if (device->physical_device->rad_info.chip_class >= GFX10) {
6680 ds->db_depth_view |= S_028008_SLICE_START_HI(iview->base_layer >> 11) |
6681 S_028008_SLICE_MAX_HI(max_slice >> 11);
6682 }
6683
6684 ds->db_htile_data_base = 0;
6685 ds->db_htile_surface = 0;
6686
6687 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
6688 s_offs = z_offs = va;
6689
6690 if (device->physical_device->rad_info.chip_class >= GFX9) {
6691 assert(surf->u.gfx9.surf_offset == 0);
6692 s_offs += surf->u.gfx9.stencil_offset;
6693
6694 ds->db_z_info = S_028038_FORMAT(format) |
6695 S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
6696 S_028038_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
6697 S_028038_MAXMIP(iview->image->info.levels - 1) |
6698 S_028038_ZRANGE_PRECISION(1);
6699 ds->db_stencil_info = S_02803C_FORMAT(stencil_format) |
6700 S_02803C_SW_MODE(surf->u.gfx9.stencil.swizzle_mode);
6701
6702 if (device->physical_device->rad_info.chip_class == GFX9) {
6703 ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.surf.epitch);
6704 ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.stencil.epitch);
6705 }
6706
6707 ds->db_depth_view |= S_028008_MIPID(level);
6708 ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
6709 S_02801C_Y_MAX(iview->image->info.height - 1);
6710
6711 if (radv_htile_enabled(iview->image, level)) {
6712 ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
6713
6714 if (radv_image_is_tc_compat_htile(iview->image)) {
6715 unsigned max_zplanes =
6716 radv_calc_decompress_on_z_planes(device, iview);
6717
6718 ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
6719
6720 if (device->physical_device->rad_info.chip_class >= GFX10) {
6721 ds->db_z_info |= S_028040_ITERATE_FLUSH(1);
6722 ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1);
6723 } else {
6724 ds->db_z_info |= S_028038_ITERATE_FLUSH(1);
6725 ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
6726 }
6727 }
6728
6729 if (!surf->has_stencil)
6730 /* Use all of the htile_buffer for depth if there's no stencil. */
6731 ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
6732 va = radv_buffer_get_va(iview->bo) + iview->image->offset +
6733 iview->image->htile_offset;
6734 ds->db_htile_data_base = va >> 8;
6735 ds->db_htile_surface = S_028ABC_FULL_CACHE(1) |
6736 S_028ABC_PIPE_ALIGNED(surf->u.gfx9.htile.pipe_aligned);
6737
6738 if (device->physical_device->rad_info.chip_class == GFX9) {
6739 ds->db_htile_surface |= S_028ABC_RB_ALIGNED(surf->u.gfx9.htile.rb_aligned);
6740 }
6741 }
6742 } else {
6743 const struct legacy_surf_level *level_info = &surf->u.legacy.level[level];
6744
6745 if (stencil_only)
6746 level_info = &surf->u.legacy.stencil_level[level];
6747
6748 z_offs += surf->u.legacy.level[level].offset;
6749 s_offs += surf->u.legacy.stencil_level[level].offset;
6750
6751 ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image));
6752 ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
6753 ds->db_stencil_info = S_028044_FORMAT(stencil_format);
6754
6755 if (iview->image->info.samples > 1)
6756 ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
6757
6758 if (device->physical_device->rad_info.chip_class >= GFX7) {
6759 struct radeon_info *info = &device->physical_device->rad_info;
6760 unsigned tiling_index = surf->u.legacy.tiling_index[level];
6761 unsigned stencil_index = surf->u.legacy.stencil_tiling_index[level];
6762 unsigned macro_index = surf->u.legacy.macro_tile_index;
6763 unsigned tile_mode = info->si_tile_mode_array[tiling_index];
6764 unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
6765 unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
6766
6767 if (stencil_only)
6768 tile_mode = stencil_tile_mode;
6769
6770 ds->db_depth_info |=
6771 S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
6772 S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
6773 S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
6774 S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
6775 S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
6776 S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
6777 ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
6778 ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
6779 } else {
6780 unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false);
6781 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
6782 tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true);
6783 ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
6784 if (stencil_only)
6785 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
6786 }
6787
6788 ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
6789 S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
6790 ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
6791
6792 if (radv_htile_enabled(iview->image, level)) {
6793 ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
6794
6795 if (!surf->has_stencil &&
6796 !radv_image_is_tc_compat_htile(iview->image))
6797 /* Use all of the htile_buffer for depth if there's no stencil. */
6798 ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
6799
6800 va = radv_buffer_get_va(iview->bo) + iview->image->offset +
6801 iview->image->htile_offset;
6802 ds->db_htile_data_base = va >> 8;
6803 ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
6804
6805 if (radv_image_is_tc_compat_htile(iview->image)) {
6806 unsigned max_zplanes =
6807 radv_calc_decompress_on_z_planes(device, iview);
6808
6809 ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
6810 ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
6811 }
6812 }
6813 }
6814
6815 ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
6816 ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
6817 }
6818
6819 VkResult radv_CreateFramebuffer(
6820 VkDevice _device,
6821 const VkFramebufferCreateInfo* pCreateInfo,
6822 const VkAllocationCallbacks* pAllocator,
6823 VkFramebuffer* pFramebuffer)
6824 {
6825 RADV_FROM_HANDLE(radv_device, device, _device);
6826 struct radv_framebuffer *framebuffer;
6827 const VkFramebufferAttachmentsCreateInfo *imageless_create_info =
6828 vk_find_struct_const(pCreateInfo->pNext,
6829 FRAMEBUFFER_ATTACHMENTS_CREATE_INFO);
6830
6831 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
6832
6833 size_t size = sizeof(*framebuffer);
6834 if (!imageless_create_info)
6835 size += sizeof(struct radv_image_view*) * pCreateInfo->attachmentCount;
6836 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
6837 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6838 if (framebuffer == NULL)
6839 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
6840
6841 framebuffer->attachment_count = pCreateInfo->attachmentCount;
6842 framebuffer->width = pCreateInfo->width;
6843 framebuffer->height = pCreateInfo->height;
6844 framebuffer->layers = pCreateInfo->layers;
6845 if (imageless_create_info) {
6846 for (unsigned i = 0; i < imageless_create_info->attachmentImageInfoCount; ++i) {
6847 const VkFramebufferAttachmentImageInfo *attachment =
6848 imageless_create_info->pAttachmentImageInfos + i;
6849 framebuffer->width = MIN2(framebuffer->width, attachment->width);
6850 framebuffer->height = MIN2(framebuffer->height, attachment->height);
6851 framebuffer->layers = MIN2(framebuffer->layers, attachment->layerCount);
6852 }
6853 } else {
6854 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
6855 VkImageView _iview = pCreateInfo->pAttachments[i];
6856 struct radv_image_view *iview = radv_image_view_from_handle(_iview);
6857 framebuffer->attachments[i] = iview;
6858 framebuffer->width = MIN2(framebuffer->width, iview->extent.width);
6859 framebuffer->height = MIN2(framebuffer->height, iview->extent.height);
6860 framebuffer->layers = MIN2(framebuffer->layers, radv_surface_max_layer_count(iview));
6861 }
6862 }
6863
6864 *pFramebuffer = radv_framebuffer_to_handle(framebuffer);
6865 return VK_SUCCESS;
6866 }
6867
6868 void radv_DestroyFramebuffer(
6869 VkDevice _device,
6870 VkFramebuffer _fb,
6871 const VkAllocationCallbacks* pAllocator)
6872 {
6873 RADV_FROM_HANDLE(radv_device, device, _device);
6874 RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
6875
6876 if (!fb)
6877 return;
6878 vk_free2(&device->alloc, pAllocator, fb);
6879 }
6880
6881 static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode)
6882 {
6883 switch (address_mode) {
6884 case VK_SAMPLER_ADDRESS_MODE_REPEAT:
6885 return V_008F30_SQ_TEX_WRAP;
6886 case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
6887 return V_008F30_SQ_TEX_MIRROR;
6888 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
6889 return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
6890 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
6891 return V_008F30_SQ_TEX_CLAMP_BORDER;
6892 case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
6893 return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
6894 default:
6895 unreachable("illegal tex wrap mode");
6896 break;
6897 }
6898 }
6899
6900 static unsigned
6901 radv_tex_compare(VkCompareOp op)
6902 {
6903 switch (op) {
6904 case VK_COMPARE_OP_NEVER:
6905 return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
6906 case VK_COMPARE_OP_LESS:
6907 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
6908 case VK_COMPARE_OP_EQUAL:
6909 return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
6910 case VK_COMPARE_OP_LESS_OR_EQUAL:
6911 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
6912 case VK_COMPARE_OP_GREATER:
6913 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
6914 case VK_COMPARE_OP_NOT_EQUAL:
6915 return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
6916 case VK_COMPARE_OP_GREATER_OR_EQUAL:
6917 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
6918 case VK_COMPARE_OP_ALWAYS:
6919 return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
6920 default:
6921 unreachable("illegal compare mode");
6922 break;
6923 }
6924 }
6925
6926 static unsigned
6927 radv_tex_filter(VkFilter filter, unsigned max_ansio)
6928 {
6929 switch (filter) {
6930 case VK_FILTER_NEAREST:
6931 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT :
6932 V_008F38_SQ_TEX_XY_FILTER_POINT);
6933 case VK_FILTER_LINEAR:
6934 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR :
6935 V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
6936 case VK_FILTER_CUBIC_IMG:
6937 default:
6938 fprintf(stderr, "illegal texture filter");
6939 return 0;
6940 }
6941 }
6942
6943 static unsigned
6944 radv_tex_mipfilter(VkSamplerMipmapMode mode)
6945 {
6946 switch (mode) {
6947 case VK_SAMPLER_MIPMAP_MODE_NEAREST:
6948 return V_008F38_SQ_TEX_Z_FILTER_POINT;
6949 case VK_SAMPLER_MIPMAP_MODE_LINEAR:
6950 return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
6951 default:
6952 return V_008F38_SQ_TEX_Z_FILTER_NONE;
6953 }
6954 }
6955
6956 static unsigned
6957 radv_tex_bordercolor(VkBorderColor bcolor)
6958 {
6959 switch (bcolor) {
6960 case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
6961 case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
6962 return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
6963 case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
6964 case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
6965 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
6966 case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
6967 case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
6968 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
6969 default:
6970 break;
6971 }
6972 return 0;
6973 }
6974
6975 static unsigned
6976 radv_tex_aniso_filter(unsigned filter)
6977 {
6978 if (filter < 2)
6979 return 0;
6980 if (filter < 4)
6981 return 1;
6982 if (filter < 8)
6983 return 2;
6984 if (filter < 16)
6985 return 3;
6986 return 4;
6987 }
6988
6989 static unsigned
6990 radv_tex_filter_mode(VkSamplerReductionMode mode)
6991 {
6992 switch (mode) {
6993 case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT:
6994 return V_008F30_SQ_IMG_FILTER_MODE_BLEND;
6995 case VK_SAMPLER_REDUCTION_MODE_MIN_EXT:
6996 return V_008F30_SQ_IMG_FILTER_MODE_MIN;
6997 case VK_SAMPLER_REDUCTION_MODE_MAX_EXT:
6998 return V_008F30_SQ_IMG_FILTER_MODE_MAX;
6999 default:
7000 break;
7001 }
7002 return 0;
7003 }
7004
7005 static uint32_t
7006 radv_get_max_anisotropy(struct radv_device *device,
7007 const VkSamplerCreateInfo *pCreateInfo)
7008 {
7009 if (device->force_aniso >= 0)
7010 return device->force_aniso;
7011
7012 if (pCreateInfo->anisotropyEnable &&
7013 pCreateInfo->maxAnisotropy > 1.0f)
7014 return (uint32_t)pCreateInfo->maxAnisotropy;
7015
7016 return 0;
7017 }
7018
7019 static void
7020 radv_init_sampler(struct radv_device *device,
7021 struct radv_sampler *sampler,
7022 const VkSamplerCreateInfo *pCreateInfo)
7023 {
7024 uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo);
7025 uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
7026 bool compat_mode = device->physical_device->rad_info.chip_class == GFX8 ||
7027 device->physical_device->rad_info.chip_class == GFX9;
7028 unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND;
7029 unsigned depth_compare_func = V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
7030
7031 const struct VkSamplerReductionModeCreateInfo *sampler_reduction =
7032 vk_find_struct_const(pCreateInfo->pNext,
7033 SAMPLER_REDUCTION_MODE_CREATE_INFO);
7034 if (sampler_reduction)
7035 filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode);
7036
7037 if (pCreateInfo->compareEnable)
7038 depth_compare_func = radv_tex_compare(pCreateInfo->compareOp);
7039
7040 sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
7041 S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
7042 S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
7043 S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) |
7044 S_008F30_DEPTH_COMPARE_FUNC(depth_compare_func) |
7045 S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
7046 S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) |
7047 S_008F30_ANISO_BIAS(max_aniso_ratio) |
7048 S_008F30_DISABLE_CUBE_WRAP(0) |
7049 S_008F30_COMPAT_MODE(compat_mode) |
7050 S_008F30_FILTER_MODE(filter_mode));
7051 sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
7052 S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
7053 S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
7054 sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
7055 S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
7056 S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
7057 S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
7058 S_008F38_MIP_POINT_PRECLAMP(0));
7059 sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(0) |
7060 S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(pCreateInfo->borderColor)));
7061
7062 if (device->physical_device->rad_info.chip_class >= GFX10) {
7063 sampler->state[2] |= S_008F38_ANISO_OVERRIDE_GFX10(1);
7064 } else {
7065 sampler->state[2] |=
7066 S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= GFX8) |
7067 S_008F38_FILTER_PREC_FIX(1) |
7068 S_008F38_ANISO_OVERRIDE_GFX6(device->physical_device->rad_info.chip_class >= GFX8);
7069 }
7070 }
7071
7072 VkResult radv_CreateSampler(
7073 VkDevice _device,
7074 const VkSamplerCreateInfo* pCreateInfo,
7075 const VkAllocationCallbacks* pAllocator,
7076 VkSampler* pSampler)
7077 {
7078 RADV_FROM_HANDLE(radv_device, device, _device);
7079 struct radv_sampler *sampler;
7080
7081 const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion =
7082 vk_find_struct_const(pCreateInfo->pNext,
7083 SAMPLER_YCBCR_CONVERSION_INFO);
7084
7085 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
7086
7087 sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8,
7088 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
7089 if (!sampler)
7090 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
7091
7092 radv_init_sampler(device, sampler, pCreateInfo);
7093
7094 sampler->ycbcr_sampler = ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion): NULL;
7095 *pSampler = radv_sampler_to_handle(sampler);
7096
7097 return VK_SUCCESS;
7098 }
7099
7100 void radv_DestroySampler(
7101 VkDevice _device,
7102 VkSampler _sampler,
7103 const VkAllocationCallbacks* pAllocator)
7104 {
7105 RADV_FROM_HANDLE(radv_device, device, _device);
7106 RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
7107
7108 if (!sampler)
7109 return;
7110 vk_free2(&device->alloc, pAllocator, sampler);
7111 }
7112
7113 /* vk_icd.h does not declare this function, so we declare it here to
7114 * suppress Wmissing-prototypes.
7115 */
7116 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
7117 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion);
7118
7119 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
7120 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
7121 {
7122 /* For the full details on loader interface versioning, see
7123 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
7124 * What follows is a condensed summary, to help you navigate the large and
7125 * confusing official doc.
7126 *
7127 * - Loader interface v0 is incompatible with later versions. We don't
7128 * support it.
7129 *
7130 * - In loader interface v1:
7131 * - The first ICD entrypoint called by the loader is
7132 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
7133 * entrypoint.
7134 * - The ICD must statically expose no other Vulkan symbol unless it is
7135 * linked with -Bsymbolic.
7136 * - Each dispatchable Vulkan handle created by the ICD must be
7137 * a pointer to a struct whose first member is VK_LOADER_DATA. The
7138 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
7139 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
7140 * vkDestroySurfaceKHR(). The ICD must be capable of working with
7141 * such loader-managed surfaces.
7142 *
7143 * - Loader interface v2 differs from v1 in:
7144 * - The first ICD entrypoint called by the loader is
7145 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
7146 * statically expose this entrypoint.
7147 *
7148 * - Loader interface v3 differs from v2 in:
7149 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
7150 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
7151 * because the loader no longer does so.
7152 */
7153 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
7154 return VK_SUCCESS;
7155 }
7156
7157 VkResult radv_GetMemoryFdKHR(VkDevice _device,
7158 const VkMemoryGetFdInfoKHR *pGetFdInfo,
7159 int *pFD)
7160 {
7161 RADV_FROM_HANDLE(radv_device, device, _device);
7162 RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
7163
7164 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
7165
7166 /* At the moment, we support only the below handle types. */
7167 assert(pGetFdInfo->handleType ==
7168 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
7169 pGetFdInfo->handleType ==
7170 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
7171
7172 bool ret = radv_get_memory_fd(device, memory, pFD);
7173 if (ret == false)
7174 return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
7175 return VK_SUCCESS;
7176 }
7177
7178 VkResult radv_GetMemoryFdPropertiesKHR(VkDevice _device,
7179 VkExternalMemoryHandleTypeFlagBits handleType,
7180 int fd,
7181 VkMemoryFdPropertiesKHR *pMemoryFdProperties)
7182 {
7183 RADV_FROM_HANDLE(radv_device, device, _device);
7184
7185 switch (handleType) {
7186 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
7187 pMemoryFdProperties->memoryTypeBits = (1 << RADV_MEM_TYPE_COUNT) - 1;
7188 return VK_SUCCESS;
7189
7190 default:
7191 /* The valid usage section for this function says:
7192 *
7193 * "handleType must not be one of the handle types defined as
7194 * opaque."
7195 *
7196 * So opaque handle types fall into the default "unsupported" case.
7197 */
7198 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7199 }
7200 }
7201
7202 static VkResult radv_import_opaque_fd(struct radv_device *device,
7203 int fd,
7204 uint32_t *syncobj)
7205 {
7206 uint32_t syncobj_handle = 0;
7207 int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle);
7208 if (ret != 0)
7209 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7210
7211 if (*syncobj)
7212 device->ws->destroy_syncobj(device->ws, *syncobj);
7213
7214 *syncobj = syncobj_handle;
7215 close(fd);
7216
7217 return VK_SUCCESS;
7218 }
7219
7220 static VkResult radv_import_sync_fd(struct radv_device *device,
7221 int fd,
7222 uint32_t *syncobj)
7223 {
7224 /* If we create a syncobj we do it locally so that if we have an error, we don't
7225 * leave a syncobj in an undetermined state in the fence. */
7226 uint32_t syncobj_handle = *syncobj;
7227 if (!syncobj_handle) {
7228 int ret = device->ws->create_syncobj(device->ws, &syncobj_handle);
7229 if (ret) {
7230 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7231 }
7232 }
7233
7234 if (fd == -1) {
7235 device->ws->signal_syncobj(device->ws, syncobj_handle);
7236 } else {
7237 int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd);
7238 if (ret != 0)
7239 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7240 }
7241
7242 *syncobj = syncobj_handle;
7243 if (fd != -1)
7244 close(fd);
7245
7246 return VK_SUCCESS;
7247 }
7248
7249 VkResult radv_ImportSemaphoreFdKHR(VkDevice _device,
7250 const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo)
7251 {
7252 RADV_FROM_HANDLE(radv_device, device, _device);
7253 RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore);
7254 VkResult result;
7255 struct radv_semaphore_part *dst = NULL;
7256
7257 if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) {
7258 dst = &sem->temporary;
7259 } else {
7260 dst = &sem->permanent;
7261 }
7262
7263 uint32_t syncobj = dst->kind == RADV_SEMAPHORE_SYNCOBJ ? dst->syncobj : 0;
7264
7265 switch(pImportSemaphoreFdInfo->handleType) {
7266 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
7267 result = radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
7268 break;
7269 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
7270 result = radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
7271 break;
7272 default:
7273 unreachable("Unhandled semaphore handle type");
7274 }
7275
7276 if (result == VK_SUCCESS) {
7277 dst->syncobj = syncobj;
7278 dst->kind = RADV_SEMAPHORE_SYNCOBJ;
7279 }
7280
7281 return result;
7282 }
7283
7284 VkResult radv_GetSemaphoreFdKHR(VkDevice _device,
7285 const VkSemaphoreGetFdInfoKHR *pGetFdInfo,
7286 int *pFd)
7287 {
7288 RADV_FROM_HANDLE(radv_device, device, _device);
7289 RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore);
7290 int ret;
7291 uint32_t syncobj_handle;
7292
7293 if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
7294 assert(sem->temporary.kind == RADV_SEMAPHORE_SYNCOBJ);
7295 syncobj_handle = sem->temporary.syncobj;
7296 } else {
7297 assert(sem->permanent.kind == RADV_SEMAPHORE_SYNCOBJ);
7298 syncobj_handle = sem->permanent.syncobj;
7299 }
7300
7301 switch(pGetFdInfo->handleType) {
7302 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
7303 ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
7304 break;
7305 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
7306 ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
7307 if (!ret) {
7308 if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
7309 radv_destroy_semaphore_part(device, &sem->temporary);
7310 } else {
7311 device->ws->reset_syncobj(device->ws, syncobj_handle);
7312 }
7313 }
7314 break;
7315 default:
7316 unreachable("Unhandled semaphore handle type");
7317 }
7318
7319 if (ret)
7320 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7321 return VK_SUCCESS;
7322 }
7323
7324 void radv_GetPhysicalDeviceExternalSemaphoreProperties(
7325 VkPhysicalDevice physicalDevice,
7326 const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo,
7327 VkExternalSemaphoreProperties *pExternalSemaphoreProperties)
7328 {
7329 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
7330 VkSemaphoreTypeKHR type = radv_get_semaphore_type(pExternalSemaphoreInfo->pNext, NULL);
7331
7332 if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
7333 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
7334 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
7335 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
7336
7337 /* Require has_syncobj_wait_for_submit for the syncobj signal ioctl introduced at virtually the same time */
7338 } else if (pdevice->rad_info.has_syncobj_wait_for_submit &&
7339 (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT ||
7340 pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)) {
7341 pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
7342 pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
7343 pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
7344 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
7345 } else if (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
7346 pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
7347 pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
7348 pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
7349 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
7350 } else {
7351 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
7352 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
7353 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
7354 }
7355 }
7356
7357 VkResult radv_ImportFenceFdKHR(VkDevice _device,
7358 const VkImportFenceFdInfoKHR *pImportFenceFdInfo)
7359 {
7360 RADV_FROM_HANDLE(radv_device, device, _device);
7361 RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence);
7362 uint32_t *syncobj_dst = NULL;
7363
7364
7365 if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) {
7366 syncobj_dst = &fence->temp_syncobj;
7367 } else {
7368 syncobj_dst = &fence->syncobj;
7369 }
7370
7371 switch(pImportFenceFdInfo->handleType) {
7372 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
7373 return radv_import_opaque_fd(device, pImportFenceFdInfo->fd, syncobj_dst);
7374 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
7375 return radv_import_sync_fd(device, pImportFenceFdInfo->fd, syncobj_dst);
7376 default:
7377 unreachable("Unhandled fence handle type");
7378 }
7379 }
7380
7381 VkResult radv_GetFenceFdKHR(VkDevice _device,
7382 const VkFenceGetFdInfoKHR *pGetFdInfo,
7383 int *pFd)
7384 {
7385 RADV_FROM_HANDLE(radv_device, device, _device);
7386 RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence);
7387 int ret;
7388 uint32_t syncobj_handle;
7389
7390 if (fence->temp_syncobj)
7391 syncobj_handle = fence->temp_syncobj;
7392 else
7393 syncobj_handle = fence->syncobj;
7394
7395 switch(pGetFdInfo->handleType) {
7396 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
7397 ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
7398 break;
7399 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
7400 ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
7401 if (!ret) {
7402 if (fence->temp_syncobj) {
7403 close (fence->temp_syncobj);
7404 fence->temp_syncobj = 0;
7405 } else {
7406 device->ws->reset_syncobj(device->ws, syncobj_handle);
7407 }
7408 }
7409 break;
7410 default:
7411 unreachable("Unhandled fence handle type");
7412 }
7413
7414 if (ret)
7415 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7416 return VK_SUCCESS;
7417 }
7418
7419 void radv_GetPhysicalDeviceExternalFenceProperties(
7420 VkPhysicalDevice physicalDevice,
7421 const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo,
7422 VkExternalFenceProperties *pExternalFenceProperties)
7423 {
7424 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
7425
7426 if (pdevice->rad_info.has_syncobj_wait_for_submit &&
7427 (pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT ||
7428 pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT)) {
7429 pExternalFenceProperties->exportFromImportedHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
7430 pExternalFenceProperties->compatibleHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
7431 pExternalFenceProperties->externalFenceFeatures = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT |
7432 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
7433 } else {
7434 pExternalFenceProperties->exportFromImportedHandleTypes = 0;
7435 pExternalFenceProperties->compatibleHandleTypes = 0;
7436 pExternalFenceProperties->externalFenceFeatures = 0;
7437 }
7438 }
7439
7440 VkResult
7441 radv_CreateDebugReportCallbackEXT(VkInstance _instance,
7442 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
7443 const VkAllocationCallbacks* pAllocator,
7444 VkDebugReportCallbackEXT* pCallback)
7445 {
7446 RADV_FROM_HANDLE(radv_instance, instance, _instance);
7447 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
7448 pCreateInfo, pAllocator, &instance->alloc,
7449 pCallback);
7450 }
7451
7452 void
7453 radv_DestroyDebugReportCallbackEXT(VkInstance _instance,
7454 VkDebugReportCallbackEXT _callback,
7455 const VkAllocationCallbacks* pAllocator)
7456 {
7457 RADV_FROM_HANDLE(radv_instance, instance, _instance);
7458 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
7459 _callback, pAllocator, &instance->alloc);
7460 }
7461
7462 void
7463 radv_DebugReportMessageEXT(VkInstance _instance,
7464 VkDebugReportFlagsEXT flags,
7465 VkDebugReportObjectTypeEXT objectType,
7466 uint64_t object,
7467 size_t location,
7468 int32_t messageCode,
7469 const char* pLayerPrefix,
7470 const char* pMessage)
7471 {
7472 RADV_FROM_HANDLE(radv_instance, instance, _instance);
7473 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
7474 object, location, messageCode, pLayerPrefix, pMessage);
7475 }
7476
7477 void
7478 radv_GetDeviceGroupPeerMemoryFeatures(
7479 VkDevice device,
7480 uint32_t heapIndex,
7481 uint32_t localDeviceIndex,
7482 uint32_t remoteDeviceIndex,
7483 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
7484 {
7485 assert(localDeviceIndex == remoteDeviceIndex);
7486
7487 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
7488 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
7489 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
7490 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
7491 }
7492
7493 static const VkTimeDomainEXT radv_time_domains[] = {
7494 VK_TIME_DOMAIN_DEVICE_EXT,
7495 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
7496 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
7497 };
7498
7499 VkResult radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
7500 VkPhysicalDevice physicalDevice,
7501 uint32_t *pTimeDomainCount,
7502 VkTimeDomainEXT *pTimeDomains)
7503 {
7504 int d;
7505 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
7506
7507 for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
7508 vk_outarray_append(&out, i) {
7509 *i = radv_time_domains[d];
7510 }
7511 }
7512
7513 return vk_outarray_status(&out);
7514 }
7515
7516 static uint64_t
7517 radv_clock_gettime(clockid_t clock_id)
7518 {
7519 struct timespec current;
7520 int ret;
7521
7522 ret = clock_gettime(clock_id, &current);
7523 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
7524 ret = clock_gettime(CLOCK_MONOTONIC, &current);
7525 if (ret < 0)
7526 return 0;
7527
7528 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
7529 }
7530
7531 VkResult radv_GetCalibratedTimestampsEXT(
7532 VkDevice _device,
7533 uint32_t timestampCount,
7534 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
7535 uint64_t *pTimestamps,
7536 uint64_t *pMaxDeviation)
7537 {
7538 RADV_FROM_HANDLE(radv_device, device, _device);
7539 uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq;
7540 int d;
7541 uint64_t begin, end;
7542 uint64_t max_clock_period = 0;
7543
7544 begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
7545
7546 for (d = 0; d < timestampCount; d++) {
7547 switch (pTimestampInfos[d].timeDomain) {
7548 case VK_TIME_DOMAIN_DEVICE_EXT:
7549 pTimestamps[d] = device->ws->query_value(device->ws,
7550 RADEON_TIMESTAMP);
7551 uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq);
7552 max_clock_period = MAX2(max_clock_period, device_period);
7553 break;
7554 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
7555 pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC);
7556 max_clock_period = MAX2(max_clock_period, 1);
7557 break;
7558
7559 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
7560 pTimestamps[d] = begin;
7561 break;
7562 default:
7563 pTimestamps[d] = 0;
7564 break;
7565 }
7566 }
7567
7568 end = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
7569
7570 /*
7571 * The maximum deviation is the sum of the interval over which we
7572 * perform the sampling and the maximum period of any sampled
7573 * clock. That's because the maximum skew between any two sampled
7574 * clock edges is when the sampled clock with the largest period is
7575 * sampled at the end of that period but right at the beginning of the
7576 * sampling interval and some other clock is sampled right at the
7577 * begining of its sampling period and right at the end of the
7578 * sampling interval. Let's assume the GPU has the longest clock
7579 * period and that the application is sampling GPU and monotonic:
7580 *
7581 * s e
7582 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
7583 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
7584 *
7585 * g
7586 * 0 1 2 3
7587 * GPU -----_____-----_____-----_____-----_____
7588 *
7589 * m
7590 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
7591 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
7592 *
7593 * Interval <----------------->
7594 * Deviation <-------------------------->
7595 *
7596 * s = read(raw) 2
7597 * g = read(GPU) 1
7598 * m = read(monotonic) 2
7599 * e = read(raw) b
7600 *
7601 * We round the sample interval up by one tick to cover sampling error
7602 * in the interval clock
7603 */
7604
7605 uint64_t sample_interval = end - begin + 1;
7606
7607 *pMaxDeviation = sample_interval + max_clock_period;
7608
7609 return VK_SUCCESS;
7610 }
7611
7612 void radv_GetPhysicalDeviceMultisamplePropertiesEXT(
7613 VkPhysicalDevice physicalDevice,
7614 VkSampleCountFlagBits samples,
7615 VkMultisamplePropertiesEXT* pMultisampleProperties)
7616 {
7617 if (samples & (VK_SAMPLE_COUNT_2_BIT |
7618 VK_SAMPLE_COUNT_4_BIT |
7619 VK_SAMPLE_COUNT_8_BIT)) {
7620 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 2, 2 };
7621 } else {
7622 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 0, 0 };
7623 }
7624 }