radv/gfx10: enable geometry shaders
[mesa.git] / src / amd / vulkan / radv_device.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include <stdbool.h>
29 #include <string.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32 #include "radv_debug.h"
33 #include "radv_private.h"
34 #include "radv_shader.h"
35 #include "radv_cs.h"
36 #include "util/disk_cache.h"
37 #include "util/strtod.h"
38 #include "vk_util.h"
39 #include <xf86drm.h>
40 #include <amdgpu.h>
41 #include <amdgpu_drm.h>
42 #include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
43 #include "ac_llvm_util.h"
44 #include "vk_format.h"
45 #include "sid.h"
46 #include "git_sha1.h"
47 #include "util/build_id.h"
48 #include "util/debug.h"
49 #include "util/mesa-sha1.h"
50 #include "compiler/glsl_types.h"
51 #include "util/xmlpool.h"
52
53 static int
54 radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
55 {
56 struct mesa_sha1 ctx;
57 unsigned char sha1[20];
58 unsigned ptr_size = sizeof(void*);
59
60 memset(uuid, 0, VK_UUID_SIZE);
61 _mesa_sha1_init(&ctx);
62
63 if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx) ||
64 !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
65 return -1;
66
67 _mesa_sha1_update(&ctx, &family, sizeof(family));
68 _mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
69 _mesa_sha1_final(&ctx, sha1);
70
71 memcpy(uuid, sha1, VK_UUID_SIZE);
72 return 0;
73 }
74
75 static void
76 radv_get_driver_uuid(void *uuid)
77 {
78 ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
79 }
80
81 static void
82 radv_get_device_uuid(struct radeon_info *info, void *uuid)
83 {
84 ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
85 }
86
87 static void
88 radv_get_device_name(enum radeon_family family, char *name, size_t name_len)
89 {
90 const char *chip_string;
91
92 switch (family) {
93 case CHIP_TAHITI: chip_string = "AMD RADV TAHITI"; break;
94 case CHIP_PITCAIRN: chip_string = "AMD RADV PITCAIRN"; break;
95 case CHIP_VERDE: chip_string = "AMD RADV CAPE VERDE"; break;
96 case CHIP_OLAND: chip_string = "AMD RADV OLAND"; break;
97 case CHIP_HAINAN: chip_string = "AMD RADV HAINAN"; break;
98 case CHIP_BONAIRE: chip_string = "AMD RADV BONAIRE"; break;
99 case CHIP_KAVERI: chip_string = "AMD RADV KAVERI"; break;
100 case CHIP_KABINI: chip_string = "AMD RADV KABINI"; break;
101 case CHIP_HAWAII: chip_string = "AMD RADV HAWAII"; break;
102 case CHIP_TONGA: chip_string = "AMD RADV TONGA"; break;
103 case CHIP_ICELAND: chip_string = "AMD RADV ICELAND"; break;
104 case CHIP_CARRIZO: chip_string = "AMD RADV CARRIZO"; break;
105 case CHIP_FIJI: chip_string = "AMD RADV FIJI"; break;
106 case CHIP_POLARIS10: chip_string = "AMD RADV POLARIS10"; break;
107 case CHIP_POLARIS11: chip_string = "AMD RADV POLARIS11"; break;
108 case CHIP_POLARIS12: chip_string = "AMD RADV POLARIS12"; break;
109 case CHIP_STONEY: chip_string = "AMD RADV STONEY"; break;
110 case CHIP_VEGAM: chip_string = "AMD RADV VEGA M"; break;
111 case CHIP_VEGA10: chip_string = "AMD RADV VEGA10"; break;
112 case CHIP_VEGA12: chip_string = "AMD RADV VEGA12"; break;
113 case CHIP_VEGA20: chip_string = "AMD RADV VEGA20"; break;
114 case CHIP_RAVEN: chip_string = "AMD RADV RAVEN"; break;
115 case CHIP_RAVEN2: chip_string = "AMD RADV RAVEN2"; break;
116 case CHIP_NAVI10: chip_string = "AMD RADV NAVI10"; break;
117 case CHIP_NAVI12: chip_string = "AMD RADV NAVI12"; break;
118 case CHIP_NAVI14: chip_string = "AMD RADV NAVI14"; break;
119 default: chip_string = "AMD RADV unknown"; break;
120 }
121
122 snprintf(name, name_len, "%s (LLVM " MESA_LLVM_VERSION_STRING ")", chip_string);
123 }
124
125 static uint64_t
126 radv_get_visible_vram_size(struct radv_physical_device *device)
127 {
128 return MIN2(device->rad_info.vram_size, device->rad_info.vram_vis_size);
129 }
130
131 static uint64_t
132 radv_get_vram_size(struct radv_physical_device *device)
133 {
134 return device->rad_info.vram_size - radv_get_visible_vram_size(device);
135 }
136
137 static void
138 radv_physical_device_init_mem_types(struct radv_physical_device *device)
139 {
140 STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS);
141 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
142 uint64_t vram_size = radv_get_vram_size(device);
143 int vram_index = -1, visible_vram_index = -1, gart_index = -1;
144 device->memory_properties.memoryHeapCount = 0;
145 if (vram_size > 0) {
146 vram_index = device->memory_properties.memoryHeapCount++;
147 device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap) {
148 .size = vram_size,
149 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
150 };
151 }
152 if (visible_vram_size) {
153 visible_vram_index = device->memory_properties.memoryHeapCount++;
154 device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap) {
155 .size = visible_vram_size,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 };
158 }
159 if (device->rad_info.gart_size > 0) {
160 gart_index = device->memory_properties.memoryHeapCount++;
161 device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap) {
162 .size = device->rad_info.gart_size,
163 .flags = device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
164 };
165 }
166
167 STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES);
168 unsigned type_count = 0;
169 if (vram_index >= 0) {
170 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM;
171 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
172 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
173 .heapIndex = vram_index,
174 };
175 }
176 if (gart_index >= 0) {
177 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE;
178 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
179 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
180 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
181 (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT),
182 .heapIndex = gart_index,
183 };
184 }
185 if (visible_vram_index >= 0) {
186 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM_CPU_ACCESS;
187 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
191 .heapIndex = visible_vram_index,
192 };
193 }
194 if (gart_index >= 0) {
195 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_CACHED;
196 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
197 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
198 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
199 VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
200 (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT),
201 .heapIndex = gart_index,
202 };
203 }
204 device->memory_properties.memoryTypeCount = type_count;
205 }
206
207 static void
208 radv_handle_env_var_force_family(struct radv_physical_device *device)
209 {
210 const char *family = getenv("RADV_FORCE_FAMILY");
211 unsigned i;
212
213 if (!family)
214 return;
215
216 for (i = CHIP_TAHITI; i < CHIP_LAST; i++) {
217 if (!strcmp(family, ac_get_llvm_processor_name(i))) {
218 /* Override family and chip_class. */
219 device->rad_info.family = i;
220
221 if (i >= CHIP_NAVI10)
222 device->rad_info.chip_class = GFX10;
223 else if (i >= CHIP_VEGA10)
224 device->rad_info.chip_class = GFX9;
225 else if (i >= CHIP_TONGA)
226 device->rad_info.chip_class = GFX8;
227 else if (i >= CHIP_BONAIRE)
228 device->rad_info.chip_class = GFX7;
229 else
230 device->rad_info.chip_class = GFX6;
231
232 return;
233 }
234 }
235
236 fprintf(stderr, "radv: Unknown family: %s\n", family);
237 exit(1);
238 }
239
240 static VkResult
241 radv_physical_device_init(struct radv_physical_device *device,
242 struct radv_instance *instance,
243 drmDevicePtr drm_device)
244 {
245 const char *path = drm_device->nodes[DRM_NODE_RENDER];
246 VkResult result;
247 drmVersionPtr version;
248 int fd;
249 int master_fd = -1;
250
251 fd = open(path, O_RDWR | O_CLOEXEC);
252 if (fd < 0) {
253 if (instance->debug_flags & RADV_DEBUG_STARTUP)
254 radv_logi("Could not open device '%s'", path);
255
256 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
257 }
258
259 version = drmGetVersion(fd);
260 if (!version) {
261 close(fd);
262
263 if (instance->debug_flags & RADV_DEBUG_STARTUP)
264 radv_logi("Could not get the kernel driver version for device '%s'", path);
265
266 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
267 "failed to get version %s: %m", path);
268 }
269
270 if (strcmp(version->name, "amdgpu")) {
271 drmFreeVersion(version);
272 close(fd);
273
274 if (instance->debug_flags & RADV_DEBUG_STARTUP)
275 radv_logi("Device '%s' is not using the amdgpu kernel driver.", path);
276
277 return VK_ERROR_INCOMPATIBLE_DRIVER;
278 }
279 drmFreeVersion(version);
280
281 if (instance->debug_flags & RADV_DEBUG_STARTUP)
282 radv_logi("Found compatible device '%s'.", path);
283
284 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
285 device->instance = instance;
286
287 device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags,
288 instance->perftest_flags);
289 if (!device->ws) {
290 result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
291 goto fail;
292 }
293
294 if (instance->enabled_extensions.KHR_display) {
295 master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
296 if (master_fd >= 0) {
297 uint32_t accel_working = 0;
298 struct drm_amdgpu_info request = {
299 .return_pointer = (uintptr_t)&accel_working,
300 .return_size = sizeof(accel_working),
301 .query = AMDGPU_INFO_ACCEL_WORKING
302 };
303
304 if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof (struct drm_amdgpu_info)) < 0 || !accel_working) {
305 close(master_fd);
306 master_fd = -1;
307 }
308 }
309 }
310
311 device->master_fd = master_fd;
312 device->local_fd = fd;
313 device->ws->query_info(device->ws, &device->rad_info);
314
315 radv_handle_env_var_force_family(device);
316
317 radv_get_device_name(device->rad_info.family, device->name, sizeof(device->name));
318
319 if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
320 device->ws->destroy(device->ws);
321 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
322 "cannot generate UUID");
323 goto fail;
324 }
325
326 /* These flags affect shader compilation. */
327 uint64_t shader_env_flags =
328 (device->instance->perftest_flags & RADV_PERFTEST_SISCHED ? 0x1 : 0) |
329 (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH ? 0x2 : 0);
330
331 /* The gpu id is already embedded in the uuid so we just pass "radv"
332 * when creating the cache.
333 */
334 char buf[VK_UUID_SIZE * 2 + 1];
335 disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
336 device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags);
337
338 if (device->rad_info.chip_class < GFX8 ||
339 device->rad_info.chip_class > GFX9)
340 fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
341
342 radv_get_driver_uuid(&device->driver_uuid);
343 radv_get_device_uuid(&device->rad_info, &device->device_uuid);
344
345 if (device->rad_info.family == CHIP_STONEY ||
346 device->rad_info.chip_class >= GFX9) {
347 device->has_rbplus = true;
348 device->rbplus_allowed = device->rad_info.family == CHIP_STONEY ||
349 device->rad_info.family == CHIP_VEGA12 ||
350 device->rad_info.family == CHIP_RAVEN ||
351 device->rad_info.family == CHIP_RAVEN2;
352 }
353
354 /* The mere presence of CLEAR_STATE in the IB causes random GPU hangs
355 * on GFX6.
356 */
357 device->has_clear_state = device->rad_info.chip_class >= GFX7 &&
358 device->rad_info.chip_class <= GFX9;
359
360 device->cpdma_prefetch_writes_memory = device->rad_info.chip_class <= GFX8;
361
362 /* Vega10/Raven need a special workaround for a hardware bug. */
363 device->has_scissor_bug = device->rad_info.family == CHIP_VEGA10 ||
364 device->rad_info.family == CHIP_RAVEN;
365
366 /* Out-of-order primitive rasterization. */
367 device->has_out_of_order_rast = device->rad_info.chip_class >= GFX8 &&
368 device->rad_info.max_se >= 2;
369 device->out_of_order_rast_allowed = device->has_out_of_order_rast &&
370 !(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
371
372 device->dcc_msaa_allowed =
373 (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
374
375 /* TODO: Figure out how to use LOAD_CONTEXT_REG on GFX6-GFX7. */
376 device->has_load_ctx_reg_pkt = device->rad_info.chip_class >= GFX9 ||
377 (device->rad_info.chip_class >= GFX8 &&
378 device->rad_info.me_fw_feature >= 41);
379
380 device->has_dcc_constant_encode = device->rad_info.family == CHIP_RAVEN2 ||
381 device->rad_info.chip_class >= GFX10;
382
383 device->use_shader_ballot = device->instance->perftest_flags & RADV_PERFTEST_SHADER_BALLOT;
384
385 radv_physical_device_init_mem_types(device);
386 radv_fill_device_extension_table(device, &device->supported_extensions);
387
388 device->bus_info = *drm_device->businfo.pci;
389
390 if ((device->instance->debug_flags & RADV_DEBUG_INFO))
391 ac_print_gpu_info(&device->rad_info);
392
393 /* The WSI is structured as a layer on top of the driver, so this has
394 * to be the last part of initialization (at least until we get other
395 * semi-layers).
396 */
397 result = radv_init_wsi(device);
398 if (result != VK_SUCCESS) {
399 device->ws->destroy(device->ws);
400 vk_error(instance, result);
401 goto fail;
402 }
403
404 return VK_SUCCESS;
405
406 fail:
407 close(fd);
408 if (master_fd != -1)
409 close(master_fd);
410 return result;
411 }
412
413 static void
414 radv_physical_device_finish(struct radv_physical_device *device)
415 {
416 radv_finish_wsi(device);
417 device->ws->destroy(device->ws);
418 disk_cache_destroy(device->disk_cache);
419 close(device->local_fd);
420 if (device->master_fd != -1)
421 close(device->master_fd);
422 }
423
424 static void *
425 default_alloc_func(void *pUserData, size_t size, size_t align,
426 VkSystemAllocationScope allocationScope)
427 {
428 return malloc(size);
429 }
430
431 static void *
432 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
433 size_t align, VkSystemAllocationScope allocationScope)
434 {
435 return realloc(pOriginal, size);
436 }
437
438 static void
439 default_free_func(void *pUserData, void *pMemory)
440 {
441 free(pMemory);
442 }
443
444 static const VkAllocationCallbacks default_alloc = {
445 .pUserData = NULL,
446 .pfnAllocation = default_alloc_func,
447 .pfnReallocation = default_realloc_func,
448 .pfnFree = default_free_func,
449 };
450
451 static const struct debug_control radv_debug_options[] = {
452 {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
453 {"nodcc", RADV_DEBUG_NO_DCC},
454 {"shaders", RADV_DEBUG_DUMP_SHADERS},
455 {"nocache", RADV_DEBUG_NO_CACHE},
456 {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
457 {"nohiz", RADV_DEBUG_NO_HIZ},
458 {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
459 {"unsafemath", RADV_DEBUG_UNSAFE_MATH},
460 {"allbos", RADV_DEBUG_ALL_BOS},
461 {"noibs", RADV_DEBUG_NO_IBS},
462 {"spirv", RADV_DEBUG_DUMP_SPIRV},
463 {"vmfaults", RADV_DEBUG_VM_FAULTS},
464 {"zerovram", RADV_DEBUG_ZERO_VRAM},
465 {"syncshaders", RADV_DEBUG_SYNC_SHADERS},
466 {"nosisched", RADV_DEBUG_NO_SISCHED},
467 {"preoptir", RADV_DEBUG_PREOPTIR},
468 {"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
469 {"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
470 {"info", RADV_DEBUG_INFO},
471 {"errors", RADV_DEBUG_ERRORS},
472 {"startup", RADV_DEBUG_STARTUP},
473 {"checkir", RADV_DEBUG_CHECKIR},
474 {"nothreadllvm", RADV_DEBUG_NOTHREADLLVM},
475 {"nobinning", RADV_DEBUG_NOBINNING},
476 {"noloadstoreopt", RADV_DEBUG_NO_LOAD_STORE_OPT},
477 {NULL, 0}
478 };
479
480 const char *
481 radv_get_debug_option_name(int id)
482 {
483 assert(id < ARRAY_SIZE(radv_debug_options) - 1);
484 return radv_debug_options[id].string;
485 }
486
487 static const struct debug_control radv_perftest_options[] = {
488 {"nobatchchain", RADV_PERFTEST_NO_BATCHCHAIN},
489 {"sisched", RADV_PERFTEST_SISCHED},
490 {"localbos", RADV_PERFTEST_LOCAL_BOS},
491 {"dccmsaa", RADV_PERFTEST_DCC_MSAA},
492 {"bolist", RADV_PERFTEST_BO_LIST},
493 {"shader_ballot", RADV_PERFTEST_SHADER_BALLOT},
494 {"tccompatcmask", RADV_PERFTEST_TC_COMPAT_CMASK},
495 {NULL, 0}
496 };
497
498 const char *
499 radv_get_perftest_option_name(int id)
500 {
501 assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
502 return radv_perftest_options[id].string;
503 }
504
505 static void
506 radv_handle_per_app_options(struct radv_instance *instance,
507 const VkApplicationInfo *info)
508 {
509 const char *name = info ? info->pApplicationName : NULL;
510
511 if (!name)
512 return;
513
514 if (!strcmp(name, "Talos - Linux - 32bit") ||
515 !strcmp(name, "Talos - Linux - 64bit")) {
516 if (!(instance->debug_flags & RADV_DEBUG_NO_SISCHED)) {
517 /* Force enable LLVM sisched for Talos because it looks
518 * safe and it gives few more FPS.
519 */
520 instance->perftest_flags |= RADV_PERFTEST_SISCHED;
521 }
522 } else if (!strcmp(name, "DOOM_VFR")) {
523 /* Work around a Doom VFR game bug */
524 instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
525 } else if (!strcmp(name, "MonsterHunterWorld.exe")) {
526 /* Workaround for a WaW hazard when LLVM moves/merges
527 * load/store memory operations.
528 * See https://reviews.llvm.org/D61313
529 */
530 if (HAVE_LLVM < 0x900)
531 instance->debug_flags |= RADV_DEBUG_NO_LOAD_STORE_OPT;
532 }
533 }
534
535 static int radv_get_instance_extension_index(const char *name)
536 {
537 for (unsigned i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; ++i) {
538 if (strcmp(name, radv_instance_extensions[i].extensionName) == 0)
539 return i;
540 }
541 return -1;
542 }
543
544 static const char radv_dri_options_xml[] =
545 DRI_CONF_BEGIN
546 DRI_CONF_SECTION_QUALITY
547 DRI_CONF_ADAPTIVE_SYNC("true")
548 DRI_CONF_SECTION_END
549 DRI_CONF_END;
550
551 static void radv_init_dri_options(struct radv_instance *instance)
552 {
553 driParseOptionInfo(&instance->available_dri_options, radv_dri_options_xml);
554 driParseConfigFiles(&instance->dri_options,
555 &instance->available_dri_options,
556 0, "radv", NULL);
557 }
558
559 VkResult radv_CreateInstance(
560 const VkInstanceCreateInfo* pCreateInfo,
561 const VkAllocationCallbacks* pAllocator,
562 VkInstance* pInstance)
563 {
564 struct radv_instance *instance;
565 VkResult result;
566
567 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
568
569 uint32_t client_version;
570 if (pCreateInfo->pApplicationInfo &&
571 pCreateInfo->pApplicationInfo->apiVersion != 0) {
572 client_version = pCreateInfo->pApplicationInfo->apiVersion;
573 } else {
574 client_version = VK_API_VERSION_1_0;
575 }
576
577 instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
578 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
579 if (!instance)
580 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
581
582 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
583
584 if (pAllocator)
585 instance->alloc = *pAllocator;
586 else
587 instance->alloc = default_alloc;
588
589 instance->apiVersion = client_version;
590 instance->physicalDeviceCount = -1;
591
592 instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"),
593 radv_debug_options);
594
595 instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"),
596 radv_perftest_options);
597
598
599 if (instance->debug_flags & RADV_DEBUG_STARTUP)
600 radv_logi("Created an instance");
601
602 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
603 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
604 int index = radv_get_instance_extension_index(ext_name);
605
606 if (index < 0 || !radv_supported_instance_extensions.extensions[index]) {
607 vk_free2(&default_alloc, pAllocator, instance);
608 return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT);
609 }
610
611 instance->enabled_extensions.extensions[index] = true;
612 }
613
614 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
615 if (result != VK_SUCCESS) {
616 vk_free2(&default_alloc, pAllocator, instance);
617 return vk_error(instance, result);
618 }
619
620 _mesa_locale_init();
621 glsl_type_singleton_init_or_ref();
622
623 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
624
625 radv_init_dri_options(instance);
626 radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo);
627
628 *pInstance = radv_instance_to_handle(instance);
629
630 return VK_SUCCESS;
631 }
632
633 void radv_DestroyInstance(
634 VkInstance _instance,
635 const VkAllocationCallbacks* pAllocator)
636 {
637 RADV_FROM_HANDLE(radv_instance, instance, _instance);
638
639 if (!instance)
640 return;
641
642 for (int i = 0; i < instance->physicalDeviceCount; ++i) {
643 radv_physical_device_finish(instance->physicalDevices + i);
644 }
645
646 VG(VALGRIND_DESTROY_MEMPOOL(instance));
647
648 glsl_type_singleton_decref();
649 _mesa_locale_fini();
650
651 driDestroyOptionCache(&instance->dri_options);
652 driDestroyOptionInfo(&instance->available_dri_options);
653
654 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
655
656 vk_free(&instance->alloc, instance);
657 }
658
659 static VkResult
660 radv_enumerate_devices(struct radv_instance *instance)
661 {
662 /* TODO: Check for more devices ? */
663 drmDevicePtr devices[8];
664 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
665 int max_devices;
666
667 instance->physicalDeviceCount = 0;
668
669 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
670
671 if (instance->debug_flags & RADV_DEBUG_STARTUP)
672 radv_logi("Found %d drm nodes", max_devices);
673
674 if (max_devices < 1)
675 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
676
677 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
678 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
679 devices[i]->bustype == DRM_BUS_PCI &&
680 devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
681
682 result = radv_physical_device_init(instance->physicalDevices +
683 instance->physicalDeviceCount,
684 instance,
685 devices[i]);
686 if (result == VK_SUCCESS)
687 ++instance->physicalDeviceCount;
688 else if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
689 break;
690 }
691 }
692 drmFreeDevices(devices, max_devices);
693
694 return result;
695 }
696
697 VkResult radv_EnumeratePhysicalDevices(
698 VkInstance _instance,
699 uint32_t* pPhysicalDeviceCount,
700 VkPhysicalDevice* pPhysicalDevices)
701 {
702 RADV_FROM_HANDLE(radv_instance, instance, _instance);
703 VkResult result;
704
705 if (instance->physicalDeviceCount < 0) {
706 result = radv_enumerate_devices(instance);
707 if (result != VK_SUCCESS &&
708 result != VK_ERROR_INCOMPATIBLE_DRIVER)
709 return result;
710 }
711
712 if (!pPhysicalDevices) {
713 *pPhysicalDeviceCount = instance->physicalDeviceCount;
714 } else {
715 *pPhysicalDeviceCount = MIN2(*pPhysicalDeviceCount, instance->physicalDeviceCount);
716 for (unsigned i = 0; i < *pPhysicalDeviceCount; ++i)
717 pPhysicalDevices[i] = radv_physical_device_to_handle(instance->physicalDevices + i);
718 }
719
720 return *pPhysicalDeviceCount < instance->physicalDeviceCount ? VK_INCOMPLETE
721 : VK_SUCCESS;
722 }
723
724 VkResult radv_EnumeratePhysicalDeviceGroups(
725 VkInstance _instance,
726 uint32_t* pPhysicalDeviceGroupCount,
727 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
728 {
729 RADV_FROM_HANDLE(radv_instance, instance, _instance);
730 VkResult result;
731
732 if (instance->physicalDeviceCount < 0) {
733 result = radv_enumerate_devices(instance);
734 if (result != VK_SUCCESS &&
735 result != VK_ERROR_INCOMPATIBLE_DRIVER)
736 return result;
737 }
738
739 if (!pPhysicalDeviceGroupProperties) {
740 *pPhysicalDeviceGroupCount = instance->physicalDeviceCount;
741 } else {
742 *pPhysicalDeviceGroupCount = MIN2(*pPhysicalDeviceGroupCount, instance->physicalDeviceCount);
743 for (unsigned i = 0; i < *pPhysicalDeviceGroupCount; ++i) {
744 pPhysicalDeviceGroupProperties[i].physicalDeviceCount = 1;
745 pPhysicalDeviceGroupProperties[i].physicalDevices[0] = radv_physical_device_to_handle(instance->physicalDevices + i);
746 pPhysicalDeviceGroupProperties[i].subsetAllocation = false;
747 }
748 }
749 return *pPhysicalDeviceGroupCount < instance->physicalDeviceCount ? VK_INCOMPLETE
750 : VK_SUCCESS;
751 }
752
753 void radv_GetPhysicalDeviceFeatures(
754 VkPhysicalDevice physicalDevice,
755 VkPhysicalDeviceFeatures* pFeatures)
756 {
757 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
758 memset(pFeatures, 0, sizeof(*pFeatures));
759
760 *pFeatures = (VkPhysicalDeviceFeatures) {
761 .robustBufferAccess = true,
762 .fullDrawIndexUint32 = true,
763 .imageCubeArray = true,
764 .independentBlend = true,
765 .geometryShader = true,
766 .tessellationShader = true,
767 .sampleRateShading = true,
768 .dualSrcBlend = true,
769 .logicOp = true,
770 .multiDrawIndirect = true,
771 .drawIndirectFirstInstance = true,
772 .depthClamp = true,
773 .depthBiasClamp = true,
774 .fillModeNonSolid = true,
775 .depthBounds = true,
776 .wideLines = true,
777 .largePoints = true,
778 .alphaToOne = true,
779 .multiViewport = true,
780 .samplerAnisotropy = true,
781 .textureCompressionETC2 = radv_device_supports_etc(pdevice),
782 .textureCompressionASTC_LDR = false,
783 .textureCompressionBC = true,
784 .occlusionQueryPrecise = true,
785 .pipelineStatisticsQuery = true,
786 .vertexPipelineStoresAndAtomics = true,
787 .fragmentStoresAndAtomics = true,
788 .shaderTessellationAndGeometryPointSize = true,
789 .shaderImageGatherExtended = true,
790 .shaderStorageImageExtendedFormats = true,
791 .shaderStorageImageMultisample = pdevice->rad_info.chip_class >= GFX8,
792 .shaderUniformBufferArrayDynamicIndexing = true,
793 .shaderSampledImageArrayDynamicIndexing = true,
794 .shaderStorageBufferArrayDynamicIndexing = true,
795 .shaderStorageImageArrayDynamicIndexing = true,
796 .shaderStorageImageReadWithoutFormat = true,
797 .shaderStorageImageWriteWithoutFormat = true,
798 .shaderClipDistance = true,
799 .shaderCullDistance = true,
800 .shaderFloat64 = true,
801 .shaderInt64 = true,
802 .shaderInt16 = pdevice->rad_info.chip_class >= GFX9,
803 .sparseBinding = true,
804 .variableMultisampleRate = true,
805 .inheritedQueries = true,
806 };
807 }
808
809 void radv_GetPhysicalDeviceFeatures2(
810 VkPhysicalDevice physicalDevice,
811 VkPhysicalDeviceFeatures2 *pFeatures)
812 {
813 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
814 vk_foreach_struct(ext, pFeatures->pNext) {
815 switch (ext->sType) {
816 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
817 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
818 features->variablePointersStorageBuffer = true;
819 features->variablePointers = true;
820 break;
821 }
822 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
823 VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures*)ext;
824 features->multiview = true;
825 features->multiviewGeometryShader = true;
826 features->multiviewTessellationShader = true;
827 break;
828 }
829 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
830 VkPhysicalDeviceShaderDrawParametersFeatures *features =
831 (VkPhysicalDeviceShaderDrawParametersFeatures*)ext;
832 features->shaderDrawParameters = true;
833 break;
834 }
835 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
836 VkPhysicalDeviceProtectedMemoryFeatures *features =
837 (VkPhysicalDeviceProtectedMemoryFeatures*)ext;
838 features->protectedMemory = false;
839 break;
840 }
841 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
842 VkPhysicalDevice16BitStorageFeatures *features =
843 (VkPhysicalDevice16BitStorageFeatures*)ext;
844 bool enabled = pdevice->rad_info.chip_class >= GFX8;
845 features->storageBuffer16BitAccess = enabled;
846 features->uniformAndStorageBuffer16BitAccess = enabled;
847 features->storagePushConstant16 = enabled;
848 features->storageInputOutput16 = enabled && HAVE_LLVM >= 0x900;
849 break;
850 }
851 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
852 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
853 (VkPhysicalDeviceSamplerYcbcrConversionFeatures*)ext;
854 features->samplerYcbcrConversion = true;
855 break;
856 }
857 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
858 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
859 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT*)ext;
860 features->shaderInputAttachmentArrayDynamicIndexing = true;
861 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
862 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
863 features->shaderUniformBufferArrayNonUniformIndexing = true;
864 features->shaderSampledImageArrayNonUniformIndexing = true;
865 features->shaderStorageBufferArrayNonUniformIndexing = true;
866 features->shaderStorageImageArrayNonUniformIndexing = true;
867 features->shaderInputAttachmentArrayNonUniformIndexing = true;
868 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
869 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
870 features->descriptorBindingUniformBufferUpdateAfterBind = true;
871 features->descriptorBindingSampledImageUpdateAfterBind = true;
872 features->descriptorBindingStorageImageUpdateAfterBind = true;
873 features->descriptorBindingStorageBufferUpdateAfterBind = true;
874 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
875 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
876 features->descriptorBindingUpdateUnusedWhilePending = true;
877 features->descriptorBindingPartiallyBound = true;
878 features->descriptorBindingVariableDescriptorCount = true;
879 features->runtimeDescriptorArray = true;
880 break;
881 }
882 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
883 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
884 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
885 features->conditionalRendering = true;
886 features->inheritedConditionalRendering = false;
887 break;
888 }
889 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
890 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
891 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
892 features->vertexAttributeInstanceRateDivisor = VK_TRUE;
893 features->vertexAttributeInstanceRateZeroDivisor = VK_TRUE;
894 break;
895 }
896 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
897 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
898 (VkPhysicalDeviceTransformFeedbackFeaturesEXT*)ext;
899 features->transformFeedback = true;
900 features->geometryStreams = true;
901 break;
902 }
903 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
904 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
905 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
906 features->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7;
907 break;
908 }
909 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
910 VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
911 (VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
912 features->memoryPriority = VK_TRUE;
913 break;
914 }
915 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
916 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
917 (VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
918 features->bufferDeviceAddress = true;
919 features->bufferDeviceAddressCaptureReplay = false;
920 features->bufferDeviceAddressMultiDevice = false;
921 break;
922 }
923 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
924 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
925 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
926 features->depthClipEnable = true;
927 break;
928 }
929 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
930 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
931 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
932 features->hostQueryReset = true;
933 break;
934 }
935 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
936 VkPhysicalDevice8BitStorageFeaturesKHR *features =
937 (VkPhysicalDevice8BitStorageFeaturesKHR*)ext;
938 bool enabled = pdevice->rad_info.chip_class >= GFX8;
939 features->storageBuffer8BitAccess = enabled;
940 features->uniformAndStorageBuffer8BitAccess = enabled;
941 features->storagePushConstant8 = enabled;
942 break;
943 }
944 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
945 VkPhysicalDeviceFloat16Int8FeaturesKHR *features =
946 (VkPhysicalDeviceFloat16Int8FeaturesKHR*)ext;
947 features->shaderFloat16 = pdevice->rad_info.chip_class >= GFX8 && HAVE_LLVM >= 0x0800;
948 features->shaderInt8 = true;
949 break;
950 }
951 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
952 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features =
953 (VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *)ext;
954 /* TODO: Enable this once the driver supports 64-bit
955 * compare&swap atomic operations.
956 */
957 features->shaderBufferInt64Atomics = false;
958 features->shaderSharedInt64Atomics = false;
959 break;
960 }
961 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
962 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
963 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
964
965 features->inlineUniformBlock = true;
966 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
967 break;
968 }
969 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
970 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
971 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
972 features->computeDerivativeGroupQuads = false;
973 features->computeDerivativeGroupLinear = true;
974 break;
975 }
976 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
977 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
978 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT*)ext;
979 features->ycbcrImageArrays = true;
980 break;
981 }
982 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
983 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
984 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
985 features->uniformBufferStandardLayout = true;
986 break;
987 }
988 default:
989 break;
990 }
991 }
992 return radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
993 }
994
995 void radv_GetPhysicalDeviceProperties(
996 VkPhysicalDevice physicalDevice,
997 VkPhysicalDeviceProperties* pProperties)
998 {
999 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1000 VkSampleCountFlags sample_counts = 0xf;
1001
1002 /* make sure that the entire descriptor set is addressable with a signed
1003 * 32-bit int. So the sum of all limits scaled by descriptor size has to
1004 * be at most 2 GiB. the combined image & samples object count as one of
1005 * both. This limit is for the pipeline layout, not for the set layout, but
1006 * there is no set limit, so we just set a pipeline limit. I don't think
1007 * any app is going to hit this soon. */
1008 size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS) /
1009 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1010 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1011 32 /* sampler, largest when combined with image */ +
1012 64 /* sampled image */ +
1013 64 /* storage image */);
1014
1015 VkPhysicalDeviceLimits limits = {
1016 .maxImageDimension1D = (1 << 14),
1017 .maxImageDimension2D = (1 << 14),
1018 .maxImageDimension3D = (1 << 11),
1019 .maxImageDimensionCube = (1 << 14),
1020 .maxImageArrayLayers = (1 << 11),
1021 .maxTexelBufferElements = 128 * 1024 * 1024,
1022 .maxUniformBufferRange = UINT32_MAX,
1023 .maxStorageBufferRange = UINT32_MAX,
1024 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1025 .maxMemoryAllocationCount = UINT32_MAX,
1026 .maxSamplerAllocationCount = 64 * 1024,
1027 .bufferImageGranularity = 64, /* A cache line */
1028 .sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */
1029 .maxBoundDescriptorSets = MAX_SETS,
1030 .maxPerStageDescriptorSamplers = max_descriptor_set_size,
1031 .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
1032 .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
1033 .maxPerStageDescriptorSampledImages = max_descriptor_set_size,
1034 .maxPerStageDescriptorStorageImages = max_descriptor_set_size,
1035 .maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
1036 .maxPerStageResources = max_descriptor_set_size,
1037 .maxDescriptorSetSamplers = max_descriptor_set_size,
1038 .maxDescriptorSetUniformBuffers = max_descriptor_set_size,
1039 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
1040 .maxDescriptorSetStorageBuffers = max_descriptor_set_size,
1041 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
1042 .maxDescriptorSetSampledImages = max_descriptor_set_size,
1043 .maxDescriptorSetStorageImages = max_descriptor_set_size,
1044 .maxDescriptorSetInputAttachments = max_descriptor_set_size,
1045 .maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
1046 .maxVertexInputBindings = MAX_VBS,
1047 .maxVertexInputAttributeOffset = 2047,
1048 .maxVertexInputBindingStride = 2048,
1049 .maxVertexOutputComponents = 128,
1050 .maxTessellationGenerationLevel = 64,
1051 .maxTessellationPatchSize = 32,
1052 .maxTessellationControlPerVertexInputComponents = 128,
1053 .maxTessellationControlPerVertexOutputComponents = 128,
1054 .maxTessellationControlPerPatchOutputComponents = 120,
1055 .maxTessellationControlTotalOutputComponents = 4096,
1056 .maxTessellationEvaluationInputComponents = 128,
1057 .maxTessellationEvaluationOutputComponents = 128,
1058 .maxGeometryShaderInvocations = 127,
1059 .maxGeometryInputComponents = 64,
1060 .maxGeometryOutputComponents = 128,
1061 .maxGeometryOutputVertices = 256,
1062 .maxGeometryTotalOutputComponents = 1024,
1063 .maxFragmentInputComponents = 128,
1064 .maxFragmentOutputAttachments = 8,
1065 .maxFragmentDualSrcAttachments = 1,
1066 .maxFragmentCombinedOutputResources = 8,
1067 .maxComputeSharedMemorySize = 32768,
1068 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1069 .maxComputeWorkGroupInvocations = 2048,
1070 .maxComputeWorkGroupSize = {
1071 2048,
1072 2048,
1073 2048
1074 },
1075 .subPixelPrecisionBits = 8,
1076 .subTexelPrecisionBits = 8,
1077 .mipmapPrecisionBits = 8,
1078 .maxDrawIndexedIndexValue = UINT32_MAX,
1079 .maxDrawIndirectCount = UINT32_MAX,
1080 .maxSamplerLodBias = 16,
1081 .maxSamplerAnisotropy = 16,
1082 .maxViewports = MAX_VIEWPORTS,
1083 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1084 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1085 .viewportSubPixelBits = 8,
1086 .minMemoryMapAlignment = 4096, /* A page */
1087 .minTexelBufferOffsetAlignment = 1,
1088 .minUniformBufferOffsetAlignment = 4,
1089 .minStorageBufferOffsetAlignment = 4,
1090 .minTexelOffset = -32,
1091 .maxTexelOffset = 31,
1092 .minTexelGatherOffset = -32,
1093 .maxTexelGatherOffset = 31,
1094 .minInterpolationOffset = -2,
1095 .maxInterpolationOffset = 2,
1096 .subPixelInterpolationOffsetBits = 8,
1097 .maxFramebufferWidth = (1 << 14),
1098 .maxFramebufferHeight = (1 << 14),
1099 .maxFramebufferLayers = (1 << 10),
1100 .framebufferColorSampleCounts = sample_counts,
1101 .framebufferDepthSampleCounts = sample_counts,
1102 .framebufferStencilSampleCounts = sample_counts,
1103 .framebufferNoAttachmentsSampleCounts = sample_counts,
1104 .maxColorAttachments = MAX_RTS,
1105 .sampledImageColorSampleCounts = sample_counts,
1106 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1107 .sampledImageDepthSampleCounts = sample_counts,
1108 .sampledImageStencilSampleCounts = sample_counts,
1109 .storageImageSampleCounts = pdevice->rad_info.chip_class >= GFX8 ? sample_counts : VK_SAMPLE_COUNT_1_BIT,
1110 .maxSampleMaskWords = 1,
1111 .timestampComputeAndGraphics = true,
1112 .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
1113 .maxClipDistances = 8,
1114 .maxCullDistances = 8,
1115 .maxCombinedClipAndCullDistances = 8,
1116 .discreteQueuePriorities = 2,
1117 .pointSizeRange = { 0.0, 8192.0 },
1118 .lineWidthRange = { 0.0, 7.9921875 },
1119 .pointSizeGranularity = (1.0 / 8.0),
1120 .lineWidthGranularity = (1.0 / 128.0),
1121 .strictLines = false, /* FINISHME */
1122 .standardSampleLocations = true,
1123 .optimalBufferCopyOffsetAlignment = 128,
1124 .optimalBufferCopyRowPitchAlignment = 128,
1125 .nonCoherentAtomSize = 64,
1126 };
1127
1128 *pProperties = (VkPhysicalDeviceProperties) {
1129 .apiVersion = radv_physical_device_api_version(pdevice),
1130 .driverVersion = vk_get_driver_version(),
1131 .vendorID = ATI_VENDOR_ID,
1132 .deviceID = pdevice->rad_info.pci_id,
1133 .deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1134 .limits = limits,
1135 .sparseProperties = {0},
1136 };
1137
1138 strcpy(pProperties->deviceName, pdevice->name);
1139 memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
1140 }
1141
1142 void radv_GetPhysicalDeviceProperties2(
1143 VkPhysicalDevice physicalDevice,
1144 VkPhysicalDeviceProperties2 *pProperties)
1145 {
1146 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1147 radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1148
1149 vk_foreach_struct(ext, pProperties->pNext) {
1150 switch (ext->sType) {
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1152 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1153 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1154 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1155 break;
1156 }
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1158 VkPhysicalDeviceIDProperties *properties = (VkPhysicalDeviceIDProperties*)ext;
1159 memcpy(properties->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1160 memcpy(properties->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1161 properties->deviceLUIDValid = false;
1162 break;
1163 }
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1165 VkPhysicalDeviceMultiviewProperties *properties = (VkPhysicalDeviceMultiviewProperties*)ext;
1166 properties->maxMultiviewViewCount = MAX_VIEWS;
1167 properties->maxMultiviewInstanceIndex = INT_MAX;
1168 break;
1169 }
1170 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1171 VkPhysicalDevicePointClippingProperties *properties =
1172 (VkPhysicalDevicePointClippingProperties*)ext;
1173 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1174 break;
1175 }
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
1177 VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
1178 (VkPhysicalDeviceDiscardRectanglePropertiesEXT*)ext;
1179 properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
1180 break;
1181 }
1182 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1183 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
1184 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1185 properties->minImportedHostPointerAlignment = 4096;
1186 break;
1187 }
1188 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1189 VkPhysicalDeviceSubgroupProperties *properties =
1190 (VkPhysicalDeviceSubgroupProperties*)ext;
1191 properties->subgroupSize = 64;
1192 properties->supportedStages = VK_SHADER_STAGE_ALL;
1193 properties->supportedOperations =
1194 VK_SUBGROUP_FEATURE_BASIC_BIT |
1195 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1196 VK_SUBGROUP_FEATURE_QUAD_BIT |
1197 VK_SUBGROUP_FEATURE_VOTE_BIT;
1198 if (pdevice->rad_info.chip_class >= GFX8) {
1199 properties->supportedOperations |=
1200 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1201 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1202 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
1203 }
1204 properties->quadOperationsInAllStages = true;
1205 break;
1206 }
1207 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1208 VkPhysicalDeviceMaintenance3Properties *properties =
1209 (VkPhysicalDeviceMaintenance3Properties*)ext;
1210 /* Make sure everything is addressable by a signed 32-bit int, and
1211 * our largest descriptors are 96 bytes. */
1212 properties->maxPerSetDescriptors = (1ull << 31) / 96;
1213 /* Our buffer size fields allow only this much */
1214 properties->maxMemoryAllocationSize = 0xFFFFFFFFull;
1215 break;
1216 }
1217 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1218 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1219 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1220 /* GFX6-8 only support single channel min/max filter. */
1221 properties->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9;
1222 properties->filterMinmaxSingleComponentFormats = true;
1223 break;
1224 }
1225 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
1226 VkPhysicalDeviceShaderCorePropertiesAMD *properties =
1227 (VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
1228
1229 /* Shader engines. */
1230 properties->shaderEngineCount =
1231 pdevice->rad_info.max_se;
1232 properties->shaderArraysPerEngineCount =
1233 pdevice->rad_info.max_sh_per_se;
1234 properties->computeUnitsPerShaderArray =
1235 pdevice->rad_info.num_good_cu_per_sh;
1236 properties->simdPerComputeUnit = 4;
1237 properties->wavefrontsPerSimd =
1238 pdevice->rad_info.family == CHIP_TONGA ||
1239 pdevice->rad_info.family == CHIP_ICELAND ||
1240 pdevice->rad_info.family == CHIP_POLARIS10 ||
1241 pdevice->rad_info.family == CHIP_POLARIS11 ||
1242 pdevice->rad_info.family == CHIP_POLARIS12 ||
1243 pdevice->rad_info.family == CHIP_VEGAM ? 8 : 10;
1244 properties->wavefrontSize = 64;
1245
1246 /* SGPR. */
1247 properties->sgprsPerSimd =
1248 ac_get_num_physical_sgprs(pdevice->rad_info.chip_class);
1249 properties->minSgprAllocation =
1250 pdevice->rad_info.chip_class >= GFX8 ? 16 : 8;
1251 properties->maxSgprAllocation =
1252 pdevice->rad_info.family == CHIP_TONGA ||
1253 pdevice->rad_info.family == CHIP_ICELAND ? 96 : 104;
1254 properties->sgprAllocationGranularity =
1255 pdevice->rad_info.chip_class >= GFX8 ? 16 : 8;
1256
1257 /* VGPR. */
1258 properties->vgprsPerSimd = RADV_NUM_PHYSICAL_VGPRS;
1259 properties->minVgprAllocation = 4;
1260 properties->maxVgprAllocation = 256;
1261 properties->vgprAllocationGranularity = 4;
1262 break;
1263 }
1264 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1265 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
1266 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1267 properties->maxVertexAttribDivisor = UINT32_MAX;
1268 break;
1269 }
1270 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1271 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1272 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT*)ext;
1273 properties->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
1274 properties->shaderUniformBufferArrayNonUniformIndexingNative = false;
1275 properties->shaderSampledImageArrayNonUniformIndexingNative = false;
1276 properties->shaderStorageBufferArrayNonUniformIndexingNative = false;
1277 properties->shaderStorageImageArrayNonUniformIndexingNative = false;
1278 properties->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1279 properties->robustBufferAccessUpdateAfterBind = false;
1280 properties->quadDivergentImplicitLod = false;
1281
1282 size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
1283 MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
1284 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1285 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1286 32 /* sampler, largest when combined with image */ +
1287 64 /* sampled image */ +
1288 64 /* storage image */);
1289 properties->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
1290 properties->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1291 properties->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1292 properties->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
1293 properties->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
1294 properties->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
1295 properties->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
1296 properties->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
1297 properties->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1298 properties->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
1299 properties->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1300 properties->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
1301 properties->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
1302 properties->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
1303 properties->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
1304 break;
1305 }
1306 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1307 VkPhysicalDeviceProtectedMemoryProperties *properties =
1308 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1309 properties->protectedNoFault = false;
1310 break;
1311 }
1312 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
1313 VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
1314 (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
1315 properties->primitiveOverestimationSize = 0;
1316 properties->maxExtraPrimitiveOverestimationSize = 0;
1317 properties->extraPrimitiveOverestimationSizeGranularity = 0;
1318 properties->primitiveUnderestimation = VK_FALSE;
1319 properties->conservativePointAndLineRasterization = VK_FALSE;
1320 properties->degenerateTrianglesRasterized = VK_FALSE;
1321 properties->degenerateLinesRasterized = VK_FALSE;
1322 properties->fullyCoveredFragmentShaderInputVariable = VK_FALSE;
1323 properties->conservativeRasterizationPostDepthCoverage = VK_FALSE;
1324 break;
1325 }
1326 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1327 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1328 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1329 properties->pciDomain = pdevice->bus_info.domain;
1330 properties->pciBus = pdevice->bus_info.bus;
1331 properties->pciDevice = pdevice->bus_info.dev;
1332 properties->pciFunction = pdevice->bus_info.func;
1333 break;
1334 }
1335 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1336 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1337 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1338
1339 driver_props->driverID = VK_DRIVER_ID_MESA_RADV_KHR;
1340 memset(driver_props->driverName, 0, VK_MAX_DRIVER_NAME_SIZE_KHR);
1341 strcpy(driver_props->driverName, "radv");
1342
1343 memset(driver_props->driverInfo, 0, VK_MAX_DRIVER_INFO_SIZE_KHR);
1344 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1345 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1
1346 " (LLVM " MESA_LLVM_VERSION_STRING ")");
1347
1348 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1349 .major = 1,
1350 .minor = 1,
1351 .subminor = 2,
1352 .patch = 0,
1353 };
1354 break;
1355 }
1356 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1357 VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
1358 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1359 properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
1360 properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
1361 properties->maxTransformFeedbackBufferSize = UINT32_MAX;
1362 properties->maxTransformFeedbackStreamDataSize = 512;
1363 properties->maxTransformFeedbackBufferDataSize = UINT32_MAX;
1364 properties->maxTransformFeedbackBufferDataStride = 512;
1365 properties->transformFeedbackQueries = true;
1366 properties->transformFeedbackStreamsLinesTriangles = true;
1367 properties->transformFeedbackRasterizationStreamSelect = false;
1368 properties->transformFeedbackDraw = true;
1369 break;
1370 }
1371 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1372 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1373 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1374
1375 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1376 props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
1377 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
1378 props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
1379 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
1380 break;
1381 }
1382 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
1383 VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
1384 (VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
1385 properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT |
1386 VK_SAMPLE_COUNT_4_BIT |
1387 VK_SAMPLE_COUNT_8_BIT;
1388 properties->maxSampleLocationGridSize = (VkExtent2D){ 2 , 2 };
1389 properties->sampleLocationCoordinateRange[0] = 0.0f;
1390 properties->sampleLocationCoordinateRange[1] = 0.9375f;
1391 properties->sampleLocationSubPixelBits = 4;
1392 properties->variableSampleLocations = VK_FALSE;
1393 break;
1394 }
1395 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1396 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1397 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1398
1399 /* We support all of the depth resolve modes */
1400 properties->supportedDepthResolveModes =
1401 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1402 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1403 VK_RESOLVE_MODE_MIN_BIT_KHR |
1404 VK_RESOLVE_MODE_MAX_BIT_KHR;
1405
1406 /* Average doesn't make sense for stencil so we don't support that */
1407 properties->supportedStencilResolveModes =
1408 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1409 VK_RESOLVE_MODE_MIN_BIT_KHR |
1410 VK_RESOLVE_MODE_MAX_BIT_KHR;
1411
1412 properties->independentResolveNone = VK_TRUE;
1413 properties->independentResolve = VK_TRUE;
1414 break;
1415 }
1416 default:
1417 break;
1418 }
1419 }
1420 }
1421
1422 static void radv_get_physical_device_queue_family_properties(
1423 struct radv_physical_device* pdevice,
1424 uint32_t* pCount,
1425 VkQueueFamilyProperties** pQueueFamilyProperties)
1426 {
1427 int num_queue_families = 1;
1428 int idx;
1429 if (pdevice->rad_info.num_compute_rings > 0 &&
1430 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
1431 num_queue_families++;
1432
1433 if (pQueueFamilyProperties == NULL) {
1434 *pCount = num_queue_families;
1435 return;
1436 }
1437
1438 if (!*pCount)
1439 return;
1440
1441 idx = 0;
1442 if (*pCount >= 1) {
1443 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
1444 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1445 VK_QUEUE_COMPUTE_BIT |
1446 VK_QUEUE_TRANSFER_BIT |
1447 VK_QUEUE_SPARSE_BINDING_BIT,
1448 .queueCount = 1,
1449 .timestampValidBits = 64,
1450 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
1451 };
1452 idx++;
1453 }
1454
1455 if (pdevice->rad_info.num_compute_rings > 0 &&
1456 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
1457 if (*pCount > idx) {
1458 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
1459 .queueFlags = VK_QUEUE_COMPUTE_BIT |
1460 VK_QUEUE_TRANSFER_BIT |
1461 VK_QUEUE_SPARSE_BINDING_BIT,
1462 .queueCount = pdevice->rad_info.num_compute_rings,
1463 .timestampValidBits = 64,
1464 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
1465 };
1466 idx++;
1467 }
1468 }
1469 *pCount = idx;
1470 }
1471
1472 void radv_GetPhysicalDeviceQueueFamilyProperties(
1473 VkPhysicalDevice physicalDevice,
1474 uint32_t* pCount,
1475 VkQueueFamilyProperties* pQueueFamilyProperties)
1476 {
1477 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1478 if (!pQueueFamilyProperties) {
1479 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
1480 return;
1481 }
1482 VkQueueFamilyProperties *properties[] = {
1483 pQueueFamilyProperties + 0,
1484 pQueueFamilyProperties + 1,
1485 pQueueFamilyProperties + 2,
1486 };
1487 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
1488 assert(*pCount <= 3);
1489 }
1490
1491 void radv_GetPhysicalDeviceQueueFamilyProperties2(
1492 VkPhysicalDevice physicalDevice,
1493 uint32_t* pCount,
1494 VkQueueFamilyProperties2 *pQueueFamilyProperties)
1495 {
1496 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1497 if (!pQueueFamilyProperties) {
1498 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
1499 return;
1500 }
1501 VkQueueFamilyProperties *properties[] = {
1502 &pQueueFamilyProperties[0].queueFamilyProperties,
1503 &pQueueFamilyProperties[1].queueFamilyProperties,
1504 &pQueueFamilyProperties[2].queueFamilyProperties,
1505 };
1506 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
1507 assert(*pCount <= 3);
1508 }
1509
1510 void radv_GetPhysicalDeviceMemoryProperties(
1511 VkPhysicalDevice physicalDevice,
1512 VkPhysicalDeviceMemoryProperties *pMemoryProperties)
1513 {
1514 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
1515
1516 *pMemoryProperties = physical_device->memory_properties;
1517 }
1518
1519 static void
1520 radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
1521 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1522 {
1523 RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
1524 VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
1525 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
1526 uint64_t vram_size = radv_get_vram_size(device);
1527 uint64_t gtt_size = device->rad_info.gart_size;
1528 uint64_t heap_budget, heap_usage;
1529
1530 /* For all memory heaps, the computation of budget is as follow:
1531 * heap_budget = heap_size - global_heap_usage + app_heap_usage
1532 *
1533 * The Vulkan spec 1.1.97 says that the budget should include any
1534 * currently allocated device memory.
1535 *
1536 * Note that the application heap usages are not really accurate (eg.
1537 * in presence of shared buffers).
1538 */
1539 for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
1540 uint32_t heap_index = device->memory_properties.memoryTypes[i].heapIndex;
1541
1542 switch (device->mem_type_indices[i]) {
1543 case RADV_MEM_TYPE_VRAM:
1544 heap_usage = device->ws->query_value(device->ws,
1545 RADEON_ALLOCATED_VRAM);
1546
1547 heap_budget = vram_size -
1548 device->ws->query_value(device->ws, RADEON_VRAM_USAGE) +
1549 heap_usage;
1550
1551 memoryBudget->heapBudget[heap_index] = heap_budget;
1552 memoryBudget->heapUsage[heap_index] = heap_usage;
1553 break;
1554 case RADV_MEM_TYPE_VRAM_CPU_ACCESS:
1555 heap_usage = device->ws->query_value(device->ws,
1556 RADEON_ALLOCATED_VRAM_VIS);
1557
1558 heap_budget = visible_vram_size -
1559 device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
1560 heap_usage;
1561
1562 memoryBudget->heapBudget[heap_index] = heap_budget;
1563 memoryBudget->heapUsage[heap_index] = heap_usage;
1564 break;
1565 case RADV_MEM_TYPE_GTT_WRITE_COMBINE:
1566 heap_usage = device->ws->query_value(device->ws,
1567 RADEON_ALLOCATED_GTT);
1568
1569 heap_budget = gtt_size -
1570 device->ws->query_value(device->ws, RADEON_GTT_USAGE) +
1571 heap_usage;
1572
1573 memoryBudget->heapBudget[heap_index] = heap_budget;
1574 memoryBudget->heapUsage[heap_index] = heap_usage;
1575 break;
1576 default:
1577 break;
1578 }
1579 }
1580
1581 /* The heapBudget and heapUsage values must be zero for array elements
1582 * greater than or equal to
1583 * VkPhysicalDeviceMemoryProperties::memoryHeapCount.
1584 */
1585 for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
1586 memoryBudget->heapBudget[i] = 0;
1587 memoryBudget->heapUsage[i] = 0;
1588 }
1589 }
1590
1591 void radv_GetPhysicalDeviceMemoryProperties2(
1592 VkPhysicalDevice physicalDevice,
1593 VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
1594 {
1595 radv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1596 &pMemoryProperties->memoryProperties);
1597
1598 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
1599 vk_find_struct(pMemoryProperties->pNext,
1600 PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
1601 if (memory_budget)
1602 radv_get_memory_budget_properties(physicalDevice, memory_budget);
1603 }
1604
1605 VkResult radv_GetMemoryHostPointerPropertiesEXT(
1606 VkDevice _device,
1607 VkExternalMemoryHandleTypeFlagBits handleType,
1608 const void *pHostPointer,
1609 VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
1610 {
1611 RADV_FROM_HANDLE(radv_device, device, _device);
1612
1613 switch (handleType)
1614 {
1615 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
1616 const struct radv_physical_device *physical_device = device->physical_device;
1617 uint32_t memoryTypeBits = 0;
1618 for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
1619 if (physical_device->mem_type_indices[i] == RADV_MEM_TYPE_GTT_CACHED) {
1620 memoryTypeBits = (1 << i);
1621 break;
1622 }
1623 }
1624 pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
1625 return VK_SUCCESS;
1626 }
1627 default:
1628 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
1629 }
1630 }
1631
1632 static enum radeon_ctx_priority
1633 radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj)
1634 {
1635 /* Default to MEDIUM when a specific global priority isn't requested */
1636 if (!pObj)
1637 return RADEON_CTX_PRIORITY_MEDIUM;
1638
1639 switch(pObj->globalPriority) {
1640 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1641 return RADEON_CTX_PRIORITY_REALTIME;
1642 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1643 return RADEON_CTX_PRIORITY_HIGH;
1644 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1645 return RADEON_CTX_PRIORITY_MEDIUM;
1646 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1647 return RADEON_CTX_PRIORITY_LOW;
1648 default:
1649 unreachable("Illegal global priority value");
1650 return RADEON_CTX_PRIORITY_INVALID;
1651 }
1652 }
1653
1654 static int
1655 radv_queue_init(struct radv_device *device, struct radv_queue *queue,
1656 uint32_t queue_family_index, int idx,
1657 VkDeviceQueueCreateFlags flags,
1658 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority)
1659 {
1660 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1661 queue->device = device;
1662 queue->queue_family_index = queue_family_index;
1663 queue->queue_idx = idx;
1664 queue->priority = radv_get_queue_global_priority(global_priority);
1665 queue->flags = flags;
1666
1667 queue->hw_ctx = device->ws->ctx_create(device->ws, queue->priority);
1668 if (!queue->hw_ctx)
1669 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1670
1671 return VK_SUCCESS;
1672 }
1673
1674 static void
1675 radv_queue_finish(struct radv_queue *queue)
1676 {
1677 if (queue->hw_ctx)
1678 queue->device->ws->ctx_destroy(queue->hw_ctx);
1679
1680 if (queue->initial_full_flush_preamble_cs)
1681 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
1682 if (queue->initial_preamble_cs)
1683 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
1684 if (queue->continue_preamble_cs)
1685 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
1686 if (queue->descriptor_bo)
1687 queue->device->ws->buffer_destroy(queue->descriptor_bo);
1688 if (queue->scratch_bo)
1689 queue->device->ws->buffer_destroy(queue->scratch_bo);
1690 if (queue->esgs_ring_bo)
1691 queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
1692 if (queue->gsvs_ring_bo)
1693 queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
1694 if (queue->tess_rings_bo)
1695 queue->device->ws->buffer_destroy(queue->tess_rings_bo);
1696 if (queue->compute_scratch_bo)
1697 queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
1698 }
1699
1700 static void
1701 radv_bo_list_init(struct radv_bo_list *bo_list)
1702 {
1703 pthread_mutex_init(&bo_list->mutex, NULL);
1704 bo_list->list.count = bo_list->capacity = 0;
1705 bo_list->list.bos = NULL;
1706 }
1707
1708 static void
1709 radv_bo_list_finish(struct radv_bo_list *bo_list)
1710 {
1711 free(bo_list->list.bos);
1712 pthread_mutex_destroy(&bo_list->mutex);
1713 }
1714
1715 static VkResult radv_bo_list_add(struct radv_device *device,
1716 struct radeon_winsys_bo *bo)
1717 {
1718 struct radv_bo_list *bo_list = &device->bo_list;
1719
1720 if (bo->is_local)
1721 return VK_SUCCESS;
1722
1723 if (unlikely(!device->use_global_bo_list))
1724 return VK_SUCCESS;
1725
1726 pthread_mutex_lock(&bo_list->mutex);
1727 if (bo_list->list.count == bo_list->capacity) {
1728 unsigned capacity = MAX2(4, bo_list->capacity * 2);
1729 void *data = realloc(bo_list->list.bos, capacity * sizeof(struct radeon_winsys_bo*));
1730
1731 if (!data) {
1732 pthread_mutex_unlock(&bo_list->mutex);
1733 return VK_ERROR_OUT_OF_HOST_MEMORY;
1734 }
1735
1736 bo_list->list.bos = (struct radeon_winsys_bo**)data;
1737 bo_list->capacity = capacity;
1738 }
1739
1740 bo_list->list.bos[bo_list->list.count++] = bo;
1741 pthread_mutex_unlock(&bo_list->mutex);
1742 return VK_SUCCESS;
1743 }
1744
1745 static void radv_bo_list_remove(struct radv_device *device,
1746 struct radeon_winsys_bo *bo)
1747 {
1748 struct radv_bo_list *bo_list = &device->bo_list;
1749
1750 if (bo->is_local)
1751 return;
1752
1753 if (unlikely(!device->use_global_bo_list))
1754 return;
1755
1756 pthread_mutex_lock(&bo_list->mutex);
1757 for(unsigned i = 0; i < bo_list->list.count; ++i) {
1758 if (bo_list->list.bos[i] == bo) {
1759 bo_list->list.bos[i] = bo_list->list.bos[bo_list->list.count - 1];
1760 --bo_list->list.count;
1761 break;
1762 }
1763 }
1764 pthread_mutex_unlock(&bo_list->mutex);
1765 }
1766
1767 static void
1768 radv_device_init_gs_info(struct radv_device *device)
1769 {
1770 device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class,
1771 device->physical_device->rad_info.family);
1772 }
1773
1774 static int radv_get_device_extension_index(const char *name)
1775 {
1776 for (unsigned i = 0; i < RADV_DEVICE_EXTENSION_COUNT; ++i) {
1777 if (strcmp(name, radv_device_extensions[i].extensionName) == 0)
1778 return i;
1779 }
1780 return -1;
1781 }
1782
1783 static int
1784 radv_get_int_debug_option(const char *name, int default_value)
1785 {
1786 const char *str;
1787 int result;
1788
1789 str = getenv(name);
1790 if (!str) {
1791 result = default_value;
1792 } else {
1793 char *endptr;
1794
1795 result = strtol(str, &endptr, 0);
1796 if (str == endptr) {
1797 /* No digits founs. */
1798 result = default_value;
1799 }
1800 }
1801
1802 return result;
1803 }
1804
1805 VkResult radv_CreateDevice(
1806 VkPhysicalDevice physicalDevice,
1807 const VkDeviceCreateInfo* pCreateInfo,
1808 const VkAllocationCallbacks* pAllocator,
1809 VkDevice* pDevice)
1810 {
1811 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
1812 VkResult result;
1813 struct radv_device *device;
1814
1815 bool keep_shader_info = false;
1816
1817 /* Check enabled features */
1818 if (pCreateInfo->pEnabledFeatures) {
1819 VkPhysicalDeviceFeatures supported_features;
1820 radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1821 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1822 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1823 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1824 for (uint32_t i = 0; i < num_features; i++) {
1825 if (enabled_feature[i] && !supported_feature[i])
1826 return vk_error(physical_device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
1827 }
1828 }
1829
1830 device = vk_zalloc2(&physical_device->instance->alloc, pAllocator,
1831 sizeof(*device), 8,
1832 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1833 if (!device)
1834 return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1835
1836 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1837 device->instance = physical_device->instance;
1838 device->physical_device = physical_device;
1839
1840 device->ws = physical_device->ws;
1841 if (pAllocator)
1842 device->alloc = *pAllocator;
1843 else
1844 device->alloc = physical_device->instance->alloc;
1845
1846 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1847 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
1848 int index = radv_get_device_extension_index(ext_name);
1849 if (index < 0 || !physical_device->supported_extensions.extensions[index]) {
1850 vk_free(&device->alloc, device);
1851 return vk_error(physical_device->instance, VK_ERROR_EXTENSION_NOT_PRESENT);
1852 }
1853
1854 device->enabled_extensions.extensions[index] = true;
1855 }
1856
1857 keep_shader_info = device->enabled_extensions.AMD_shader_info;
1858
1859 /* With update after bind we can't attach bo's to the command buffer
1860 * from the descriptor set anymore, so we have to use a global BO list.
1861 */
1862 device->use_global_bo_list =
1863 (device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
1864 device->enabled_extensions.EXT_descriptor_indexing ||
1865 device->enabled_extensions.EXT_buffer_device_address;
1866
1867 mtx_init(&device->shader_slab_mutex, mtx_plain);
1868 list_inithead(&device->shader_slabs);
1869
1870 radv_bo_list_init(&device->bo_list);
1871
1872 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1873 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
1874 uint32_t qfi = queue_create->queueFamilyIndex;
1875 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
1876 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1877
1878 assert(!global_priority || device->physical_device->rad_info.has_ctx_priority);
1879
1880 device->queues[qfi] = vk_alloc(&device->alloc,
1881 queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1882 if (!device->queues[qfi]) {
1883 result = VK_ERROR_OUT_OF_HOST_MEMORY;
1884 goto fail;
1885 }
1886
1887 memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
1888
1889 device->queue_count[qfi] = queue_create->queueCount;
1890
1891 for (unsigned q = 0; q < queue_create->queueCount; q++) {
1892 result = radv_queue_init(device, &device->queues[qfi][q],
1893 qfi, q, queue_create->flags,
1894 global_priority);
1895 if (result != VK_SUCCESS)
1896 goto fail;
1897 }
1898 }
1899
1900 /* TODO: Enable binning for GFX10. */
1901 device->pbb_allowed = device->physical_device->rad_info.chip_class == GFX9 &&
1902 !(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
1903
1904 /* Disabled and not implemented for now. */
1905 device->dfsm_allowed = device->pbb_allowed &&
1906 (device->physical_device->rad_info.family == CHIP_RAVEN ||
1907 device->physical_device->rad_info.family == CHIP_RAVEN2);
1908
1909 #ifdef ANDROID
1910 device->always_use_syncobj = device->physical_device->rad_info.has_syncobj_wait_for_submit;
1911 #endif
1912
1913 /* The maximum number of scratch waves. Scratch space isn't divided
1914 * evenly between CUs. The number is only a function of the number of CUs.
1915 * We can decrease the constant to decrease the scratch buffer size.
1916 *
1917 * sctx->scratch_waves must be >= the maximum possible size of
1918 * 1 threadgroup, so that the hw doesn't hang from being unable
1919 * to start any.
1920 *
1921 * The recommended value is 4 per CU at most. Higher numbers don't
1922 * bring much benefit, but they still occupy chip resources (think
1923 * async compute). I've seen ~2% performance difference between 4 and 32.
1924 */
1925 uint32_t max_threads_per_block = 2048;
1926 device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units,
1927 max_threads_per_block / 64);
1928
1929 device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
1930
1931 if (device->physical_device->rad_info.chip_class >= GFX7) {
1932 /* If the KMD allows it (there is a KMD hw register for it),
1933 * allow launching waves out-of-order.
1934 */
1935 device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
1936 }
1937
1938 radv_device_init_gs_info(device);
1939
1940 device->tess_offchip_block_dw_size =
1941 device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
1942 device->has_distributed_tess =
1943 device->physical_device->rad_info.chip_class >= GFX8 &&
1944 device->physical_device->rad_info.max_se >= 2;
1945
1946 if (getenv("RADV_TRACE_FILE")) {
1947 const char *filename = getenv("RADV_TRACE_FILE");
1948
1949 keep_shader_info = true;
1950
1951 if (!radv_init_trace(device))
1952 goto fail;
1953
1954 fprintf(stderr, "*****************************************************************************\n");
1955 fprintf(stderr, "* WARNING: RADV_TRACE_FILE is costly and should only be used for debugging! *\n");
1956 fprintf(stderr, "*****************************************************************************\n");
1957
1958 fprintf(stderr, "Trace file will be dumped to %s\n", filename);
1959 radv_dump_enabled_options(device, stderr);
1960 }
1961
1962 device->keep_shader_info = keep_shader_info;
1963
1964 result = radv_device_init_meta(device);
1965 if (result != VK_SUCCESS)
1966 goto fail;
1967
1968 radv_device_init_msaa(device);
1969
1970 for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
1971 device->empty_cs[family] = device->ws->cs_create(device->ws, family);
1972 switch (family) {
1973 case RADV_QUEUE_GENERAL:
1974 radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
1975 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_LOAD_ENABLE(1));
1976 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_SHADOW_ENABLE(1));
1977 break;
1978 case RADV_QUEUE_COMPUTE:
1979 radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
1980 radeon_emit(device->empty_cs[family], 0);
1981 break;
1982 }
1983 device->ws->cs_finalize(device->empty_cs[family]);
1984 }
1985
1986 if (device->physical_device->rad_info.chip_class >= GFX7)
1987 cik_create_gfx_config(device);
1988
1989 VkPipelineCacheCreateInfo ci;
1990 ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
1991 ci.pNext = NULL;
1992 ci.flags = 0;
1993 ci.pInitialData = NULL;
1994 ci.initialDataSize = 0;
1995 VkPipelineCache pc;
1996 result = radv_CreatePipelineCache(radv_device_to_handle(device),
1997 &ci, NULL, &pc);
1998 if (result != VK_SUCCESS)
1999 goto fail_meta;
2000
2001 device->mem_cache = radv_pipeline_cache_from_handle(pc);
2002
2003 device->force_aniso =
2004 MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
2005 if (device->force_aniso >= 0) {
2006 fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
2007 1 << util_logbase2(device->force_aniso));
2008 }
2009
2010 *pDevice = radv_device_to_handle(device);
2011 return VK_SUCCESS;
2012
2013 fail_meta:
2014 radv_device_finish_meta(device);
2015 fail:
2016 radv_bo_list_finish(&device->bo_list);
2017
2018 if (device->trace_bo)
2019 device->ws->buffer_destroy(device->trace_bo);
2020
2021 if (device->gfx_init)
2022 device->ws->buffer_destroy(device->gfx_init);
2023
2024 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
2025 for (unsigned q = 0; q < device->queue_count[i]; q++)
2026 radv_queue_finish(&device->queues[i][q]);
2027 if (device->queue_count[i])
2028 vk_free(&device->alloc, device->queues[i]);
2029 }
2030
2031 vk_free(&device->alloc, device);
2032 return result;
2033 }
2034
2035 void radv_DestroyDevice(
2036 VkDevice _device,
2037 const VkAllocationCallbacks* pAllocator)
2038 {
2039 RADV_FROM_HANDLE(radv_device, device, _device);
2040
2041 if (!device)
2042 return;
2043
2044 if (device->trace_bo)
2045 device->ws->buffer_destroy(device->trace_bo);
2046
2047 if (device->gfx_init)
2048 device->ws->buffer_destroy(device->gfx_init);
2049
2050 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
2051 for (unsigned q = 0; q < device->queue_count[i]; q++)
2052 radv_queue_finish(&device->queues[i][q]);
2053 if (device->queue_count[i])
2054 vk_free(&device->alloc, device->queues[i]);
2055 if (device->empty_cs[i])
2056 device->ws->cs_destroy(device->empty_cs[i]);
2057 }
2058 radv_device_finish_meta(device);
2059
2060 VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
2061 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
2062
2063 radv_destroy_shader_slabs(device);
2064
2065 radv_bo_list_finish(&device->bo_list);
2066 vk_free(&device->alloc, device);
2067 }
2068
2069 VkResult radv_EnumerateInstanceLayerProperties(
2070 uint32_t* pPropertyCount,
2071 VkLayerProperties* pProperties)
2072 {
2073 if (pProperties == NULL) {
2074 *pPropertyCount = 0;
2075 return VK_SUCCESS;
2076 }
2077
2078 /* None supported at this time */
2079 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
2080 }
2081
2082 VkResult radv_EnumerateDeviceLayerProperties(
2083 VkPhysicalDevice physicalDevice,
2084 uint32_t* pPropertyCount,
2085 VkLayerProperties* pProperties)
2086 {
2087 if (pProperties == NULL) {
2088 *pPropertyCount = 0;
2089 return VK_SUCCESS;
2090 }
2091
2092 /* None supported at this time */
2093 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
2094 }
2095
2096 void radv_GetDeviceQueue2(
2097 VkDevice _device,
2098 const VkDeviceQueueInfo2* pQueueInfo,
2099 VkQueue* pQueue)
2100 {
2101 RADV_FROM_HANDLE(radv_device, device, _device);
2102 struct radv_queue *queue;
2103
2104 queue = &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex];
2105 if (pQueueInfo->flags != queue->flags) {
2106 /* From the Vulkan 1.1.70 spec:
2107 *
2108 * "The queue returned by vkGetDeviceQueue2 must have the same
2109 * flags value from this structure as that used at device
2110 * creation time in a VkDeviceQueueCreateInfo instance. If no
2111 * matching flags were specified at device creation time then
2112 * pQueue will return VK_NULL_HANDLE."
2113 */
2114 *pQueue = VK_NULL_HANDLE;
2115 return;
2116 }
2117
2118 *pQueue = radv_queue_to_handle(queue);
2119 }
2120
2121 void radv_GetDeviceQueue(
2122 VkDevice _device,
2123 uint32_t queueFamilyIndex,
2124 uint32_t queueIndex,
2125 VkQueue* pQueue)
2126 {
2127 const VkDeviceQueueInfo2 info = (VkDeviceQueueInfo2) {
2128 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2129 .queueFamilyIndex = queueFamilyIndex,
2130 .queueIndex = queueIndex
2131 };
2132
2133 radv_GetDeviceQueue2(_device, &info, pQueue);
2134 }
2135
2136 static void
2137 fill_geom_tess_rings(struct radv_queue *queue,
2138 uint32_t *map,
2139 bool add_sample_positions,
2140 uint32_t esgs_ring_size,
2141 struct radeon_winsys_bo *esgs_ring_bo,
2142 uint32_t gsvs_ring_size,
2143 struct radeon_winsys_bo *gsvs_ring_bo,
2144 uint32_t tess_factor_ring_size,
2145 uint32_t tess_offchip_ring_offset,
2146 uint32_t tess_offchip_ring_size,
2147 struct radeon_winsys_bo *tess_rings_bo)
2148 {
2149 uint32_t *desc = &map[4];
2150
2151 if (esgs_ring_bo) {
2152 uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
2153
2154 /* stride 0, num records - size, add tid, swizzle, elsize4,
2155 index stride 64 */
2156 desc[0] = esgs_va;
2157 desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) |
2158 S_008F04_STRIDE(0) |
2159 S_008F04_SWIZZLE_ENABLE(true);
2160 desc[2] = esgs_ring_size;
2161 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2162 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2163 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2164 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2165 S_008F0C_ELEMENT_SIZE(1) |
2166 S_008F0C_INDEX_STRIDE(3) |
2167 S_008F0C_ADD_TID_ENABLE(true);
2168
2169 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2170 desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2171 S_008F0C_OOB_SELECT(2) |
2172 S_008F0C_RESOURCE_LEVEL(1);
2173 } else {
2174 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2175 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2176 }
2177
2178 /* GS entry for ES->GS ring */
2179 /* stride 0, num records - size, elsize0,
2180 index stride 0 */
2181 desc[4] = esgs_va;
2182 desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32)|
2183 S_008F04_STRIDE(0) |
2184 S_008F04_SWIZZLE_ENABLE(false);
2185 desc[6] = esgs_ring_size;
2186 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2187 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2188 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2189 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2190 S_008F0C_ELEMENT_SIZE(0) |
2191 S_008F0C_INDEX_STRIDE(0) |
2192 S_008F0C_ADD_TID_ENABLE(false);
2193
2194 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2195 desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2196 S_008F0C_OOB_SELECT(2) |
2197 S_008F0C_RESOURCE_LEVEL(1);
2198 } else {
2199 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2200 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2201 }
2202 }
2203
2204 desc += 8;
2205
2206 if (gsvs_ring_bo) {
2207 uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
2208
2209 /* VS entry for GS->VS ring */
2210 /* stride 0, num records - size, elsize0,
2211 index stride 0 */
2212 desc[0] = gsvs_va;
2213 desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)|
2214 S_008F04_STRIDE(0) |
2215 S_008F04_SWIZZLE_ENABLE(false);
2216 desc[2] = gsvs_ring_size;
2217 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2218 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2219 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2220 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2221 S_008F0C_ELEMENT_SIZE(0) |
2222 S_008F0C_INDEX_STRIDE(0) |
2223 S_008F0C_ADD_TID_ENABLE(false);
2224
2225 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2226 desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2227 S_008F0C_OOB_SELECT(2) |
2228 S_008F0C_RESOURCE_LEVEL(1);
2229 } else {
2230 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2231 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2232 }
2233
2234 /* stride gsvs_itemsize, num records 64
2235 elsize 4, index stride 16 */
2236 /* shader will patch stride and desc[2] */
2237 desc[4] = gsvs_va;
2238 desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)|
2239 S_008F04_STRIDE(0) |
2240 S_008F04_SWIZZLE_ENABLE(true);
2241 desc[6] = 0;
2242 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2243 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2244 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2245 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2246 S_008F0C_ELEMENT_SIZE(1) |
2247 S_008F0C_INDEX_STRIDE(1) |
2248 S_008F0C_ADD_TID_ENABLE(true);
2249
2250 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2251 desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2252 S_008F0C_OOB_SELECT(2) |
2253 S_008F0C_RESOURCE_LEVEL(1);
2254 } else {
2255 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2256 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2257 }
2258
2259 }
2260
2261 desc += 8;
2262
2263 if (tess_rings_bo) {
2264 uint64_t tess_va = radv_buffer_get_va(tess_rings_bo);
2265 uint64_t tess_offchip_va = tess_va + tess_offchip_ring_offset;
2266
2267 desc[0] = tess_va;
2268 desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32) |
2269 S_008F04_STRIDE(0) |
2270 S_008F04_SWIZZLE_ENABLE(false);
2271 desc[2] = tess_factor_ring_size;
2272 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2273 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2274 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2275 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
2276
2277 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2278 desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2279 S_008F0C_OOB_SELECT(3) |
2280 S_008F0C_RESOURCE_LEVEL(1);
2281 } else {
2282 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2283 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2284 }
2285
2286 desc[4] = tess_offchip_va;
2287 desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32) |
2288 S_008F04_STRIDE(0) |
2289 S_008F04_SWIZZLE_ENABLE(false);
2290 desc[6] = tess_offchip_ring_size;
2291 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2292 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2293 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2294 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
2295
2296 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2297 desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
2298 S_008F0C_OOB_SELECT(3) |
2299 S_008F0C_RESOURCE_LEVEL(1);
2300 } else {
2301 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2302 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
2303 }
2304 }
2305
2306 desc += 8;
2307
2308 if (add_sample_positions) {
2309 /* add sample positions after all rings */
2310 memcpy(desc, queue->device->sample_locations_1x, 8);
2311 desc += 2;
2312 memcpy(desc, queue->device->sample_locations_2x, 16);
2313 desc += 4;
2314 memcpy(desc, queue->device->sample_locations_4x, 32);
2315 desc += 8;
2316 memcpy(desc, queue->device->sample_locations_8x, 64);
2317 }
2318 }
2319
2320 static unsigned
2321 radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p)
2322 {
2323 bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= GFX7 &&
2324 device->physical_device->rad_info.family != CHIP_CARRIZO &&
2325 device->physical_device->rad_info.family != CHIP_STONEY;
2326 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
2327 unsigned max_offchip_buffers;
2328 unsigned offchip_granularity;
2329 unsigned hs_offchip_param;
2330
2331 /*
2332 * Per RadeonSI:
2333 * This must be one less than the maximum number due to a hw limitation.
2334 * Various hardware bugs need thGFX7
2335 *
2336 * Per AMDVLK:
2337 * Vega10 should limit max_offchip_buffers to 508 (4 * 127).
2338 * Gfx7 should limit max_offchip_buffers to 508
2339 * Gfx6 should limit max_offchip_buffers to 126 (2 * 63)
2340 *
2341 * Follow AMDVLK here.
2342 */
2343 if (device->physical_device->rad_info.chip_class >= GFX10) {
2344 max_offchip_buffers_per_se = 256;
2345 } else if (device->physical_device->rad_info.family == CHIP_VEGA10 ||
2346 device->physical_device->rad_info.chip_class == GFX7 ||
2347 device->physical_device->rad_info.chip_class == GFX6)
2348 --max_offchip_buffers_per_se;
2349
2350 max_offchip_buffers = max_offchip_buffers_per_se *
2351 device->physical_device->rad_info.max_se;
2352
2353 /* Hawaii has a bug with offchip buffers > 256 that can be worked
2354 * around by setting 4K granularity.
2355 */
2356 if (device->tess_offchip_block_dw_size == 4096) {
2357 assert(device->physical_device->rad_info.family == CHIP_HAWAII);
2358 offchip_granularity = V_03093C_X_4K_DWORDS;
2359 } else {
2360 assert(device->tess_offchip_block_dw_size == 8192);
2361 offchip_granularity = V_03093C_X_8K_DWORDS;
2362 }
2363
2364 switch (device->physical_device->rad_info.chip_class) {
2365 case GFX6:
2366 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
2367 break;
2368 case GFX7:
2369 case GFX8:
2370 case GFX9:
2371 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
2372 break;
2373 case GFX10:
2374 break;
2375 default:
2376 break;
2377 }
2378
2379 *max_offchip_buffers_p = max_offchip_buffers;
2380 if (device->physical_device->rad_info.chip_class >= GFX7) {
2381 if (device->physical_device->rad_info.chip_class >= GFX8)
2382 --max_offchip_buffers;
2383 hs_offchip_param =
2384 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
2385 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity);
2386 } else {
2387 hs_offchip_param =
2388 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
2389 }
2390 return hs_offchip_param;
2391 }
2392
2393 static void
2394 radv_emit_gs_ring_sizes(struct radv_queue *queue, struct radeon_cmdbuf *cs,
2395 struct radeon_winsys_bo *esgs_ring_bo,
2396 uint32_t esgs_ring_size,
2397 struct radeon_winsys_bo *gsvs_ring_bo,
2398 uint32_t gsvs_ring_size)
2399 {
2400 if (!esgs_ring_bo && !gsvs_ring_bo)
2401 return;
2402
2403 if (esgs_ring_bo)
2404 radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo);
2405
2406 if (gsvs_ring_bo)
2407 radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo);
2408
2409 if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
2410 radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
2411 radeon_emit(cs, esgs_ring_size >> 8);
2412 radeon_emit(cs, gsvs_ring_size >> 8);
2413 } else {
2414 radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
2415 radeon_emit(cs, esgs_ring_size >> 8);
2416 radeon_emit(cs, gsvs_ring_size >> 8);
2417 }
2418 }
2419
2420 static void
2421 radv_emit_tess_factor_ring(struct radv_queue *queue, struct radeon_cmdbuf *cs,
2422 unsigned hs_offchip_param, unsigned tf_ring_size,
2423 struct radeon_winsys_bo *tess_rings_bo)
2424 {
2425 uint64_t tf_va;
2426
2427 if (!tess_rings_bo)
2428 return;
2429
2430 tf_va = radv_buffer_get_va(tess_rings_bo);
2431
2432 radv_cs_add_buffer(queue->device->ws, cs, tess_rings_bo);
2433
2434 if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
2435 radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE,
2436 S_030938_SIZE(tf_ring_size / 4));
2437 radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE,
2438 tf_va >> 8);
2439
2440 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2441 radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
2442 S_030984_BASE_HI(tf_va >> 40));
2443 } else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
2444 radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI,
2445 S_030944_BASE_HI(tf_va >> 40));
2446 }
2447 radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM,
2448 hs_offchip_param);
2449 } else {
2450 radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE,
2451 S_008988_SIZE(tf_ring_size / 4));
2452 radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE,
2453 tf_va >> 8);
2454 radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM,
2455 hs_offchip_param);
2456 }
2457 }
2458
2459 static void
2460 radv_emit_compute_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
2461 struct radeon_winsys_bo *compute_scratch_bo)
2462 {
2463 uint64_t scratch_va;
2464
2465 if (!compute_scratch_bo)
2466 return;
2467
2468 scratch_va = radv_buffer_get_va(compute_scratch_bo);
2469
2470 radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo);
2471
2472 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
2473 radeon_emit(cs, scratch_va);
2474 radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
2475 S_008F04_SWIZZLE_ENABLE(1));
2476 }
2477
2478 static void
2479 radv_emit_global_shader_pointers(struct radv_queue *queue,
2480 struct radeon_cmdbuf *cs,
2481 struct radeon_winsys_bo *descriptor_bo)
2482 {
2483 uint64_t va;
2484
2485 if (!descriptor_bo)
2486 return;
2487
2488 va = radv_buffer_get_va(descriptor_bo);
2489
2490 radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo);
2491
2492 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
2493 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
2494 R_00B130_SPI_SHADER_USER_DATA_VS_0,
2495 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
2496 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
2497
2498 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
2499 radv_emit_shader_pointer(queue->device, cs, regs[i],
2500 va, true);
2501 }
2502 } else if (queue->device->physical_device->rad_info.chip_class >= GFX9) {
2503 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
2504 R_00B130_SPI_SHADER_USER_DATA_VS_0,
2505 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
2506 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
2507
2508 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
2509 radv_emit_shader_pointer(queue->device, cs, regs[i],
2510 va, true);
2511 }
2512 } else {
2513 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
2514 R_00B130_SPI_SHADER_USER_DATA_VS_0,
2515 R_00B230_SPI_SHADER_USER_DATA_GS_0,
2516 R_00B330_SPI_SHADER_USER_DATA_ES_0,
2517 R_00B430_SPI_SHADER_USER_DATA_HS_0,
2518 R_00B530_SPI_SHADER_USER_DATA_LS_0};
2519
2520 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
2521 radv_emit_shader_pointer(queue->device, cs, regs[i],
2522 va, true);
2523 }
2524 }
2525 }
2526
2527 static void
2528 radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
2529 {
2530 struct radv_device *device = queue->device;
2531
2532 if (device->gfx_init) {
2533 uint64_t va = radv_buffer_get_va(device->gfx_init);
2534
2535 radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
2536 radeon_emit(cs, va);
2537 radeon_emit(cs, va >> 32);
2538 radeon_emit(cs, device->gfx_init_size_dw & 0xffff);
2539
2540 radv_cs_add_buffer(device->ws, cs, device->gfx_init);
2541 } else {
2542 struct radv_physical_device *physical_device = device->physical_device;
2543 si_emit_graphics(physical_device, cs);
2544 }
2545 }
2546
2547 static void
2548 radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
2549 {
2550 struct radv_physical_device *physical_device = queue->device->physical_device;
2551 si_emit_compute(physical_device, cs);
2552 }
2553
2554 static VkResult
2555 radv_get_preamble_cs(struct radv_queue *queue,
2556 uint32_t scratch_size,
2557 uint32_t compute_scratch_size,
2558 uint32_t esgs_ring_size,
2559 uint32_t gsvs_ring_size,
2560 bool needs_tess_rings,
2561 bool needs_sample_positions,
2562 struct radeon_cmdbuf **initial_full_flush_preamble_cs,
2563 struct radeon_cmdbuf **initial_preamble_cs,
2564 struct radeon_cmdbuf **continue_preamble_cs)
2565 {
2566 struct radeon_winsys_bo *scratch_bo = NULL;
2567 struct radeon_winsys_bo *descriptor_bo = NULL;
2568 struct radeon_winsys_bo *compute_scratch_bo = NULL;
2569 struct radeon_winsys_bo *esgs_ring_bo = NULL;
2570 struct radeon_winsys_bo *gsvs_ring_bo = NULL;
2571 struct radeon_winsys_bo *tess_rings_bo = NULL;
2572 struct radeon_cmdbuf *dest_cs[3] = {0};
2573 bool add_tess_rings = false, add_sample_positions = false;
2574 unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0;
2575 unsigned max_offchip_buffers;
2576 unsigned hs_offchip_param = 0;
2577 unsigned tess_offchip_ring_offset;
2578 uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
2579 if (!queue->has_tess_rings) {
2580 if (needs_tess_rings)
2581 add_tess_rings = true;
2582 }
2583 if (!queue->has_sample_positions) {
2584 if (needs_sample_positions)
2585 add_sample_positions = true;
2586 }
2587 tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se;
2588 hs_offchip_param = radv_get_hs_offchip_param(queue->device,
2589 &max_offchip_buffers);
2590 tess_offchip_ring_offset = align(tess_factor_ring_size, 64 * 1024);
2591 tess_offchip_ring_size = max_offchip_buffers *
2592 queue->device->tess_offchip_block_dw_size * 4;
2593
2594 if (scratch_size <= queue->scratch_size &&
2595 compute_scratch_size <= queue->compute_scratch_size &&
2596 esgs_ring_size <= queue->esgs_ring_size &&
2597 gsvs_ring_size <= queue->gsvs_ring_size &&
2598 !add_tess_rings && !add_sample_positions &&
2599 queue->initial_preamble_cs) {
2600 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
2601 *initial_preamble_cs = queue->initial_preamble_cs;
2602 *continue_preamble_cs = queue->continue_preamble_cs;
2603 if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
2604 *continue_preamble_cs = NULL;
2605 return VK_SUCCESS;
2606 }
2607
2608 if (scratch_size > queue->scratch_size) {
2609 scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
2610 scratch_size,
2611 4096,
2612 RADEON_DOMAIN_VRAM,
2613 ring_bo_flags,
2614 RADV_BO_PRIORITY_SCRATCH);
2615 if (!scratch_bo)
2616 goto fail;
2617 } else
2618 scratch_bo = queue->scratch_bo;
2619
2620 if (compute_scratch_size > queue->compute_scratch_size) {
2621 compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
2622 compute_scratch_size,
2623 4096,
2624 RADEON_DOMAIN_VRAM,
2625 ring_bo_flags,
2626 RADV_BO_PRIORITY_SCRATCH);
2627 if (!compute_scratch_bo)
2628 goto fail;
2629
2630 } else
2631 compute_scratch_bo = queue->compute_scratch_bo;
2632
2633 if (esgs_ring_size > queue->esgs_ring_size) {
2634 esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
2635 esgs_ring_size,
2636 4096,
2637 RADEON_DOMAIN_VRAM,
2638 ring_bo_flags,
2639 RADV_BO_PRIORITY_SCRATCH);
2640 if (!esgs_ring_bo)
2641 goto fail;
2642 } else {
2643 esgs_ring_bo = queue->esgs_ring_bo;
2644 esgs_ring_size = queue->esgs_ring_size;
2645 }
2646
2647 if (gsvs_ring_size > queue->gsvs_ring_size) {
2648 gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
2649 gsvs_ring_size,
2650 4096,
2651 RADEON_DOMAIN_VRAM,
2652 ring_bo_flags,
2653 RADV_BO_PRIORITY_SCRATCH);
2654 if (!gsvs_ring_bo)
2655 goto fail;
2656 } else {
2657 gsvs_ring_bo = queue->gsvs_ring_bo;
2658 gsvs_ring_size = queue->gsvs_ring_size;
2659 }
2660
2661 if (add_tess_rings) {
2662 tess_rings_bo = queue->device->ws->buffer_create(queue->device->ws,
2663 tess_offchip_ring_offset + tess_offchip_ring_size,
2664 256,
2665 RADEON_DOMAIN_VRAM,
2666 ring_bo_flags,
2667 RADV_BO_PRIORITY_SCRATCH);
2668 if (!tess_rings_bo)
2669 goto fail;
2670 } else {
2671 tess_rings_bo = queue->tess_rings_bo;
2672 }
2673
2674 if (scratch_bo != queue->scratch_bo ||
2675 esgs_ring_bo != queue->esgs_ring_bo ||
2676 gsvs_ring_bo != queue->gsvs_ring_bo ||
2677 tess_rings_bo != queue->tess_rings_bo ||
2678 add_sample_positions) {
2679 uint32_t size = 0;
2680 if (gsvs_ring_bo || esgs_ring_bo ||
2681 tess_rings_bo || add_sample_positions) {
2682 size = 112; /* 2 dword + 2 padding + 4 dword * 6 */
2683 if (add_sample_positions)
2684 size += 128; /* 64+32+16+8 = 120 bytes */
2685 }
2686 else if (scratch_bo)
2687 size = 8; /* 2 dword */
2688
2689 descriptor_bo = queue->device->ws->buffer_create(queue->device->ws,
2690 size,
2691 4096,
2692 RADEON_DOMAIN_VRAM,
2693 RADEON_FLAG_CPU_ACCESS |
2694 RADEON_FLAG_NO_INTERPROCESS_SHARING |
2695 RADEON_FLAG_READ_ONLY,
2696 RADV_BO_PRIORITY_DESCRIPTOR);
2697 if (!descriptor_bo)
2698 goto fail;
2699 } else
2700 descriptor_bo = queue->descriptor_bo;
2701
2702 if (descriptor_bo != queue->descriptor_bo) {
2703 uint32_t *map = (uint32_t*)queue->device->ws->buffer_map(descriptor_bo);
2704
2705 if (scratch_bo) {
2706 uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
2707 uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
2708 S_008F04_SWIZZLE_ENABLE(1);
2709 map[0] = scratch_va;
2710 map[1] = rsrc1;
2711 }
2712
2713 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || add_sample_positions)
2714 fill_geom_tess_rings(queue, map, add_sample_positions,
2715 esgs_ring_size, esgs_ring_bo,
2716 gsvs_ring_size, gsvs_ring_bo,
2717 tess_factor_ring_size,
2718 tess_offchip_ring_offset,
2719 tess_offchip_ring_size,
2720 tess_rings_bo);
2721
2722 queue->device->ws->buffer_unmap(descriptor_bo);
2723 }
2724
2725 for(int i = 0; i < 3; ++i) {
2726 struct radeon_cmdbuf *cs = NULL;
2727 cs = queue->device->ws->cs_create(queue->device->ws,
2728 queue->queue_family_index ? RING_COMPUTE : RING_GFX);
2729 if (!cs)
2730 goto fail;
2731
2732 dest_cs[i] = cs;
2733
2734 if (scratch_bo)
2735 radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
2736
2737 /* Emit initial configuration. */
2738 switch (queue->queue_family_index) {
2739 case RADV_QUEUE_GENERAL:
2740 radv_init_graphics_state(cs, queue);
2741 break;
2742 case RADV_QUEUE_COMPUTE:
2743 radv_init_compute_state(cs, queue);
2744 break;
2745 case RADV_QUEUE_TRANSFER:
2746 break;
2747 }
2748
2749 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo) {
2750 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
2751 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
2752
2753 if (queue->device->physical_device->rad_info.chip_class < GFX10) {
2754 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
2755 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
2756 }
2757 }
2758
2759 radv_emit_gs_ring_sizes(queue, cs, esgs_ring_bo, esgs_ring_size,
2760 gsvs_ring_bo, gsvs_ring_size);
2761 radv_emit_tess_factor_ring(queue, cs, hs_offchip_param,
2762 tess_factor_ring_size, tess_rings_bo);
2763 radv_emit_global_shader_pointers(queue, cs, descriptor_bo);
2764 radv_emit_compute_scratch(queue, cs, compute_scratch_bo);
2765
2766 if (i == 0) {
2767 si_cs_emit_cache_flush(cs,
2768 queue->device->physical_device->rad_info.chip_class,
2769 NULL, 0,
2770 queue->queue_family_index == RING_COMPUTE &&
2771 queue->device->physical_device->rad_info.chip_class >= GFX7,
2772 (queue->queue_family_index == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) |
2773 RADV_CMD_FLAG_INV_ICACHE |
2774 RADV_CMD_FLAG_INV_SCACHE |
2775 RADV_CMD_FLAG_INV_VCACHE |
2776 RADV_CMD_FLAG_INV_L2 |
2777 RADV_CMD_FLAG_START_PIPELINE_STATS, 0);
2778 } else if (i == 1) {
2779 si_cs_emit_cache_flush(cs,
2780 queue->device->physical_device->rad_info.chip_class,
2781 NULL, 0,
2782 queue->queue_family_index == RING_COMPUTE &&
2783 queue->device->physical_device->rad_info.chip_class >= GFX7,
2784 RADV_CMD_FLAG_INV_ICACHE |
2785 RADV_CMD_FLAG_INV_SCACHE |
2786 RADV_CMD_FLAG_INV_VCACHE |
2787 RADV_CMD_FLAG_INV_L2 |
2788 RADV_CMD_FLAG_START_PIPELINE_STATS, 0);
2789 }
2790
2791 if (!queue->device->ws->cs_finalize(cs))
2792 goto fail;
2793 }
2794
2795 if (queue->initial_full_flush_preamble_cs)
2796 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
2797
2798 if (queue->initial_preamble_cs)
2799 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
2800
2801 if (queue->continue_preamble_cs)
2802 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
2803
2804 queue->initial_full_flush_preamble_cs = dest_cs[0];
2805 queue->initial_preamble_cs = dest_cs[1];
2806 queue->continue_preamble_cs = dest_cs[2];
2807
2808 if (scratch_bo != queue->scratch_bo) {
2809 if (queue->scratch_bo)
2810 queue->device->ws->buffer_destroy(queue->scratch_bo);
2811 queue->scratch_bo = scratch_bo;
2812 queue->scratch_size = scratch_size;
2813 }
2814
2815 if (compute_scratch_bo != queue->compute_scratch_bo) {
2816 if (queue->compute_scratch_bo)
2817 queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
2818 queue->compute_scratch_bo = compute_scratch_bo;
2819 queue->compute_scratch_size = compute_scratch_size;
2820 }
2821
2822 if (esgs_ring_bo != queue->esgs_ring_bo) {
2823 if (queue->esgs_ring_bo)
2824 queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
2825 queue->esgs_ring_bo = esgs_ring_bo;
2826 queue->esgs_ring_size = esgs_ring_size;
2827 }
2828
2829 if (gsvs_ring_bo != queue->gsvs_ring_bo) {
2830 if (queue->gsvs_ring_bo)
2831 queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
2832 queue->gsvs_ring_bo = gsvs_ring_bo;
2833 queue->gsvs_ring_size = gsvs_ring_size;
2834 }
2835
2836 if (tess_rings_bo != queue->tess_rings_bo) {
2837 queue->tess_rings_bo = tess_rings_bo;
2838 queue->has_tess_rings = true;
2839 }
2840
2841 if (descriptor_bo != queue->descriptor_bo) {
2842 if (queue->descriptor_bo)
2843 queue->device->ws->buffer_destroy(queue->descriptor_bo);
2844
2845 queue->descriptor_bo = descriptor_bo;
2846 }
2847
2848 if (add_sample_positions)
2849 queue->has_sample_positions = true;
2850
2851 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
2852 *initial_preamble_cs = queue->initial_preamble_cs;
2853 *continue_preamble_cs = queue->continue_preamble_cs;
2854 if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
2855 *continue_preamble_cs = NULL;
2856 return VK_SUCCESS;
2857 fail:
2858 for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
2859 if (dest_cs[i])
2860 queue->device->ws->cs_destroy(dest_cs[i]);
2861 if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
2862 queue->device->ws->buffer_destroy(descriptor_bo);
2863 if (scratch_bo && scratch_bo != queue->scratch_bo)
2864 queue->device->ws->buffer_destroy(scratch_bo);
2865 if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
2866 queue->device->ws->buffer_destroy(compute_scratch_bo);
2867 if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
2868 queue->device->ws->buffer_destroy(esgs_ring_bo);
2869 if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
2870 queue->device->ws->buffer_destroy(gsvs_ring_bo);
2871 if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
2872 queue->device->ws->buffer_destroy(tess_rings_bo);
2873 return vk_error(queue->device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
2874 }
2875
2876 static VkResult radv_alloc_sem_counts(struct radv_instance *instance,
2877 struct radv_winsys_sem_counts *counts,
2878 int num_sems,
2879 const VkSemaphore *sems,
2880 VkFence _fence,
2881 bool reset_temp)
2882 {
2883 int syncobj_idx = 0, sem_idx = 0;
2884
2885 if (num_sems == 0 && _fence == VK_NULL_HANDLE)
2886 return VK_SUCCESS;
2887
2888 for (uint32_t i = 0; i < num_sems; i++) {
2889 RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
2890
2891 if (sem->temp_syncobj || sem->syncobj)
2892 counts->syncobj_count++;
2893 else
2894 counts->sem_count++;
2895 }
2896
2897 if (_fence != VK_NULL_HANDLE) {
2898 RADV_FROM_HANDLE(radv_fence, fence, _fence);
2899 if (fence->temp_syncobj || fence->syncobj)
2900 counts->syncobj_count++;
2901 }
2902
2903 if (counts->syncobj_count) {
2904 counts->syncobj = (uint32_t *)malloc(sizeof(uint32_t) * counts->syncobj_count);
2905 if (!counts->syncobj)
2906 return vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2907 }
2908
2909 if (counts->sem_count) {
2910 counts->sem = (struct radeon_winsys_sem **)malloc(sizeof(struct radeon_winsys_sem *) * counts->sem_count);
2911 if (!counts->sem) {
2912 free(counts->syncobj);
2913 return vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2914 }
2915 }
2916
2917 for (uint32_t i = 0; i < num_sems; i++) {
2918 RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
2919
2920 if (sem->temp_syncobj) {
2921 counts->syncobj[syncobj_idx++] = sem->temp_syncobj;
2922 }
2923 else if (sem->syncobj)
2924 counts->syncobj[syncobj_idx++] = sem->syncobj;
2925 else {
2926 assert(sem->sem);
2927 counts->sem[sem_idx++] = sem->sem;
2928 }
2929 }
2930
2931 if (_fence != VK_NULL_HANDLE) {
2932 RADV_FROM_HANDLE(radv_fence, fence, _fence);
2933 if (fence->temp_syncobj)
2934 counts->syncobj[syncobj_idx++] = fence->temp_syncobj;
2935 else if (fence->syncobj)
2936 counts->syncobj[syncobj_idx++] = fence->syncobj;
2937 }
2938
2939 return VK_SUCCESS;
2940 }
2941
2942 static void
2943 radv_free_sem_info(struct radv_winsys_sem_info *sem_info)
2944 {
2945 free(sem_info->wait.syncobj);
2946 free(sem_info->wait.sem);
2947 free(sem_info->signal.syncobj);
2948 free(sem_info->signal.sem);
2949 }
2950
2951
2952 static void radv_free_temp_syncobjs(struct radv_device *device,
2953 int num_sems,
2954 const VkSemaphore *sems)
2955 {
2956 for (uint32_t i = 0; i < num_sems; i++) {
2957 RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
2958
2959 if (sem->temp_syncobj) {
2960 device->ws->destroy_syncobj(device->ws, sem->temp_syncobj);
2961 sem->temp_syncobj = 0;
2962 }
2963 }
2964 }
2965
2966 static VkResult
2967 radv_alloc_sem_info(struct radv_instance *instance,
2968 struct radv_winsys_sem_info *sem_info,
2969 int num_wait_sems,
2970 const VkSemaphore *wait_sems,
2971 int num_signal_sems,
2972 const VkSemaphore *signal_sems,
2973 VkFence fence)
2974 {
2975 VkResult ret;
2976 memset(sem_info, 0, sizeof(*sem_info));
2977
2978 ret = radv_alloc_sem_counts(instance, &sem_info->wait, num_wait_sems, wait_sems, VK_NULL_HANDLE, true);
2979 if (ret)
2980 return ret;
2981 ret = radv_alloc_sem_counts(instance, &sem_info->signal, num_signal_sems, signal_sems, fence, false);
2982 if (ret)
2983 radv_free_sem_info(sem_info);
2984
2985 /* caller can override these */
2986 sem_info->cs_emit_wait = true;
2987 sem_info->cs_emit_signal = true;
2988 return ret;
2989 }
2990
2991 /* Signals fence as soon as all the work currently put on queue is done. */
2992 static VkResult radv_signal_fence(struct radv_queue *queue,
2993 struct radv_fence *fence)
2994 {
2995 int ret;
2996 VkResult result;
2997 struct radv_winsys_sem_info sem_info;
2998
2999 result = radv_alloc_sem_info(queue->device->instance, &sem_info, 0, NULL, 0, NULL,
3000 radv_fence_to_handle(fence));
3001 if (result != VK_SUCCESS)
3002 return result;
3003
3004 ret = queue->device->ws->cs_submit(queue->hw_ctx, queue->queue_idx,
3005 &queue->device->empty_cs[queue->queue_family_index],
3006 1, NULL, NULL, &sem_info, NULL,
3007 false, fence->fence);
3008 radv_free_sem_info(&sem_info);
3009
3010 if (ret)
3011 return vk_error(queue->device->instance, VK_ERROR_DEVICE_LOST);
3012
3013 return VK_SUCCESS;
3014 }
3015
3016 VkResult radv_QueueSubmit(
3017 VkQueue _queue,
3018 uint32_t submitCount,
3019 const VkSubmitInfo* pSubmits,
3020 VkFence _fence)
3021 {
3022 RADV_FROM_HANDLE(radv_queue, queue, _queue);
3023 RADV_FROM_HANDLE(radv_fence, fence, _fence);
3024 struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
3025 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
3026 int ret;
3027 uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
3028 uint32_t scratch_size = 0;
3029 uint32_t compute_scratch_size = 0;
3030 uint32_t esgs_ring_size = 0, gsvs_ring_size = 0;
3031 struct radeon_cmdbuf *initial_preamble_cs = NULL, *initial_flush_preamble_cs = NULL, *continue_preamble_cs = NULL;
3032 VkResult result;
3033 bool fence_emitted = false;
3034 bool tess_rings_needed = false;
3035 bool sample_positions_needed = false;
3036
3037 /* Do this first so failing to allocate scratch buffers can't result in
3038 * partially executed submissions. */
3039 for (uint32_t i = 0; i < submitCount; i++) {
3040 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
3041 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
3042 pSubmits[i].pCommandBuffers[j]);
3043
3044 scratch_size = MAX2(scratch_size, cmd_buffer->scratch_size_needed);
3045 compute_scratch_size = MAX2(compute_scratch_size,
3046 cmd_buffer->compute_scratch_size_needed);
3047 esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
3048 gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
3049 tess_rings_needed |= cmd_buffer->tess_rings_needed;
3050 sample_positions_needed |= cmd_buffer->sample_positions_needed;
3051 }
3052 }
3053
3054 result = radv_get_preamble_cs(queue, scratch_size, compute_scratch_size,
3055 esgs_ring_size, gsvs_ring_size, tess_rings_needed,
3056 sample_positions_needed, &initial_flush_preamble_cs,
3057 &initial_preamble_cs, &continue_preamble_cs);
3058 if (result != VK_SUCCESS)
3059 return result;
3060
3061 for (uint32_t i = 0; i < submitCount; i++) {
3062 struct radeon_cmdbuf **cs_array;
3063 bool do_flush = !i || pSubmits[i].pWaitDstStageMask;
3064 bool can_patch = true;
3065 uint32_t advance;
3066 struct radv_winsys_sem_info sem_info;
3067
3068 result = radv_alloc_sem_info(queue->device->instance,
3069 &sem_info,
3070 pSubmits[i].waitSemaphoreCount,
3071 pSubmits[i].pWaitSemaphores,
3072 pSubmits[i].signalSemaphoreCount,
3073 pSubmits[i].pSignalSemaphores,
3074 _fence);
3075 if (result != VK_SUCCESS)
3076 return result;
3077
3078 if (!pSubmits[i].commandBufferCount) {
3079 if (pSubmits[i].waitSemaphoreCount || pSubmits[i].signalSemaphoreCount) {
3080 ret = queue->device->ws->cs_submit(ctx, queue->queue_idx,
3081 &queue->device->empty_cs[queue->queue_family_index],
3082 1, NULL, NULL,
3083 &sem_info, NULL,
3084 false, base_fence);
3085 if (ret) {
3086 radv_loge("failed to submit CS %d\n", i);
3087 abort();
3088 }
3089 fence_emitted = true;
3090 }
3091 radv_free_sem_info(&sem_info);
3092 continue;
3093 }
3094
3095 cs_array = malloc(sizeof(struct radeon_cmdbuf *) *
3096 (pSubmits[i].commandBufferCount));
3097
3098 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
3099 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
3100 pSubmits[i].pCommandBuffers[j]);
3101 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3102
3103 cs_array[j] = cmd_buffer->cs;
3104 if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
3105 can_patch = false;
3106
3107 cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
3108 }
3109
3110 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j += advance) {
3111 struct radeon_cmdbuf *initial_preamble = (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs;
3112 const struct radv_winsys_bo_list *bo_list = NULL;
3113
3114 advance = MIN2(max_cs_submission,
3115 pSubmits[i].commandBufferCount - j);
3116
3117 if (queue->device->trace_bo)
3118 *queue->device->trace_id_ptr = 0;
3119
3120 sem_info.cs_emit_wait = j == 0;
3121 sem_info.cs_emit_signal = j + advance == pSubmits[i].commandBufferCount;
3122
3123 if (unlikely(queue->device->use_global_bo_list)) {
3124 pthread_mutex_lock(&queue->device->bo_list.mutex);
3125 bo_list = &queue->device->bo_list.list;
3126 }
3127
3128 ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j,
3129 advance, initial_preamble, continue_preamble_cs,
3130 &sem_info, bo_list,
3131 can_patch, base_fence);
3132
3133 if (unlikely(queue->device->use_global_bo_list))
3134 pthread_mutex_unlock(&queue->device->bo_list.mutex);
3135
3136 if (ret) {
3137 radv_loge("failed to submit CS %d\n", i);
3138 abort();
3139 }
3140 fence_emitted = true;
3141 if (queue->device->trace_bo) {
3142 radv_check_gpu_hangs(queue, cs_array[j]);
3143 }
3144 }
3145
3146 radv_free_temp_syncobjs(queue->device,
3147 pSubmits[i].waitSemaphoreCount,
3148 pSubmits[i].pWaitSemaphores);
3149 radv_free_sem_info(&sem_info);
3150 free(cs_array);
3151 }
3152
3153 if (fence) {
3154 if (!fence_emitted) {
3155 result = radv_signal_fence(queue, fence);
3156 if (result != VK_SUCCESS)
3157 return result;
3158 }
3159 }
3160
3161 return VK_SUCCESS;
3162 }
3163
3164 VkResult radv_QueueWaitIdle(
3165 VkQueue _queue)
3166 {
3167 RADV_FROM_HANDLE(radv_queue, queue, _queue);
3168
3169 queue->device->ws->ctx_wait_idle(queue->hw_ctx,
3170 radv_queue_family_to_ring(queue->queue_family_index),
3171 queue->queue_idx);
3172 return VK_SUCCESS;
3173 }
3174
3175 VkResult radv_DeviceWaitIdle(
3176 VkDevice _device)
3177 {
3178 RADV_FROM_HANDLE(radv_device, device, _device);
3179
3180 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
3181 for (unsigned q = 0; q < device->queue_count[i]; q++) {
3182 radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q]));
3183 }
3184 }
3185 return VK_SUCCESS;
3186 }
3187
3188 VkResult radv_EnumerateInstanceExtensionProperties(
3189 const char* pLayerName,
3190 uint32_t* pPropertyCount,
3191 VkExtensionProperties* pProperties)
3192 {
3193 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
3194
3195 for (int i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; i++) {
3196 if (radv_supported_instance_extensions.extensions[i]) {
3197 vk_outarray_append(&out, prop) {
3198 *prop = radv_instance_extensions[i];
3199 }
3200 }
3201 }
3202
3203 return vk_outarray_status(&out);
3204 }
3205
3206 VkResult radv_EnumerateDeviceExtensionProperties(
3207 VkPhysicalDevice physicalDevice,
3208 const char* pLayerName,
3209 uint32_t* pPropertyCount,
3210 VkExtensionProperties* pProperties)
3211 {
3212 RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
3213 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
3214
3215 for (int i = 0; i < RADV_DEVICE_EXTENSION_COUNT; i++) {
3216 if (device->supported_extensions.extensions[i]) {
3217 vk_outarray_append(&out, prop) {
3218 *prop = radv_device_extensions[i];
3219 }
3220 }
3221 }
3222
3223 return vk_outarray_status(&out);
3224 }
3225
3226 PFN_vkVoidFunction radv_GetInstanceProcAddr(
3227 VkInstance _instance,
3228 const char* pName)
3229 {
3230 RADV_FROM_HANDLE(radv_instance, instance, _instance);
3231
3232 return radv_lookup_entrypoint_checked(pName,
3233 instance ? instance->apiVersion : 0,
3234 instance ? &instance->enabled_extensions : NULL,
3235 NULL);
3236 }
3237
3238 /* The loader wants us to expose a second GetInstanceProcAddr function
3239 * to work around certain LD_PRELOAD issues seen in apps.
3240 */
3241 PUBLIC
3242 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
3243 VkInstance instance,
3244 const char* pName);
3245
3246 PUBLIC
3247 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
3248 VkInstance instance,
3249 const char* pName)
3250 {
3251 return radv_GetInstanceProcAddr(instance, pName);
3252 }
3253
3254 PUBLIC
3255 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
3256 VkInstance _instance,
3257 const char* pName);
3258
3259 PUBLIC
3260 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
3261 VkInstance _instance,
3262 const char* pName)
3263 {
3264 RADV_FROM_HANDLE(radv_instance, instance, _instance);
3265
3266 return radv_lookup_physical_device_entrypoint_checked(pName,
3267 instance ? instance->apiVersion : 0,
3268 instance ? &instance->enabled_extensions : NULL);
3269 }
3270
3271 PFN_vkVoidFunction radv_GetDeviceProcAddr(
3272 VkDevice _device,
3273 const char* pName)
3274 {
3275 RADV_FROM_HANDLE(radv_device, device, _device);
3276
3277 return radv_lookup_entrypoint_checked(pName,
3278 device->instance->apiVersion,
3279 &device->instance->enabled_extensions,
3280 &device->enabled_extensions);
3281 }
3282
3283 bool radv_get_memory_fd(struct radv_device *device,
3284 struct radv_device_memory *memory,
3285 int *pFD)
3286 {
3287 struct radeon_bo_metadata metadata;
3288
3289 if (memory->image) {
3290 radv_init_metadata(device, memory->image, &metadata);
3291 device->ws->buffer_set_metadata(memory->bo, &metadata);
3292 }
3293
3294 return device->ws->buffer_get_fd(device->ws, memory->bo,
3295 pFD);
3296 }
3297
3298 static VkResult radv_alloc_memory(struct radv_device *device,
3299 const VkMemoryAllocateInfo* pAllocateInfo,
3300 const VkAllocationCallbacks* pAllocator,
3301 VkDeviceMemory* pMem)
3302 {
3303 struct radv_device_memory *mem;
3304 VkResult result;
3305 enum radeon_bo_domain domain;
3306 uint32_t flags = 0;
3307 enum radv_mem_type mem_type_index = device->physical_device->mem_type_indices[pAllocateInfo->memoryTypeIndex];
3308
3309 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3310
3311 if (pAllocateInfo->allocationSize == 0) {
3312 /* Apparently, this is allowed */
3313 *pMem = VK_NULL_HANDLE;
3314 return VK_SUCCESS;
3315 }
3316
3317 const VkImportMemoryFdInfoKHR *import_info =
3318 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3319 const VkMemoryDedicatedAllocateInfo *dedicate_info =
3320 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3321 const VkExportMemoryAllocateInfo *export_info =
3322 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3323 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3324 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3325
3326 const struct wsi_memory_allocate_info *wsi_info =
3327 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3328
3329 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3330 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3331 if (mem == NULL)
3332 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
3333
3334 if (wsi_info && wsi_info->implicit_sync)
3335 flags |= RADEON_FLAG_IMPLICIT_SYNC;
3336
3337 if (dedicate_info) {
3338 mem->image = radv_image_from_handle(dedicate_info->image);
3339 mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
3340 } else {
3341 mem->image = NULL;
3342 mem->buffer = NULL;
3343 }
3344
3345 float priority_float = 0.5;
3346 const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
3347 vk_find_struct_const(pAllocateInfo->pNext,
3348 MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
3349 if (priority_ext)
3350 priority_float = priority_ext->priority;
3351
3352 unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
3353 (int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
3354
3355 mem->user_ptr = NULL;
3356
3357 if (import_info) {
3358 assert(import_info->handleType ==
3359 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3360 import_info->handleType ==
3361 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3362 mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd,
3363 priority, NULL, NULL);
3364 if (!mem->bo) {
3365 result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
3366 goto fail;
3367 } else {
3368 close(import_info->fd);
3369 }
3370 } else if (host_ptr_info) {
3371 assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3372 assert(mem_type_index == RADV_MEM_TYPE_GTT_CACHED);
3373 mem->bo = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
3374 pAllocateInfo->allocationSize,
3375 priority);
3376 if (!mem->bo) {
3377 result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
3378 goto fail;
3379 } else {
3380 mem->user_ptr = host_ptr_info->pHostPointer;
3381 }
3382 } else {
3383 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
3384 if (mem_type_index == RADV_MEM_TYPE_GTT_WRITE_COMBINE ||
3385 mem_type_index == RADV_MEM_TYPE_GTT_CACHED)
3386 domain = RADEON_DOMAIN_GTT;
3387 else
3388 domain = RADEON_DOMAIN_VRAM;
3389
3390 if (mem_type_index == RADV_MEM_TYPE_VRAM)
3391 flags |= RADEON_FLAG_NO_CPU_ACCESS;
3392 else
3393 flags |= RADEON_FLAG_CPU_ACCESS;
3394
3395 if (mem_type_index == RADV_MEM_TYPE_GTT_WRITE_COMBINE)
3396 flags |= RADEON_FLAG_GTT_WC;
3397
3398 if (!dedicate_info && !import_info && (!export_info || !export_info->handleTypes)) {
3399 flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
3400 if (device->use_global_bo_list) {
3401 flags |= RADEON_FLAG_PREFER_LOCAL_BO;
3402 }
3403 }
3404
3405 mem->bo = device->ws->buffer_create(device->ws, alloc_size, device->physical_device->rad_info.max_alignment,
3406 domain, flags, priority);
3407
3408 if (!mem->bo) {
3409 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
3410 goto fail;
3411 }
3412 mem->type_index = mem_type_index;
3413 }
3414
3415 result = radv_bo_list_add(device, mem->bo);
3416 if (result != VK_SUCCESS)
3417 goto fail_bo;
3418
3419 *pMem = radv_device_memory_to_handle(mem);
3420
3421 return VK_SUCCESS;
3422
3423 fail_bo:
3424 device->ws->buffer_destroy(mem->bo);
3425 fail:
3426 vk_free2(&device->alloc, pAllocator, mem);
3427
3428 return result;
3429 }
3430
3431 VkResult radv_AllocateMemory(
3432 VkDevice _device,
3433 const VkMemoryAllocateInfo* pAllocateInfo,
3434 const VkAllocationCallbacks* pAllocator,
3435 VkDeviceMemory* pMem)
3436 {
3437 RADV_FROM_HANDLE(radv_device, device, _device);
3438 return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
3439 }
3440
3441 void radv_FreeMemory(
3442 VkDevice _device,
3443 VkDeviceMemory _mem,
3444 const VkAllocationCallbacks* pAllocator)
3445 {
3446 RADV_FROM_HANDLE(radv_device, device, _device);
3447 RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
3448
3449 if (mem == NULL)
3450 return;
3451
3452 radv_bo_list_remove(device, mem->bo);
3453 device->ws->buffer_destroy(mem->bo);
3454 mem->bo = NULL;
3455
3456 vk_free2(&device->alloc, pAllocator, mem);
3457 }
3458
3459 VkResult radv_MapMemory(
3460 VkDevice _device,
3461 VkDeviceMemory _memory,
3462 VkDeviceSize offset,
3463 VkDeviceSize size,
3464 VkMemoryMapFlags flags,
3465 void** ppData)
3466 {
3467 RADV_FROM_HANDLE(radv_device, device, _device);
3468 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
3469
3470 if (mem == NULL) {
3471 *ppData = NULL;
3472 return VK_SUCCESS;
3473 }
3474
3475 if (mem->user_ptr)
3476 *ppData = mem->user_ptr;
3477 else
3478 *ppData = device->ws->buffer_map(mem->bo);
3479
3480 if (*ppData) {
3481 *ppData += offset;
3482 return VK_SUCCESS;
3483 }
3484
3485 return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED);
3486 }
3487
3488 void radv_UnmapMemory(
3489 VkDevice _device,
3490 VkDeviceMemory _memory)
3491 {
3492 RADV_FROM_HANDLE(radv_device, device, _device);
3493 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
3494
3495 if (mem == NULL)
3496 return;
3497
3498 if (mem->user_ptr == NULL)
3499 device->ws->buffer_unmap(mem->bo);
3500 }
3501
3502 VkResult radv_FlushMappedMemoryRanges(
3503 VkDevice _device,
3504 uint32_t memoryRangeCount,
3505 const VkMappedMemoryRange* pMemoryRanges)
3506 {
3507 return VK_SUCCESS;
3508 }
3509
3510 VkResult radv_InvalidateMappedMemoryRanges(
3511 VkDevice _device,
3512 uint32_t memoryRangeCount,
3513 const VkMappedMemoryRange* pMemoryRanges)
3514 {
3515 return VK_SUCCESS;
3516 }
3517
3518 void radv_GetBufferMemoryRequirements(
3519 VkDevice _device,
3520 VkBuffer _buffer,
3521 VkMemoryRequirements* pMemoryRequirements)
3522 {
3523 RADV_FROM_HANDLE(radv_device, device, _device);
3524 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
3525
3526 pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
3527
3528 if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
3529 pMemoryRequirements->alignment = 4096;
3530 else
3531 pMemoryRequirements->alignment = 16;
3532
3533 pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment);
3534 }
3535
3536 void radv_GetBufferMemoryRequirements2(
3537 VkDevice device,
3538 const VkBufferMemoryRequirementsInfo2 *pInfo,
3539 VkMemoryRequirements2 *pMemoryRequirements)
3540 {
3541 radv_GetBufferMemoryRequirements(device, pInfo->buffer,
3542 &pMemoryRequirements->memoryRequirements);
3543 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
3544 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3545 switch (ext->sType) {
3546 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3547 VkMemoryDedicatedRequirements *req =
3548 (VkMemoryDedicatedRequirements *) ext;
3549 req->requiresDedicatedAllocation = buffer->shareable;
3550 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
3551 break;
3552 }
3553 default:
3554 break;
3555 }
3556 }
3557 }
3558
3559 void radv_GetImageMemoryRequirements(
3560 VkDevice _device,
3561 VkImage _image,
3562 VkMemoryRequirements* pMemoryRequirements)
3563 {
3564 RADV_FROM_HANDLE(radv_device, device, _device);
3565 RADV_FROM_HANDLE(radv_image, image, _image);
3566
3567 pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
3568
3569 pMemoryRequirements->size = image->size;
3570 pMemoryRequirements->alignment = image->alignment;
3571 }
3572
3573 void radv_GetImageMemoryRequirements2(
3574 VkDevice device,
3575 const VkImageMemoryRequirementsInfo2 *pInfo,
3576 VkMemoryRequirements2 *pMemoryRequirements)
3577 {
3578 radv_GetImageMemoryRequirements(device, pInfo->image,
3579 &pMemoryRequirements->memoryRequirements);
3580
3581 RADV_FROM_HANDLE(radv_image, image, pInfo->image);
3582
3583 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3584 switch (ext->sType) {
3585 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3586 VkMemoryDedicatedRequirements *req =
3587 (VkMemoryDedicatedRequirements *) ext;
3588 req->requiresDedicatedAllocation = image->shareable;
3589 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
3590 break;
3591 }
3592 default:
3593 break;
3594 }
3595 }
3596 }
3597
3598 void radv_GetImageSparseMemoryRequirements(
3599 VkDevice device,
3600 VkImage image,
3601 uint32_t* pSparseMemoryRequirementCount,
3602 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3603 {
3604 stub();
3605 }
3606
3607 void radv_GetImageSparseMemoryRequirements2(
3608 VkDevice device,
3609 const VkImageSparseMemoryRequirementsInfo2 *pInfo,
3610 uint32_t* pSparseMemoryRequirementCount,
3611 VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements)
3612 {
3613 stub();
3614 }
3615
3616 void radv_GetDeviceMemoryCommitment(
3617 VkDevice device,
3618 VkDeviceMemory memory,
3619 VkDeviceSize* pCommittedMemoryInBytes)
3620 {
3621 *pCommittedMemoryInBytes = 0;
3622 }
3623
3624 VkResult radv_BindBufferMemory2(VkDevice device,
3625 uint32_t bindInfoCount,
3626 const VkBindBufferMemoryInfo *pBindInfos)
3627 {
3628 for (uint32_t i = 0; i < bindInfoCount; ++i) {
3629 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
3630 RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
3631
3632 if (mem) {
3633 buffer->bo = mem->bo;
3634 buffer->offset = pBindInfos[i].memoryOffset;
3635 } else {
3636 buffer->bo = NULL;
3637 }
3638 }
3639 return VK_SUCCESS;
3640 }
3641
3642 VkResult radv_BindBufferMemory(
3643 VkDevice device,
3644 VkBuffer buffer,
3645 VkDeviceMemory memory,
3646 VkDeviceSize memoryOffset)
3647 {
3648 const VkBindBufferMemoryInfo info = {
3649 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3650 .buffer = buffer,
3651 .memory = memory,
3652 .memoryOffset = memoryOffset
3653 };
3654
3655 return radv_BindBufferMemory2(device, 1, &info);
3656 }
3657
3658 VkResult radv_BindImageMemory2(VkDevice device,
3659 uint32_t bindInfoCount,
3660 const VkBindImageMemoryInfo *pBindInfos)
3661 {
3662 for (uint32_t i = 0; i < bindInfoCount; ++i) {
3663 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
3664 RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
3665
3666 if (mem) {
3667 image->bo = mem->bo;
3668 image->offset = pBindInfos[i].memoryOffset;
3669 } else {
3670 image->bo = NULL;
3671 image->offset = 0;
3672 }
3673 }
3674 return VK_SUCCESS;
3675 }
3676
3677
3678 VkResult radv_BindImageMemory(
3679 VkDevice device,
3680 VkImage image,
3681 VkDeviceMemory memory,
3682 VkDeviceSize memoryOffset)
3683 {
3684 const VkBindImageMemoryInfo info = {
3685 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3686 .image = image,
3687 .memory = memory,
3688 .memoryOffset = memoryOffset
3689 };
3690
3691 return radv_BindImageMemory2(device, 1, &info);
3692 }
3693
3694
3695 static void
3696 radv_sparse_buffer_bind_memory(struct radv_device *device,
3697 const VkSparseBufferMemoryBindInfo *bind)
3698 {
3699 RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
3700
3701 for (uint32_t i = 0; i < bind->bindCount; ++i) {
3702 struct radv_device_memory *mem = NULL;
3703
3704 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
3705 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
3706
3707 device->ws->buffer_virtual_bind(buffer->bo,
3708 bind->pBinds[i].resourceOffset,
3709 bind->pBinds[i].size,
3710 mem ? mem->bo : NULL,
3711 bind->pBinds[i].memoryOffset);
3712 }
3713 }
3714
3715 static void
3716 radv_sparse_image_opaque_bind_memory(struct radv_device *device,
3717 const VkSparseImageOpaqueMemoryBindInfo *bind)
3718 {
3719 RADV_FROM_HANDLE(radv_image, image, bind->image);
3720
3721 for (uint32_t i = 0; i < bind->bindCount; ++i) {
3722 struct radv_device_memory *mem = NULL;
3723
3724 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
3725 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
3726
3727 device->ws->buffer_virtual_bind(image->bo,
3728 bind->pBinds[i].resourceOffset,
3729 bind->pBinds[i].size,
3730 mem ? mem->bo : NULL,
3731 bind->pBinds[i].memoryOffset);
3732 }
3733 }
3734
3735 VkResult radv_QueueBindSparse(
3736 VkQueue _queue,
3737 uint32_t bindInfoCount,
3738 const VkBindSparseInfo* pBindInfo,
3739 VkFence _fence)
3740 {
3741 RADV_FROM_HANDLE(radv_fence, fence, _fence);
3742 RADV_FROM_HANDLE(radv_queue, queue, _queue);
3743 struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
3744 bool fence_emitted = false;
3745 VkResult result;
3746 int ret;
3747
3748 for (uint32_t i = 0; i < bindInfoCount; ++i) {
3749 struct radv_winsys_sem_info sem_info;
3750 for (uint32_t j = 0; j < pBindInfo[i].bufferBindCount; ++j) {
3751 radv_sparse_buffer_bind_memory(queue->device,
3752 pBindInfo[i].pBufferBinds + j);
3753 }
3754
3755 for (uint32_t j = 0; j < pBindInfo[i].imageOpaqueBindCount; ++j) {
3756 radv_sparse_image_opaque_bind_memory(queue->device,
3757 pBindInfo[i].pImageOpaqueBinds + j);
3758 }
3759
3760 VkResult result;
3761 result = radv_alloc_sem_info(queue->device->instance,
3762 &sem_info,
3763 pBindInfo[i].waitSemaphoreCount,
3764 pBindInfo[i].pWaitSemaphores,
3765 pBindInfo[i].signalSemaphoreCount,
3766 pBindInfo[i].pSignalSemaphores,
3767 _fence);
3768 if (result != VK_SUCCESS)
3769 return result;
3770
3771 if (pBindInfo[i].waitSemaphoreCount || pBindInfo[i].signalSemaphoreCount) {
3772 ret = queue->device->ws->cs_submit(queue->hw_ctx, queue->queue_idx,
3773 &queue->device->empty_cs[queue->queue_family_index],
3774 1, NULL, NULL,
3775 &sem_info, NULL,
3776 false, base_fence);
3777 if (ret) {
3778 radv_loge("failed to submit CS %d\n", i);
3779 abort();
3780 }
3781
3782 fence_emitted = true;
3783 }
3784
3785 radv_free_sem_info(&sem_info);
3786
3787 }
3788
3789 if (fence) {
3790 if (!fence_emitted) {
3791 result = radv_signal_fence(queue, fence);
3792 if (result != VK_SUCCESS)
3793 return result;
3794 }
3795 }
3796
3797 return VK_SUCCESS;
3798 }
3799
3800 VkResult radv_CreateFence(
3801 VkDevice _device,
3802 const VkFenceCreateInfo* pCreateInfo,
3803 const VkAllocationCallbacks* pAllocator,
3804 VkFence* pFence)
3805 {
3806 RADV_FROM_HANDLE(radv_device, device, _device);
3807 const VkExportFenceCreateInfo *export =
3808 vk_find_struct_const(pCreateInfo->pNext, EXPORT_FENCE_CREATE_INFO);
3809 VkExternalFenceHandleTypeFlags handleTypes =
3810 export ? export->handleTypes : 0;
3811
3812 struct radv_fence *fence = vk_alloc2(&device->alloc, pAllocator,
3813 sizeof(*fence), 8,
3814 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3815
3816 if (!fence)
3817 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
3818
3819 fence->fence_wsi = NULL;
3820 fence->temp_syncobj = 0;
3821 if (device->always_use_syncobj || handleTypes) {
3822 int ret = device->ws->create_syncobj(device->ws, &fence->syncobj);
3823 if (ret) {
3824 vk_free2(&device->alloc, pAllocator, fence);
3825 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
3826 }
3827 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
3828 device->ws->signal_syncobj(device->ws, fence->syncobj);
3829 }
3830 fence->fence = NULL;
3831 } else {
3832 fence->fence = device->ws->create_fence();
3833 if (!fence->fence) {
3834 vk_free2(&device->alloc, pAllocator, fence);
3835 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
3836 }
3837 fence->syncobj = 0;
3838 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
3839 device->ws->signal_fence(fence->fence);
3840 }
3841
3842 *pFence = radv_fence_to_handle(fence);
3843
3844 return VK_SUCCESS;
3845 }
3846
3847 void radv_DestroyFence(
3848 VkDevice _device,
3849 VkFence _fence,
3850 const VkAllocationCallbacks* pAllocator)
3851 {
3852 RADV_FROM_HANDLE(radv_device, device, _device);
3853 RADV_FROM_HANDLE(radv_fence, fence, _fence);
3854
3855 if (!fence)
3856 return;
3857
3858 if (fence->temp_syncobj)
3859 device->ws->destroy_syncobj(device->ws, fence->temp_syncobj);
3860 if (fence->syncobj)
3861 device->ws->destroy_syncobj(device->ws, fence->syncobj);
3862 if (fence->fence)
3863 device->ws->destroy_fence(fence->fence);
3864 if (fence->fence_wsi)
3865 fence->fence_wsi->destroy(fence->fence_wsi);
3866 vk_free2(&device->alloc, pAllocator, fence);
3867 }
3868
3869
3870 uint64_t radv_get_current_time(void)
3871 {
3872 struct timespec tv;
3873 clock_gettime(CLOCK_MONOTONIC, &tv);
3874 return tv.tv_nsec + tv.tv_sec*1000000000ull;
3875 }
3876
3877 static uint64_t radv_get_absolute_timeout(uint64_t timeout)
3878 {
3879 uint64_t current_time = radv_get_current_time();
3880
3881 timeout = MIN2(UINT64_MAX - current_time, timeout);
3882
3883 return current_time + timeout;
3884 }
3885
3886
3887 static bool radv_all_fences_plain_and_submitted(struct radv_device *device,
3888 uint32_t fenceCount, const VkFence *pFences)
3889 {
3890 for (uint32_t i = 0; i < fenceCount; ++i) {
3891 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
3892 if (fence->fence == NULL || fence->syncobj ||
3893 fence->temp_syncobj || fence->fence_wsi ||
3894 (!device->ws->is_fence_waitable(fence->fence)))
3895 return false;
3896 }
3897 return true;
3898 }
3899
3900 static bool radv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences)
3901 {
3902 for (uint32_t i = 0; i < fenceCount; ++i) {
3903 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
3904 if (fence->syncobj == 0 && fence->temp_syncobj == 0)
3905 return false;
3906 }
3907 return true;
3908 }
3909
3910 VkResult radv_WaitForFences(
3911 VkDevice _device,
3912 uint32_t fenceCount,
3913 const VkFence* pFences,
3914 VkBool32 waitAll,
3915 uint64_t timeout)
3916 {
3917 RADV_FROM_HANDLE(radv_device, device, _device);
3918 timeout = radv_get_absolute_timeout(timeout);
3919
3920 if (device->always_use_syncobj &&
3921 radv_all_fences_syncobj(fenceCount, pFences))
3922 {
3923 uint32_t *handles = malloc(sizeof(uint32_t) * fenceCount);
3924 if (!handles)
3925 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
3926
3927 for (uint32_t i = 0; i < fenceCount; ++i) {
3928 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
3929 handles[i] = fence->temp_syncobj ? fence->temp_syncobj : fence->syncobj;
3930 }
3931
3932 bool success = device->ws->wait_syncobj(device->ws, handles, fenceCount, waitAll, timeout);
3933
3934 free(handles);
3935 return success ? VK_SUCCESS : VK_TIMEOUT;
3936 }
3937
3938 if (!waitAll && fenceCount > 1) {
3939 /* Not doing this by default for waitAll, due to needing to allocate twice. */
3940 if (device->physical_device->rad_info.drm_minor >= 10 && radv_all_fences_plain_and_submitted(device, fenceCount, pFences)) {
3941 uint32_t wait_count = 0;
3942 struct radeon_winsys_fence **fences = malloc(sizeof(struct radeon_winsys_fence *) * fenceCount);
3943 if (!fences)
3944 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
3945
3946 for (uint32_t i = 0; i < fenceCount; ++i) {
3947 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
3948
3949 if (device->ws->fence_wait(device->ws, fence->fence, false, 0)) {
3950 free(fences);
3951 return VK_SUCCESS;
3952 }
3953
3954 fences[wait_count++] = fence->fence;
3955 }
3956
3957 bool success = device->ws->fences_wait(device->ws, fences, wait_count,
3958 waitAll, timeout - radv_get_current_time());
3959
3960 free(fences);
3961 return success ? VK_SUCCESS : VK_TIMEOUT;
3962 }
3963
3964 while(radv_get_current_time() <= timeout) {
3965 for (uint32_t i = 0; i < fenceCount; ++i) {
3966 if (radv_GetFenceStatus(_device, pFences[i]) == VK_SUCCESS)
3967 return VK_SUCCESS;
3968 }
3969 }
3970 return VK_TIMEOUT;
3971 }
3972
3973 for (uint32_t i = 0; i < fenceCount; ++i) {
3974 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
3975 bool expired = false;
3976
3977 if (fence->temp_syncobj) {
3978 if (!device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, timeout))
3979 return VK_TIMEOUT;
3980 continue;
3981 }
3982
3983 if (fence->syncobj) {
3984 if (!device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, timeout))
3985 return VK_TIMEOUT;
3986 continue;
3987 }
3988
3989 if (fence->fence) {
3990 if (!device->ws->is_fence_waitable(fence->fence)) {
3991 while(!device->ws->is_fence_waitable(fence->fence) &&
3992 radv_get_current_time() <= timeout)
3993 /* Do nothing */;
3994 }
3995
3996 expired = device->ws->fence_wait(device->ws,
3997 fence->fence,
3998 true, timeout);
3999 if (!expired)
4000 return VK_TIMEOUT;
4001 }
4002
4003 if (fence->fence_wsi) {
4004 VkResult result = fence->fence_wsi->wait(fence->fence_wsi, timeout);
4005 if (result != VK_SUCCESS)
4006 return result;
4007 }
4008 }
4009
4010 return VK_SUCCESS;
4011 }
4012
4013 VkResult radv_ResetFences(VkDevice _device,
4014 uint32_t fenceCount,
4015 const VkFence *pFences)
4016 {
4017 RADV_FROM_HANDLE(radv_device, device, _device);
4018
4019 for (unsigned i = 0; i < fenceCount; ++i) {
4020 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
4021 if (fence->fence)
4022 device->ws->reset_fence(fence->fence);
4023
4024 /* Per spec, we first restore the permanent payload, and then reset, so
4025 * having a temp syncobj should not skip resetting the permanent syncobj. */
4026 if (fence->temp_syncobj) {
4027 device->ws->destroy_syncobj(device->ws, fence->temp_syncobj);
4028 fence->temp_syncobj = 0;
4029 }
4030
4031 if (fence->syncobj) {
4032 device->ws->reset_syncobj(device->ws, fence->syncobj);
4033 }
4034 }
4035
4036 return VK_SUCCESS;
4037 }
4038
4039 VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence)
4040 {
4041 RADV_FROM_HANDLE(radv_device, device, _device);
4042 RADV_FROM_HANDLE(radv_fence, fence, _fence);
4043
4044 if (fence->temp_syncobj) {
4045 bool success = device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, 0);
4046 return success ? VK_SUCCESS : VK_NOT_READY;
4047 }
4048
4049 if (fence->syncobj) {
4050 bool success = device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, 0);
4051 return success ? VK_SUCCESS : VK_NOT_READY;
4052 }
4053
4054 if (fence->fence) {
4055 if (!device->ws->fence_wait(device->ws, fence->fence, false, 0))
4056 return VK_NOT_READY;
4057 }
4058 if (fence->fence_wsi) {
4059 VkResult result = fence->fence_wsi->wait(fence->fence_wsi, 0);
4060
4061 if (result != VK_SUCCESS) {
4062 if (result == VK_TIMEOUT)
4063 return VK_NOT_READY;
4064 return result;
4065 }
4066 }
4067 return VK_SUCCESS;
4068 }
4069
4070
4071 // Queue semaphore functions
4072
4073 VkResult radv_CreateSemaphore(
4074 VkDevice _device,
4075 const VkSemaphoreCreateInfo* pCreateInfo,
4076 const VkAllocationCallbacks* pAllocator,
4077 VkSemaphore* pSemaphore)
4078 {
4079 RADV_FROM_HANDLE(radv_device, device, _device);
4080 const VkExportSemaphoreCreateInfo *export =
4081 vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO);
4082 VkExternalSemaphoreHandleTypeFlags handleTypes =
4083 export ? export->handleTypes : 0;
4084
4085 struct radv_semaphore *sem = vk_alloc2(&device->alloc, pAllocator,
4086 sizeof(*sem), 8,
4087 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4088 if (!sem)
4089 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4090
4091 sem->temp_syncobj = 0;
4092 /* create a syncobject if we are going to export this semaphore */
4093 if (device->always_use_syncobj || handleTypes) {
4094 assert (device->physical_device->rad_info.has_syncobj);
4095 int ret = device->ws->create_syncobj(device->ws, &sem->syncobj);
4096 if (ret) {
4097 vk_free2(&device->alloc, pAllocator, sem);
4098 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4099 }
4100 sem->sem = NULL;
4101 } else {
4102 sem->sem = device->ws->create_sem(device->ws);
4103 if (!sem->sem) {
4104 vk_free2(&device->alloc, pAllocator, sem);
4105 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4106 }
4107 sem->syncobj = 0;
4108 }
4109
4110 *pSemaphore = radv_semaphore_to_handle(sem);
4111 return VK_SUCCESS;
4112 }
4113
4114 void radv_DestroySemaphore(
4115 VkDevice _device,
4116 VkSemaphore _semaphore,
4117 const VkAllocationCallbacks* pAllocator)
4118 {
4119 RADV_FROM_HANDLE(radv_device, device, _device);
4120 RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore);
4121 if (!_semaphore)
4122 return;
4123
4124 if (sem->syncobj)
4125 device->ws->destroy_syncobj(device->ws, sem->syncobj);
4126 else
4127 device->ws->destroy_sem(sem->sem);
4128 vk_free2(&device->alloc, pAllocator, sem);
4129 }
4130
4131 VkResult radv_CreateEvent(
4132 VkDevice _device,
4133 const VkEventCreateInfo* pCreateInfo,
4134 const VkAllocationCallbacks* pAllocator,
4135 VkEvent* pEvent)
4136 {
4137 RADV_FROM_HANDLE(radv_device, device, _device);
4138 struct radv_event *event = vk_alloc2(&device->alloc, pAllocator,
4139 sizeof(*event), 8,
4140 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4141
4142 if (!event)
4143 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4144
4145 event->bo = device->ws->buffer_create(device->ws, 8, 8,
4146 RADEON_DOMAIN_GTT,
4147 RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING,
4148 RADV_BO_PRIORITY_FENCE);
4149 if (!event->bo) {
4150 vk_free2(&device->alloc, pAllocator, event);
4151 return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
4152 }
4153
4154 event->map = (uint64_t*)device->ws->buffer_map(event->bo);
4155
4156 *pEvent = radv_event_to_handle(event);
4157
4158 return VK_SUCCESS;
4159 }
4160
4161 void radv_DestroyEvent(
4162 VkDevice _device,
4163 VkEvent _event,
4164 const VkAllocationCallbacks* pAllocator)
4165 {
4166 RADV_FROM_HANDLE(radv_device, device, _device);
4167 RADV_FROM_HANDLE(radv_event, event, _event);
4168
4169 if (!event)
4170 return;
4171 device->ws->buffer_destroy(event->bo);
4172 vk_free2(&device->alloc, pAllocator, event);
4173 }
4174
4175 VkResult radv_GetEventStatus(
4176 VkDevice _device,
4177 VkEvent _event)
4178 {
4179 RADV_FROM_HANDLE(radv_event, event, _event);
4180
4181 if (*event->map == 1)
4182 return VK_EVENT_SET;
4183 return VK_EVENT_RESET;
4184 }
4185
4186 VkResult radv_SetEvent(
4187 VkDevice _device,
4188 VkEvent _event)
4189 {
4190 RADV_FROM_HANDLE(radv_event, event, _event);
4191 *event->map = 1;
4192
4193 return VK_SUCCESS;
4194 }
4195
4196 VkResult radv_ResetEvent(
4197 VkDevice _device,
4198 VkEvent _event)
4199 {
4200 RADV_FROM_HANDLE(radv_event, event, _event);
4201 *event->map = 0;
4202
4203 return VK_SUCCESS;
4204 }
4205
4206 VkResult radv_CreateBuffer(
4207 VkDevice _device,
4208 const VkBufferCreateInfo* pCreateInfo,
4209 const VkAllocationCallbacks* pAllocator,
4210 VkBuffer* pBuffer)
4211 {
4212 RADV_FROM_HANDLE(radv_device, device, _device);
4213 struct radv_buffer *buffer;
4214
4215 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4216
4217 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
4218 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4219 if (buffer == NULL)
4220 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4221
4222 buffer->size = pCreateInfo->size;
4223 buffer->usage = pCreateInfo->usage;
4224 buffer->bo = NULL;
4225 buffer->offset = 0;
4226 buffer->flags = pCreateInfo->flags;
4227
4228 buffer->shareable = vk_find_struct_const(pCreateInfo->pNext,
4229 EXTERNAL_MEMORY_BUFFER_CREATE_INFO) != NULL;
4230
4231 if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
4232 buffer->bo = device->ws->buffer_create(device->ws,
4233 align64(buffer->size, 4096),
4234 4096, 0, RADEON_FLAG_VIRTUAL,
4235 RADV_BO_PRIORITY_VIRTUAL);
4236 if (!buffer->bo) {
4237 vk_free2(&device->alloc, pAllocator, buffer);
4238 return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
4239 }
4240 }
4241
4242 *pBuffer = radv_buffer_to_handle(buffer);
4243
4244 return VK_SUCCESS;
4245 }
4246
4247 void radv_DestroyBuffer(
4248 VkDevice _device,
4249 VkBuffer _buffer,
4250 const VkAllocationCallbacks* pAllocator)
4251 {
4252 RADV_FROM_HANDLE(radv_device, device, _device);
4253 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
4254
4255 if (!buffer)
4256 return;
4257
4258 if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
4259 device->ws->buffer_destroy(buffer->bo);
4260
4261 vk_free2(&device->alloc, pAllocator, buffer);
4262 }
4263
4264 VkDeviceAddress radv_GetBufferDeviceAddressEXT(
4265 VkDevice device,
4266 const VkBufferDeviceAddressInfoEXT* pInfo)
4267 {
4268 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
4269 return radv_buffer_get_va(buffer->bo) + buffer->offset;
4270 }
4271
4272
4273 static inline unsigned
4274 si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
4275 {
4276 if (stencil)
4277 return plane->surface.u.legacy.stencil_tiling_index[level];
4278 else
4279 return plane->surface.u.legacy.tiling_index[level];
4280 }
4281
4282 static uint32_t radv_surface_max_layer_count(struct radv_image_view *iview)
4283 {
4284 return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth : (iview->base_layer + iview->layer_count);
4285 }
4286
4287 static uint32_t
4288 radv_init_dcc_control_reg(struct radv_device *device,
4289 struct radv_image_view *iview)
4290 {
4291 unsigned max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_256B;
4292 unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B;
4293 unsigned max_compressed_block_size;
4294 unsigned independent_128b_blocks;
4295 unsigned independent_64b_blocks;
4296
4297 if (!radv_dcc_enabled(iview->image, iview->base_mip))
4298 return 0;
4299
4300 if (!device->physical_device->rad_info.has_dedicated_vram) {
4301 /* amdvlk: [min-compressed-block-size] should be set to 32 for
4302 * dGPU and 64 for APU because all of our APUs to date use
4303 * DIMMs which have a request granularity size of 64B while all
4304 * other chips have a 32B request size.
4305 */
4306 min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B;
4307 }
4308
4309 if (device->physical_device->rad_info.chip_class >= GFX10) {
4310 max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
4311 independent_64b_blocks = 0;
4312 independent_128b_blocks = 1;
4313 } else {
4314 independent_128b_blocks = 0;
4315
4316 if (iview->image->info.samples > 1) {
4317 if (iview->image->planes[0].surface.bpe == 1)
4318 max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
4319 else if (iview->image->planes[0].surface.bpe == 2)
4320 max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
4321 }
4322
4323 if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
4324 VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
4325 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
4326 /* If this DCC image is potentially going to be used in texture
4327 * fetches, we need some special settings.
4328 */
4329 independent_64b_blocks = 1;
4330 max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
4331 } else {
4332 /* MAX_UNCOMPRESSED_BLOCK_SIZE must be >=
4333 * MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as
4334 * big as possible for better compression state.
4335 */
4336 independent_64b_blocks = 0;
4337 max_compressed_block_size = max_uncompressed_block_size;
4338 }
4339 }
4340
4341 return S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
4342 S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
4343 S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
4344 S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks) |
4345 S_028C78_INDEPENDENT_128B_BLOCKS(independent_128b_blocks);
4346 }
4347
4348 static void
4349 radv_initialise_color_surface(struct radv_device *device,
4350 struct radv_color_buffer_info *cb,
4351 struct radv_image_view *iview)
4352 {
4353 const struct vk_format_description *desc;
4354 unsigned ntype, format, swap, endian;
4355 unsigned blend_clamp = 0, blend_bypass = 0;
4356 uint64_t va;
4357 const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id];
4358 const struct radeon_surf *surf = &plane->surface;
4359
4360 desc = vk_format_description(iview->vk_format);
4361
4362 memset(cb, 0, sizeof(*cb));
4363
4364 /* Intensity is implemented as Red, so treat it that way. */
4365 cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1);
4366
4367 va = radv_buffer_get_va(iview->bo) + iview->image->offset + plane->offset;
4368
4369 cb->cb_color_base = va >> 8;
4370
4371 if (device->physical_device->rad_info.chip_class >= GFX9) {
4372 struct gfx9_surf_meta_flags meta;
4373 if (iview->image->dcc_offset)
4374 meta = surf->u.gfx9.dcc;
4375 else
4376 meta = surf->u.gfx9.cmask;
4377
4378 if (device->physical_device->rad_info.chip_class >= GFX10) {
4379 cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
4380 S_028EE0_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) |
4381 S_028EE0_CMASK_PIPE_ALIGNED(surf->u.gfx9.cmask.pipe_aligned) |
4382 S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.dcc.pipe_aligned);
4383 } else {
4384 cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
4385 S_028C74_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) |
4386 S_028C74_RB_ALIGNED(meta.rb_aligned) |
4387 S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
4388 cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.surf.epitch);
4389 }
4390
4391 cb->cb_color_base += surf->u.gfx9.surf_offset >> 8;
4392 cb->cb_color_base |= surf->tile_swizzle;
4393 } else {
4394 const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip];
4395 unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
4396
4397 cb->cb_color_base += level_info->offset >> 8;
4398 if (level_info->mode == RADEON_SURF_MODE_2D)
4399 cb->cb_color_base |= surf->tile_swizzle;
4400
4401 pitch_tile_max = level_info->nblk_x / 8 - 1;
4402 slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
4403 tile_mode_index = si_tile_mode_index(plane, iview->base_mip, false);
4404
4405 cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
4406 cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
4407 cb->cb_color_cmask_slice = iview->image->cmask.slice_tile_max;
4408
4409 cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
4410
4411 if (radv_image_has_fmask(iview->image)) {
4412 if (device->physical_device->rad_info.chip_class >= GFX7)
4413 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(iview->image->fmask.pitch_in_pixels / 8 - 1);
4414 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(iview->image->fmask.tile_mode_index);
4415 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(iview->image->fmask.slice_tile_max);
4416 } else {
4417 /* This must be set for fast clear to work without FMASK. */
4418 if (device->physical_device->rad_info.chip_class >= GFX7)
4419 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
4420 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
4421 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
4422 }
4423 }
4424
4425 /* CMASK variables */
4426 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
4427 va += iview->image->cmask.offset;
4428 cb->cb_color_cmask = va >> 8;
4429
4430 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
4431 va += iview->image->dcc_offset;
4432
4433 if (radv_dcc_enabled(iview->image, iview->base_mip) &&
4434 device->physical_device->rad_info.chip_class <= GFX8)
4435 va += plane->surface.u.legacy.level[iview->base_mip].dcc_offset;
4436
4437 unsigned dcc_tile_swizzle = surf->tile_swizzle;
4438 dcc_tile_swizzle &= (surf->dcc_alignment - 1) >> 8;
4439
4440 cb->cb_dcc_base = va >> 8;
4441 cb->cb_dcc_base |= dcc_tile_swizzle;
4442
4443 /* GFX10 field has the same base shift as the GFX6 field. */
4444 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
4445 cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) |
4446 S_028C6C_SLICE_MAX_GFX10(max_slice);
4447
4448 if (iview->image->info.samples > 1) {
4449 unsigned log_samples = util_logbase2(iview->image->info.samples);
4450
4451 cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) |
4452 S_028C74_NUM_FRAGMENTS(log_samples);
4453 }
4454
4455 if (radv_image_has_fmask(iview->image)) {
4456 va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->fmask.offset;
4457 cb->cb_color_fmask = va >> 8;
4458 cb->cb_color_fmask |= iview->image->fmask.tile_swizzle;
4459 } else {
4460 cb->cb_color_fmask = cb->cb_color_base;
4461 }
4462
4463 ntype = radv_translate_color_numformat(iview->vk_format,
4464 desc,
4465 vk_format_get_first_non_void_channel(iview->vk_format));
4466 format = radv_translate_colorformat(iview->vk_format);
4467 if (format == V_028C70_COLOR_INVALID || ntype == ~0u)
4468 radv_finishme("Illegal color\n");
4469 swap = radv_translate_colorswap(iview->vk_format, FALSE);
4470 endian = radv_colorformat_endian_swap(format);
4471
4472 /* blend clamp should be set for all NORM/SRGB types */
4473 if (ntype == V_028C70_NUMBER_UNORM ||
4474 ntype == V_028C70_NUMBER_SNORM ||
4475 ntype == V_028C70_NUMBER_SRGB)
4476 blend_clamp = 1;
4477
4478 /* set blend bypass according to docs if SINT/UINT or
4479 8/24 COLOR variants */
4480 if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
4481 format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
4482 format == V_028C70_COLOR_X24_8_32_FLOAT) {
4483 blend_clamp = 0;
4484 blend_bypass = 1;
4485 }
4486 #if 0
4487 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
4488 (format == V_028C70_COLOR_8 ||
4489 format == V_028C70_COLOR_8_8 ||
4490 format == V_028C70_COLOR_8_8_8_8))
4491 ->color_is_int8 = true;
4492 #endif
4493 cb->cb_color_info = S_028C70_FORMAT(format) |
4494 S_028C70_COMP_SWAP(swap) |
4495 S_028C70_BLEND_CLAMP(blend_clamp) |
4496 S_028C70_BLEND_BYPASS(blend_bypass) |
4497 S_028C70_SIMPLE_FLOAT(1) |
4498 S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM &&
4499 ntype != V_028C70_NUMBER_SNORM &&
4500 ntype != V_028C70_NUMBER_SRGB &&
4501 format != V_028C70_COLOR_8_24 &&
4502 format != V_028C70_COLOR_24_8) |
4503 S_028C70_NUMBER_TYPE(ntype) |
4504 S_028C70_ENDIAN(endian);
4505 if (radv_image_has_fmask(iview->image)) {
4506 cb->cb_color_info |= S_028C70_COMPRESSION(1);
4507 if (device->physical_device->rad_info.chip_class == GFX6) {
4508 unsigned fmask_bankh = util_logbase2(iview->image->fmask.bank_height);
4509 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
4510 }
4511
4512 if (radv_image_is_tc_compat_cmask(iview->image)) {
4513 /* Allow the texture block to read FMASK directly
4514 * without decompressing it. This bit must be cleared
4515 * when performing FMASK_DECOMPRESS or DCC_COMPRESS,
4516 * otherwise the operation doesn't happen.
4517 */
4518 cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1);
4519
4520 /* Set CMASK into a tiling format that allows the
4521 * texture block to read it.
4522 */
4523 cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2);
4524 }
4525 }
4526
4527 if (radv_image_has_cmask(iview->image) &&
4528 !(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
4529 cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
4530
4531 if (radv_dcc_enabled(iview->image, iview->base_mip))
4532 cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
4533
4534 cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview);
4535
4536 /* This must be set for fast clear to work without FMASK. */
4537 if (!radv_image_has_fmask(iview->image) &&
4538 device->physical_device->rad_info.chip_class == GFX6) {
4539 unsigned bankh = util_logbase2(surf->u.legacy.bankh);
4540 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
4541 }
4542
4543 if (device->physical_device->rad_info.chip_class >= GFX9) {
4544 const struct vk_format_description *format_desc = vk_format_description(iview->image->vk_format);
4545
4546 unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D ?
4547 (iview->extent.depth - 1) : (iview->image->info.array_size - 1);
4548 unsigned width = iview->extent.width / (iview->plane_id ? format_desc->width_divisor : 1);
4549 unsigned height = iview->extent.height / (iview->plane_id ? format_desc->height_divisor : 1);
4550
4551 if (device->physical_device->rad_info.chip_class >= GFX10) {
4552 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->base_mip);
4553
4554 cb->cb_color_attrib3 |= S_028EE0_MIP0_DEPTH(mip0_depth) |
4555 S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) |
4556 S_028EE0_RESOURCE_LEVEL(1);
4557 } else {
4558 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->base_mip);
4559 cb->cb_color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) |
4560 S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type);
4561 }
4562
4563 cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) |
4564 S_028C68_MIP0_HEIGHT(height - 1) |
4565 S_028C68_MAX_MIP(iview->image->info.levels - 1);
4566 }
4567 }
4568
4569 static unsigned
4570 radv_calc_decompress_on_z_planes(struct radv_device *device,
4571 struct radv_image_view *iview)
4572 {
4573 unsigned max_zplanes = 0;
4574
4575 assert(radv_image_is_tc_compat_htile(iview->image));
4576
4577 if (device->physical_device->rad_info.chip_class >= GFX9) {
4578 /* Default value for 32-bit depth surfaces. */
4579 max_zplanes = 4;
4580
4581 if (iview->vk_format == VK_FORMAT_D16_UNORM &&
4582 iview->image->info.samples > 1)
4583 max_zplanes = 2;
4584
4585 max_zplanes = max_zplanes + 1;
4586 } else {
4587 if (iview->vk_format == VK_FORMAT_D16_UNORM) {
4588 /* Do not enable Z plane compression for 16-bit depth
4589 * surfaces because isn't supported on GFX8. Only
4590 * 32-bit depth surfaces are supported by the hardware.
4591 * This allows to maintain shader compatibility and to
4592 * reduce the number of depth decompressions.
4593 */
4594 max_zplanes = 1;
4595 } else {
4596 if (iview->image->info.samples <= 1)
4597 max_zplanes = 5;
4598 else if (iview->image->info.samples <= 4)
4599 max_zplanes = 3;
4600 else
4601 max_zplanes = 2;
4602 }
4603 }
4604
4605 return max_zplanes;
4606 }
4607
4608 static void
4609 radv_initialise_ds_surface(struct radv_device *device,
4610 struct radv_ds_buffer_info *ds,
4611 struct radv_image_view *iview)
4612 {
4613 unsigned level = iview->base_mip;
4614 unsigned format, stencil_format;
4615 uint64_t va, s_offs, z_offs;
4616 bool stencil_only = false;
4617 const struct radv_image_plane *plane = &iview->image->planes[0];
4618 const struct radeon_surf *surf = &plane->surface;
4619
4620 assert(vk_format_get_plane_count(iview->image->vk_format) == 1);
4621
4622 memset(ds, 0, sizeof(*ds));
4623 switch (iview->image->vk_format) {
4624 case VK_FORMAT_D24_UNORM_S8_UINT:
4625 case VK_FORMAT_X8_D24_UNORM_PACK32:
4626 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
4627 ds->offset_scale = 2.0f;
4628 break;
4629 case VK_FORMAT_D16_UNORM:
4630 case VK_FORMAT_D16_UNORM_S8_UINT:
4631 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
4632 ds->offset_scale = 4.0f;
4633 break;
4634 case VK_FORMAT_D32_SFLOAT:
4635 case VK_FORMAT_D32_SFLOAT_S8_UINT:
4636 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) |
4637 S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
4638 ds->offset_scale = 1.0f;
4639 break;
4640 case VK_FORMAT_S8_UINT:
4641 stencil_only = true;
4642 break;
4643 default:
4644 break;
4645 }
4646
4647 format = radv_translate_dbformat(iview->image->vk_format);
4648 stencil_format = surf->has_stencil ?
4649 V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
4650
4651 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
4652 ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) |
4653 S_028008_SLICE_MAX(max_slice);
4654 if (device->physical_device->rad_info.chip_class >= GFX10) {
4655 ds->db_depth_view |= S_028008_SLICE_START_HI(iview->base_layer >> 11) |
4656 S_028008_SLICE_MAX_HI(max_slice >> 11);
4657 }
4658
4659 ds->db_htile_data_base = 0;
4660 ds->db_htile_surface = 0;
4661
4662 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
4663 s_offs = z_offs = va;
4664
4665 if (device->physical_device->rad_info.chip_class >= GFX9) {
4666 assert(surf->u.gfx9.surf_offset == 0);
4667 s_offs += surf->u.gfx9.stencil_offset;
4668
4669 ds->db_z_info = S_028038_FORMAT(format) |
4670 S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
4671 S_028038_SW_MODE(surf->u.gfx9.surf.swizzle_mode) |
4672 S_028038_MAXMIP(iview->image->info.levels - 1) |
4673 S_028038_ZRANGE_PRECISION(1);
4674 ds->db_stencil_info = S_02803C_FORMAT(stencil_format) |
4675 S_02803C_SW_MODE(surf->u.gfx9.stencil.swizzle_mode);
4676
4677 if (device->physical_device->rad_info.chip_class == GFX9) {
4678 ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.surf.epitch);
4679 ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.stencil.epitch);
4680 }
4681
4682 ds->db_depth_view |= S_028008_MIPID(level);
4683 ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
4684 S_02801C_Y_MAX(iview->image->info.height - 1);
4685
4686 if (radv_htile_enabled(iview->image, level)) {
4687 ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
4688
4689 if (radv_image_is_tc_compat_htile(iview->image)) {
4690 unsigned max_zplanes =
4691 radv_calc_decompress_on_z_planes(device, iview);
4692
4693 ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
4694
4695 if (device->physical_device->rad_info.chip_class >= GFX10) {
4696 ds->db_z_info |= S_028040_ITERATE_FLUSH(1);
4697 ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1);
4698 } else {
4699 ds->db_z_info |= S_028038_ITERATE_FLUSH(1);
4700 ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
4701 }
4702 }
4703
4704 if (!surf->has_stencil)
4705 /* Use all of the htile_buffer for depth if there's no stencil. */
4706 ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
4707 va = radv_buffer_get_va(iview->bo) + iview->image->offset +
4708 iview->image->htile_offset;
4709 ds->db_htile_data_base = va >> 8;
4710 ds->db_htile_surface = S_028ABC_FULL_CACHE(1) |
4711 S_028ABC_PIPE_ALIGNED(surf->u.gfx9.htile.pipe_aligned);
4712
4713 if (device->physical_device->rad_info.chip_class == GFX9) {
4714 ds->db_htile_surface |= S_028ABC_RB_ALIGNED(surf->u.gfx9.htile.rb_aligned);
4715 }
4716 }
4717 } else {
4718 const struct legacy_surf_level *level_info = &surf->u.legacy.level[level];
4719
4720 if (stencil_only)
4721 level_info = &surf->u.legacy.stencil_level[level];
4722
4723 z_offs += surf->u.legacy.level[level].offset;
4724 s_offs += surf->u.legacy.stencil_level[level].offset;
4725
4726 ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image));
4727 ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
4728 ds->db_stencil_info = S_028044_FORMAT(stencil_format);
4729
4730 if (iview->image->info.samples > 1)
4731 ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
4732
4733 if (device->physical_device->rad_info.chip_class >= GFX7) {
4734 struct radeon_info *info = &device->physical_device->rad_info;
4735 unsigned tiling_index = surf->u.legacy.tiling_index[level];
4736 unsigned stencil_index = surf->u.legacy.stencil_tiling_index[level];
4737 unsigned macro_index = surf->u.legacy.macro_tile_index;
4738 unsigned tile_mode = info->si_tile_mode_array[tiling_index];
4739 unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
4740 unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
4741
4742 if (stencil_only)
4743 tile_mode = stencil_tile_mode;
4744
4745 ds->db_depth_info |=
4746 S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
4747 S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
4748 S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
4749 S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
4750 S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
4751 S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
4752 ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
4753 ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
4754 } else {
4755 unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false);
4756 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
4757 tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true);
4758 ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
4759 if (stencil_only)
4760 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
4761 }
4762
4763 ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
4764 S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
4765 ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
4766
4767 if (radv_htile_enabled(iview->image, level)) {
4768 ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
4769
4770 if (!surf->has_stencil &&
4771 !radv_image_is_tc_compat_htile(iview->image))
4772 /* Use all of the htile_buffer for depth if there's no stencil. */
4773 ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
4774
4775 va = radv_buffer_get_va(iview->bo) + iview->image->offset +
4776 iview->image->htile_offset;
4777 ds->db_htile_data_base = va >> 8;
4778 ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
4779
4780 if (radv_image_is_tc_compat_htile(iview->image)) {
4781 unsigned max_zplanes =
4782 radv_calc_decompress_on_z_planes(device, iview);
4783
4784 ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
4785 ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
4786 }
4787 }
4788 }
4789
4790 ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
4791 ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
4792 }
4793
4794 VkResult radv_CreateFramebuffer(
4795 VkDevice _device,
4796 const VkFramebufferCreateInfo* pCreateInfo,
4797 const VkAllocationCallbacks* pAllocator,
4798 VkFramebuffer* pFramebuffer)
4799 {
4800 RADV_FROM_HANDLE(radv_device, device, _device);
4801 struct radv_framebuffer *framebuffer;
4802
4803 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4804
4805 size_t size = sizeof(*framebuffer) +
4806 sizeof(struct radv_attachment_info) * pCreateInfo->attachmentCount;
4807 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4808 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4809 if (framebuffer == NULL)
4810 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4811
4812 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4813 framebuffer->width = pCreateInfo->width;
4814 framebuffer->height = pCreateInfo->height;
4815 framebuffer->layers = pCreateInfo->layers;
4816 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4817 VkImageView _iview = pCreateInfo->pAttachments[i];
4818 struct radv_image_view *iview = radv_image_view_from_handle(_iview);
4819 framebuffer->attachments[i].attachment = iview;
4820 if (iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
4821 radv_initialise_ds_surface(device, &framebuffer->attachments[i].ds, iview);
4822 } else {
4823 radv_initialise_color_surface(device, &framebuffer->attachments[i].cb, iview);
4824 }
4825 framebuffer->width = MIN2(framebuffer->width, iview->extent.width);
4826 framebuffer->height = MIN2(framebuffer->height, iview->extent.height);
4827 framebuffer->layers = MIN2(framebuffer->layers, radv_surface_max_layer_count(iview));
4828 }
4829
4830 *pFramebuffer = radv_framebuffer_to_handle(framebuffer);
4831 return VK_SUCCESS;
4832 }
4833
4834 void radv_DestroyFramebuffer(
4835 VkDevice _device,
4836 VkFramebuffer _fb,
4837 const VkAllocationCallbacks* pAllocator)
4838 {
4839 RADV_FROM_HANDLE(radv_device, device, _device);
4840 RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
4841
4842 if (!fb)
4843 return;
4844 vk_free2(&device->alloc, pAllocator, fb);
4845 }
4846
4847 static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode)
4848 {
4849 switch (address_mode) {
4850 case VK_SAMPLER_ADDRESS_MODE_REPEAT:
4851 return V_008F30_SQ_TEX_WRAP;
4852 case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
4853 return V_008F30_SQ_TEX_MIRROR;
4854 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
4855 return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
4856 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
4857 return V_008F30_SQ_TEX_CLAMP_BORDER;
4858 case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
4859 return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
4860 default:
4861 unreachable("illegal tex wrap mode");
4862 break;
4863 }
4864 }
4865
4866 static unsigned
4867 radv_tex_compare(VkCompareOp op)
4868 {
4869 switch (op) {
4870 case VK_COMPARE_OP_NEVER:
4871 return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
4872 case VK_COMPARE_OP_LESS:
4873 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
4874 case VK_COMPARE_OP_EQUAL:
4875 return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
4876 case VK_COMPARE_OP_LESS_OR_EQUAL:
4877 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
4878 case VK_COMPARE_OP_GREATER:
4879 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
4880 case VK_COMPARE_OP_NOT_EQUAL:
4881 return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
4882 case VK_COMPARE_OP_GREATER_OR_EQUAL:
4883 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
4884 case VK_COMPARE_OP_ALWAYS:
4885 return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
4886 default:
4887 unreachable("illegal compare mode");
4888 break;
4889 }
4890 }
4891
4892 static unsigned
4893 radv_tex_filter(VkFilter filter, unsigned max_ansio)
4894 {
4895 switch (filter) {
4896 case VK_FILTER_NEAREST:
4897 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT :
4898 V_008F38_SQ_TEX_XY_FILTER_POINT);
4899 case VK_FILTER_LINEAR:
4900 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR :
4901 V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
4902 case VK_FILTER_CUBIC_IMG:
4903 default:
4904 fprintf(stderr, "illegal texture filter");
4905 return 0;
4906 }
4907 }
4908
4909 static unsigned
4910 radv_tex_mipfilter(VkSamplerMipmapMode mode)
4911 {
4912 switch (mode) {
4913 case VK_SAMPLER_MIPMAP_MODE_NEAREST:
4914 return V_008F38_SQ_TEX_Z_FILTER_POINT;
4915 case VK_SAMPLER_MIPMAP_MODE_LINEAR:
4916 return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
4917 default:
4918 return V_008F38_SQ_TEX_Z_FILTER_NONE;
4919 }
4920 }
4921
4922 static unsigned
4923 radv_tex_bordercolor(VkBorderColor bcolor)
4924 {
4925 switch (bcolor) {
4926 case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
4927 case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
4928 return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
4929 case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
4930 case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
4931 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
4932 case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
4933 case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
4934 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
4935 default:
4936 break;
4937 }
4938 return 0;
4939 }
4940
4941 static unsigned
4942 radv_tex_aniso_filter(unsigned filter)
4943 {
4944 if (filter < 2)
4945 return 0;
4946 if (filter < 4)
4947 return 1;
4948 if (filter < 8)
4949 return 2;
4950 if (filter < 16)
4951 return 3;
4952 return 4;
4953 }
4954
4955 static unsigned
4956 radv_tex_filter_mode(VkSamplerReductionModeEXT mode)
4957 {
4958 switch (mode) {
4959 case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT:
4960 return V_008F30_SQ_IMG_FILTER_MODE_BLEND;
4961 case VK_SAMPLER_REDUCTION_MODE_MIN_EXT:
4962 return V_008F30_SQ_IMG_FILTER_MODE_MIN;
4963 case VK_SAMPLER_REDUCTION_MODE_MAX_EXT:
4964 return V_008F30_SQ_IMG_FILTER_MODE_MAX;
4965 default:
4966 break;
4967 }
4968 return 0;
4969 }
4970
4971 static uint32_t
4972 radv_get_max_anisotropy(struct radv_device *device,
4973 const VkSamplerCreateInfo *pCreateInfo)
4974 {
4975 if (device->force_aniso >= 0)
4976 return device->force_aniso;
4977
4978 if (pCreateInfo->anisotropyEnable &&
4979 pCreateInfo->maxAnisotropy > 1.0f)
4980 return (uint32_t)pCreateInfo->maxAnisotropy;
4981
4982 return 0;
4983 }
4984
4985 static void
4986 radv_init_sampler(struct radv_device *device,
4987 struct radv_sampler *sampler,
4988 const VkSamplerCreateInfo *pCreateInfo)
4989 {
4990 uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo);
4991 uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
4992 bool compat_mode = device->physical_device->rad_info.chip_class == GFX8 ||
4993 device->physical_device->rad_info.chip_class == GFX9;
4994 unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND;
4995
4996 const struct VkSamplerReductionModeCreateInfoEXT *sampler_reduction =
4997 vk_find_struct_const(pCreateInfo->pNext,
4998 SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT);
4999 if (sampler_reduction)
5000 filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode);
5001
5002 sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
5003 S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
5004 S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
5005 S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) |
5006 S_008F30_DEPTH_COMPARE_FUNC(radv_tex_compare(pCreateInfo->compareOp)) |
5007 S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
5008 S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) |
5009 S_008F30_ANISO_BIAS(max_aniso_ratio) |
5010 S_008F30_DISABLE_CUBE_WRAP(0) |
5011 S_008F30_COMPAT_MODE(compat_mode) |
5012 S_008F30_FILTER_MODE(filter_mode));
5013 sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
5014 S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
5015 S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
5016 sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
5017 S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
5018 S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
5019 S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
5020 S_008F38_MIP_POINT_PRECLAMP(0));
5021 sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(0) |
5022 S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(pCreateInfo->borderColor)));
5023
5024 if (device->physical_device->rad_info.chip_class >= GFX10) {
5025 sampler->state[2] |= S_008F38_ANISO_OVERRIDE_GFX10(1);
5026 } else {
5027 sampler->state[2] |=
5028 S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= GFX8) |
5029 S_008F38_FILTER_PREC_FIX(1) |
5030 S_008F38_ANISO_OVERRIDE_GFX6(device->physical_device->rad_info.chip_class >= GFX8);
5031 }
5032 }
5033
5034 VkResult radv_CreateSampler(
5035 VkDevice _device,
5036 const VkSamplerCreateInfo* pCreateInfo,
5037 const VkAllocationCallbacks* pAllocator,
5038 VkSampler* pSampler)
5039 {
5040 RADV_FROM_HANDLE(radv_device, device, _device);
5041 struct radv_sampler *sampler;
5042
5043 const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion =
5044 vk_find_struct_const(pCreateInfo->pNext,
5045 SAMPLER_YCBCR_CONVERSION_INFO);
5046
5047 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
5048
5049 sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8,
5050 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5051 if (!sampler)
5052 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5053
5054 radv_init_sampler(device, sampler, pCreateInfo);
5055
5056 sampler->ycbcr_sampler = ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion): NULL;
5057 *pSampler = radv_sampler_to_handle(sampler);
5058
5059 return VK_SUCCESS;
5060 }
5061
5062 void radv_DestroySampler(
5063 VkDevice _device,
5064 VkSampler _sampler,
5065 const VkAllocationCallbacks* pAllocator)
5066 {
5067 RADV_FROM_HANDLE(radv_device, device, _device);
5068 RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
5069
5070 if (!sampler)
5071 return;
5072 vk_free2(&device->alloc, pAllocator, sampler);
5073 }
5074
5075 /* vk_icd.h does not declare this function, so we declare it here to
5076 * suppress Wmissing-prototypes.
5077 */
5078 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
5079 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion);
5080
5081 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
5082 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
5083 {
5084 /* For the full details on loader interface versioning, see
5085 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
5086 * What follows is a condensed summary, to help you navigate the large and
5087 * confusing official doc.
5088 *
5089 * - Loader interface v0 is incompatible with later versions. We don't
5090 * support it.
5091 *
5092 * - In loader interface v1:
5093 * - The first ICD entrypoint called by the loader is
5094 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
5095 * entrypoint.
5096 * - The ICD must statically expose no other Vulkan symbol unless it is
5097 * linked with -Bsymbolic.
5098 * - Each dispatchable Vulkan handle created by the ICD must be
5099 * a pointer to a struct whose first member is VK_LOADER_DATA. The
5100 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
5101 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
5102 * vkDestroySurfaceKHR(). The ICD must be capable of working with
5103 * such loader-managed surfaces.
5104 *
5105 * - Loader interface v2 differs from v1 in:
5106 * - The first ICD entrypoint called by the loader is
5107 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
5108 * statically expose this entrypoint.
5109 *
5110 * - Loader interface v3 differs from v2 in:
5111 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
5112 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
5113 * because the loader no longer does so.
5114 */
5115 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
5116 return VK_SUCCESS;
5117 }
5118
5119 VkResult radv_GetMemoryFdKHR(VkDevice _device,
5120 const VkMemoryGetFdInfoKHR *pGetFdInfo,
5121 int *pFD)
5122 {
5123 RADV_FROM_HANDLE(radv_device, device, _device);
5124 RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
5125
5126 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
5127
5128 /* At the moment, we support only the below handle types. */
5129 assert(pGetFdInfo->handleType ==
5130 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
5131 pGetFdInfo->handleType ==
5132 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
5133
5134 bool ret = radv_get_memory_fd(device, memory, pFD);
5135 if (ret == false)
5136 return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
5137 return VK_SUCCESS;
5138 }
5139
5140 VkResult radv_GetMemoryFdPropertiesKHR(VkDevice _device,
5141 VkExternalMemoryHandleTypeFlagBits handleType,
5142 int fd,
5143 VkMemoryFdPropertiesKHR *pMemoryFdProperties)
5144 {
5145 RADV_FROM_HANDLE(radv_device, device, _device);
5146
5147 switch (handleType) {
5148 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
5149 pMemoryFdProperties->memoryTypeBits = (1 << RADV_MEM_TYPE_COUNT) - 1;
5150 return VK_SUCCESS;
5151
5152 default:
5153 /* The valid usage section for this function says:
5154 *
5155 * "handleType must not be one of the handle types defined as
5156 * opaque."
5157 *
5158 * So opaque handle types fall into the default "unsupported" case.
5159 */
5160 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
5161 }
5162 }
5163
5164 static VkResult radv_import_opaque_fd(struct radv_device *device,
5165 int fd,
5166 uint32_t *syncobj)
5167 {
5168 uint32_t syncobj_handle = 0;
5169 int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle);
5170 if (ret != 0)
5171 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
5172
5173 if (*syncobj)
5174 device->ws->destroy_syncobj(device->ws, *syncobj);
5175
5176 *syncobj = syncobj_handle;
5177 close(fd);
5178
5179 return VK_SUCCESS;
5180 }
5181
5182 static VkResult radv_import_sync_fd(struct radv_device *device,
5183 int fd,
5184 uint32_t *syncobj)
5185 {
5186 /* If we create a syncobj we do it locally so that if we have an error, we don't
5187 * leave a syncobj in an undetermined state in the fence. */
5188 uint32_t syncobj_handle = *syncobj;
5189 if (!syncobj_handle) {
5190 int ret = device->ws->create_syncobj(device->ws, &syncobj_handle);
5191 if (ret) {
5192 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
5193 }
5194 }
5195
5196 if (fd == -1) {
5197 device->ws->signal_syncobj(device->ws, syncobj_handle);
5198 } else {
5199 int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd);
5200 if (ret != 0)
5201 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
5202 }
5203
5204 *syncobj = syncobj_handle;
5205 if (fd != -1)
5206 close(fd);
5207
5208 return VK_SUCCESS;
5209 }
5210
5211 VkResult radv_ImportSemaphoreFdKHR(VkDevice _device,
5212 const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo)
5213 {
5214 RADV_FROM_HANDLE(radv_device, device, _device);
5215 RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore);
5216 uint32_t *syncobj_dst = NULL;
5217
5218 if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) {
5219 syncobj_dst = &sem->temp_syncobj;
5220 } else {
5221 syncobj_dst = &sem->syncobj;
5222 }
5223
5224 switch(pImportSemaphoreFdInfo->handleType) {
5225 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
5226 return radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, syncobj_dst);
5227 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
5228 return radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, syncobj_dst);
5229 default:
5230 unreachable("Unhandled semaphore handle type");
5231 }
5232 }
5233
5234 VkResult radv_GetSemaphoreFdKHR(VkDevice _device,
5235 const VkSemaphoreGetFdInfoKHR *pGetFdInfo,
5236 int *pFd)
5237 {
5238 RADV_FROM_HANDLE(radv_device, device, _device);
5239 RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore);
5240 int ret;
5241 uint32_t syncobj_handle;
5242
5243 if (sem->temp_syncobj)
5244 syncobj_handle = sem->temp_syncobj;
5245 else
5246 syncobj_handle = sem->syncobj;
5247
5248 switch(pGetFdInfo->handleType) {
5249 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
5250 ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
5251 break;
5252 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
5253 ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
5254 if (!ret) {
5255 if (sem->temp_syncobj) {
5256 close (sem->temp_syncobj);
5257 sem->temp_syncobj = 0;
5258 } else {
5259 device->ws->reset_syncobj(device->ws, syncobj_handle);
5260 }
5261 }
5262 break;
5263 default:
5264 unreachable("Unhandled semaphore handle type");
5265 }
5266
5267 if (ret)
5268 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
5269 return VK_SUCCESS;
5270 }
5271
5272 void radv_GetPhysicalDeviceExternalSemaphoreProperties(
5273 VkPhysicalDevice physicalDevice,
5274 const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo,
5275 VkExternalSemaphoreProperties *pExternalSemaphoreProperties)
5276 {
5277 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
5278
5279 /* Require has_syncobj_wait_for_submit for the syncobj signal ioctl introduced at virtually the same time */
5280 if (pdevice->rad_info.has_syncobj_wait_for_submit &&
5281 (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT ||
5282 pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)) {
5283 pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
5284 pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
5285 pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
5286 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
5287 } else if (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
5288 pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
5289 pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
5290 pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
5291 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
5292 } else {
5293 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
5294 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
5295 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
5296 }
5297 }
5298
5299 VkResult radv_ImportFenceFdKHR(VkDevice _device,
5300 const VkImportFenceFdInfoKHR *pImportFenceFdInfo)
5301 {
5302 RADV_FROM_HANDLE(radv_device, device, _device);
5303 RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence);
5304 uint32_t *syncobj_dst = NULL;
5305
5306
5307 if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) {
5308 syncobj_dst = &fence->temp_syncobj;
5309 } else {
5310 syncobj_dst = &fence->syncobj;
5311 }
5312
5313 switch(pImportFenceFdInfo->handleType) {
5314 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
5315 return radv_import_opaque_fd(device, pImportFenceFdInfo->fd, syncobj_dst);
5316 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
5317 return radv_import_sync_fd(device, pImportFenceFdInfo->fd, syncobj_dst);
5318 default:
5319 unreachable("Unhandled fence handle type");
5320 }
5321 }
5322
5323 VkResult radv_GetFenceFdKHR(VkDevice _device,
5324 const VkFenceGetFdInfoKHR *pGetFdInfo,
5325 int *pFd)
5326 {
5327 RADV_FROM_HANDLE(radv_device, device, _device);
5328 RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence);
5329 int ret;
5330 uint32_t syncobj_handle;
5331
5332 if (fence->temp_syncobj)
5333 syncobj_handle = fence->temp_syncobj;
5334 else
5335 syncobj_handle = fence->syncobj;
5336
5337 switch(pGetFdInfo->handleType) {
5338 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
5339 ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
5340 break;
5341 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
5342 ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
5343 if (!ret) {
5344 if (fence->temp_syncobj) {
5345 close (fence->temp_syncobj);
5346 fence->temp_syncobj = 0;
5347 } else {
5348 device->ws->reset_syncobj(device->ws, syncobj_handle);
5349 }
5350 }
5351 break;
5352 default:
5353 unreachable("Unhandled fence handle type");
5354 }
5355
5356 if (ret)
5357 return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
5358 return VK_SUCCESS;
5359 }
5360
5361 void radv_GetPhysicalDeviceExternalFenceProperties(
5362 VkPhysicalDevice physicalDevice,
5363 const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo,
5364 VkExternalFenceProperties *pExternalFenceProperties)
5365 {
5366 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
5367
5368 if (pdevice->rad_info.has_syncobj_wait_for_submit &&
5369 (pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT ||
5370 pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT)) {
5371 pExternalFenceProperties->exportFromImportedHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
5372 pExternalFenceProperties->compatibleHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
5373 pExternalFenceProperties->externalFenceFeatures = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT |
5374 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
5375 } else {
5376 pExternalFenceProperties->exportFromImportedHandleTypes = 0;
5377 pExternalFenceProperties->compatibleHandleTypes = 0;
5378 pExternalFenceProperties->externalFenceFeatures = 0;
5379 }
5380 }
5381
5382 VkResult
5383 radv_CreateDebugReportCallbackEXT(VkInstance _instance,
5384 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
5385 const VkAllocationCallbacks* pAllocator,
5386 VkDebugReportCallbackEXT* pCallback)
5387 {
5388 RADV_FROM_HANDLE(radv_instance, instance, _instance);
5389 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
5390 pCreateInfo, pAllocator, &instance->alloc,
5391 pCallback);
5392 }
5393
5394 void
5395 radv_DestroyDebugReportCallbackEXT(VkInstance _instance,
5396 VkDebugReportCallbackEXT _callback,
5397 const VkAllocationCallbacks* pAllocator)
5398 {
5399 RADV_FROM_HANDLE(radv_instance, instance, _instance);
5400 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
5401 _callback, pAllocator, &instance->alloc);
5402 }
5403
5404 void
5405 radv_DebugReportMessageEXT(VkInstance _instance,
5406 VkDebugReportFlagsEXT flags,
5407 VkDebugReportObjectTypeEXT objectType,
5408 uint64_t object,
5409 size_t location,
5410 int32_t messageCode,
5411 const char* pLayerPrefix,
5412 const char* pMessage)
5413 {
5414 RADV_FROM_HANDLE(radv_instance, instance, _instance);
5415 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
5416 object, location, messageCode, pLayerPrefix, pMessage);
5417 }
5418
5419 void
5420 radv_GetDeviceGroupPeerMemoryFeatures(
5421 VkDevice device,
5422 uint32_t heapIndex,
5423 uint32_t localDeviceIndex,
5424 uint32_t remoteDeviceIndex,
5425 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
5426 {
5427 assert(localDeviceIndex == remoteDeviceIndex);
5428
5429 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
5430 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
5431 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
5432 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
5433 }
5434
5435 static const VkTimeDomainEXT radv_time_domains[] = {
5436 VK_TIME_DOMAIN_DEVICE_EXT,
5437 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
5438 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
5439 };
5440
5441 VkResult radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
5442 VkPhysicalDevice physicalDevice,
5443 uint32_t *pTimeDomainCount,
5444 VkTimeDomainEXT *pTimeDomains)
5445 {
5446 int d;
5447 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
5448
5449 for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
5450 vk_outarray_append(&out, i) {
5451 *i = radv_time_domains[d];
5452 }
5453 }
5454
5455 return vk_outarray_status(&out);
5456 }
5457
5458 static uint64_t
5459 radv_clock_gettime(clockid_t clock_id)
5460 {
5461 struct timespec current;
5462 int ret;
5463
5464 ret = clock_gettime(clock_id, &current);
5465 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
5466 ret = clock_gettime(CLOCK_MONOTONIC, &current);
5467 if (ret < 0)
5468 return 0;
5469
5470 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
5471 }
5472
5473 VkResult radv_GetCalibratedTimestampsEXT(
5474 VkDevice _device,
5475 uint32_t timestampCount,
5476 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
5477 uint64_t *pTimestamps,
5478 uint64_t *pMaxDeviation)
5479 {
5480 RADV_FROM_HANDLE(radv_device, device, _device);
5481 uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq;
5482 int d;
5483 uint64_t begin, end;
5484 uint64_t max_clock_period = 0;
5485
5486 begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
5487
5488 for (d = 0; d < timestampCount; d++) {
5489 switch (pTimestampInfos[d].timeDomain) {
5490 case VK_TIME_DOMAIN_DEVICE_EXT:
5491 pTimestamps[d] = device->ws->query_value(device->ws,
5492 RADEON_TIMESTAMP);
5493 uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq);
5494 max_clock_period = MAX2(max_clock_period, device_period);
5495 break;
5496 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
5497 pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC);
5498 max_clock_period = MAX2(max_clock_period, 1);
5499 break;
5500
5501 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
5502 pTimestamps[d] = begin;
5503 break;
5504 default:
5505 pTimestamps[d] = 0;
5506 break;
5507 }
5508 }
5509
5510 end = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
5511
5512 /*
5513 * The maximum deviation is the sum of the interval over which we
5514 * perform the sampling and the maximum period of any sampled
5515 * clock. That's because the maximum skew between any two sampled
5516 * clock edges is when the sampled clock with the largest period is
5517 * sampled at the end of that period but right at the beginning of the
5518 * sampling interval and some other clock is sampled right at the
5519 * begining of its sampling period and right at the end of the
5520 * sampling interval. Let's assume the GPU has the longest clock
5521 * period and that the application is sampling GPU and monotonic:
5522 *
5523 * s e
5524 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
5525 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
5526 *
5527 * g
5528 * 0 1 2 3
5529 * GPU -----_____-----_____-----_____-----_____
5530 *
5531 * m
5532 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
5533 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
5534 *
5535 * Interval <----------------->
5536 * Deviation <-------------------------->
5537 *
5538 * s = read(raw) 2
5539 * g = read(GPU) 1
5540 * m = read(monotonic) 2
5541 * e = read(raw) b
5542 *
5543 * We round the sample interval up by one tick to cover sampling error
5544 * in the interval clock
5545 */
5546
5547 uint64_t sample_interval = end - begin + 1;
5548
5549 *pMaxDeviation = sample_interval + max_clock_period;
5550
5551 return VK_SUCCESS;
5552 }
5553
5554 void radv_GetPhysicalDeviceMultisamplePropertiesEXT(
5555 VkPhysicalDevice physicalDevice,
5556 VkSampleCountFlagBits samples,
5557 VkMultisamplePropertiesEXT* pMultisampleProperties)
5558 {
5559 if (samples & (VK_SAMPLE_COUNT_2_BIT |
5560 VK_SAMPLE_COUNT_4_BIT |
5561 VK_SAMPLE_COUNT_8_BIT)) {
5562 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 2, 2 };
5563 } else {
5564 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 0, 0 };
5565 }
5566 }