radv: Add on-demand compilation of built-in shaders.
[mesa.git] / src / amd / vulkan / radv_meta_resolve_cs.c
1 /*
2 * Copyright © 2016 Dave Airlie
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24
25 #include <assert.h>
26 #include <stdbool.h>
27
28 #include "radv_meta.h"
29 #include "radv_private.h"
30 #include "nir/nir_builder.h"
31 #include "sid.h"
32 #include "vk_format.h"
33
34 static nir_ssa_def *radv_meta_build_resolve_srgb_conversion(nir_builder *b,
35 nir_ssa_def *input)
36 {
37 nir_const_value v;
38 unsigned i;
39 v.u32[0] = 0x3b4d2e1c; // 0.00313080009
40
41 nir_ssa_def *cmp[3];
42 for (i = 0; i < 3; i++)
43 cmp[i] = nir_flt(b, nir_channel(b, input, i),
44 nir_build_imm(b, 1, 32, v));
45
46 nir_ssa_def *ltvals[3];
47 v.f32[0] = 12.92;
48 for (i = 0; i < 3; i++)
49 ltvals[i] = nir_fmul(b, nir_channel(b, input, i),
50 nir_build_imm(b, 1, 32, v));
51
52 nir_ssa_def *gtvals[3];
53
54 for (i = 0; i < 3; i++) {
55 v.f32[0] = 1.0/2.4;
56 gtvals[i] = nir_fpow(b, nir_channel(b, input, i),
57 nir_build_imm(b, 1, 32, v));
58 v.f32[0] = 1.055;
59 gtvals[i] = nir_fmul(b, gtvals[i],
60 nir_build_imm(b, 1, 32, v));
61 v.f32[0] = 0.055;
62 gtvals[i] = nir_fsub(b, gtvals[i],
63 nir_build_imm(b, 1, 32, v));
64 }
65
66 nir_ssa_def *comp[4];
67 for (i = 0; i < 3; i++)
68 comp[i] = nir_bcsel(b, cmp[i], ltvals[i], gtvals[i]);
69 comp[3] = nir_channels(b, input, 1 << 3);
70 return nir_vec(b, comp, 4);
71 }
72
73 static nir_shader *
74 build_resolve_compute_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples)
75 {
76 nir_builder b;
77 char name[64];
78 const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
79 false,
80 false,
81 GLSL_TYPE_FLOAT);
82 const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D,
83 false,
84 false,
85 GLSL_TYPE_FLOAT);
86 snprintf(name, 64, "meta_resolve_cs-%d-%s", samples, is_integer ? "int" : (is_srgb ? "srgb" : "float"));
87 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
88 b.shader->info.name = ralloc_strdup(b.shader, name);
89 b.shader->info.cs.local_size[0] = 16;
90 b.shader->info.cs.local_size[1] = 16;
91 b.shader->info.cs.local_size[2] = 1;
92
93 nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
94 sampler_type, "s_tex");
95 input_img->data.descriptor_set = 0;
96 input_img->data.binding = 0;
97
98 nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
99 img_type, "out_img");
100 output_img->data.descriptor_set = 0;
101 output_img->data.binding = 1;
102 nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0);
103 nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0);
104 nir_ssa_def *block_size = nir_imm_ivec4(&b,
105 b.shader->info.cs.local_size[0],
106 b.shader->info.cs.local_size[1],
107 b.shader->info.cs.local_size[2], 0);
108
109 nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);
110
111 nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
112 nir_intrinsic_set_base(src_offset, 0);
113 nir_intrinsic_set_range(src_offset, 16);
114 src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
115 src_offset->num_components = 2;
116 nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
117 nir_builder_instr_insert(&b, &src_offset->instr);
118
119 nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
120 nir_intrinsic_set_base(dst_offset, 0);
121 nir_intrinsic_set_range(dst_offset, 16);
122 dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8));
123 dst_offset->num_components = 2;
124 nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset");
125 nir_builder_instr_insert(&b, &dst_offset->instr);
126
127 nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3);
128 nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
129
130 radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img,
131 color, img_coord);
132
133 nir_ssa_def *outval = nir_load_var(&b, color);
134 if (is_srgb)
135 outval = radv_meta_build_resolve_srgb_conversion(&b, outval);
136
137 nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa);
138 nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store);
139 store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa);
140 store->src[1] = nir_src_for_ssa(coord);
141 store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
142 store->src[3] = nir_src_for_ssa(outval);
143 nir_builder_instr_insert(&b, &store->instr);
144 return b.shader;
145 }
146
147
148 static VkResult
149 create_layout(struct radv_device *device)
150 {
151 VkResult result;
152 /*
153 * two descriptors one for the image being sampled
154 * one for the buffer being written.
155 */
156 VkDescriptorSetLayoutCreateInfo ds_create_info = {
157 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
158 .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
159 .bindingCount = 2,
160 .pBindings = (VkDescriptorSetLayoutBinding[]) {
161 {
162 .binding = 0,
163 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
164 .descriptorCount = 1,
165 .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
166 .pImmutableSamplers = NULL
167 },
168 {
169 .binding = 1,
170 .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
171 .descriptorCount = 1,
172 .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
173 .pImmutableSamplers = NULL
174 },
175 }
176 };
177
178 result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
179 &ds_create_info,
180 &device->meta_state.alloc,
181 &device->meta_state.resolve_compute.ds_layout);
182 if (result != VK_SUCCESS)
183 goto fail;
184
185
186 VkPipelineLayoutCreateInfo pl_create_info = {
187 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
188 .setLayoutCount = 1,
189 .pSetLayouts = &device->meta_state.resolve_compute.ds_layout,
190 .pushConstantRangeCount = 1,
191 .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
192 };
193
194 result = radv_CreatePipelineLayout(radv_device_to_handle(device),
195 &pl_create_info,
196 &device->meta_state.alloc,
197 &device->meta_state.resolve_compute.p_layout);
198 if (result != VK_SUCCESS)
199 goto fail;
200 return VK_SUCCESS;
201 fail:
202 return result;
203 }
204
205 static VkResult
206 create_resolve_pipeline(struct radv_device *device,
207 int samples,
208 bool is_integer,
209 bool is_srgb,
210 VkPipeline *pipeline)
211 {
212 VkResult result;
213 struct radv_shader_module cs = { .nir = NULL };
214
215 mtx_lock(&device->meta_state.mtx);
216 if (*pipeline) {
217 mtx_unlock(&device->meta_state.mtx);
218 return VK_SUCCESS;
219 }
220
221 cs.nir = build_resolve_compute_shader(device, is_integer, is_srgb, samples);
222
223 /* compute shader */
224
225 VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
226 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
227 .stage = VK_SHADER_STAGE_COMPUTE_BIT,
228 .module = radv_shader_module_to_handle(&cs),
229 .pName = "main",
230 .pSpecializationInfo = NULL,
231 };
232
233 VkComputePipelineCreateInfo vk_pipeline_info = {
234 .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
235 .stage = pipeline_shader_stage,
236 .flags = 0,
237 .layout = device->meta_state.resolve_compute.p_layout,
238 };
239
240 result = radv_CreateComputePipelines(radv_device_to_handle(device),
241 radv_pipeline_cache_to_handle(&device->meta_state.cache),
242 1, &vk_pipeline_info, NULL,
243 pipeline);
244 if (result != VK_SUCCESS)
245 goto fail;
246
247 ralloc_free(cs.nir);
248 mtx_unlock(&device->meta_state.mtx);
249 return VK_SUCCESS;
250 fail:
251 ralloc_free(cs.nir);
252 mtx_unlock(&device->meta_state.mtx);
253 return result;
254 }
255
256 VkResult
257 radv_device_init_meta_resolve_compute_state(struct radv_device *device, bool on_demand)
258 {
259 struct radv_meta_state *state = &device->meta_state;
260 VkResult res;
261
262 res = create_layout(device);
263 if (res != VK_SUCCESS)
264 goto fail;
265
266 if (on_demand)
267 return VK_SUCCESS;
268
269 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
270 uint32_t samples = 1 << i;
271
272 res = create_resolve_pipeline(device, samples, false, false,
273 &state->resolve_compute.rc[i].pipeline);
274 if (res != VK_SUCCESS)
275 goto fail;
276
277 res = create_resolve_pipeline(device, samples, true, false,
278 &state->resolve_compute.rc[i].i_pipeline);
279 if (res != VK_SUCCESS)
280 goto fail;
281
282 res = create_resolve_pipeline(device, samples, false, true,
283 &state->resolve_compute.rc[i].srgb_pipeline);
284 if (res != VK_SUCCESS)
285 goto fail;
286
287 }
288
289 return VK_SUCCESS;
290 fail:
291 radv_device_finish_meta_resolve_compute_state(device);
292 return res;
293 }
294
295 void
296 radv_device_finish_meta_resolve_compute_state(struct radv_device *device)
297 {
298 struct radv_meta_state *state = &device->meta_state;
299 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
300 radv_DestroyPipeline(radv_device_to_handle(device),
301 state->resolve_compute.rc[i].pipeline,
302 &state->alloc);
303
304 radv_DestroyPipeline(radv_device_to_handle(device),
305 state->resolve_compute.rc[i].i_pipeline,
306 &state->alloc);
307
308 radv_DestroyPipeline(radv_device_to_handle(device),
309 state->resolve_compute.rc[i].srgb_pipeline,
310 &state->alloc);
311 }
312
313 radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
314 state->resolve_compute.ds_layout,
315 &state->alloc);
316 radv_DestroyPipelineLayout(radv_device_to_handle(device),
317 state->resolve_compute.p_layout,
318 &state->alloc);
319 }
320
321 static void
322 emit_resolve(struct radv_cmd_buffer *cmd_buffer,
323 struct radv_image_view *src_iview,
324 struct radv_image_view *dest_iview,
325 const VkOffset2D *src_offset,
326 const VkOffset2D *dest_offset,
327 const VkExtent2D *resolve_extent)
328 {
329 struct radv_device *device = cmd_buffer->device;
330 const uint32_t samples = src_iview->image->info.samples;
331 const uint32_t samples_log2 = ffs(samples) - 1;
332 radv_meta_push_descriptor_set(cmd_buffer,
333 VK_PIPELINE_BIND_POINT_COMPUTE,
334 device->meta_state.resolve_compute.p_layout,
335 0, /* set */
336 2, /* descriptorWriteCount */
337 (VkWriteDescriptorSet[]) {
338 {
339 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
340 .dstBinding = 0,
341 .dstArrayElement = 0,
342 .descriptorCount = 1,
343 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
344 .pImageInfo = (VkDescriptorImageInfo[]) {
345 {
346 .sampler = VK_NULL_HANDLE,
347 .imageView = radv_image_view_to_handle(src_iview),
348 .imageLayout = VK_IMAGE_LAYOUT_GENERAL },
349 }
350 },
351 {
352 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
353 .dstBinding = 1,
354 .dstArrayElement = 0,
355 .descriptorCount = 1,
356 .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
357 .pImageInfo = (VkDescriptorImageInfo[]) {
358 {
359 .sampler = VK_NULL_HANDLE,
360 .imageView = radv_image_view_to_handle(dest_iview),
361 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
362 },
363 }
364 }
365 });
366
367 VkPipeline *pipeline;
368 if (vk_format_is_int(src_iview->image->vk_format))
369 pipeline = &device->meta_state.resolve_compute.rc[samples_log2].i_pipeline;
370 else if (vk_format_is_srgb(src_iview->image->vk_format))
371 pipeline = &device->meta_state.resolve_compute.rc[samples_log2].srgb_pipeline;
372 else
373 pipeline = &device->meta_state.resolve_compute.rc[samples_log2].pipeline;
374
375 if (!*pipeline) {
376 VkResult ret = create_resolve_pipeline(device, samples,
377 vk_format_is_int(src_iview->image->vk_format),
378 vk_format_is_srgb(src_iview->image->vk_format),
379 pipeline);
380 if (ret != VK_SUCCESS) {
381 cmd_buffer->record_result = ret;
382 return;
383 }
384 }
385
386 radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
387 VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
388
389 unsigned push_constants[4] = {
390 src_offset->x,
391 src_offset->y,
392 dest_offset->x,
393 dest_offset->y,
394 };
395 radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
396 device->meta_state.resolve_compute.p_layout,
397 VK_SHADER_STAGE_COMPUTE_BIT, 0, 16,
398 push_constants);
399 radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1);
400
401 }
402
403 void radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer,
404 struct radv_image *src_image,
405 VkImageLayout src_image_layout,
406 struct radv_image *dest_image,
407 VkImageLayout dest_image_layout,
408 uint32_t region_count,
409 const VkImageResolve *regions)
410 {
411 struct radv_meta_saved_state saved_state;
412
413 radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout,
414 region_count, regions);
415
416 radv_meta_save(&saved_state, cmd_buffer,
417 RADV_META_SAVE_COMPUTE_PIPELINE |
418 RADV_META_SAVE_CONSTANTS |
419 RADV_META_SAVE_DESCRIPTORS);
420
421 for (uint32_t r = 0; r < region_count; ++r) {
422 const VkImageResolve *region = &regions[r];
423
424 assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
425 assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
426 assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
427
428 const uint32_t src_base_layer =
429 radv_meta_get_iview_layer(src_image, &region->srcSubresource,
430 &region->srcOffset);
431
432 const uint32_t dest_base_layer =
433 radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
434 &region->dstOffset);
435
436 const struct VkExtent3D extent =
437 radv_sanitize_image_extent(src_image->type, region->extent);
438 const struct VkOffset3D srcOffset =
439 radv_sanitize_image_offset(src_image->type, region->srcOffset);
440 const struct VkOffset3D dstOffset =
441 radv_sanitize_image_offset(dest_image->type, region->dstOffset);
442
443 for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
444 ++layer) {
445
446 struct radv_image_view src_iview;
447 radv_image_view_init(&src_iview, cmd_buffer->device,
448 &(VkImageViewCreateInfo) {
449 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
450 .image = radv_image_to_handle(src_image),
451 .viewType = radv_meta_get_view_type(src_image),
452 .format = src_image->vk_format,
453 .subresourceRange = {
454 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
455 .baseMipLevel = region->srcSubresource.mipLevel,
456 .levelCount = 1,
457 .baseArrayLayer = src_base_layer + layer,
458 .layerCount = 1,
459 },
460 });
461
462 struct radv_image_view dest_iview;
463 radv_image_view_init(&dest_iview, cmd_buffer->device,
464 &(VkImageViewCreateInfo) {
465 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
466 .image = radv_image_to_handle(dest_image),
467 .viewType = radv_meta_get_view_type(dest_image),
468 .format = vk_to_non_srgb_format(dest_image->vk_format),
469 .subresourceRange = {
470 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
471 .baseMipLevel = region->dstSubresource.mipLevel,
472 .levelCount = 1,
473 .baseArrayLayer = dest_base_layer + layer,
474 .layerCount = 1,
475 },
476 });
477
478 emit_resolve(cmd_buffer,
479 &src_iview,
480 &dest_iview,
481 &(VkOffset2D) {srcOffset.x, srcOffset.y },
482 &(VkOffset2D) {dstOffset.x, dstOffset.y },
483 &(VkExtent2D) {extent.width, extent.height });
484 }
485 }
486 radv_meta_restore(&saved_state, cmd_buffer);
487 }
488
489 /**
490 * Emit any needed resolves for the current subpass.
491 */
492 void
493 radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer)
494 {
495 struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
496 const struct radv_subpass *subpass = cmd_buffer->state.subpass;
497 struct radv_meta_saved_state saved_state;
498 struct radv_subpass_barrier barrier;
499
500 /* Resolves happen before the end-of-subpass barriers get executed, so
501 * we have to make the attachment shader-readable.
502 */
503 barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
504 barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
505 barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
506 radv_subpass_barrier(cmd_buffer, &barrier);
507
508 radv_decompress_resolve_subpass_src(cmd_buffer);
509
510 radv_meta_save(&saved_state, cmd_buffer,
511 RADV_META_SAVE_COMPUTE_PIPELINE |
512 RADV_META_SAVE_CONSTANTS |
513 RADV_META_SAVE_DESCRIPTORS);
514
515 for (uint32_t i = 0; i < subpass->color_count; ++i) {
516 struct radv_subpass_attachment src_att = subpass->color_attachments[i];
517 struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i];
518 struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment;
519 struct radv_image_view *dst_iview = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment;
520 if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
521 continue;
522
523 struct radv_image *src_image = src_iview->image;
524 struct radv_image *dst_image = dst_iview->image;
525 for (uint32_t layer = 0; layer < src_image->info.array_size; layer++) {
526
527 struct radv_image_view tsrc_iview;
528 radv_image_view_init(&tsrc_iview, cmd_buffer->device,
529 &(VkImageViewCreateInfo) {
530 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
531 .image = radv_image_to_handle(src_image),
532 .viewType = radv_meta_get_view_type(src_image),
533 .format = src_image->vk_format,
534 .subresourceRange = {
535 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
536 .baseMipLevel = src_iview->base_mip,
537 .levelCount = 1,
538 .baseArrayLayer = layer,
539 .layerCount = 1,
540 },
541 });
542
543 struct radv_image_view tdst_iview;
544 radv_image_view_init(&tdst_iview, cmd_buffer->device,
545 &(VkImageViewCreateInfo) {
546 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
547 .image = radv_image_to_handle(dst_image),
548 .viewType = radv_meta_get_view_type(dst_image),
549 .format = vk_to_non_srgb_format(dst_image->vk_format),
550 .subresourceRange = {
551 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
552 .baseMipLevel = dst_iview->base_mip,
553 .levelCount = 1,
554 .baseArrayLayer = layer,
555 .layerCount = 1,
556 },
557 });
558 emit_resolve(cmd_buffer,
559 &tsrc_iview,
560 &tdst_iview,
561 &(VkOffset2D) { 0, 0 },
562 &(VkOffset2D) { 0, 0 },
563 &(VkExtent2D) { fb->width, fb->height });
564 }
565 }
566
567 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
568 RADV_CMD_FLAG_INV_VMEM_L1;
569
570 radv_meta_restore(&saved_state, cmd_buffer);
571 }