radv/meta: Set num_components on image_store intrinsics
[mesa.git] / src / amd / vulkan / radv_meta_resolve_cs.c
1 /*
2 * Copyright © 2016 Dave Airlie
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24
25 #include <assert.h>
26 #include <stdbool.h>
27
28 #include "radv_meta.h"
29 #include "radv_private.h"
30 #include "nir/nir_builder.h"
31 #include "sid.h"
32 #include "vk_format.h"
33
34 static nir_ssa_def *radv_meta_build_resolve_srgb_conversion(nir_builder *b,
35 nir_ssa_def *input)
36 {
37 nir_const_value v;
38 unsigned i;
39 v.u32[0] = 0x3b4d2e1c; // 0.00313080009
40
41 nir_ssa_def *cmp[3];
42 for (i = 0; i < 3; i++)
43 cmp[i] = nir_flt(b, nir_channel(b, input, i),
44 nir_build_imm(b, 1, 32, v));
45
46 nir_ssa_def *ltvals[3];
47 v.f32[0] = 12.92;
48 for (i = 0; i < 3; i++)
49 ltvals[i] = nir_fmul(b, nir_channel(b, input, i),
50 nir_build_imm(b, 1, 32, v));
51
52 nir_ssa_def *gtvals[3];
53
54 for (i = 0; i < 3; i++) {
55 v.f32[0] = 1.0/2.4;
56 gtvals[i] = nir_fpow(b, nir_channel(b, input, i),
57 nir_build_imm(b, 1, 32, v));
58 v.f32[0] = 1.055;
59 gtvals[i] = nir_fmul(b, gtvals[i],
60 nir_build_imm(b, 1, 32, v));
61 v.f32[0] = 0.055;
62 gtvals[i] = nir_fsub(b, gtvals[i],
63 nir_build_imm(b, 1, 32, v));
64 }
65
66 nir_ssa_def *comp[4];
67 for (i = 0; i < 3; i++)
68 comp[i] = nir_bcsel(b, cmp[i], ltvals[i], gtvals[i]);
69 comp[3] = nir_channels(b, input, 1 << 3);
70 return nir_vec(b, comp, 4);
71 }
72
73 static nir_shader *
74 build_resolve_compute_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples)
75 {
76 nir_builder b;
77 char name[64];
78 const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
79 false,
80 false,
81 GLSL_TYPE_FLOAT);
82 const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D,
83 false,
84 false,
85 GLSL_TYPE_FLOAT);
86 snprintf(name, 64, "meta_resolve_cs-%d-%s", samples, is_integer ? "int" : (is_srgb ? "srgb" : "float"));
87 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
88 b.shader->info.name = ralloc_strdup(b.shader, name);
89 b.shader->info.cs.local_size[0] = 16;
90 b.shader->info.cs.local_size[1] = 16;
91 b.shader->info.cs.local_size[2] = 1;
92
93 nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
94 sampler_type, "s_tex");
95 input_img->data.descriptor_set = 0;
96 input_img->data.binding = 0;
97
98 nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
99 img_type, "out_img");
100 output_img->data.descriptor_set = 0;
101 output_img->data.binding = 1;
102 nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0);
103 nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0);
104 nir_ssa_def *block_size = nir_imm_ivec4(&b,
105 b.shader->info.cs.local_size[0],
106 b.shader->info.cs.local_size[1],
107 b.shader->info.cs.local_size[2], 0);
108
109 nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
110
111 nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
112 nir_intrinsic_set_base(src_offset, 0);
113 nir_intrinsic_set_range(src_offset, 16);
114 src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
115 src_offset->num_components = 2;
116 nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
117 nir_builder_instr_insert(&b, &src_offset->instr);
118
119 nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
120 nir_intrinsic_set_base(dst_offset, 0);
121 nir_intrinsic_set_range(dst_offset, 16);
122 dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8));
123 dst_offset->num_components = 2;
124 nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset");
125 nir_builder_instr_insert(&b, &dst_offset->instr);
126
127 nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3);
128 nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
129
130 radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img,
131 color, img_coord);
132
133 nir_ssa_def *outval = nir_load_var(&b, color);
134 if (is_srgb)
135 outval = radv_meta_build_resolve_srgb_conversion(&b, outval);
136
137 nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa);
138 nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store);
139 store->num_components = 4;
140 store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa);
141 store->src[1] = nir_src_for_ssa(coord);
142 store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
143 store->src[3] = nir_src_for_ssa(outval);
144 nir_builder_instr_insert(&b, &store->instr);
145 return b.shader;
146 }
147
148
149 static VkResult
150 create_layout(struct radv_device *device)
151 {
152 VkResult result;
153 /*
154 * two descriptors one for the image being sampled
155 * one for the buffer being written.
156 */
157 VkDescriptorSetLayoutCreateInfo ds_create_info = {
158 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
159 .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
160 .bindingCount = 2,
161 .pBindings = (VkDescriptorSetLayoutBinding[]) {
162 {
163 .binding = 0,
164 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
165 .descriptorCount = 1,
166 .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
167 .pImmutableSamplers = NULL
168 },
169 {
170 .binding = 1,
171 .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
172 .descriptorCount = 1,
173 .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
174 .pImmutableSamplers = NULL
175 },
176 }
177 };
178
179 result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
180 &ds_create_info,
181 &device->meta_state.alloc,
182 &device->meta_state.resolve_compute.ds_layout);
183 if (result != VK_SUCCESS)
184 goto fail;
185
186
187 VkPipelineLayoutCreateInfo pl_create_info = {
188 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
189 .setLayoutCount = 1,
190 .pSetLayouts = &device->meta_state.resolve_compute.ds_layout,
191 .pushConstantRangeCount = 1,
192 .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
193 };
194
195 result = radv_CreatePipelineLayout(radv_device_to_handle(device),
196 &pl_create_info,
197 &device->meta_state.alloc,
198 &device->meta_state.resolve_compute.p_layout);
199 if (result != VK_SUCCESS)
200 goto fail;
201 return VK_SUCCESS;
202 fail:
203 return result;
204 }
205
206 static VkResult
207 create_resolve_pipeline(struct radv_device *device,
208 int samples,
209 bool is_integer,
210 bool is_srgb,
211 VkPipeline *pipeline)
212 {
213 VkResult result;
214 struct radv_shader_module cs = { .nir = NULL };
215
216 mtx_lock(&device->meta_state.mtx);
217 if (*pipeline) {
218 mtx_unlock(&device->meta_state.mtx);
219 return VK_SUCCESS;
220 }
221
222 cs.nir = build_resolve_compute_shader(device, is_integer, is_srgb, samples);
223
224 /* compute shader */
225
226 VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
227 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
228 .stage = VK_SHADER_STAGE_COMPUTE_BIT,
229 .module = radv_shader_module_to_handle(&cs),
230 .pName = "main",
231 .pSpecializationInfo = NULL,
232 };
233
234 VkComputePipelineCreateInfo vk_pipeline_info = {
235 .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
236 .stage = pipeline_shader_stage,
237 .flags = 0,
238 .layout = device->meta_state.resolve_compute.p_layout,
239 };
240
241 result = radv_CreateComputePipelines(radv_device_to_handle(device),
242 radv_pipeline_cache_to_handle(&device->meta_state.cache),
243 1, &vk_pipeline_info, NULL,
244 pipeline);
245 if (result != VK_SUCCESS)
246 goto fail;
247
248 ralloc_free(cs.nir);
249 mtx_unlock(&device->meta_state.mtx);
250 return VK_SUCCESS;
251 fail:
252 ralloc_free(cs.nir);
253 mtx_unlock(&device->meta_state.mtx);
254 return result;
255 }
256
257 VkResult
258 radv_device_init_meta_resolve_compute_state(struct radv_device *device, bool on_demand)
259 {
260 struct radv_meta_state *state = &device->meta_state;
261 VkResult res;
262
263 res = create_layout(device);
264 if (res != VK_SUCCESS)
265 goto fail;
266
267 if (on_demand)
268 return VK_SUCCESS;
269
270 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
271 uint32_t samples = 1 << i;
272
273 res = create_resolve_pipeline(device, samples, false, false,
274 &state->resolve_compute.rc[i].pipeline);
275 if (res != VK_SUCCESS)
276 goto fail;
277
278 res = create_resolve_pipeline(device, samples, true, false,
279 &state->resolve_compute.rc[i].i_pipeline);
280 if (res != VK_SUCCESS)
281 goto fail;
282
283 res = create_resolve_pipeline(device, samples, false, true,
284 &state->resolve_compute.rc[i].srgb_pipeline);
285 if (res != VK_SUCCESS)
286 goto fail;
287
288 }
289
290 return VK_SUCCESS;
291 fail:
292 radv_device_finish_meta_resolve_compute_state(device);
293 return res;
294 }
295
296 void
297 radv_device_finish_meta_resolve_compute_state(struct radv_device *device)
298 {
299 struct radv_meta_state *state = &device->meta_state;
300 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
301 radv_DestroyPipeline(radv_device_to_handle(device),
302 state->resolve_compute.rc[i].pipeline,
303 &state->alloc);
304
305 radv_DestroyPipeline(radv_device_to_handle(device),
306 state->resolve_compute.rc[i].i_pipeline,
307 &state->alloc);
308
309 radv_DestroyPipeline(radv_device_to_handle(device),
310 state->resolve_compute.rc[i].srgb_pipeline,
311 &state->alloc);
312 }
313
314 radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
315 state->resolve_compute.ds_layout,
316 &state->alloc);
317 radv_DestroyPipelineLayout(radv_device_to_handle(device),
318 state->resolve_compute.p_layout,
319 &state->alloc);
320 }
321
322 static void
323 emit_resolve(struct radv_cmd_buffer *cmd_buffer,
324 struct radv_image_view *src_iview,
325 struct radv_image_view *dest_iview,
326 const VkOffset2D *src_offset,
327 const VkOffset2D *dest_offset,
328 const VkExtent2D *resolve_extent)
329 {
330 struct radv_device *device = cmd_buffer->device;
331 const uint32_t samples = src_iview->image->info.samples;
332 const uint32_t samples_log2 = ffs(samples) - 1;
333 radv_meta_push_descriptor_set(cmd_buffer,
334 VK_PIPELINE_BIND_POINT_COMPUTE,
335 device->meta_state.resolve_compute.p_layout,
336 0, /* set */
337 2, /* descriptorWriteCount */
338 (VkWriteDescriptorSet[]) {
339 {
340 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
341 .dstBinding = 0,
342 .dstArrayElement = 0,
343 .descriptorCount = 1,
344 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
345 .pImageInfo = (VkDescriptorImageInfo[]) {
346 {
347 .sampler = VK_NULL_HANDLE,
348 .imageView = radv_image_view_to_handle(src_iview),
349 .imageLayout = VK_IMAGE_LAYOUT_GENERAL },
350 }
351 },
352 {
353 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
354 .dstBinding = 1,
355 .dstArrayElement = 0,
356 .descriptorCount = 1,
357 .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
358 .pImageInfo = (VkDescriptorImageInfo[]) {
359 {
360 .sampler = VK_NULL_HANDLE,
361 .imageView = radv_image_view_to_handle(dest_iview),
362 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
363 },
364 }
365 }
366 });
367
368 VkPipeline *pipeline;
369 if (vk_format_is_int(src_iview->image->vk_format))
370 pipeline = &device->meta_state.resolve_compute.rc[samples_log2].i_pipeline;
371 else if (vk_format_is_srgb(src_iview->image->vk_format))
372 pipeline = &device->meta_state.resolve_compute.rc[samples_log2].srgb_pipeline;
373 else
374 pipeline = &device->meta_state.resolve_compute.rc[samples_log2].pipeline;
375
376 if (!*pipeline) {
377 VkResult ret = create_resolve_pipeline(device, samples,
378 vk_format_is_int(src_iview->image->vk_format),
379 vk_format_is_srgb(src_iview->image->vk_format),
380 pipeline);
381 if (ret != VK_SUCCESS) {
382 cmd_buffer->record_result = ret;
383 return;
384 }
385 }
386
387 radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
388 VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
389
390 unsigned push_constants[4] = {
391 src_offset->x,
392 src_offset->y,
393 dest_offset->x,
394 dest_offset->y,
395 };
396 radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
397 device->meta_state.resolve_compute.p_layout,
398 VK_SHADER_STAGE_COMPUTE_BIT, 0, 16,
399 push_constants);
400 radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1);
401
402 }
403
404 void radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer,
405 struct radv_image *src_image,
406 VkImageLayout src_image_layout,
407 struct radv_image *dest_image,
408 VkImageLayout dest_image_layout,
409 uint32_t region_count,
410 const VkImageResolve *regions)
411 {
412 struct radv_meta_saved_state saved_state;
413
414 radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout,
415 region_count, regions);
416
417 radv_meta_save(&saved_state, cmd_buffer,
418 RADV_META_SAVE_COMPUTE_PIPELINE |
419 RADV_META_SAVE_CONSTANTS |
420 RADV_META_SAVE_DESCRIPTORS);
421
422 for (uint32_t r = 0; r < region_count; ++r) {
423 const VkImageResolve *region = &regions[r];
424
425 assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
426 assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
427 assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
428
429 const uint32_t src_base_layer =
430 radv_meta_get_iview_layer(src_image, &region->srcSubresource,
431 &region->srcOffset);
432
433 const uint32_t dest_base_layer =
434 radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
435 &region->dstOffset);
436
437 const struct VkExtent3D extent =
438 radv_sanitize_image_extent(src_image->type, region->extent);
439 const struct VkOffset3D srcOffset =
440 radv_sanitize_image_offset(src_image->type, region->srcOffset);
441 const struct VkOffset3D dstOffset =
442 radv_sanitize_image_offset(dest_image->type, region->dstOffset);
443
444 for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
445 ++layer) {
446
447 struct radv_image_view src_iview;
448 radv_image_view_init(&src_iview, cmd_buffer->device,
449 &(VkImageViewCreateInfo) {
450 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
451 .image = radv_image_to_handle(src_image),
452 .viewType = radv_meta_get_view_type(src_image),
453 .format = src_image->vk_format,
454 .subresourceRange = {
455 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
456 .baseMipLevel = region->srcSubresource.mipLevel,
457 .levelCount = 1,
458 .baseArrayLayer = src_base_layer + layer,
459 .layerCount = 1,
460 },
461 });
462
463 struct radv_image_view dest_iview;
464 radv_image_view_init(&dest_iview, cmd_buffer->device,
465 &(VkImageViewCreateInfo) {
466 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
467 .image = radv_image_to_handle(dest_image),
468 .viewType = radv_meta_get_view_type(dest_image),
469 .format = vk_to_non_srgb_format(dest_image->vk_format),
470 .subresourceRange = {
471 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
472 .baseMipLevel = region->dstSubresource.mipLevel,
473 .levelCount = 1,
474 .baseArrayLayer = dest_base_layer + layer,
475 .layerCount = 1,
476 },
477 });
478
479 emit_resolve(cmd_buffer,
480 &src_iview,
481 &dest_iview,
482 &(VkOffset2D) {srcOffset.x, srcOffset.y },
483 &(VkOffset2D) {dstOffset.x, dstOffset.y },
484 &(VkExtent2D) {extent.width, extent.height });
485 }
486 }
487 radv_meta_restore(&saved_state, cmd_buffer);
488 }
489
490 /**
491 * Emit any needed resolves for the current subpass.
492 */
493 void
494 radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer)
495 {
496 struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
497 const struct radv_subpass *subpass = cmd_buffer->state.subpass;
498 struct radv_meta_saved_state saved_state;
499 struct radv_subpass_barrier barrier;
500
501 /* Resolves happen before the end-of-subpass barriers get executed, so
502 * we have to make the attachment shader-readable.
503 */
504 barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
505 barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
506 barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
507 radv_subpass_barrier(cmd_buffer, &barrier);
508
509 radv_decompress_resolve_subpass_src(cmd_buffer);
510
511 radv_meta_save(&saved_state, cmd_buffer,
512 RADV_META_SAVE_COMPUTE_PIPELINE |
513 RADV_META_SAVE_CONSTANTS |
514 RADV_META_SAVE_DESCRIPTORS);
515
516 for (uint32_t i = 0; i < subpass->color_count; ++i) {
517 struct radv_subpass_attachment src_att = subpass->color_attachments[i];
518 struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i];
519 struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment;
520 struct radv_image_view *dst_iview = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment;
521 if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
522 continue;
523
524 struct radv_image *src_image = src_iview->image;
525 struct radv_image *dst_image = dst_iview->image;
526 for (uint32_t layer = 0; layer < src_image->info.array_size; layer++) {
527
528 struct radv_image_view tsrc_iview;
529 radv_image_view_init(&tsrc_iview, cmd_buffer->device,
530 &(VkImageViewCreateInfo) {
531 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
532 .image = radv_image_to_handle(src_image),
533 .viewType = radv_meta_get_view_type(src_image),
534 .format = src_image->vk_format,
535 .subresourceRange = {
536 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
537 .baseMipLevel = src_iview->base_mip,
538 .levelCount = 1,
539 .baseArrayLayer = layer,
540 .layerCount = 1,
541 },
542 });
543
544 struct radv_image_view tdst_iview;
545 radv_image_view_init(&tdst_iview, cmd_buffer->device,
546 &(VkImageViewCreateInfo) {
547 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
548 .image = radv_image_to_handle(dst_image),
549 .viewType = radv_meta_get_view_type(dst_image),
550 .format = vk_to_non_srgb_format(dst_image->vk_format),
551 .subresourceRange = {
552 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
553 .baseMipLevel = dst_iview->base_mip,
554 .levelCount = 1,
555 .baseArrayLayer = layer,
556 .layerCount = 1,
557 },
558 });
559 emit_resolve(cmd_buffer,
560 &tsrc_iview,
561 &tdst_iview,
562 &(VkOffset2D) { 0, 0 },
563 &(VkOffset2D) { 0, 0 },
564 &(VkExtent2D) { fb->width, fb->height });
565 }
566 }
567
568 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
569 RADV_CMD_FLAG_INV_VMEM_L1;
570
571 radv_meta_restore(&saved_state, cmd_buffer);
572 }