aco: use nir_intrinsic_has_access
[mesa.git] / src / amd / vulkan / radv_meta_resolve_fs.c
1 /*
2 * Copyright © 2016 Dave Airlie
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24
25 #include <assert.h>
26 #include <stdbool.h>
27
28 #include "radv_meta.h"
29 #include "radv_private.h"
30 #include "nir/nir_builder.h"
31 #include "sid.h"
32 #include "vk_format.h"
33
34 static nir_shader *
35 build_nir_vertex_shader(void)
36 {
37 const struct glsl_type *vec4 = glsl_vec4_type();
38 nir_builder b;
39
40 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
41 b.shader->info.name = ralloc_strdup(b.shader, "meta_resolve_vs");
42
43 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
44 vec4, "gl_Position");
45 pos_out->data.location = VARYING_SLOT_POS;
46
47 nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b);
48
49 nir_store_var(&b, pos_out, outvec, 0xf);
50 return b.shader;
51 }
52
53 static nir_shader *
54 build_resolve_fragment_shader(struct radv_device *dev, bool is_integer, int samples)
55 {
56 nir_builder b;
57 char name[64];
58 const struct glsl_type *vec4 = glsl_vec4_type();
59 const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
60 false,
61 false,
62 GLSL_TYPE_FLOAT);
63
64 snprintf(name, 64, "meta_resolve_fs-%d-%s", samples, is_integer ? "int" : "float");
65 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
66 b.shader->info.name = ralloc_strdup(b.shader, name);
67
68 nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
69 sampler_type, "s_tex");
70 input_img->data.descriptor_set = 0;
71 input_img->data.binding = 0;
72
73 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
74 vec4, "f_color");
75 color_out->data.location = FRAG_RESULT_DATA0;
76
77 nir_ssa_def *pos_in = nir_channels(&b, nir_load_frag_coord(&b), 0x3);
78 nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
79 nir_intrinsic_set_base(src_offset, 0);
80 nir_intrinsic_set_range(src_offset, 8);
81 src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
82 src_offset->num_components = 2;
83 nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
84 nir_builder_instr_insert(&b, &src_offset->instr);
85
86 nir_ssa_def *pos_int = nir_f2i32(&b, pos_in);
87
88 nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, &src_offset->dest.ssa), 0x3);
89 nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
90
91 radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img,
92 color, img_coord);
93
94 nir_ssa_def *outval = nir_load_var(&b, color);
95 nir_store_var(&b, color_out, outval, 0xf);
96 return b.shader;
97 }
98
99
100 static VkResult
101 create_layout(struct radv_device *device)
102 {
103 VkResult result;
104 /*
105 * one descriptors for the image being sampled
106 */
107 VkDescriptorSetLayoutCreateInfo ds_create_info = {
108 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
109 .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
110 .bindingCount = 1,
111 .pBindings = (VkDescriptorSetLayoutBinding[]) {
112 {
113 .binding = 0,
114 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
115 .descriptorCount = 1,
116 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
117 .pImmutableSamplers = NULL
118 },
119 }
120 };
121
122 result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
123 &ds_create_info,
124 &device->meta_state.alloc,
125 &device->meta_state.resolve_fragment.ds_layout);
126 if (result != VK_SUCCESS)
127 goto fail;
128
129
130 VkPipelineLayoutCreateInfo pl_create_info = {
131 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
132 .setLayoutCount = 1,
133 .pSetLayouts = &device->meta_state.resolve_fragment.ds_layout,
134 .pushConstantRangeCount = 1,
135 .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8},
136 };
137
138 result = radv_CreatePipelineLayout(radv_device_to_handle(device),
139 &pl_create_info,
140 &device->meta_state.alloc,
141 &device->meta_state.resolve_fragment.p_layout);
142 if (result != VK_SUCCESS)
143 goto fail;
144 return VK_SUCCESS;
145 fail:
146 return result;
147 }
148
149 static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
150 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
151 .vertexBindingDescriptionCount = 0,
152 .vertexAttributeDescriptionCount = 0,
153 };
154
155 static VkResult
156 create_resolve_pipeline(struct radv_device *device,
157 int samples_log2,
158 VkFormat format)
159 {
160 mtx_lock(&device->meta_state.mtx);
161
162 unsigned fs_key = radv_format_meta_fs_key(format);
163 VkPipeline *pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
164 if (*pipeline) {
165 mtx_unlock(&device->meta_state.mtx);
166 return VK_SUCCESS;
167 }
168
169 VkResult result;
170 bool is_integer = false;
171 uint32_t samples = 1 << samples_log2;
172 const VkPipelineVertexInputStateCreateInfo *vi_create_info;
173 vi_create_info = &normal_vi_create_info;
174 if (vk_format_is_int(format))
175 is_integer = true;
176
177 struct radv_shader_module fs = { .nir = NULL };
178 fs.nir = build_resolve_fragment_shader(device, is_integer, samples);
179 struct radv_shader_module vs = {
180 .nir = build_nir_vertex_shader(),
181 };
182
183 VkRenderPass *rp = &device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][0];
184
185 assert(!*rp);
186
187 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
188 {
189 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
190 .stage = VK_SHADER_STAGE_VERTEX_BIT,
191 .module = radv_shader_module_to_handle(&vs),
192 .pName = "main",
193 .pSpecializationInfo = NULL
194 }, {
195 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
196 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
197 .module = radv_shader_module_to_handle(&fs),
198 .pName = "main",
199 .pSpecializationInfo = NULL
200 },
201 };
202
203
204 for (unsigned dst_layout = 0; dst_layout < RADV_META_DST_LAYOUT_COUNT; ++dst_layout) {
205 VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout);
206 result = radv_CreateRenderPass(radv_device_to_handle(device),
207 &(VkRenderPassCreateInfo) {
208 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
209 .attachmentCount = 1,
210 .pAttachments = &(VkAttachmentDescription) {
211 .format = format,
212 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
213 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
214 .initialLayout = layout,
215 .finalLayout = layout,
216 },
217 .subpassCount = 1,
218 .pSubpasses = &(VkSubpassDescription) {
219 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
220 .inputAttachmentCount = 0,
221 .colorAttachmentCount = 1,
222 .pColorAttachments = &(VkAttachmentReference) {
223 .attachment = 0,
224 .layout = layout,
225 },
226 .pResolveAttachments = NULL,
227 .pDepthStencilAttachment = &(VkAttachmentReference) {
228 .attachment = VK_ATTACHMENT_UNUSED,
229 .layout = VK_IMAGE_LAYOUT_GENERAL,
230 },
231 .preserveAttachmentCount = 0,
232 .pPreserveAttachments = NULL,
233 },
234 .dependencyCount = 2,
235 .pDependencies = (VkSubpassDependency[]) {
236 {
237 .srcSubpass = VK_SUBPASS_EXTERNAL,
238 .dstSubpass = 0,
239 .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
240 .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
241 .srcAccessMask = 0,
242 .dstAccessMask = 0,
243 .dependencyFlags = 0
244 },
245 {
246 .srcSubpass = 0,
247 .dstSubpass = VK_SUBPASS_EXTERNAL,
248 .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
249 .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
250 .srcAccessMask = 0,
251 .dstAccessMask = 0,
252 .dependencyFlags = 0
253 }
254 },
255 }, &device->meta_state.alloc, rp + dst_layout);
256 }
257
258
259 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
260 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
261 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
262 .pStages = pipeline_shader_stages,
263 .pVertexInputState = vi_create_info,
264 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
265 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
266 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
267 .primitiveRestartEnable = false,
268 },
269 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
270 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
271 .viewportCount = 1,
272 .scissorCount = 1,
273 },
274 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
275 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
276 .rasterizerDiscardEnable = false,
277 .polygonMode = VK_POLYGON_MODE_FILL,
278 .cullMode = VK_CULL_MODE_NONE,
279 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
280 },
281 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
282 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
283 .rasterizationSamples = 1,
284 .sampleShadingEnable = false,
285 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
286 },
287 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
288 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
289 .attachmentCount = 1,
290 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
291 { .colorWriteMask =
292 VK_COLOR_COMPONENT_A_BIT |
293 VK_COLOR_COMPONENT_R_BIT |
294 VK_COLOR_COMPONENT_G_BIT |
295 VK_COLOR_COMPONENT_B_BIT },
296 }
297 },
298 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
299 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
300 .dynamicStateCount = 9,
301 .pDynamicStates = (VkDynamicState[]) {
302 VK_DYNAMIC_STATE_VIEWPORT,
303 VK_DYNAMIC_STATE_SCISSOR,
304 VK_DYNAMIC_STATE_LINE_WIDTH,
305 VK_DYNAMIC_STATE_DEPTH_BIAS,
306 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
307 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
308 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
309 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
310 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
311 },
312 },
313 .flags = 0,
314 .layout = device->meta_state.resolve_fragment.p_layout,
315 .renderPass = *rp,
316 .subpass = 0,
317 };
318
319 const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
320 .use_rectlist = true
321 };
322
323 result = radv_graphics_pipeline_create(radv_device_to_handle(device),
324 radv_pipeline_cache_to_handle(&device->meta_state.cache),
325 &vk_pipeline_info, &radv_pipeline_info,
326 &device->meta_state.alloc,
327 pipeline);
328 ralloc_free(vs.nir);
329 ralloc_free(fs.nir);
330
331 mtx_unlock(&device->meta_state.mtx);
332 return result;
333 }
334
335 enum {
336 DEPTH_RESOLVE,
337 STENCIL_RESOLVE
338 };
339
340 static const char *
341 get_resolve_mode_str(VkResolveModeFlagBits resolve_mode)
342 {
343 switch (resolve_mode) {
344 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
345 return "zero";
346 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
347 return "average";
348 case VK_RESOLVE_MODE_MIN_BIT_KHR:
349 return "min";
350 case VK_RESOLVE_MODE_MAX_BIT_KHR:
351 return "max";
352 default:
353 unreachable("invalid resolve mode");
354 }
355 }
356
357 static nir_shader *
358 build_depth_stencil_resolve_fragment_shader(struct radv_device *dev, int samples,
359 int index,
360 VkResolveModeFlagBits resolve_mode)
361 {
362 nir_builder b;
363 char name[64];
364 const struct glsl_type *vec4 = glsl_vec4_type();
365 const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D,
366 false,
367 false,
368 GLSL_TYPE_FLOAT);
369
370 snprintf(name, 64, "meta_resolve_fs_%s-%s-%d",
371 index == DEPTH_RESOLVE ? "depth" : "stencil",
372 get_resolve_mode_str(resolve_mode), samples);
373
374 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
375 b.shader->info.name = ralloc_strdup(b.shader, name);
376
377 nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
378 sampler_type, "s_tex");
379 input_img->data.descriptor_set = 0;
380 input_img->data.binding = 0;
381
382 nir_variable *fs_out = nir_variable_create(b.shader,
383 nir_var_shader_out, vec4,
384 "f_out");
385 fs_out->data.location =
386 index == DEPTH_RESOLVE ? FRAG_RESULT_DEPTH : FRAG_RESULT_STENCIL;
387
388 nir_ssa_def *pos_in = nir_channels(&b, nir_load_frag_coord(&b), 0x3);
389
390 nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
391 nir_intrinsic_set_base(src_offset, 0);
392 nir_intrinsic_set_range(src_offset, 8);
393 src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
394 src_offset->num_components = 2;
395 nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
396 nir_builder_instr_insert(&b, &src_offset->instr);
397
398 nir_ssa_def *pos_int = nir_f2i32(&b, pos_in);
399
400 nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, &src_offset->dest.ssa), 0x3);
401
402 nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
403
404 nir_alu_type type = index == DEPTH_RESOLVE ? nir_type_float : nir_type_uint;
405
406 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
407 tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
408 tex->op = nir_texop_txf_ms;
409 tex->src[0].src_type = nir_tex_src_coord;
410 tex->src[0].src = nir_src_for_ssa(img_coord);
411 tex->src[1].src_type = nir_tex_src_ms_index;
412 tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
413 tex->src[2].src_type = nir_tex_src_texture_deref;
414 tex->src[2].src = nir_src_for_ssa(input_img_deref);
415 tex->dest_type = type;
416 tex->is_array = false;
417 tex->coord_components = 2;
418
419 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
420 nir_builder_instr_insert(&b, &tex->instr);
421
422 nir_ssa_def *outval = &tex->dest.ssa;
423
424 if (resolve_mode != VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR) {
425 for (int i = 1; i < samples; i++) {
426 nir_tex_instr *tex_add = nir_tex_instr_create(b.shader, 3);
427 tex_add->sampler_dim = GLSL_SAMPLER_DIM_MS;
428 tex_add->op = nir_texop_txf_ms;
429 tex_add->src[0].src_type = nir_tex_src_coord;
430 tex_add->src[0].src = nir_src_for_ssa(img_coord);
431 tex_add->src[1].src_type = nir_tex_src_ms_index;
432 tex_add->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i));
433 tex_add->src[2].src_type = nir_tex_src_texture_deref;
434 tex_add->src[2].src = nir_src_for_ssa(input_img_deref);
435 tex_add->dest_type = type;
436 tex_add->is_array = false;
437 tex_add->coord_components = 2;
438
439 nir_ssa_dest_init(&tex_add->instr, &tex_add->dest, 4, 32, "tex");
440 nir_builder_instr_insert(&b, &tex_add->instr);
441
442 switch (resolve_mode) {
443 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
444 assert(index == DEPTH_RESOLVE);
445 outval = nir_fadd(&b, outval, &tex_add->dest.ssa);
446 break;
447 case VK_RESOLVE_MODE_MIN_BIT_KHR:
448 if (index == DEPTH_RESOLVE)
449 outval = nir_fmin(&b, outval, &tex_add->dest.ssa);
450 else
451 outval = nir_umin(&b, outval, &tex_add->dest.ssa);
452 break;
453 case VK_RESOLVE_MODE_MAX_BIT_KHR:
454 if (index == DEPTH_RESOLVE)
455 outval = nir_fmax(&b, outval, &tex_add->dest.ssa);
456 else
457 outval = nir_umax(&b, outval, &tex_add->dest.ssa);
458 break;
459 default:
460 unreachable("invalid resolve mode");
461 }
462 }
463
464 if (resolve_mode == VK_RESOLVE_MODE_AVERAGE_BIT_KHR)
465 outval = nir_fdiv(&b, outval, nir_imm_float(&b, samples));
466 }
467
468 nir_store_var(&b, fs_out, outval, 0x1);
469
470 return b.shader;
471 }
472
473 static VkResult
474 create_depth_stencil_resolve_pipeline(struct radv_device *device,
475 int samples_log2,
476 int index,
477 VkResolveModeFlagBits resolve_mode)
478 {
479 VkRenderPass *render_pass;
480 VkPipeline *pipeline;
481 VkFormat src_format;
482 VkResult result;
483
484 mtx_lock(&device->meta_state.mtx);
485
486 switch (resolve_mode) {
487 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
488 if (index == DEPTH_RESOLVE)
489 pipeline = &device->meta_state.resolve_fragment.depth_zero_pipeline;
490 else
491 pipeline = &device->meta_state.resolve_fragment.stencil_zero_pipeline;
492 break;
493 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
494 assert(index == DEPTH_RESOLVE);
495 pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].average_pipeline;
496 break;
497 case VK_RESOLVE_MODE_MIN_BIT_KHR:
498 if (index == DEPTH_RESOLVE)
499 pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].min_pipeline;
500 else
501 pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].min_pipeline;
502 break;
503 case VK_RESOLVE_MODE_MAX_BIT_KHR:
504 if (index == DEPTH_RESOLVE)
505 pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].max_pipeline;
506 else
507 pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].max_pipeline;
508 break;
509 default:
510 unreachable("invalid resolve mode");
511 }
512
513 if (*pipeline) {
514 mtx_unlock(&device->meta_state.mtx);
515 return VK_SUCCESS;
516 }
517
518 struct radv_shader_module fs = { .nir = NULL };
519 struct radv_shader_module vs = { .nir = NULL };
520 uint32_t samples = 1 << samples_log2;
521
522 vs.nir = build_nir_vertex_shader();
523 fs.nir = build_depth_stencil_resolve_fragment_shader(device, samples,
524 index, resolve_mode);
525
526 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
527 {
528 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
529 .stage = VK_SHADER_STAGE_VERTEX_BIT,
530 .module = radv_shader_module_to_handle(&vs),
531 .pName = "main",
532 .pSpecializationInfo = NULL
533 }, {
534 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
535 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
536 .module = radv_shader_module_to_handle(&fs),
537 .pName = "main",
538 .pSpecializationInfo = NULL
539 },
540 };
541
542 if (index == DEPTH_RESOLVE) {
543 src_format = VK_FORMAT_D32_SFLOAT;
544 render_pass = &device->meta_state.resolve_fragment.depth_render_pass;
545 } else {
546 render_pass = &device->meta_state.resolve_fragment.stencil_render_pass;
547 src_format = VK_FORMAT_S8_UINT;
548 }
549
550 if (!*render_pass) {
551 result = radv_CreateRenderPass(radv_device_to_handle(device),
552 &(VkRenderPassCreateInfo) {
553 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
554 .attachmentCount = 1,
555 .pAttachments = &(VkAttachmentDescription) {
556 .format = src_format,
557 .loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
558 .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
559 .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
560 .stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
561 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
562 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
563 },
564 .subpassCount = 1,
565 .pSubpasses = &(VkSubpassDescription) {
566 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
567 .inputAttachmentCount = 0,
568 .colorAttachmentCount = 0,
569 .pColorAttachments = NULL,
570 .pResolveAttachments = NULL,
571 .pDepthStencilAttachment = &(VkAttachmentReference) {
572 .attachment = 0,
573 .layout = VK_IMAGE_LAYOUT_GENERAL,
574 },
575 .preserveAttachmentCount = 0,
576 .pPreserveAttachments = NULL,
577 },
578 .dependencyCount = 2,
579 .pDependencies = (VkSubpassDependency[]) {
580 {
581 .srcSubpass = VK_SUBPASS_EXTERNAL,
582 .dstSubpass = 0,
583 .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
584 .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
585 .srcAccessMask = 0,
586 .dstAccessMask = 0,
587 .dependencyFlags = 0
588 },
589 {
590 .srcSubpass = 0,
591 .dstSubpass = VK_SUBPASS_EXTERNAL,
592 .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
593 .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
594 .srcAccessMask = 0,
595 .dstAccessMask = 0,
596 .dependencyFlags = 0
597 }
598 },
599 }, &device->meta_state.alloc, render_pass);
600 }
601
602 VkStencilOp stencil_op =
603 index == DEPTH_RESOLVE ? VK_STENCIL_OP_KEEP : VK_STENCIL_OP_REPLACE;
604
605 VkPipelineDepthStencilStateCreateInfo depth_stencil_state = {
606 .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
607 .depthTestEnable = true,
608 .depthWriteEnable = index == DEPTH_RESOLVE,
609 .stencilTestEnable = index == STENCIL_RESOLVE,
610 .depthCompareOp = VK_COMPARE_OP_ALWAYS,
611 .front = {
612 .failOp = stencil_op,
613 .passOp = stencil_op,
614 .depthFailOp = stencil_op,
615 .compareOp = VK_COMPARE_OP_ALWAYS,
616 },
617 .back = {
618 .failOp = stencil_op,
619 .passOp = stencil_op,
620 .depthFailOp = stencil_op,
621 .compareOp = VK_COMPARE_OP_ALWAYS,
622 }
623 };
624
625 const VkPipelineVertexInputStateCreateInfo *vi_create_info;
626 vi_create_info = &normal_vi_create_info;
627
628 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
629 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
630 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
631 .pStages = pipeline_shader_stages,
632 .pVertexInputState = vi_create_info,
633 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
634 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
635 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
636 .primitiveRestartEnable = false,
637 },
638 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
639 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
640 .viewportCount = 1,
641 .scissorCount = 1,
642 },
643 .pDepthStencilState = &depth_stencil_state,
644 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
645 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
646 .rasterizerDiscardEnable = false,
647 .polygonMode = VK_POLYGON_MODE_FILL,
648 .cullMode = VK_CULL_MODE_NONE,
649 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
650 },
651 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
652 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
653 .rasterizationSamples = 1,
654 .sampleShadingEnable = false,
655 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
656 },
657 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
658 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
659 .attachmentCount = 0,
660 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
661 { .colorWriteMask =
662 VK_COLOR_COMPONENT_A_BIT |
663 VK_COLOR_COMPONENT_R_BIT |
664 VK_COLOR_COMPONENT_G_BIT |
665 VK_COLOR_COMPONENT_B_BIT },
666 }
667 },
668 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
669 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
670 .dynamicStateCount = 9,
671 .pDynamicStates = (VkDynamicState[]) {
672 VK_DYNAMIC_STATE_VIEWPORT,
673 VK_DYNAMIC_STATE_SCISSOR,
674 VK_DYNAMIC_STATE_LINE_WIDTH,
675 VK_DYNAMIC_STATE_DEPTH_BIAS,
676 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
677 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
678 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
679 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
680 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
681 },
682 },
683 .flags = 0,
684 .layout = device->meta_state.resolve_fragment.p_layout,
685 .renderPass = *render_pass,
686 .subpass = 0,
687 };
688
689 const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
690 .use_rectlist = true
691 };
692
693 result = radv_graphics_pipeline_create(radv_device_to_handle(device),
694 radv_pipeline_cache_to_handle(&device->meta_state.cache),
695 &vk_pipeline_info, &radv_pipeline_info,
696 &device->meta_state.alloc,
697 pipeline);
698
699 ralloc_free(vs.nir);
700 ralloc_free(fs.nir);
701
702 mtx_unlock(&device->meta_state.mtx);
703 return result;
704 }
705
706 VkResult
707 radv_device_init_meta_resolve_fragment_state(struct radv_device *device, bool on_demand)
708 {
709 VkResult res;
710
711 res = create_layout(device);
712 if (res != VK_SUCCESS)
713 goto fail;
714
715 if (on_demand)
716 return VK_SUCCESS;
717
718 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
719 for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
720 res = create_resolve_pipeline(device, i, radv_fs_key_format_exemplars[j]);
721 if (res != VK_SUCCESS)
722 goto fail;
723 }
724
725 res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE,
726 VK_RESOLVE_MODE_AVERAGE_BIT_KHR);
727 if (res != VK_SUCCESS)
728 goto fail;
729
730 res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE,
731 VK_RESOLVE_MODE_MIN_BIT_KHR);
732 if (res != VK_SUCCESS)
733 goto fail;
734
735 res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE,
736 VK_RESOLVE_MODE_MAX_BIT_KHR);
737 if (res != VK_SUCCESS)
738 goto fail;
739
740 res = create_depth_stencil_resolve_pipeline(device, i, STENCIL_RESOLVE,
741 VK_RESOLVE_MODE_MIN_BIT_KHR);
742 if (res != VK_SUCCESS)
743 goto fail;
744
745 res = create_depth_stencil_resolve_pipeline(device, i, STENCIL_RESOLVE,
746 VK_RESOLVE_MODE_MAX_BIT_KHR);
747 if (res != VK_SUCCESS)
748 goto fail;
749 }
750
751 res = create_depth_stencil_resolve_pipeline(device, 0, DEPTH_RESOLVE,
752 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR);
753 if (res != VK_SUCCESS)
754 goto fail;
755
756 res = create_depth_stencil_resolve_pipeline(device, 0, STENCIL_RESOLVE,
757 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR);
758 if (res != VK_SUCCESS)
759 goto fail;
760
761 return VK_SUCCESS;
762 fail:
763 radv_device_finish_meta_resolve_fragment_state(device);
764 return res;
765 }
766
767 void
768 radv_device_finish_meta_resolve_fragment_state(struct radv_device *device)
769 {
770 struct radv_meta_state *state = &device->meta_state;
771 for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
772 for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
773 for(unsigned k =0; k < RADV_META_DST_LAYOUT_COUNT; ++k) {
774 radv_DestroyRenderPass(radv_device_to_handle(device),
775 state->resolve_fragment.rc[i].render_pass[j][k],
776 &state->alloc);
777 }
778 radv_DestroyPipeline(radv_device_to_handle(device),
779 state->resolve_fragment.rc[i].pipeline[j],
780 &state->alloc);
781 }
782
783 radv_DestroyPipeline(radv_device_to_handle(device),
784 state->resolve_fragment.depth[i].average_pipeline,
785 &state->alloc);
786
787 radv_DestroyPipeline(radv_device_to_handle(device),
788 state->resolve_fragment.depth[i].max_pipeline,
789 &state->alloc);
790
791 radv_DestroyPipeline(radv_device_to_handle(device),
792 state->resolve_fragment.depth[i].min_pipeline,
793 &state->alloc);
794
795 radv_DestroyPipeline(radv_device_to_handle(device),
796 state->resolve_fragment.stencil[i].max_pipeline,
797 &state->alloc);
798
799 radv_DestroyPipeline(radv_device_to_handle(device),
800 state->resolve_fragment.stencil[i].min_pipeline,
801 &state->alloc);
802 }
803
804 radv_DestroyRenderPass(radv_device_to_handle(device),
805 state->resolve_fragment.depth_render_pass,
806 &state->alloc);
807 radv_DestroyRenderPass(radv_device_to_handle(device),
808 state->resolve_fragment.stencil_render_pass,
809 &state->alloc);
810
811 radv_DestroyPipeline(radv_device_to_handle(device),
812 state->resolve_fragment.depth_zero_pipeline,
813 &state->alloc);
814 radv_DestroyPipeline(radv_device_to_handle(device),
815 state->resolve_fragment.stencil_zero_pipeline,
816 &state->alloc);
817
818 radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
819 state->resolve_fragment.ds_layout,
820 &state->alloc);
821 radv_DestroyPipelineLayout(radv_device_to_handle(device),
822 state->resolve_fragment.p_layout,
823 &state->alloc);
824 }
825
826 static VkPipeline *
827 radv_get_resolve_pipeline(struct radv_cmd_buffer *cmd_buffer,
828 struct radv_image_view *src_iview,
829 struct radv_image_view *dst_iview)
830 {
831 struct radv_device *device = cmd_buffer->device;
832 unsigned fs_key = radv_format_meta_fs_key(dst_iview->vk_format);
833 const uint32_t samples = src_iview->image->info.samples;
834 const uint32_t samples_log2 = ffs(samples) - 1;
835 VkPipeline *pipeline;
836
837 pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
838 if (!*pipeline ) {
839 VkResult ret;
840
841 ret = create_resolve_pipeline(device, samples_log2,
842 radv_fs_key_format_exemplars[fs_key]);
843 if (ret != VK_SUCCESS) {
844 cmd_buffer->record_result = ret;
845 return NULL;
846 }
847 }
848
849 return pipeline;
850 }
851
852 static void
853 emit_resolve(struct radv_cmd_buffer *cmd_buffer,
854 struct radv_image_view *src_iview,
855 struct radv_image_view *dest_iview,
856 const VkOffset2D *src_offset,
857 const VkOffset2D *dest_offset,
858 const VkExtent2D *resolve_extent)
859 {
860 struct radv_device *device = cmd_buffer->device;
861 VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
862 VkPipeline *pipeline;
863
864 radv_meta_push_descriptor_set(cmd_buffer,
865 VK_PIPELINE_BIND_POINT_GRAPHICS,
866 cmd_buffer->device->meta_state.resolve_fragment.p_layout,
867 0, /* set */
868 1, /* descriptorWriteCount */
869 (VkWriteDescriptorSet[]) {
870 {
871 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
872 .dstBinding = 0,
873 .dstArrayElement = 0,
874 .descriptorCount = 1,
875 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
876 .pImageInfo = (VkDescriptorImageInfo[]) {
877 {
878 .sampler = VK_NULL_HANDLE,
879 .imageView = radv_image_view_to_handle(src_iview),
880 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
881 },
882 }
883 },
884 });
885
886 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
887
888 unsigned push_constants[2] = {
889 src_offset->x - dest_offset->x,
890 src_offset->y - dest_offset->y,
891 };
892 radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
893 device->meta_state.resolve_fragment.p_layout,
894 VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8,
895 push_constants);
896
897 pipeline = radv_get_resolve_pipeline(cmd_buffer, src_iview, dest_iview);
898
899 radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
900 *pipeline);
901
902 radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) {
903 .x = dest_offset->x,
904 .y = dest_offset->y,
905 .width = resolve_extent->width,
906 .height = resolve_extent->height,
907 .minDepth = 0.0f,
908 .maxDepth = 1.0f
909 });
910
911 radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) {
912 .offset = *dest_offset,
913 .extent = *resolve_extent,
914 });
915
916 radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
917 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
918 }
919
920 static void
921 emit_depth_stencil_resolve(struct radv_cmd_buffer *cmd_buffer,
922 struct radv_image_view *src_iview,
923 struct radv_image_view *dst_iview,
924 const VkOffset2D *src_offset,
925 const VkOffset2D *dst_offset,
926 const VkExtent2D *resolve_extent,
927 VkImageAspectFlags aspects,
928 VkResolveModeFlagBits resolve_mode)
929 {
930 struct radv_device *device = cmd_buffer->device;
931 const uint32_t samples = src_iview->image->info.samples;
932 const uint32_t samples_log2 = ffs(samples) - 1;
933 VkPipeline *pipeline;
934
935 radv_meta_push_descriptor_set(cmd_buffer,
936 VK_PIPELINE_BIND_POINT_GRAPHICS,
937 cmd_buffer->device->meta_state.resolve_fragment.p_layout,
938 0, /* set */
939 1, /* descriptorWriteCount */
940 (VkWriteDescriptorSet[]) {
941 {
942 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
943 .dstBinding = 0,
944 .dstArrayElement = 0,
945 .descriptorCount = 1,
946 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
947 .pImageInfo = (VkDescriptorImageInfo[]) {
948 {
949 .sampler = VK_NULL_HANDLE,
950 .imageView = radv_image_view_to_handle(src_iview),
951 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
952 },
953 }
954 },
955 });
956
957 unsigned push_constants[2] = {
958 src_offset->x - dst_offset->x,
959 src_offset->y - dst_offset->y,
960 };
961 radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
962 device->meta_state.resolve_fragment.p_layout,
963 VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8,
964 push_constants);
965
966 switch (resolve_mode) {
967 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
968 if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
969 pipeline = &device->meta_state.resolve_fragment.depth_zero_pipeline;
970 else
971 pipeline = &device->meta_state.resolve_fragment.stencil_zero_pipeline;
972 break;
973 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
974 assert(aspects == VK_IMAGE_ASPECT_DEPTH_BIT);
975 pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].average_pipeline;
976 break;
977 case VK_RESOLVE_MODE_MIN_BIT_KHR:
978 if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
979 pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].min_pipeline;
980 else
981 pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].min_pipeline;
982 break;
983 case VK_RESOLVE_MODE_MAX_BIT_KHR:
984 if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
985 pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].max_pipeline;
986 else
987 pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].max_pipeline;
988 break;
989 default:
990 unreachable("invalid resolve mode");
991 }
992
993 if (!*pipeline) {
994 int index = aspects == VK_IMAGE_ASPECT_DEPTH_BIT ? DEPTH_RESOLVE : STENCIL_RESOLVE;
995 VkResult ret;
996
997 ret = create_depth_stencil_resolve_pipeline(device, samples_log2,
998 index, resolve_mode);
999 if (ret != VK_SUCCESS) {
1000 cmd_buffer->record_result = ret;
1001 return;
1002 }
1003 }
1004
1005 radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
1006 VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
1007
1008 radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) {
1009 .x = dst_offset->x,
1010 .y = dst_offset->y,
1011 .width = resolve_extent->width,
1012 .height = resolve_extent->height,
1013 .minDepth = 0.0f,
1014 .maxDepth = 1.0f
1015 });
1016
1017 radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) {
1018 .offset = *dst_offset,
1019 .extent = *resolve_extent,
1020 });
1021
1022 radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
1023 }
1024
1025 void radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer,
1026 struct radv_image *src_image,
1027 VkImageLayout src_image_layout,
1028 struct radv_image *dest_image,
1029 VkImageLayout dest_image_layout,
1030 uint32_t region_count,
1031 const VkImageResolve *regions)
1032 {
1033 struct radv_device *device = cmd_buffer->device;
1034 struct radv_meta_saved_state saved_state;
1035 const uint32_t samples = src_image->info.samples;
1036 const uint32_t samples_log2 = ffs(samples) - 1;
1037 unsigned fs_key = radv_format_meta_fs_key(dest_image->vk_format);
1038 unsigned dst_layout = radv_meta_dst_layout_from_layout(dest_image_layout);
1039 VkRenderPass rp;
1040
1041 radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout,
1042 region_count, regions);
1043
1044 if (!device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout]) {
1045 VkResult ret = create_resolve_pipeline(device, samples_log2, radv_fs_key_format_exemplars[fs_key]);
1046 if (ret != VK_SUCCESS) {
1047 cmd_buffer->record_result = ret;
1048 return;
1049 }
1050 }
1051
1052 rp = device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout];
1053
1054 radv_meta_save(&saved_state, cmd_buffer,
1055 RADV_META_SAVE_GRAPHICS_PIPELINE |
1056 RADV_META_SAVE_CONSTANTS |
1057 RADV_META_SAVE_DESCRIPTORS);
1058
1059 for (uint32_t r = 0; r < region_count; ++r) {
1060 const VkImageResolve *region = &regions[r];
1061
1062 assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
1063 assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
1064 assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
1065
1066 const uint32_t src_base_layer =
1067 radv_meta_get_iview_layer(src_image, &region->srcSubresource,
1068 &region->srcOffset);
1069
1070 const uint32_t dest_base_layer =
1071 radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
1072 &region->dstOffset);
1073
1074 const struct VkExtent3D extent =
1075 radv_sanitize_image_extent(src_image->type, region->extent);
1076 const struct VkOffset3D srcOffset =
1077 radv_sanitize_image_offset(src_image->type, region->srcOffset);
1078 const struct VkOffset3D dstOffset =
1079 radv_sanitize_image_offset(dest_image->type, region->dstOffset);
1080
1081 for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
1082 ++layer) {
1083
1084 struct radv_image_view src_iview;
1085 radv_image_view_init(&src_iview, cmd_buffer->device,
1086 &(VkImageViewCreateInfo) {
1087 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1088 .image = radv_image_to_handle(src_image),
1089 .viewType = radv_meta_get_view_type(src_image),
1090 .format = src_image->vk_format,
1091 .subresourceRange = {
1092 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1093 .baseMipLevel = region->srcSubresource.mipLevel,
1094 .levelCount = 1,
1095 .baseArrayLayer = src_base_layer + layer,
1096 .layerCount = 1,
1097 },
1098 }, NULL);
1099
1100 struct radv_image_view dest_iview;
1101 radv_image_view_init(&dest_iview, cmd_buffer->device,
1102 &(VkImageViewCreateInfo) {
1103 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1104 .image = radv_image_to_handle(dest_image),
1105 .viewType = radv_meta_get_view_type(dest_image),
1106 .format = dest_image->vk_format,
1107 .subresourceRange = {
1108 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1109 .baseMipLevel = region->dstSubresource.mipLevel,
1110 .levelCount = 1,
1111 .baseArrayLayer = dest_base_layer + layer,
1112 .layerCount = 1,
1113 },
1114 }, NULL);
1115
1116
1117 VkFramebuffer fb;
1118 radv_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device),
1119 &(VkFramebufferCreateInfo) {
1120 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
1121 .attachmentCount = 1,
1122 .pAttachments = (VkImageView[]) {
1123 radv_image_view_to_handle(&dest_iview),
1124 },
1125 .width = extent.width + dstOffset.x,
1126 .height = extent.height + dstOffset.y,
1127 .layers = 1
1128 }, &cmd_buffer->pool->alloc, &fb);
1129
1130 radv_cmd_buffer_begin_render_pass(cmd_buffer,
1131 &(VkRenderPassBeginInfo) {
1132 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
1133 .renderPass = rp,
1134 .framebuffer = fb,
1135 .renderArea = {
1136 .offset = { dstOffset.x, dstOffset.y, },
1137 .extent = { extent.width, extent.height },
1138 },
1139 .clearValueCount = 0,
1140 .pClearValues = NULL,
1141 });
1142
1143 radv_cmd_buffer_set_subpass(cmd_buffer,
1144 &cmd_buffer->state.pass->subpasses[0]);
1145
1146 emit_resolve(cmd_buffer,
1147 &src_iview,
1148 &dest_iview,
1149 &(VkOffset2D) { srcOffset.x, srcOffset.y },
1150 &(VkOffset2D) { dstOffset.x, dstOffset.y },
1151 &(VkExtent2D) { extent.width, extent.height });
1152
1153 radv_cmd_buffer_end_render_pass(cmd_buffer);
1154
1155 radv_DestroyFramebuffer(radv_device_to_handle(cmd_buffer->device), fb, &cmd_buffer->pool->alloc);
1156 }
1157 }
1158
1159 radv_meta_restore(&saved_state, cmd_buffer);
1160 }
1161
1162
1163 /**
1164 * Emit any needed resolves for the current subpass.
1165 */
1166 void
1167 radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer)
1168 {
1169 struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
1170 const struct radv_subpass *subpass = cmd_buffer->state.subpass;
1171 struct radv_meta_saved_state saved_state;
1172 struct radv_subpass_barrier barrier;
1173
1174 /* Resolves happen before the end-of-subpass barriers get executed,
1175 * so we have to make the attachment shader-readable */
1176 barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
1177 barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
1178 barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
1179 radv_subpass_barrier(cmd_buffer, &barrier);
1180
1181 radv_decompress_resolve_subpass_src(cmd_buffer);
1182
1183 radv_meta_save(&saved_state, cmd_buffer,
1184 RADV_META_SAVE_GRAPHICS_PIPELINE |
1185 RADV_META_SAVE_CONSTANTS |
1186 RADV_META_SAVE_DESCRIPTORS);
1187
1188 for (uint32_t i = 0; i < subpass->color_count; ++i) {
1189 struct radv_subpass_attachment src_att = subpass->color_attachments[i];
1190 struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i];
1191
1192 if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
1193 continue;
1194
1195 struct radv_image_view *dest_iview = cmd_buffer->state.attachments[dest_att.attachment].iview;
1196 struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview;
1197
1198 struct radv_subpass resolve_subpass = {
1199 .color_count = 1,
1200 .color_attachments = (struct radv_subpass_attachment[]) { dest_att },
1201 .depth_stencil_attachment = NULL,
1202 };
1203
1204 radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass);
1205
1206 emit_resolve(cmd_buffer,
1207 src_iview,
1208 dest_iview,
1209 &(VkOffset2D) { 0, 0 },
1210 &(VkOffset2D) { 0, 0 },
1211 &(VkExtent2D) { fb->width, fb->height });
1212 }
1213
1214 radv_cmd_buffer_set_subpass(cmd_buffer, subpass);
1215
1216 radv_meta_restore(&saved_state, cmd_buffer);
1217 }
1218
1219 /**
1220 * Depth/stencil resolves for the current subpass.
1221 */
1222 void
1223 radv_depth_stencil_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer,
1224 VkImageAspectFlags aspects,
1225 VkResolveModeFlagBits resolve_mode)
1226 {
1227 struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
1228 const struct radv_subpass *subpass = cmd_buffer->state.subpass;
1229 struct radv_meta_saved_state saved_state;
1230 struct radv_subpass_barrier barrier;
1231
1232 /* Resolves happen before the end-of-subpass barriers get executed,
1233 * so we have to make the attachment shader-readable */
1234 barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
1235 barrier.src_access_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
1236 barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
1237 radv_subpass_barrier(cmd_buffer, &barrier);
1238
1239 radv_decompress_resolve_subpass_src(cmd_buffer);
1240
1241 radv_meta_save(&saved_state, cmd_buffer,
1242 RADV_META_SAVE_GRAPHICS_PIPELINE |
1243 RADV_META_SAVE_CONSTANTS |
1244 RADV_META_SAVE_DESCRIPTORS);
1245
1246 struct radv_subpass_attachment src_att = *subpass->depth_stencil_attachment;
1247 struct radv_subpass_attachment dst_att = *subpass->ds_resolve_attachment;
1248
1249 struct radv_image_view *src_iview =
1250 cmd_buffer->state.attachments[src_att.attachment].iview;
1251 struct radv_image *src_image = src_iview->image;
1252 struct radv_image_view *dst_iview =
1253 cmd_buffer->state.attachments[dst_att.attachment].iview;
1254
1255 struct radv_subpass resolve_subpass = {
1256 .color_count = 0,
1257 .color_attachments = NULL,
1258 .depth_stencil_attachment = (struct radv_subpass_attachment *) { &dst_att },
1259 };
1260
1261 radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass);
1262
1263 struct radv_image_view tsrc_iview;
1264 radv_image_view_init(&tsrc_iview, cmd_buffer->device,
1265 &(VkImageViewCreateInfo) {
1266 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1267 .image = radv_image_to_handle(src_image),
1268 .viewType = radv_meta_get_view_type(src_image),
1269 .format = src_iview->vk_format,
1270 .subresourceRange = {
1271 .aspectMask = aspects,
1272 .baseMipLevel = 0,
1273 .levelCount = 1,
1274 .baseArrayLayer = 0,
1275 .layerCount = 1,
1276 },
1277 }, NULL);
1278
1279 emit_depth_stencil_resolve(cmd_buffer, &tsrc_iview, dst_iview,
1280 &(VkOffset2D) { 0, 0 },
1281 &(VkOffset2D) { 0, 0 },
1282 &(VkExtent2D) { fb->width, fb->height },
1283 aspects,
1284 resolve_mode);
1285
1286 radv_cmd_buffer_set_subpass(cmd_buffer, subpass);
1287
1288 radv_meta_restore(&saved_state, cmd_buffer);
1289 }