581513e3859a80870ce8210fe27ea6c783cfdb95
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "radv_shader_helper.h"
31 #include "radv_shader_args.h"
32 #include "nir/nir.h"
33
34 #include <llvm-c/Core.h>
35 #include <llvm-c/TargetMachine.h>
36 #include <llvm-c/Transforms/Scalar.h>
37 #include <llvm-c/Transforms/Utils.h>
38
39 #include "sid.h"
40 #include "ac_binary.h"
41 #include "ac_llvm_util.h"
42 #include "ac_llvm_build.h"
43 #include "ac_shader_abi.h"
44 #include "ac_shader_util.h"
45 #include "ac_exp_param.h"
46
47 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
48
49 struct radv_shader_context {
50 struct ac_llvm_context ac;
51 const struct nir_shader *shader;
52 struct ac_shader_abi abi;
53 const struct radv_shader_args *args;
54
55 gl_shader_stage stage;
56
57 unsigned max_workgroup_size;
58 LLVMContextRef context;
59 LLVMValueRef main_function;
60
61 LLVMValueRef descriptor_sets[MAX_SETS];
62
63 LLVMValueRef ring_offsets;
64
65 LLVMValueRef rel_auto_id;
66
67 LLVMValueRef gs_wave_id;
68 LLVMValueRef gs_vtx_offset[6];
69
70 LLVMValueRef esgs_ring;
71 LLVMValueRef gsvs_ring[4];
72 LLVMValueRef hs_ring_tess_offchip;
73 LLVMValueRef hs_ring_tess_factor;
74
75 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
76
77 uint64_t output_mask;
78
79 LLVMValueRef gs_next_vertex[4];
80 LLVMValueRef gs_curprim_verts[4];
81 LLVMValueRef gs_generated_prims[4];
82 LLVMValueRef gs_ngg_emit;
83 LLVMValueRef gs_ngg_scratch;
84
85 uint32_t tcs_num_inputs;
86 uint32_t tcs_num_patches;
87
88 LLVMValueRef vertexptr; /* GFX10 only */
89 };
90
91 struct radv_shader_output_values {
92 LLVMValueRef values[4];
93 unsigned slot_name;
94 unsigned slot_index;
95 unsigned usage_mask;
96 };
97
98 static inline struct radv_shader_context *
99 radv_shader_context_from_abi(struct ac_shader_abi *abi)
100 {
101 struct radv_shader_context *ctx = NULL;
102 return container_of(abi, ctx, abi);
103 }
104
105 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
106 {
107 switch (ctx->stage) {
108 case MESA_SHADER_TESS_CTRL:
109 return ac_unpack_param(&ctx->ac,
110 ac_get_arg(&ctx->ac, ctx->args->ac.tcs_rel_ids),
111 0, 8);
112 case MESA_SHADER_TESS_EVAL:
113 return ac_get_arg(&ctx->ac, ctx->args->tes_rel_patch_id);
114 break;
115 default:
116 unreachable("Illegal stage");
117 }
118 }
119
120 static unsigned
121 get_tcs_num_patches(struct radv_shader_context *ctx)
122 {
123 unsigned num_tcs_input_cp = ctx->args->options->key.tcs.input_vertices;
124 unsigned num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
125 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
126 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
127 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
128 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
129 uint32_t output_vertex_size = num_tcs_outputs * 16;
130 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
131 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
132 unsigned num_patches;
133 unsigned hardware_lds_size;
134
135 /* Ensure that we only need one wave per SIMD so we don't need to check
136 * resource usage. Also ensures that the number of tcs in and out
137 * vertices per threadgroup are at most 256.
138 */
139 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
140 /* Make sure that the data fits in LDS. This assumes the shaders only
141 * use LDS for the inputs and outputs.
142 */
143 hardware_lds_size = 32768;
144
145 /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
146 * threadgroup, even though there is more than 32 KiB LDS.
147 *
148 * Test: dEQP-VK.tessellation.shader_input_output.barrier
149 */
150 if (ctx->args->options->chip_class >= GFX7 && ctx->args->options->family != CHIP_STONEY)
151 hardware_lds_size = 65536;
152
153 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
154 /* Make sure the output data fits in the offchip buffer */
155 num_patches = MIN2(num_patches, (ctx->args->options->tess_offchip_block_dw_size * 4) / output_patch_size);
156 /* Not necessary for correctness, but improves performance. The
157 * specific value is taken from the proprietary driver.
158 */
159 num_patches = MIN2(num_patches, 40);
160
161 /* GFX6 bug workaround - limit LS-HS threadgroups to only one wave. */
162 if (ctx->args->options->chip_class == GFX6) {
163 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
164 num_patches = MIN2(num_patches, one_wave);
165 }
166 return num_patches;
167 }
168
169 static unsigned
170 calculate_tess_lds_size(struct radv_shader_context *ctx)
171 {
172 unsigned num_tcs_input_cp = ctx->args->options->key.tcs.input_vertices;
173 unsigned num_tcs_output_cp;
174 unsigned num_tcs_outputs, num_tcs_patch_outputs;
175 unsigned input_vertex_size, output_vertex_size;
176 unsigned input_patch_size, output_patch_size;
177 unsigned pervertex_output_patch_size;
178 unsigned output_patch0_offset;
179 unsigned num_patches;
180 unsigned lds_size;
181
182 num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
183 num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
184 num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
185
186 input_vertex_size = ctx->tcs_num_inputs * 16;
187 output_vertex_size = num_tcs_outputs * 16;
188
189 input_patch_size = num_tcs_input_cp * input_vertex_size;
190
191 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
192 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
193
194 num_patches = ctx->tcs_num_patches;
195 output_patch0_offset = input_patch_size * num_patches;
196
197 lds_size = output_patch0_offset + output_patch_size * num_patches;
198 return lds_size;
199 }
200
201 /* Tessellation shaders pass outputs to the next shader using LDS.
202 *
203 * LS outputs = TCS inputs
204 * TCS outputs = TES inputs
205 *
206 * The LDS layout is:
207 * - TCS inputs for patch 0
208 * - TCS inputs for patch 1
209 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
210 * - ...
211 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
212 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
213 * - TCS outputs for patch 1
214 * - Per-patch TCS outputs for patch 1
215 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
216 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
217 * - ...
218 *
219 * All three shaders VS(LS), TCS, TES share the same LDS space.
220 */
221 static LLVMValueRef
222 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
223 {
224 assert(ctx->stage == MESA_SHADER_TESS_CTRL);
225 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
226 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
227
228 input_patch_size /= 4;
229 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
230 }
231
232 static LLVMValueRef
233 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
234 {
235 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
236 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
237 uint32_t output_vertex_size = num_tcs_outputs * 16;
238 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
239 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
240 output_patch_size /= 4;
241 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
242 }
243
244 static LLVMValueRef
245 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
246 {
247 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
248 uint32_t output_vertex_size = num_tcs_outputs * 16;
249 output_vertex_size /= 4;
250 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
251 }
252
253 static LLVMValueRef
254 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
255 {
256 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
257 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
258 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
259 uint32_t output_patch0_offset = input_patch_size;
260 unsigned num_patches = ctx->tcs_num_patches;
261
262 output_patch0_offset *= num_patches;
263 output_patch0_offset /= 4;
264 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
265 }
266
267 static LLVMValueRef
268 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
269 {
270 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
271 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
272 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
273 uint32_t output_patch0_offset = input_patch_size;
274
275 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
276 uint32_t output_vertex_size = num_tcs_outputs * 16;
277 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
278 unsigned num_patches = ctx->tcs_num_patches;
279
280 output_patch0_offset *= num_patches;
281 output_patch0_offset += pervertex_output_patch_size;
282 output_patch0_offset /= 4;
283 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
284 }
285
286 static LLVMValueRef
287 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
288 {
289 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
290 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
291
292 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
293 }
294
295 static LLVMValueRef
296 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
297 {
298 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
299 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
300 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
301
302 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
303 patch0_offset);
304 }
305
306 static LLVMValueRef
307 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
308 {
309 LLVMValueRef patch0_patch_data_offset =
310 get_tcs_out_patch0_patch_data_offset(ctx);
311 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
312 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
313
314 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
315 patch0_patch_data_offset);
316 }
317
318 static LLVMValueRef
319 create_llvm_function(struct ac_llvm_context *ctx, LLVMModuleRef module,
320 LLVMBuilderRef builder,
321 const struct ac_shader_args *args,
322 enum ac_llvm_calling_convention convention,
323 unsigned max_workgroup_size,
324 const struct radv_nir_compiler_options *options)
325 {
326 LLVMValueRef main_function =
327 ac_build_main(args, ctx, convention, "main", ctx->voidt, module);
328
329 if (options->address32_hi) {
330 ac_llvm_add_target_dep_function_attr(main_function,
331 "amdgpu-32bit-address-high-bits",
332 options->address32_hi);
333 }
334
335 ac_llvm_set_workgroup_size(main_function, max_workgroup_size);
336
337 return main_function;
338 }
339
340 static void
341 load_descriptor_sets(struct radv_shader_context *ctx)
342 {
343 uint32_t mask = ctx->args->shader_info->desc_set_used_mask;
344 if (ctx->args->shader_info->need_indirect_descriptor_sets) {
345 LLVMValueRef desc_sets =
346 ac_get_arg(&ctx->ac, ctx->args->descriptor_sets[0]);
347 while (mask) {
348 int i = u_bit_scan(&mask);
349
350 ctx->descriptor_sets[i] =
351 ac_build_load_to_sgpr(&ctx->ac, desc_sets,
352 LLVMConstInt(ctx->ac.i32, i, false));
353
354 }
355 } else {
356 while (mask) {
357 int i = u_bit_scan(&mask);
358
359 ctx->descriptor_sets[i] =
360 ac_get_arg(&ctx->ac, ctx->args->descriptor_sets[i]);
361 }
362 }
363 }
364
365 static enum ac_llvm_calling_convention
366 get_llvm_calling_convention(LLVMValueRef func, gl_shader_stage stage)
367 {
368 switch (stage) {
369 case MESA_SHADER_VERTEX:
370 case MESA_SHADER_TESS_EVAL:
371 return AC_LLVM_AMDGPU_VS;
372 break;
373 case MESA_SHADER_GEOMETRY:
374 return AC_LLVM_AMDGPU_GS;
375 break;
376 case MESA_SHADER_TESS_CTRL:
377 return AC_LLVM_AMDGPU_HS;
378 break;
379 case MESA_SHADER_FRAGMENT:
380 return AC_LLVM_AMDGPU_PS;
381 break;
382 case MESA_SHADER_COMPUTE:
383 return AC_LLVM_AMDGPU_CS;
384 break;
385 default:
386 unreachable("Unhandle shader type");
387 }
388 }
389
390 /* Returns whether the stage is a stage that can be directly before the GS */
391 static bool is_pre_gs_stage(gl_shader_stage stage)
392 {
393 return stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL;
394 }
395
396 static void create_function(struct radv_shader_context *ctx,
397 gl_shader_stage stage,
398 bool has_previous_stage)
399 {
400 if (ctx->ac.chip_class >= GFX10) {
401 if (is_pre_gs_stage(stage) && ctx->args->options->key.vs_common_out.as_ngg) {
402 /* On GFX10, VS is merged into GS for NGG. */
403 stage = MESA_SHADER_GEOMETRY;
404 has_previous_stage = true;
405 }
406 }
407
408 ctx->main_function = create_llvm_function(
409 &ctx->ac, ctx->ac.module, ctx->ac.builder, &ctx->args->ac,
410 get_llvm_calling_convention(ctx->main_function, stage),
411 ctx->max_workgroup_size,
412 ctx->args->options);
413
414 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
415 LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
416 NULL, 0, AC_FUNC_ATTR_READNONE);
417 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
418 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
419
420 load_descriptor_sets(ctx);
421
422 if (stage == MESA_SHADER_TESS_CTRL ||
423 (stage == MESA_SHADER_VERTEX && ctx->args->options->key.vs_common_out.as_ls) ||
424 /* GFX9 has the ESGS ring buffer in LDS. */
425 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
426 ac_declare_lds_as_pointer(&ctx->ac);
427 }
428
429 }
430
431
432 static LLVMValueRef
433 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
434 unsigned desc_set, unsigned binding)
435 {
436 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
437 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
438 struct radv_pipeline_layout *pipeline_layout = ctx->args->options->layout;
439 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
440 unsigned base_offset = layout->binding[binding].offset;
441 LLVMValueRef offset, stride;
442
443 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
444 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
445 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
446 layout->binding[binding].dynamic_offset_offset;
447 desc_ptr = ac_get_arg(&ctx->ac, ctx->args->ac.push_constants);
448 base_offset = pipeline_layout->push_constant_size + 16 * idx;
449 stride = LLVMConstInt(ctx->ac.i32, 16, false);
450 } else
451 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
452
453 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
454
455 if (layout->binding[binding].type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
456 offset = ac_build_imad(&ctx->ac, index, stride, offset);
457 }
458
459 desc_ptr = LLVMBuildGEP(ctx->ac.builder, desc_ptr, &offset, 1, "");
460 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
461 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
462
463 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
464 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
465 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
466 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
467 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
468
469 if (ctx->ac.chip_class >= GFX10) {
470 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
471 S_008F0C_OOB_SELECT(3) |
472 S_008F0C_RESOURCE_LEVEL(1);
473 } else {
474 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
475 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
476 }
477
478 LLVMValueRef desc_components[4] = {
479 LLVMBuildPtrToInt(ctx->ac.builder, desc_ptr, ctx->ac.intptr, ""),
480 LLVMConstInt(ctx->ac.i32, S_008F04_BASE_ADDRESS_HI(ctx->args->options->address32_hi), false),
481 /* High limit to support variable sizes. */
482 LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
483 LLVMConstInt(ctx->ac.i32, desc_type, false),
484 };
485
486 return ac_build_gather_values(&ctx->ac, desc_components, 4);
487 }
488
489 return desc_ptr;
490 }
491
492
493 /* The offchip buffer layout for TCS->TES is
494 *
495 * - attribute 0 of patch 0 vertex 0
496 * - attribute 0 of patch 0 vertex 1
497 * - attribute 0 of patch 0 vertex 2
498 * ...
499 * - attribute 0 of patch 1 vertex 0
500 * - attribute 0 of patch 1 vertex 1
501 * ...
502 * - attribute 1 of patch 0 vertex 0
503 * - attribute 1 of patch 0 vertex 1
504 * ...
505 * - per patch attribute 0 of patch 0
506 * - per patch attribute 0 of patch 1
507 * ...
508 *
509 * Note that every attribute has 4 components.
510 */
511 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
512 {
513 uint32_t num_patches = ctx->tcs_num_patches;
514 uint32_t num_tcs_outputs;
515 if (ctx->stage == MESA_SHADER_TESS_CTRL)
516 num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
517 else
518 num_tcs_outputs = ctx->args->options->key.tes.tcs_num_outputs;
519
520 uint32_t output_vertex_size = num_tcs_outputs * 16;
521 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
522
523 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
524 }
525
526 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
527 LLVMValueRef vertex_index)
528 {
529 LLVMValueRef param_stride;
530 if (vertex_index)
531 param_stride = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out * ctx->tcs_num_patches, false);
532 else
533 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
534 return param_stride;
535 }
536
537 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
538 LLVMValueRef vertex_index,
539 LLVMValueRef param_index)
540 {
541 LLVMValueRef base_addr;
542 LLVMValueRef param_stride, constant16;
543 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
544 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out, false);
545 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
546 param_stride = calc_param_stride(ctx, vertex_index);
547 if (vertex_index) {
548 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
549 vertices_per_patch, vertex_index);
550 } else {
551 base_addr = rel_patch_id;
552 }
553
554 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
555 LLVMBuildMul(ctx->ac.builder, param_index,
556 param_stride, ""), "");
557
558 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
559
560 if (!vertex_index) {
561 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
562
563 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
564 patch_data_offset, "");
565 }
566 return base_addr;
567 }
568
569 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
570 unsigned param,
571 unsigned const_index,
572 bool is_compact,
573 LLVMValueRef vertex_index,
574 LLVMValueRef indir_index)
575 {
576 LLVMValueRef param_index;
577
578 if (indir_index)
579 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
580 indir_index, "");
581 else {
582 if (const_index && !is_compact)
583 param += const_index;
584 param_index = LLVMConstInt(ctx->ac.i32, param, false);
585 }
586 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
587 }
588
589 static LLVMValueRef
590 get_dw_address(struct radv_shader_context *ctx,
591 LLVMValueRef dw_addr,
592 unsigned param,
593 unsigned const_index,
594 bool compact_const_index,
595 LLVMValueRef vertex_index,
596 LLVMValueRef stride,
597 LLVMValueRef indir_index)
598
599 {
600
601 if (vertex_index) {
602 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
603 LLVMBuildMul(ctx->ac.builder,
604 vertex_index,
605 stride, ""), "");
606 }
607
608 if (indir_index)
609 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
610 LLVMBuildMul(ctx->ac.builder, indir_index,
611 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
612 else if (const_index && !compact_const_index)
613 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
614 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
615
616 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
617 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
618
619 if (const_index && compact_const_index)
620 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
621 LLVMConstInt(ctx->ac.i32, const_index, false), "");
622 return dw_addr;
623 }
624
625 static LLVMValueRef
626 load_tcs_varyings(struct ac_shader_abi *abi,
627 LLVMTypeRef type,
628 LLVMValueRef vertex_index,
629 LLVMValueRef indir_index,
630 unsigned const_index,
631 unsigned location,
632 unsigned driver_location,
633 unsigned component,
634 unsigned num_components,
635 bool is_patch,
636 bool is_compact,
637 bool load_input)
638 {
639 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
640 LLVMValueRef dw_addr, stride;
641 LLVMValueRef value[4], result;
642 unsigned param = shader_io_get_unique_index(location);
643
644 if (load_input) {
645 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
646 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
647 dw_addr = get_tcs_in_current_patch_offset(ctx);
648 } else {
649 if (!is_patch) {
650 stride = get_tcs_out_vertex_stride(ctx);
651 dw_addr = get_tcs_out_current_patch_offset(ctx);
652 } else {
653 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
654 stride = NULL;
655 }
656 }
657
658 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
659 indir_index);
660
661 for (unsigned i = 0; i < num_components + component; i++) {
662 value[i] = ac_lds_load(&ctx->ac, dw_addr);
663 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
664 ctx->ac.i32_1, "");
665 }
666 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
667 return result;
668 }
669
670 static void
671 store_tcs_output(struct ac_shader_abi *abi,
672 const nir_variable *var,
673 LLVMValueRef vertex_index,
674 LLVMValueRef param_index,
675 unsigned const_index,
676 LLVMValueRef src,
677 unsigned writemask)
678 {
679 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
680 const unsigned location = var->data.location;
681 unsigned component = var->data.location_frac;
682 const bool is_patch = var->data.patch;
683 const bool is_compact = var->data.compact;
684 LLVMValueRef dw_addr;
685 LLVMValueRef stride = NULL;
686 LLVMValueRef buf_addr = NULL;
687 LLVMValueRef oc_lds = ac_get_arg(&ctx->ac, ctx->args->oc_lds);
688 unsigned param;
689 bool store_lds = true;
690
691 if (is_patch) {
692 if (!(ctx->shader->info.patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
693 store_lds = false;
694 } else {
695 if (!(ctx->shader->info.outputs_read & (1ULL << location)))
696 store_lds = false;
697 }
698
699 param = shader_io_get_unique_index(location);
700 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
701 const_index += component;
702 component = 0;
703
704 if (const_index >= 4) {
705 const_index -= 4;
706 param++;
707 }
708 }
709
710 if (!is_patch) {
711 stride = get_tcs_out_vertex_stride(ctx);
712 dw_addr = get_tcs_out_current_patch_offset(ctx);
713 } else {
714 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
715 }
716
717 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
718 param_index);
719 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
720 vertex_index, param_index);
721
722 bool is_tess_factor = false;
723 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
724 location == VARYING_SLOT_TESS_LEVEL_OUTER)
725 is_tess_factor = true;
726
727 unsigned base = is_compact ? const_index : 0;
728 for (unsigned chan = 0; chan < 8; chan++) {
729 if (!(writemask & (1 << chan)))
730 continue;
731 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
732 value = ac_to_integer(&ctx->ac, value);
733 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
734
735 if (store_lds || is_tess_factor) {
736 LLVMValueRef dw_addr_chan =
737 LLVMBuildAdd(ctx->ac.builder, dw_addr,
738 LLVMConstInt(ctx->ac.i32, chan, false), "");
739 ac_lds_store(&ctx->ac, dw_addr_chan, value);
740 }
741
742 if (!is_tess_factor && writemask != 0xF)
743 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
744 buf_addr, oc_lds,
745 4 * (base + chan), ac_glc);
746 }
747
748 if (writemask == 0xF) {
749 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
750 buf_addr, oc_lds,
751 (base * 4), ac_glc);
752 }
753 }
754
755 static LLVMValueRef
756 load_tes_input(struct ac_shader_abi *abi,
757 LLVMTypeRef type,
758 LLVMValueRef vertex_index,
759 LLVMValueRef param_index,
760 unsigned const_index,
761 unsigned location,
762 unsigned driver_location,
763 unsigned component,
764 unsigned num_components,
765 bool is_patch,
766 bool is_compact,
767 bool load_input)
768 {
769 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
770 LLVMValueRef buf_addr;
771 LLVMValueRef result;
772 LLVMValueRef oc_lds = ac_get_arg(&ctx->ac, ctx->args->oc_lds);
773 unsigned param = shader_io_get_unique_index(location);
774
775 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
776 const_index += component;
777 component = 0;
778 if (const_index >= 4) {
779 const_index -= 4;
780 param++;
781 }
782 }
783
784 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
785 is_compact, vertex_index, param_index);
786
787 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
788 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
789
790 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
791 buf_addr, oc_lds, is_compact ? (4 * const_index) : 0, ac_glc, true, false);
792 result = ac_trim_vector(&ctx->ac, result, num_components);
793 return result;
794 }
795
796 static LLVMValueRef
797 radv_emit_fetch_64bit(struct radv_shader_context *ctx,
798 LLVMTypeRef type, LLVMValueRef a, LLVMValueRef b)
799 {
800 LLVMValueRef values[2] = {
801 ac_to_integer(&ctx->ac, a),
802 ac_to_integer(&ctx->ac, b),
803 };
804 LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, 2);
805 return LLVMBuildBitCast(ctx->ac.builder, result, type, "");
806 }
807
808 static LLVMValueRef
809 load_gs_input(struct ac_shader_abi *abi,
810 unsigned location,
811 unsigned driver_location,
812 unsigned component,
813 unsigned num_components,
814 unsigned vertex_index,
815 unsigned const_index,
816 LLVMTypeRef type)
817 {
818 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
819 LLVMValueRef vtx_offset;
820 unsigned param, vtx_offset_param;
821 LLVMValueRef value[4], result;
822
823 vtx_offset_param = vertex_index;
824 assert(vtx_offset_param < 6);
825 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
826 LLVMConstInt(ctx->ac.i32, 4, false), "");
827
828 param = shader_io_get_unique_index(location);
829
830 for (unsigned i = component; i < num_components + component; i++) {
831 if (ctx->ac.chip_class >= GFX9) {
832 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
833 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
834 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
835 value[i] = ac_lds_load(&ctx->ac, dw_addr);
836
837 if (ac_get_type_size(type) == 8) {
838 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
839 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index + 1, 0), "");
840 LLVMValueRef tmp = ac_lds_load(&ctx->ac, dw_addr);
841
842 value[i] = radv_emit_fetch_64bit(ctx, type, value[i], tmp);
843 }
844 } else {
845 LLVMValueRef soffset =
846 LLVMConstInt(ctx->ac.i32,
847 (param * 4 + i + const_index) * 256,
848 false);
849
850 value[i] = ac_build_buffer_load(&ctx->ac,
851 ctx->esgs_ring, 1,
852 ctx->ac.i32_0,
853 vtx_offset, soffset,
854 0, ac_glc, true, false);
855
856 if (ac_get_type_size(type) == 8) {
857 soffset = LLVMConstInt(ctx->ac.i32,
858 (param * 4 + i + const_index + 1) * 256,
859 false);
860
861 LLVMValueRef tmp =
862 ac_build_buffer_load(&ctx->ac,
863 ctx->esgs_ring, 1,
864 ctx->ac.i32_0,
865 vtx_offset, soffset,
866 0, ac_glc, true, false);
867
868 value[i] = radv_emit_fetch_64bit(ctx, type, value[i], tmp);
869 }
870 }
871
872 if (ac_get_type_size(type) == 2) {
873 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
874 value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
875 }
876 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
877 }
878 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
879 result = ac_to_integer(&ctx->ac, result);
880 return result;
881 }
882
883
884 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
885 {
886 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
887 ac_build_kill_if_false(&ctx->ac, visible);
888 }
889
890 static uint32_t
891 radv_get_sample_pos_offset(uint32_t num_samples)
892 {
893 uint32_t sample_pos_offset = 0;
894
895 switch (num_samples) {
896 case 2:
897 sample_pos_offset = 1;
898 break;
899 case 4:
900 sample_pos_offset = 3;
901 break;
902 case 8:
903 sample_pos_offset = 7;
904 break;
905 default:
906 break;
907 }
908 return sample_pos_offset;
909 }
910
911 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
912 LLVMValueRef sample_id)
913 {
914 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
915
916 LLVMValueRef result;
917 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false);
918 LLVMValueRef ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ring_offsets, &index, 1, "");
919
920 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
921 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
922
923 uint32_t sample_pos_offset =
924 radv_get_sample_pos_offset(ctx->args->options->key.fs.num_samples);
925
926 sample_id =
927 LLVMBuildAdd(ctx->ac.builder, sample_id,
928 LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
929 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
930
931 return result;
932 }
933
934
935 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
936 {
937 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
938 uint8_t log2_ps_iter_samples;
939
940 if (ctx->args->shader_info->ps.force_persample) {
941 log2_ps_iter_samples =
942 util_logbase2(ctx->args->options->key.fs.num_samples);
943 } else {
944 log2_ps_iter_samples = ctx->args->options->key.fs.log2_ps_iter_samples;
945 }
946
947 /* The bit pattern matches that used by fixed function fragment
948 * processing. */
949 static const uint16_t ps_iter_masks[] = {
950 0xffff, /* not used */
951 0x5555,
952 0x1111,
953 0x0101,
954 0x0001,
955 };
956 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
957
958 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
959
960 LLVMValueRef result, sample_id;
961 sample_id = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ac.ancillary), 8, 4);
962 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
963 result = LLVMBuildAnd(ctx->ac.builder, sample_id,
964 ac_get_arg(&ctx->ac, ctx->args->ac.sample_coverage), "");
965 return result;
966 }
967
968
969 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
970 unsigned stream,
971 LLVMValueRef *addrs);
972
973 static void
974 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
975 {
976 LLVMValueRef gs_next_vertex;
977 LLVMValueRef can_emit;
978 unsigned offset = 0;
979 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
980
981 if (ctx->args->options->key.vs_common_out.as_ngg) {
982 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
983 return;
984 }
985
986 /* Write vertex attribute values to GSVS ring */
987 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
988 ctx->gs_next_vertex[stream],
989 "");
990
991 /* If this thread has already emitted the declared maximum number of
992 * vertices, don't emit any more: excessive vertex emissions are not
993 * supposed to have any effect.
994 */
995 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
996 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
997
998 bool use_kill = !ctx->args->shader_info->gs.writes_memory;
999 if (use_kill)
1000 ac_build_kill_if_false(&ctx->ac, can_emit);
1001 else
1002 ac_build_ifcc(&ctx->ac, can_emit, 6505);
1003
1004 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1005 unsigned output_usage_mask =
1006 ctx->args->shader_info->gs.output_usage_mask[i];
1007 uint8_t output_stream =
1008 ctx->args->shader_info->gs.output_streams[i];
1009 LLVMValueRef *out_ptr = &addrs[i * 4];
1010 int length = util_last_bit(output_usage_mask);
1011
1012 if (!(ctx->output_mask & (1ull << i)) ||
1013 output_stream != stream)
1014 continue;
1015
1016 for (unsigned j = 0; j < length; j++) {
1017 if (!(output_usage_mask & (1 << j)))
1018 continue;
1019
1020 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1021 out_ptr[j], "");
1022 LLVMValueRef voffset =
1023 LLVMConstInt(ctx->ac.i32, offset *
1024 ctx->shader->info.gs.vertices_out, false);
1025
1026 offset++;
1027
1028 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1029 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1030
1031 out_val = ac_to_integer(&ctx->ac, out_val);
1032 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1033
1034 ac_build_buffer_store_dword(&ctx->ac,
1035 ctx->gsvs_ring[stream],
1036 out_val, 1,
1037 voffset,
1038 ac_get_arg(&ctx->ac,
1039 ctx->args->gs2vs_offset),
1040 0, ac_glc | ac_slc | ac_swizzled);
1041 }
1042 }
1043
1044 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1045 ctx->ac.i32_1, "");
1046 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
1047
1048 ac_build_sendmsg(&ctx->ac,
1049 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
1050 ctx->gs_wave_id);
1051
1052 if (!use_kill)
1053 ac_build_endif(&ctx->ac, 6505);
1054 }
1055
1056 static void
1057 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1058 {
1059 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1060
1061 if (ctx->args->options->key.vs_common_out.as_ngg) {
1062 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
1063 return;
1064 }
1065
1066 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1067 }
1068
1069 static LLVMValueRef
1070 load_tess_coord(struct ac_shader_abi *abi)
1071 {
1072 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1073
1074 LLVMValueRef coord[4] = {
1075 ac_get_arg(&ctx->ac, ctx->args->tes_u),
1076 ac_get_arg(&ctx->ac, ctx->args->tes_v),
1077 ctx->ac.f32_0,
1078 ctx->ac.f32_0,
1079 };
1080
1081 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES)
1082 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1083 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1084
1085 return ac_build_gather_values(&ctx->ac, coord, 3);
1086 }
1087
1088 static LLVMValueRef
1089 load_patch_vertices_in(struct ac_shader_abi *abi)
1090 {
1091 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1092 return LLVMConstInt(ctx->ac.i32, ctx->args->options->key.tcs.input_vertices, false);
1093 }
1094
1095
1096 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1097 {
1098 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1099 return ac_get_arg(&ctx->ac, ctx->args->ac.base_vertex);
1100 }
1101
1102 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1103 LLVMValueRef buffer_ptr, bool write)
1104 {
1105 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1106 LLVMValueRef result;
1107
1108 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1109
1110 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1111 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1112
1113 return result;
1114 }
1115
1116 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1117 {
1118 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1119 LLVMValueRef result;
1120
1121 if (LLVMGetTypeKind(LLVMTypeOf(buffer_ptr)) != LLVMPointerTypeKind) {
1122 /* Do not load the descriptor for inlined uniform blocks. */
1123 return buffer_ptr;
1124 }
1125
1126 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1127
1128 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1129 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1130
1131 return result;
1132 }
1133
1134 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1135 unsigned descriptor_set,
1136 unsigned base_index,
1137 unsigned constant_index,
1138 LLVMValueRef index,
1139 enum ac_descriptor_type desc_type,
1140 bool image, bool write,
1141 bool bindless)
1142 {
1143 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1144 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
1145 struct radv_descriptor_set_layout *layout = ctx->args->options->layout->set[descriptor_set].layout;
1146 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
1147 unsigned offset = binding->offset;
1148 unsigned stride = binding->size;
1149 unsigned type_size;
1150 LLVMBuilderRef builder = ctx->ac.builder;
1151 LLVMTypeRef type;
1152
1153 assert(base_index < layout->binding_count);
1154
1155 switch (desc_type) {
1156 case AC_DESC_IMAGE:
1157 type = ctx->ac.v8i32;
1158 type_size = 32;
1159 break;
1160 case AC_DESC_FMASK:
1161 type = ctx->ac.v8i32;
1162 offset += 32;
1163 type_size = 32;
1164 break;
1165 case AC_DESC_SAMPLER:
1166 type = ctx->ac.v4i32;
1167 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
1168 offset += radv_combined_image_descriptor_sampler_offset(binding);
1169 }
1170
1171 type_size = 16;
1172 break;
1173 case AC_DESC_BUFFER:
1174 type = ctx->ac.v4i32;
1175 type_size = 16;
1176 break;
1177 case AC_DESC_PLANE_0:
1178 case AC_DESC_PLANE_1:
1179 case AC_DESC_PLANE_2:
1180 type = ctx->ac.v8i32;
1181 type_size = 32;
1182 offset += 32 * (desc_type - AC_DESC_PLANE_0);
1183 break;
1184 default:
1185 unreachable("invalid desc_type\n");
1186 }
1187
1188 offset += constant_index * stride;
1189
1190 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
1191 (!index || binding->immutable_samplers_equal)) {
1192 if (binding->immutable_samplers_equal)
1193 constant_index = 0;
1194
1195 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
1196
1197 LLVMValueRef constants[] = {
1198 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
1199 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
1200 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
1201 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
1202 };
1203 return ac_build_gather_values(&ctx->ac, constants, 4);
1204 }
1205
1206 assert(stride % type_size == 0);
1207
1208 LLVMValueRef adjusted_index = index;
1209 if (!adjusted_index)
1210 adjusted_index = ctx->ac.i32_0;
1211
1212 adjusted_index = LLVMBuildMul(builder, adjusted_index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
1213
1214 LLVMValueRef val_offset = LLVMConstInt(ctx->ac.i32, offset, 0);
1215 list = LLVMBuildGEP(builder, list, &val_offset, 1, "");
1216 list = LLVMBuildPointerCast(builder, list,
1217 ac_array_in_const32_addr_space(type), "");
1218
1219 LLVMValueRef descriptor = ac_build_load_to_sgpr(&ctx->ac, list, adjusted_index);
1220
1221 /* 3 plane formats always have same size and format for plane 1 & 2, so
1222 * use the tail from plane 1 so that we can store only the first 16 bytes
1223 * of the last plane. */
1224 if (desc_type == AC_DESC_PLANE_2) {
1225 LLVMValueRef descriptor2 = radv_get_sampler_desc(abi, descriptor_set, base_index, constant_index, index, AC_DESC_PLANE_1,image, write, bindless);
1226
1227 LLVMValueRef components[8];
1228 for (unsigned i = 0; i < 4; ++i)
1229 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor, i);
1230
1231 for (unsigned i = 4; i < 8; ++i)
1232 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor2, i);
1233 descriptor = ac_build_gather_values(&ctx->ac, components, 8);
1234 }
1235
1236 return descriptor;
1237 }
1238
1239 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
1240 * so we may need to fix it up. */
1241 static LLVMValueRef
1242 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
1243 unsigned adjustment,
1244 LLVMValueRef alpha)
1245 {
1246 if (adjustment == RADV_ALPHA_ADJUST_NONE)
1247 return alpha;
1248
1249 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
1250
1251 alpha = LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.f32, "");
1252
1253 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
1254 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
1255 else
1256 alpha = ac_to_integer(&ctx->ac, alpha);
1257
1258 /* For the integer-like cases, do a natural sign extension.
1259 *
1260 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
1261 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
1262 * exponent.
1263 */
1264 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
1265 adjustment == RADV_ALPHA_ADJUST_SNORM ?
1266 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
1267 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
1268
1269 /* Convert back to the right type. */
1270 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
1271 LLVMValueRef clamp;
1272 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
1273 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
1274 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
1275 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
1276 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
1277 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
1278 }
1279
1280 return LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.i32, "");
1281 }
1282
1283 static const struct vertex_format_info {
1284 uint8_t vertex_byte_size;
1285 uint8_t num_channels;
1286 uint8_t chan_byte_size;
1287 uint8_t chan_format;
1288 } vertex_format_table[] = {
1289 { 0, 4, 0, V_008F0C_BUF_DATA_FORMAT_INVALID }, /* BUF_DATA_FORMAT_INVALID */
1290 { 1, 1, 1, V_008F0C_BUF_DATA_FORMAT_8 }, /* BUF_DATA_FORMAT_8 */
1291 { 2, 1, 2, V_008F0C_BUF_DATA_FORMAT_16 }, /* BUF_DATA_FORMAT_16 */
1292 { 2, 2, 1, V_008F0C_BUF_DATA_FORMAT_8 }, /* BUF_DATA_FORMAT_8_8 */
1293 { 4, 1, 4, V_008F0C_BUF_DATA_FORMAT_32 }, /* BUF_DATA_FORMAT_32 */
1294 { 4, 2, 2, V_008F0C_BUF_DATA_FORMAT_16 }, /* BUF_DATA_FORMAT_16_16 */
1295 { 4, 3, 0, V_008F0C_BUF_DATA_FORMAT_10_11_11 }, /* BUF_DATA_FORMAT_10_11_11 */
1296 { 4, 3, 0, V_008F0C_BUF_DATA_FORMAT_11_11_10 }, /* BUF_DATA_FORMAT_11_11_10 */
1297 { 4, 4, 0, V_008F0C_BUF_DATA_FORMAT_10_10_10_2 }, /* BUF_DATA_FORMAT_10_10_10_2 */
1298 { 4, 4, 0, V_008F0C_BUF_DATA_FORMAT_2_10_10_10 }, /* BUF_DATA_FORMAT_2_10_10_10 */
1299 { 4, 4, 1, V_008F0C_BUF_DATA_FORMAT_8 }, /* BUF_DATA_FORMAT_8_8_8_8 */
1300 { 8, 2, 4, V_008F0C_BUF_DATA_FORMAT_32 }, /* BUF_DATA_FORMAT_32_32 */
1301 { 8, 4, 2, V_008F0C_BUF_DATA_FORMAT_16 }, /* BUF_DATA_FORMAT_16_16_16_16 */
1302 { 12, 3, 4, V_008F0C_BUF_DATA_FORMAT_32 }, /* BUF_DATA_FORMAT_32_32_32 */
1303 { 16, 4, 4, V_008F0C_BUF_DATA_FORMAT_32 }, /* BUF_DATA_FORMAT_32_32_32_32 */
1304 };
1305
1306 static LLVMValueRef
1307 radv_fixup_vertex_input_fetches(struct radv_shader_context *ctx,
1308 LLVMValueRef value,
1309 unsigned num_channels,
1310 bool is_float)
1311 {
1312 LLVMValueRef zero = is_float ? ctx->ac.f32_0 : ctx->ac.i32_0;
1313 LLVMValueRef one = is_float ? ctx->ac.f32_1 : ctx->ac.i32_1;
1314 LLVMValueRef chan[4];
1315
1316 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
1317 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
1318
1319 if (num_channels == 4 && num_channels == vec_size)
1320 return value;
1321
1322 num_channels = MIN2(num_channels, vec_size);
1323
1324 for (unsigned i = 0; i < num_channels; i++)
1325 chan[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
1326 } else {
1327 assert(num_channels == 1);
1328 chan[0] = value;
1329 }
1330
1331 for (unsigned i = num_channels; i < 4; i++) {
1332 chan[i] = i == 3 ? one : zero;
1333 chan[i] = ac_to_integer(&ctx->ac, chan[i]);
1334 }
1335
1336 return ac_build_gather_values(&ctx->ac, chan, 4);
1337 }
1338
1339 static void
1340 handle_vs_input_decl(struct radv_shader_context *ctx,
1341 struct nir_variable *variable)
1342 {
1343 LLVMValueRef t_list_ptr = ac_get_arg(&ctx->ac, ctx->args->vertex_buffers);
1344 LLVMValueRef t_offset;
1345 LLVMValueRef t_list;
1346 LLVMValueRef input;
1347 LLVMValueRef buffer_index;
1348 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
1349 uint8_t input_usage_mask =
1350 ctx->args->shader_info->vs.input_usage_mask[variable->data.location];
1351 unsigned num_input_channels = util_last_bit(input_usage_mask);
1352
1353 variable->data.driver_location = variable->data.location * 4;
1354
1355 enum glsl_base_type type = glsl_get_base_type(variable->type);
1356 for (unsigned i = 0; i < attrib_count; ++i) {
1357 LLVMValueRef output[4];
1358 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
1359 unsigned attrib_format = ctx->args->options->key.vs.vertex_attribute_formats[attrib_index];
1360 unsigned data_format = attrib_format & 0x0f;
1361 unsigned num_format = (attrib_format >> 4) & 0x07;
1362 bool is_float = num_format != V_008F0C_BUF_NUM_FORMAT_UINT &&
1363 num_format != V_008F0C_BUF_NUM_FORMAT_SINT;
1364
1365 if (ctx->args->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
1366 uint32_t divisor = ctx->args->options->key.vs.instance_rate_divisors[attrib_index];
1367
1368 if (divisor) {
1369 buffer_index = ctx->abi.instance_id;
1370
1371 if (divisor != 1) {
1372 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
1373 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
1374 }
1375 } else {
1376 buffer_index = ctx->ac.i32_0;
1377 }
1378
1379 buffer_index = LLVMBuildAdd(ctx->ac.builder,
1380 ac_get_arg(&ctx->ac,
1381 ctx->args->ac.start_instance),\
1382 buffer_index, "");
1383 } else {
1384 buffer_index = LLVMBuildAdd(ctx->ac.builder,
1385 ctx->abi.vertex_id,
1386 ac_get_arg(&ctx->ac,
1387 ctx->args->ac.base_vertex), "");
1388 }
1389
1390 assert(data_format < ARRAY_SIZE(vertex_format_table));
1391 const struct vertex_format_info *vtx_info = &vertex_format_table[data_format];
1392
1393 /* Adjust the number of channels to load based on the vertex
1394 * attribute format.
1395 */
1396 unsigned num_channels = MIN2(num_input_channels, vtx_info->num_channels);
1397 unsigned attrib_binding = ctx->args->options->key.vs.vertex_attribute_bindings[attrib_index];
1398 unsigned attrib_offset = ctx->args->options->key.vs.vertex_attribute_offsets[attrib_index];
1399 unsigned attrib_stride = ctx->args->options->key.vs.vertex_attribute_strides[attrib_index];
1400
1401 if (ctx->args->options->key.vs.post_shuffle & (1 << attrib_index)) {
1402 /* Always load, at least, 3 channels for formats that
1403 * need to be shuffled because X<->Z.
1404 */
1405 num_channels = MAX2(num_channels, 3);
1406 }
1407
1408 t_offset = LLVMConstInt(ctx->ac.i32, attrib_binding, false);
1409 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
1410
1411 /* Perform per-channel vertex fetch operations if unaligned
1412 * access are detected. Only GFX6 and GFX10 are affected.
1413 */
1414 bool unaligned_vertex_fetches = false;
1415 if ((ctx->ac.chip_class == GFX6 || ctx->ac.chip_class == GFX10) &&
1416 vtx_info->chan_format != data_format &&
1417 ((attrib_offset % vtx_info->vertex_byte_size) ||
1418 (attrib_stride % vtx_info->vertex_byte_size)))
1419 unaligned_vertex_fetches = true;
1420
1421 if (unaligned_vertex_fetches) {
1422 unsigned chan_format = vtx_info->chan_format;
1423 LLVMValueRef values[4];
1424
1425 assert(ctx->ac.chip_class == GFX6 ||
1426 ctx->ac.chip_class == GFX10);
1427
1428 for (unsigned chan = 0; chan < num_channels; chan++) {
1429 unsigned chan_offset = attrib_offset + chan * vtx_info->chan_byte_size;
1430 LLVMValueRef chan_index = buffer_index;
1431
1432 if (attrib_stride != 0 && chan_offset > attrib_stride) {
1433 LLVMValueRef buffer_offset =
1434 LLVMConstInt(ctx->ac.i32,
1435 chan_offset / attrib_stride, false);
1436
1437 chan_index = LLVMBuildAdd(ctx->ac.builder,
1438 buffer_index,
1439 buffer_offset, "");
1440
1441 chan_offset = chan_offset % attrib_stride;
1442 }
1443
1444 values[chan] = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
1445 chan_index,
1446 LLVMConstInt(ctx->ac.i32, chan_offset, false),
1447 ctx->ac.i32_0, ctx->ac.i32_0, 1,
1448 chan_format, num_format, 0, true);
1449 }
1450
1451 input = ac_build_gather_values(&ctx->ac, values, num_channels);
1452 } else {
1453 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
1454 LLVMValueRef buffer_offset =
1455 LLVMConstInt(ctx->ac.i32,
1456 attrib_offset / attrib_stride, false);
1457
1458 buffer_index = LLVMBuildAdd(ctx->ac.builder,
1459 buffer_index,
1460 buffer_offset, "");
1461
1462 attrib_offset = attrib_offset % attrib_stride;
1463 }
1464
1465 input = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
1466 buffer_index,
1467 LLVMConstInt(ctx->ac.i32, attrib_offset, false),
1468 ctx->ac.i32_0, ctx->ac.i32_0,
1469 num_channels,
1470 data_format, num_format, 0, true);
1471 }
1472
1473 if (ctx->args->options->key.vs.post_shuffle & (1 << attrib_index)) {
1474 LLVMValueRef c[4];
1475 c[0] = ac_llvm_extract_elem(&ctx->ac, input, 2);
1476 c[1] = ac_llvm_extract_elem(&ctx->ac, input, 1);
1477 c[2] = ac_llvm_extract_elem(&ctx->ac, input, 0);
1478 c[3] = ac_llvm_extract_elem(&ctx->ac, input, 3);
1479
1480 input = ac_build_gather_values(&ctx->ac, c, 4);
1481 }
1482
1483 input = radv_fixup_vertex_input_fetches(ctx, input, num_channels,
1484 is_float);
1485
1486 for (unsigned chan = 0; chan < 4; chan++) {
1487 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
1488 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
1489 if (type == GLSL_TYPE_FLOAT16) {
1490 output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
1491 output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
1492 }
1493 }
1494
1495 unsigned alpha_adjust = (ctx->args->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
1496 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
1497
1498 for (unsigned chan = 0; chan < 4; chan++) {
1499 output[chan] = ac_to_integer(&ctx->ac, output[chan]);
1500 if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
1501 output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
1502
1503 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
1504 }
1505 }
1506 }
1507
1508 static void
1509 handle_vs_inputs(struct radv_shader_context *ctx,
1510 struct nir_shader *nir) {
1511 nir_foreach_variable(variable, &nir->inputs)
1512 handle_vs_input_decl(ctx, variable);
1513 }
1514
1515 static void
1516 prepare_interp_optimize(struct radv_shader_context *ctx,
1517 struct nir_shader *nir)
1518 {
1519 bool uses_center = false;
1520 bool uses_centroid = false;
1521 nir_foreach_variable(variable, &nir->inputs) {
1522 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
1523 variable->data.sample)
1524 continue;
1525
1526 if (variable->data.centroid)
1527 uses_centroid = true;
1528 else
1529 uses_center = true;
1530 }
1531
1532 ctx->abi.persp_centroid = ac_get_arg(&ctx->ac, ctx->args->ac.persp_centroid);
1533 ctx->abi.linear_centroid = ac_get_arg(&ctx->ac, ctx->args->ac.linear_centroid);
1534
1535 if (uses_center && uses_centroid) {
1536 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT,
1537 ac_get_arg(&ctx->ac, ctx->args->ac.prim_mask),
1538 ctx->ac.i32_0, "");
1539 ctx->abi.persp_centroid =
1540 LLVMBuildSelect(ctx->ac.builder, sel,
1541 ac_get_arg(&ctx->ac, ctx->args->ac.persp_center),
1542 ctx->abi.persp_centroid, "");
1543 ctx->abi.linear_centroid =
1544 LLVMBuildSelect(ctx->ac.builder, sel,
1545 ac_get_arg(&ctx->ac, ctx->args->ac.linear_center),
1546 ctx->abi.linear_centroid, "");
1547 }
1548 }
1549
1550 static void
1551 scan_shader_output_decl(struct radv_shader_context *ctx,
1552 struct nir_variable *variable,
1553 struct nir_shader *shader,
1554 gl_shader_stage stage)
1555 {
1556 int idx = variable->data.location + variable->data.index;
1557 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
1558 uint64_t mask_attribs;
1559
1560 variable->data.driver_location = idx * 4;
1561
1562 /* tess ctrl has it's own load/store paths for outputs */
1563 if (stage == MESA_SHADER_TESS_CTRL)
1564 return;
1565
1566 if (variable->data.compact) {
1567 unsigned component_count = variable->data.location_frac +
1568 glsl_get_length(variable->type);
1569 attrib_count = (component_count + 3) / 4;
1570 }
1571
1572 mask_attribs = ((1ull << attrib_count) - 1) << idx;
1573
1574 ctx->output_mask |= mask_attribs;
1575 }
1576
1577
1578 /* Initialize arguments for the shader export intrinsic */
1579 static void
1580 si_llvm_init_export_args(struct radv_shader_context *ctx,
1581 LLVMValueRef *values,
1582 unsigned enabled_channels,
1583 unsigned target,
1584 struct ac_export_args *args)
1585 {
1586 /* Specify the channels that are enabled. */
1587 args->enabled_channels = enabled_channels;
1588
1589 /* Specify whether the EXEC mask represents the valid mask */
1590 args->valid_mask = 0;
1591
1592 /* Specify whether this is the last export */
1593 args->done = 0;
1594
1595 /* Specify the target we are exporting */
1596 args->target = target;
1597
1598 args->compr = false;
1599 args->out[0] = LLVMGetUndef(ctx->ac.f32);
1600 args->out[1] = LLVMGetUndef(ctx->ac.f32);
1601 args->out[2] = LLVMGetUndef(ctx->ac.f32);
1602 args->out[3] = LLVMGetUndef(ctx->ac.f32);
1603
1604 if (!values)
1605 return;
1606
1607 bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
1608 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1609 unsigned index = target - V_008DFC_SQ_EXP_MRT;
1610 unsigned col_format = (ctx->args->options->key.fs.col_format >> (4 * index)) & 0xf;
1611 bool is_int8 = (ctx->args->options->key.fs.is_int8 >> index) & 1;
1612 bool is_int10 = (ctx->args->options->key.fs.is_int10 >> index) & 1;
1613 unsigned chan;
1614
1615 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
1616 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
1617 unsigned bits, bool hi) = NULL;
1618
1619 switch(col_format) {
1620 case V_028714_SPI_SHADER_ZERO:
1621 args->enabled_channels = 0; /* writemask */
1622 args->target = V_008DFC_SQ_EXP_NULL;
1623 break;
1624
1625 case V_028714_SPI_SHADER_32_R:
1626 args->enabled_channels = 1;
1627 args->out[0] = values[0];
1628 break;
1629
1630 case V_028714_SPI_SHADER_32_GR:
1631 args->enabled_channels = 0x3;
1632 args->out[0] = values[0];
1633 args->out[1] = values[1];
1634 break;
1635
1636 case V_028714_SPI_SHADER_32_AR:
1637 if (ctx->ac.chip_class >= GFX10) {
1638 args->enabled_channels = 0x3;
1639 args->out[0] = values[0];
1640 args->out[1] = values[3];
1641 } else {
1642 args->enabled_channels = 0x9;
1643 args->out[0] = values[0];
1644 args->out[3] = values[3];
1645 }
1646 break;
1647
1648 case V_028714_SPI_SHADER_FP16_ABGR:
1649 args->enabled_channels = 0x5;
1650 packf = ac_build_cvt_pkrtz_f16;
1651 if (is_16bit) {
1652 for (unsigned chan = 0; chan < 4; chan++)
1653 values[chan] = LLVMBuildFPExt(ctx->ac.builder,
1654 values[chan],
1655 ctx->ac.f32, "");
1656 }
1657 break;
1658
1659 case V_028714_SPI_SHADER_UNORM16_ABGR:
1660 args->enabled_channels = 0x5;
1661 packf = ac_build_cvt_pknorm_u16;
1662 break;
1663
1664 case V_028714_SPI_SHADER_SNORM16_ABGR:
1665 args->enabled_channels = 0x5;
1666 packf = ac_build_cvt_pknorm_i16;
1667 break;
1668
1669 case V_028714_SPI_SHADER_UINT16_ABGR:
1670 args->enabled_channels = 0x5;
1671 packi = ac_build_cvt_pk_u16;
1672 if (is_16bit) {
1673 for (unsigned chan = 0; chan < 4; chan++)
1674 values[chan] = LLVMBuildZExt(ctx->ac.builder,
1675 ac_to_integer(&ctx->ac, values[chan]),
1676 ctx->ac.i32, "");
1677 }
1678 break;
1679
1680 case V_028714_SPI_SHADER_SINT16_ABGR:
1681 args->enabled_channels = 0x5;
1682 packi = ac_build_cvt_pk_i16;
1683 if (is_16bit) {
1684 for (unsigned chan = 0; chan < 4; chan++)
1685 values[chan] = LLVMBuildSExt(ctx->ac.builder,
1686 ac_to_integer(&ctx->ac, values[chan]),
1687 ctx->ac.i32, "");
1688 }
1689 break;
1690
1691 default:
1692 case V_028714_SPI_SHADER_32_ABGR:
1693 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
1694 break;
1695 }
1696
1697 /* Pack f16 or norm_i16/u16. */
1698 if (packf) {
1699 for (chan = 0; chan < 2; chan++) {
1700 LLVMValueRef pack_args[2] = {
1701 values[2 * chan],
1702 values[2 * chan + 1]
1703 };
1704 LLVMValueRef packed;
1705
1706 packed = packf(&ctx->ac, pack_args);
1707 args->out[chan] = ac_to_float(&ctx->ac, packed);
1708 }
1709 args->compr = 1; /* COMPR flag */
1710 }
1711
1712 /* Pack i16/u16. */
1713 if (packi) {
1714 for (chan = 0; chan < 2; chan++) {
1715 LLVMValueRef pack_args[2] = {
1716 ac_to_integer(&ctx->ac, values[2 * chan]),
1717 ac_to_integer(&ctx->ac, values[2 * chan + 1])
1718 };
1719 LLVMValueRef packed;
1720
1721 packed = packi(&ctx->ac, pack_args,
1722 is_int8 ? 8 : is_int10 ? 10 : 16,
1723 chan == 1);
1724 args->out[chan] = ac_to_float(&ctx->ac, packed);
1725 }
1726 args->compr = 1; /* COMPR flag */
1727 }
1728 return;
1729 }
1730
1731 if (is_16bit) {
1732 for (unsigned chan = 0; chan < 4; chan++) {
1733 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
1734 args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
1735 }
1736 } else
1737 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
1738
1739 for (unsigned i = 0; i < 4; ++i)
1740 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
1741 }
1742
1743 static void
1744 radv_export_param(struct radv_shader_context *ctx, unsigned index,
1745 LLVMValueRef *values, unsigned enabled_channels)
1746 {
1747 struct ac_export_args args;
1748
1749 si_llvm_init_export_args(ctx, values, enabled_channels,
1750 V_008DFC_SQ_EXP_PARAM + index, &args);
1751 ac_build_export(&ctx->ac, &args);
1752 }
1753
1754 static LLVMValueRef
1755 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
1756 {
1757 LLVMValueRef output = ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
1758 return LLVMBuildLoad(ctx->ac.builder, output, "");
1759 }
1760
1761 static void
1762 radv_emit_stream_output(struct radv_shader_context *ctx,
1763 LLVMValueRef const *so_buffers,
1764 LLVMValueRef const *so_write_offsets,
1765 const struct radv_stream_output *output,
1766 struct radv_shader_output_values *shader_out)
1767 {
1768 unsigned num_comps = util_bitcount(output->component_mask);
1769 unsigned buf = output->buffer;
1770 unsigned offset = output->offset;
1771 unsigned start;
1772 LLVMValueRef out[4];
1773
1774 assert(num_comps && num_comps <= 4);
1775 if (!num_comps || num_comps > 4)
1776 return;
1777
1778 /* Get the first component. */
1779 start = ffs(output->component_mask) - 1;
1780
1781 /* Load the output as int. */
1782 for (int i = 0; i < num_comps; i++) {
1783 out[i] = ac_to_integer(&ctx->ac, shader_out->values[start + i]);
1784 }
1785
1786 /* Pack the output. */
1787 LLVMValueRef vdata = NULL;
1788
1789 switch (num_comps) {
1790 case 1: /* as i32 */
1791 vdata = out[0];
1792 break;
1793 case 2: /* as v2i32 */
1794 case 3: /* as v4i32 (aligned to 4) */
1795 out[3] = LLVMGetUndef(ctx->ac.i32);
1796 /* fall through */
1797 case 4: /* as v4i32 */
1798 vdata = ac_build_gather_values(&ctx->ac, out,
1799 !ac_has_vec3_support(ctx->ac.chip_class, false) ?
1800 util_next_power_of_two(num_comps) :
1801 num_comps);
1802 break;
1803 }
1804
1805 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
1806 vdata, num_comps, so_write_offsets[buf],
1807 ctx->ac.i32_0, offset,
1808 ac_glc | ac_slc);
1809 }
1810
1811 static void
1812 radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
1813 {
1814 int i;
1815
1816 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
1817 assert(ctx->args->streamout_config.used);
1818 LLVMValueRef so_vtx_count =
1819 ac_build_bfe(&ctx->ac,
1820 ac_get_arg(&ctx->ac, ctx->args->streamout_config),
1821 LLVMConstInt(ctx->ac.i32, 16, false),
1822 LLVMConstInt(ctx->ac.i32, 7, false), false);
1823
1824 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
1825
1826 /* can_emit = tid < so_vtx_count; */
1827 LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
1828 tid, so_vtx_count, "");
1829
1830 /* Emit the streamout code conditionally. This actually avoids
1831 * out-of-bounds buffer access. The hw tells us via the SGPR
1832 * (so_vtx_count) which threads are allowed to emit streamout data.
1833 */
1834 ac_build_ifcc(&ctx->ac, can_emit, 6501);
1835 {
1836 /* The buffer offset is computed as follows:
1837 * ByteOffset = streamout_offset[buffer_id]*4 +
1838 * (streamout_write_index + thread_id)*stride[buffer_id] +
1839 * attrib_offset
1840 */
1841 LLVMValueRef so_write_index =
1842 ac_get_arg(&ctx->ac, ctx->args->streamout_write_idx);
1843
1844 /* Compute (streamout_write_index + thread_id). */
1845 so_write_index =
1846 LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");
1847
1848 /* Load the descriptor and compute the write offset for each
1849 * enabled buffer.
1850 */
1851 LLVMValueRef so_write_offset[4] = {};
1852 LLVMValueRef so_buffers[4] = {};
1853 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->args->streamout_buffers);
1854
1855 for (i = 0; i < 4; i++) {
1856 uint16_t stride = ctx->args->shader_info->so.strides[i];
1857
1858 if (!stride)
1859 continue;
1860
1861 LLVMValueRef offset =
1862 LLVMConstInt(ctx->ac.i32, i, false);
1863
1864 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
1865 buf_ptr, offset);
1866
1867 LLVMValueRef so_offset =
1868 ac_get_arg(&ctx->ac, ctx->args->streamout_offset[i]);
1869
1870 so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
1871 LLVMConstInt(ctx->ac.i32, 4, false), "");
1872
1873 so_write_offset[i] =
1874 ac_build_imad(&ctx->ac, so_write_index,
1875 LLVMConstInt(ctx->ac.i32,
1876 stride * 4, false),
1877 so_offset);
1878 }
1879
1880 /* Write streamout data. */
1881 for (i = 0; i < ctx->args->shader_info->so.num_outputs; i++) {
1882 struct radv_shader_output_values shader_out = {};
1883 struct radv_stream_output *output =
1884 &ctx->args->shader_info->so.outputs[i];
1885
1886 if (stream != output->stream)
1887 continue;
1888
1889 for (int j = 0; j < 4; j++) {
1890 shader_out.values[j] =
1891 radv_load_output(ctx, output->location, j);
1892 }
1893
1894 radv_emit_stream_output(ctx, so_buffers,so_write_offset,
1895 output, &shader_out);
1896 }
1897 }
1898 ac_build_endif(&ctx->ac, 6501);
1899 }
1900
1901 static void
1902 radv_build_param_exports(struct radv_shader_context *ctx,
1903 struct radv_shader_output_values *outputs,
1904 unsigned noutput,
1905 struct radv_vs_output_info *outinfo,
1906 bool export_clip_dists)
1907 {
1908 unsigned param_count = 0;
1909
1910 for (unsigned i = 0; i < noutput; i++) {
1911 unsigned slot_name = outputs[i].slot_name;
1912 unsigned usage_mask = outputs[i].usage_mask;
1913
1914 if (slot_name != VARYING_SLOT_LAYER &&
1915 slot_name != VARYING_SLOT_PRIMITIVE_ID &&
1916 slot_name != VARYING_SLOT_CLIP_DIST0 &&
1917 slot_name != VARYING_SLOT_CLIP_DIST1 &&
1918 slot_name < VARYING_SLOT_VAR0)
1919 continue;
1920
1921 if ((slot_name == VARYING_SLOT_CLIP_DIST0 ||
1922 slot_name == VARYING_SLOT_CLIP_DIST1) && !export_clip_dists)
1923 continue;
1924
1925 radv_export_param(ctx, param_count, outputs[i].values, usage_mask);
1926
1927 assert(i < ARRAY_SIZE(outinfo->vs_output_param_offset));
1928 outinfo->vs_output_param_offset[slot_name] = param_count++;
1929 }
1930
1931 outinfo->param_exports = param_count;
1932 }
1933
1934 /* Generate export instructions for hardware VS shader stage or NGG GS stage
1935 * (position and parameter data only).
1936 */
1937 static void
1938 radv_llvm_export_vs(struct radv_shader_context *ctx,
1939 struct radv_shader_output_values *outputs,
1940 unsigned noutput,
1941 struct radv_vs_output_info *outinfo,
1942 bool export_clip_dists)
1943 {
1944 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_value = NULL;
1945 struct ac_export_args pos_args[4] = {};
1946 unsigned pos_idx, index;
1947 int i;
1948
1949 /* Build position exports */
1950 for (i = 0; i < noutput; i++) {
1951 switch (outputs[i].slot_name) {
1952 case VARYING_SLOT_POS:
1953 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
1954 V_008DFC_SQ_EXP_POS, &pos_args[0]);
1955 break;
1956 case VARYING_SLOT_PSIZ:
1957 psize_value = outputs[i].values[0];
1958 break;
1959 case VARYING_SLOT_LAYER:
1960 layer_value = outputs[i].values[0];
1961 break;
1962 case VARYING_SLOT_VIEWPORT:
1963 viewport_value = outputs[i].values[0];
1964 break;
1965 case VARYING_SLOT_CLIP_DIST0:
1966 case VARYING_SLOT_CLIP_DIST1:
1967 index = 2 + outputs[i].slot_index;
1968 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
1969 V_008DFC_SQ_EXP_POS + index,
1970 &pos_args[index]);
1971 break;
1972 default:
1973 break;
1974 }
1975 }
1976
1977 /* We need to add the position output manually if it's missing. */
1978 if (!pos_args[0].out[0]) {
1979 pos_args[0].enabled_channels = 0xf; /* writemask */
1980 pos_args[0].valid_mask = 0; /* EXEC mask */
1981 pos_args[0].done = 0; /* last export? */
1982 pos_args[0].target = V_008DFC_SQ_EXP_POS;
1983 pos_args[0].compr = 0; /* COMPR flag */
1984 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
1985 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
1986 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
1987 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
1988 }
1989
1990 if (outinfo->writes_pointsize ||
1991 outinfo->writes_layer ||
1992 outinfo->writes_viewport_index) {
1993 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
1994 (outinfo->writes_layer == true ? 4 : 0));
1995 pos_args[1].valid_mask = 0;
1996 pos_args[1].done = 0;
1997 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
1998 pos_args[1].compr = 0;
1999 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2000 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2001 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2002 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2003
2004 if (outinfo->writes_pointsize == true)
2005 pos_args[1].out[0] = psize_value;
2006 if (outinfo->writes_layer == true)
2007 pos_args[1].out[2] = layer_value;
2008 if (outinfo->writes_viewport_index == true) {
2009 if (ctx->args->options->chip_class >= GFX9) {
2010 /* GFX9 has the layer in out.z[10:0] and the viewport
2011 * index in out.z[19:16].
2012 */
2013 LLVMValueRef v = viewport_value;
2014 v = ac_to_integer(&ctx->ac, v);
2015 v = LLVMBuildShl(ctx->ac.builder, v,
2016 LLVMConstInt(ctx->ac.i32, 16, false),
2017 "");
2018 v = LLVMBuildOr(ctx->ac.builder, v,
2019 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2020
2021 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2022 pos_args[1].enabled_channels |= 1 << 2;
2023 } else {
2024 pos_args[1].out[3] = viewport_value;
2025 pos_args[1].enabled_channels |= 1 << 3;
2026 }
2027 }
2028 }
2029
2030 for (i = 0; i < 4; i++) {
2031 if (pos_args[i].out[0])
2032 outinfo->pos_exports++;
2033 }
2034
2035 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
2036 * Setting valid_mask=1 prevents it and has no other effect.
2037 */
2038 if (ctx->ac.family == CHIP_NAVI10 ||
2039 ctx->ac.family == CHIP_NAVI12 ||
2040 ctx->ac.family == CHIP_NAVI14)
2041 pos_args[0].valid_mask = 1;
2042
2043 pos_idx = 0;
2044 for (i = 0; i < 4; i++) {
2045 if (!pos_args[i].out[0])
2046 continue;
2047
2048 /* Specify the target we are exporting */
2049 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2050
2051 if (pos_idx == outinfo->pos_exports)
2052 /* Specify that this is the last export */
2053 pos_args[i].done = 1;
2054
2055 ac_build_export(&ctx->ac, &pos_args[i]);
2056 }
2057
2058 /* Build parameter exports */
2059 radv_build_param_exports(ctx, outputs, noutput, outinfo, export_clip_dists);
2060 }
2061
2062 static void
2063 handle_vs_outputs_post(struct radv_shader_context *ctx,
2064 bool export_prim_id,
2065 bool export_clip_dists,
2066 struct radv_vs_output_info *outinfo)
2067 {
2068 struct radv_shader_output_values *outputs;
2069 unsigned noutput = 0;
2070
2071 if (ctx->args->options->key.has_multiview_view_index) {
2072 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2073 if(!*tmp_out) {
2074 for(unsigned i = 0; i < 4; ++i)
2075 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2076 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2077 }
2078
2079 LLVMValueRef view_index = ac_get_arg(&ctx->ac, ctx->args->ac.view_index);
2080 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, view_index), *tmp_out);
2081 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2082 }
2083
2084 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2085 sizeof(outinfo->vs_output_param_offset));
2086 outinfo->pos_exports = 0;
2087
2088 if (!ctx->args->options->use_ngg_streamout &&
2089 ctx->args->shader_info->so.num_outputs &&
2090 !ctx->args->is_gs_copy_shader) {
2091 /* The GS copy shader emission already emits streamout. */
2092 radv_emit_streamout(ctx, 0);
2093 }
2094
2095 /* Allocate a temporary array for the output values. */
2096 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_prim_id;
2097 outputs = malloc(num_outputs * sizeof(outputs[0]));
2098
2099 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2100 if (!(ctx->output_mask & (1ull << i)))
2101 continue;
2102
2103 outputs[noutput].slot_name = i;
2104 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
2105
2106 if (ctx->stage == MESA_SHADER_VERTEX &&
2107 !ctx->args->is_gs_copy_shader) {
2108 outputs[noutput].usage_mask =
2109 ctx->args->shader_info->vs.output_usage_mask[i];
2110 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2111 outputs[noutput].usage_mask =
2112 ctx->args->shader_info->tes.output_usage_mask[i];
2113 } else {
2114 assert(ctx->args->is_gs_copy_shader);
2115 outputs[noutput].usage_mask =
2116 ctx->args->shader_info->gs.output_usage_mask[i];
2117 }
2118
2119 for (unsigned j = 0; j < 4; j++) {
2120 outputs[noutput].values[j] =
2121 ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2122 }
2123
2124 noutput++;
2125 }
2126
2127 /* Export PrimitiveID. */
2128 if (export_prim_id) {
2129 outputs[noutput].slot_name = VARYING_SLOT_PRIMITIVE_ID;
2130 outputs[noutput].slot_index = 0;
2131 outputs[noutput].usage_mask = 0x1;
2132 outputs[noutput].values[0] =
2133 ac_get_arg(&ctx->ac, ctx->args->vs_prim_id);
2134 for (unsigned j = 1; j < 4; j++)
2135 outputs[noutput].values[j] = ctx->ac.f32_0;
2136 noutput++;
2137 }
2138
2139 radv_llvm_export_vs(ctx, outputs, noutput, outinfo, export_clip_dists);
2140
2141 free(outputs);
2142 }
2143
2144 static void
2145 handle_es_outputs_post(struct radv_shader_context *ctx,
2146 struct radv_es_output_info *outinfo)
2147 {
2148 int j;
2149 LLVMValueRef lds_base = NULL;
2150
2151 if (ctx->ac.chip_class >= GFX9) {
2152 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
2153 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
2154 LLVMValueRef wave_idx =
2155 ac_unpack_param(&ctx->ac,
2156 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 24, 4);
2157 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
2158 LLVMBuildMul(ctx->ac.builder, wave_idx,
2159 LLVMConstInt(ctx->ac.i32,
2160 ctx->ac.wave_size, false), ""), "");
2161 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
2162 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
2163 }
2164
2165 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2166 LLVMValueRef dw_addr = NULL;
2167 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2168 unsigned output_usage_mask;
2169 int param_index;
2170
2171 if (!(ctx->output_mask & (1ull << i)))
2172 continue;
2173
2174 if (ctx->stage == MESA_SHADER_VERTEX) {
2175 output_usage_mask =
2176 ctx->args->shader_info->vs.output_usage_mask[i];
2177 } else {
2178 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
2179 output_usage_mask =
2180 ctx->args->shader_info->tes.output_usage_mask[i];
2181 }
2182
2183 param_index = shader_io_get_unique_index(i);
2184
2185 if (lds_base) {
2186 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
2187 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
2188 "");
2189 }
2190
2191 for (j = 0; j < 4; j++) {
2192 if (!(output_usage_mask & (1 << j)))
2193 continue;
2194
2195 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2196 out_val = ac_to_integer(&ctx->ac, out_val);
2197 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
2198
2199 if (ctx->ac.chip_class >= GFX9) {
2200 LLVMValueRef dw_addr_offset =
2201 LLVMBuildAdd(ctx->ac.builder, dw_addr,
2202 LLVMConstInt(ctx->ac.i32,
2203 j, false), "");
2204
2205 ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
2206 } else {
2207 ac_build_buffer_store_dword(&ctx->ac,
2208 ctx->esgs_ring,
2209 out_val, 1,
2210 NULL,
2211 ac_get_arg(&ctx->ac, ctx->args->es2gs_offset),
2212 (4 * param_index + j) * 4,
2213 ac_glc | ac_slc | ac_swizzled);
2214 }
2215 }
2216 }
2217 }
2218
2219 static void
2220 handle_ls_outputs_post(struct radv_shader_context *ctx)
2221 {
2222 LLVMValueRef vertex_id = ctx->rel_auto_id;
2223 uint32_t num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
2224 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
2225 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
2226 vertex_dw_stride, "");
2227
2228 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2229 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2230
2231 if (!(ctx->output_mask & (1ull << i)))
2232 continue;
2233
2234 int param = shader_io_get_unique_index(i);
2235 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
2236 LLVMConstInt(ctx->ac.i32, param * 4, false),
2237 "");
2238 for (unsigned j = 0; j < 4; j++) {
2239 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2240 value = ac_to_integer(&ctx->ac, value);
2241 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
2242 ac_lds_store(&ctx->ac, dw_addr, value);
2243 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
2244 }
2245 }
2246 }
2247
2248 static LLVMValueRef get_wave_id_in_tg(struct radv_shader_context *ctx)
2249 {
2250 return ac_unpack_param(&ctx->ac,
2251 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 24, 4);
2252 }
2253
2254 static LLVMValueRef get_tgsize(struct radv_shader_context *ctx)
2255 {
2256 return ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 28, 4);
2257 }
2258
2259 static LLVMValueRef get_thread_id_in_tg(struct radv_shader_context *ctx)
2260 {
2261 LLVMBuilderRef builder = ctx->ac.builder;
2262 LLVMValueRef tmp;
2263 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
2264 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
2265 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
2266 }
2267
2268 static LLVMValueRef ngg_get_vtx_cnt(struct radv_shader_context *ctx)
2269 {
2270 return ac_build_bfe(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info),
2271 LLVMConstInt(ctx->ac.i32, 12, false),
2272 LLVMConstInt(ctx->ac.i32, 9, false),
2273 false);
2274 }
2275
2276 static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
2277 {
2278 return ac_build_bfe(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info),
2279 LLVMConstInt(ctx->ac.i32, 22, false),
2280 LLVMConstInt(ctx->ac.i32, 9, false),
2281 false);
2282 }
2283
2284 static LLVMValueRef ngg_get_ordered_id(struct radv_shader_context *ctx)
2285 {
2286 return ac_build_bfe(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info),
2287 ctx->ac.i32_0,
2288 LLVMConstInt(ctx->ac.i32, 12, false),
2289 false);
2290 }
2291
2292 static LLVMValueRef
2293 ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
2294 {
2295 unsigned num_outputs = util_bitcount64(ctx->output_mask);
2296
2297 if (ctx->args->options->key.has_multiview_view_index)
2298 num_outputs++;
2299
2300 LLVMTypeRef elements[2] = {
2301 LLVMArrayType(ctx->ac.i32, 4 * num_outputs),
2302 LLVMArrayType(ctx->ac.i8, 4),
2303 };
2304 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
2305 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
2306 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
2307 }
2308
2309 /**
2310 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
2311 * is in emit order; that is:
2312 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
2313 * - during vertex emit, i.e. while the API GS shader invocation is running,
2314 * N = threadidx * gs_max_out_vertices + emitidx
2315 *
2316 * Goals of the LDS memory layout:
2317 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
2318 * in uniform control flow
2319 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
2320 * culling
2321 * 3. Agnostic to the number of waves (since we don't know it before compiling)
2322 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
2323 * 5. Avoid wasting memory.
2324 *
2325 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
2326 * layout, elimination of bank conflicts requires that each vertex occupy an
2327 * odd number of dwords. We use the additional dword to store the output stream
2328 * index as well as a flag to indicate whether this vertex ends a primitive
2329 * for rasterization.
2330 *
2331 * Swizzling is required to satisfy points 1 and 2 simultaneously.
2332 *
2333 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
2334 * Indices are swizzled in groups of 32, which ensures point 1 without
2335 * disturbing point 2.
2336 *
2337 * \return an LDS pointer to type {[N x i32], [4 x i8]}
2338 */
2339 static LLVMValueRef
2340 ngg_gs_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef vertexidx)
2341 {
2342 LLVMBuilderRef builder = ctx->ac.builder;
2343 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
2344
2345 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
2346 unsigned write_stride_2exp = ffs(ctx->shader->info.gs.vertices_out) - 1;
2347 if (write_stride_2exp) {
2348 LLVMValueRef row =
2349 LLVMBuildLShr(builder, vertexidx,
2350 LLVMConstInt(ctx->ac.i32, 5, false), "");
2351 LLVMValueRef swizzle =
2352 LLVMBuildAnd(builder, row,
2353 LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
2354 false), "");
2355 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
2356 }
2357
2358 return ac_build_gep0(&ctx->ac, storage, vertexidx);
2359 }
2360
2361 static LLVMValueRef
2362 ngg_gs_emit_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef gsthread,
2363 LLVMValueRef emitidx)
2364 {
2365 LLVMBuilderRef builder = ctx->ac.builder;
2366 LLVMValueRef tmp;
2367
2368 tmp = LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false);
2369 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
2370 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
2371 return ngg_gs_vertex_ptr(ctx, vertexidx);
2372 }
2373
2374 /* Send GS Alloc Req message from the first wave of the group to SPI.
2375 * Message payload is:
2376 * - bits 0..10: vertices in group
2377 * - bits 12..22: primitives in group
2378 */
2379 static void build_sendmsg_gs_alloc_req(struct radv_shader_context *ctx,
2380 LLVMValueRef vtx_cnt,
2381 LLVMValueRef prim_cnt)
2382 {
2383 LLVMBuilderRef builder = ctx->ac.builder;
2384 LLVMValueRef tmp;
2385
2386 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
2387 ac_build_ifcc(&ctx->ac, tmp, 5020);
2388
2389 tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
2390 tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
2391 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
2392
2393 ac_build_endif(&ctx->ac, 5020);
2394 }
2395
2396 struct ngg_prim {
2397 unsigned num_vertices;
2398 LLVMValueRef isnull;
2399 LLVMValueRef index[3];
2400 LLVMValueRef edgeflag[3];
2401 };
2402
2403 static void build_export_prim(struct radv_shader_context *ctx,
2404 const struct ngg_prim *prim)
2405 {
2406 LLVMBuilderRef builder = ctx->ac.builder;
2407 struct ac_export_args args;
2408 LLVMValueRef tmp;
2409
2410 tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
2411 args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
2412
2413 for (unsigned i = 0; i < prim->num_vertices; ++i) {
2414 tmp = LLVMBuildShl(builder, prim->index[i],
2415 LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
2416 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
2417 tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
2418 tmp = LLVMBuildShl(builder, tmp,
2419 LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
2420 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
2421 }
2422
2423 args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
2424 args.out[1] = LLVMGetUndef(ctx->ac.f32);
2425 args.out[2] = LLVMGetUndef(ctx->ac.f32);
2426 args.out[3] = LLVMGetUndef(ctx->ac.f32);
2427
2428 args.target = V_008DFC_SQ_EXP_PRIM;
2429 args.enabled_channels = 1;
2430 args.done = true;
2431 args.valid_mask = false;
2432 args.compr = false;
2433
2434 ac_build_export(&ctx->ac, &args);
2435 }
2436
2437 static struct radv_stream_output *
2438 radv_get_stream_output_by_loc(struct radv_streamout_info *so, unsigned location)
2439 {
2440 for (unsigned i = 0; i < so->num_outputs; ++i) {
2441 if (so->outputs[i].location == location)
2442 return &so->outputs[i];
2443 }
2444
2445 return NULL;
2446 }
2447
2448 static void build_streamout_vertex(struct radv_shader_context *ctx,
2449 LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
2450 unsigned stream, LLVMValueRef offset_vtx,
2451 LLVMValueRef vertexptr)
2452 {
2453 struct radv_streamout_info *so = &ctx->args->shader_info->so;
2454 LLVMBuilderRef builder = ctx->ac.builder;
2455 LLVMValueRef offset[4] = {};
2456 LLVMValueRef tmp;
2457
2458 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2459 if (!wg_offset_dw[buffer])
2460 continue;
2461
2462 tmp = LLVMBuildMul(builder, offset_vtx,
2463 LLVMConstInt(ctx->ac.i32, so->strides[buffer], false), "");
2464 tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
2465 offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
2466 }
2467
2468 if (ctx->stage == MESA_SHADER_GEOMETRY) {
2469 struct radv_shader_output_values outputs[AC_LLVM_MAX_OUTPUTS];
2470 unsigned noutput = 0;
2471 unsigned out_idx = 0;
2472
2473 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2474 unsigned output_usage_mask =
2475 ctx->args->shader_info->gs.output_usage_mask[i];
2476 uint8_t output_stream =
2477 output_stream = ctx->args->shader_info->gs.output_streams[i];
2478
2479 if (!(ctx->output_mask & (1ull << i)) ||
2480 output_stream != stream)
2481 continue;
2482
2483 outputs[noutput].slot_name = i;
2484 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
2485 outputs[noutput].usage_mask = output_usage_mask;
2486
2487 int length = util_last_bit(output_usage_mask);
2488
2489 for (unsigned j = 0; j < length; j++, out_idx++) {
2490 if (!(output_usage_mask & (1 << j)))
2491 continue;
2492
2493 tmp = ac_build_gep0(&ctx->ac, vertexptr,
2494 LLVMConstInt(ctx->ac.i32, out_idx, false));
2495 outputs[noutput].values[j] = LLVMBuildLoad(builder, tmp, "");
2496 }
2497
2498 for (unsigned j = length; j < 4; j++)
2499 outputs[noutput].values[j] = LLVMGetUndef(ctx->ac.f32);
2500
2501 noutput++;
2502 }
2503
2504 for (unsigned i = 0; i < noutput; i++) {
2505 struct radv_stream_output *output =
2506 radv_get_stream_output_by_loc(so, outputs[i].slot_name);
2507
2508 if (!output ||
2509 output->stream != stream)
2510 continue;
2511
2512 struct radv_shader_output_values out = {};
2513
2514 for (unsigned j = 0; j < 4; j++) {
2515 out.values[j] = outputs[i].values[j];
2516 }
2517
2518 radv_emit_stream_output(ctx, so_buffer, offset, output, &out);
2519 }
2520 } else {
2521 for (unsigned i = 0; i < so->num_outputs; ++i) {
2522 struct radv_stream_output *output =
2523 &ctx->args->shader_info->so.outputs[i];
2524
2525 if (stream != output->stream)
2526 continue;
2527
2528 struct radv_shader_output_values out = {};
2529
2530 for (unsigned comp = 0; comp < 4; comp++) {
2531 if (!(output->component_mask & (1 << comp)))
2532 continue;
2533
2534 tmp = ac_build_gep0(&ctx->ac, vertexptr,
2535 LLVMConstInt(ctx->ac.i32, 4 * i + comp, false));
2536 out.values[comp] = LLVMBuildLoad(builder, tmp, "");
2537 }
2538
2539 radv_emit_stream_output(ctx, so_buffer, offset, output, &out);
2540 }
2541 }
2542 }
2543
2544 struct ngg_streamout {
2545 LLVMValueRef num_vertices;
2546
2547 /* per-thread data */
2548 LLVMValueRef prim_enable[4]; /* i1 per stream */
2549 LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
2550
2551 /* Output */
2552 LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
2553 };
2554
2555 /**
2556 * Build streamout logic.
2557 *
2558 * Implies a barrier.
2559 *
2560 * Writes number of emitted primitives to gs_ngg_scratch[4:7].
2561 *
2562 * Clobbers gs_ngg_scratch[8:].
2563 */
2564 static void build_streamout(struct radv_shader_context *ctx,
2565 struct ngg_streamout *nggso)
2566 {
2567 struct radv_streamout_info *so = &ctx->args->shader_info->so;
2568 LLVMBuilderRef builder = ctx->ac.builder;
2569 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->args->streamout_buffers);
2570 LLVMValueRef tid = get_thread_id_in_tg(ctx);
2571 LLVMValueRef cond, tmp, tmp2;
2572 LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
2573 LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
2574 LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
2575 LLVMValueRef so_buffer[4] = {};
2576 unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
2577 (nggso->vertices[2] ? 1 : 0);
2578 LLVMValueRef prim_stride_dw[4] = {};
2579 LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
2580 int stream_for_buffer[4] = { -1, -1, -1, -1 };
2581 unsigned bufmask_for_stream[4] = {};
2582 bool isgs = ctx->stage == MESA_SHADER_GEOMETRY;
2583 unsigned scratch_emit_base = isgs ? 4 : 0;
2584 LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
2585 unsigned scratch_offset_base = isgs ? 8 : 4;
2586 LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
2587
2588 ac_llvm_add_target_dep_function_attr(ctx->main_function,
2589 "amdgpu-gds-size", 256);
2590
2591 /* Determine the mapping of streamout buffers to vertex streams. */
2592 for (unsigned i = 0; i < so->num_outputs; ++i) {
2593 unsigned buf = so->outputs[i].buffer;
2594 unsigned stream = so->outputs[i].stream;
2595 assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
2596 stream_for_buffer[buf] = stream;
2597 bufmask_for_stream[stream] |= 1 << buf;
2598 }
2599
2600 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2601 if (stream_for_buffer[buffer] == -1)
2602 continue;
2603
2604 assert(so->strides[buffer]);
2605
2606 LLVMValueRef stride_for_buffer =
2607 LLVMConstInt(ctx->ac.i32, so->strides[buffer], false);
2608 prim_stride_dw[buffer] =
2609 LLVMBuildMul(builder, stride_for_buffer,
2610 nggso->num_vertices, "");
2611 prim_stride_dw_vgpr = ac_build_writelane(
2612 &ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
2613 LLVMConstInt(ctx->ac.i32, buffer, false));
2614
2615 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, buffer, false);
2616 so_buffer[buffer] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
2617 offset);
2618 }
2619
2620 cond = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
2621 ac_build_ifcc(&ctx->ac, cond, 5200);
2622 {
2623 LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
2624 LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
2625
2626 /* Advance the streamout offsets in GDS. */
2627 LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
2628 LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
2629
2630 cond = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
2631 ac_build_ifcc(&ctx->ac, cond, 5210);
2632 {
2633 /* Fetch the number of generated primitives and store
2634 * it in GDS for later use.
2635 */
2636 if (isgs) {
2637 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
2638 tmp = LLVMBuildLoad(builder, tmp, "");
2639 } else {
2640 tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0,
2641 ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
2642 }
2643 LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
2644
2645 unsigned swizzle[4];
2646 int unused_stream = -1;
2647 for (unsigned stream = 0; stream < 4; ++stream) {
2648 if (!ctx->args->shader_info->gs.num_stream_output_components[stream]) {
2649 unused_stream = stream;
2650 break;
2651 }
2652 }
2653 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2654 if (stream_for_buffer[buffer] >= 0) {
2655 swizzle[buffer] = stream_for_buffer[buffer];
2656 } else {
2657 assert(unused_stream >= 0);
2658 swizzle[buffer] = unused_stream;
2659 }
2660 }
2661
2662 tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
2663 swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2664 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
2665
2666 LLVMValueRef args[] = {
2667 LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
2668 tmp,
2669 ctx->ac.i32_0, // ordering
2670 ctx->ac.i32_0, // scope
2671 ctx->ac.i1false, // isVolatile
2672 LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
2673 ctx->ac.i1true, // wave release
2674 ctx->ac.i1true, // wave done
2675 };
2676
2677 tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
2678 ctx->ac.i32, args, ARRAY_SIZE(args), 0);
2679
2680 /* Keep offsets in a VGPR for quick retrieval via readlane by
2681 * the first wave for bounds checking, and also store in LDS
2682 * for retrieval by all waves later. */
2683 LLVMBuildStore(builder, tmp, offsets_vgpr);
2684
2685 tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
2686 scratch_offset_basev, "");
2687 tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
2688 LLVMBuildStore(builder, tmp, tmp2);
2689 }
2690 ac_build_endif(&ctx->ac, 5210);
2691
2692 /* Determine the max emit per buffer. This is done via the SALU, in part
2693 * because LLVM can't generate divide-by-multiply if we try to do this
2694 * via VALU with one lane per buffer.
2695 */
2696 LLVMValueRef max_emit[4] = {};
2697 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2698 if (stream_for_buffer[buffer] == -1)
2699 continue;
2700
2701 /* Compute the streamout buffer size in DWORD. */
2702 LLVMValueRef bufsize_dw =
2703 LLVMBuildLShr(builder,
2704 LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
2705 i32_2, "");
2706
2707 /* Load the streamout buffer offset from GDS. */
2708 tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
2709 LLVMValueRef offset_dw =
2710 ac_build_readlane(&ctx->ac, tmp,
2711 LLVMConstInt(ctx->ac.i32, buffer, false));
2712
2713 /* Compute the remaining size to emit. */
2714 LLVMValueRef remaining_dw =
2715 LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
2716 tmp = LLVMBuildUDiv(builder, remaining_dw,
2717 prim_stride_dw[buffer], "");
2718
2719 cond = LLVMBuildICmp(builder, LLVMIntULT,
2720 bufsize_dw, offset_dw, "");
2721 max_emit[buffer] = LLVMBuildSelect(builder, cond,
2722 ctx->ac.i32_0, tmp, "");
2723 }
2724
2725 /* Determine the number of emitted primitives per stream and fixup the
2726 * GDS counter if necessary.
2727 *
2728 * This is complicated by the fact that a single stream can emit to
2729 * multiple buffers (but luckily not vice versa).
2730 */
2731 LLVMValueRef emit_vgpr = ctx->ac.i32_0;
2732
2733 for (unsigned stream = 0; stream < 4; ++stream) {
2734 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
2735 continue;
2736
2737 /* Load the number of generated primitives from GDS and
2738 * determine that number for the given stream.
2739 */
2740 tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
2741 LLVMValueRef generated =
2742 ac_build_readlane(&ctx->ac, tmp,
2743 LLVMConstInt(ctx->ac.i32, stream, false));
2744
2745
2746 /* Compute the number of emitted primitives. */
2747 LLVMValueRef emit = generated;
2748 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2749 if (stream_for_buffer[buffer] == stream)
2750 emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
2751 }
2752
2753 /* Store the number of emitted primitives for that
2754 * stream.
2755 */
2756 emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
2757 LLVMConstInt(ctx->ac.i32, stream, false));
2758
2759 /* Fixup the offset using a plain GDS atomic if we overflowed. */
2760 cond = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
2761 ac_build_ifcc(&ctx->ac, cond, 5221); /* scalar branch */
2762 tmp = LLVMBuildLShr(builder,
2763 LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
2764 ac_get_thread_id(&ctx->ac), "");
2765 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
2766 ac_build_ifcc(&ctx->ac, tmp, 5222);
2767 {
2768 tmp = LLVMBuildSub(builder, generated, emit, "");
2769 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
2770 tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
2771 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
2772 LLVMAtomicOrderingMonotonic, false);
2773 }
2774 ac_build_endif(&ctx->ac, 5222);
2775 ac_build_endif(&ctx->ac, 5221);
2776 }
2777
2778 /* Store the number of emitted primitives to LDS for later use. */
2779 cond = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
2780 ac_build_ifcc(&ctx->ac, cond, 5225);
2781 {
2782 tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
2783 scratch_emit_basev, "");
2784 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
2785 LLVMBuildStore(builder, emit_vgpr, tmp);
2786 }
2787 ac_build_endif(&ctx->ac, 5225);
2788 }
2789 ac_build_endif(&ctx->ac, 5200);
2790
2791 /* Determine the workgroup-relative per-thread / primitive offset into
2792 * the streamout buffers */
2793 struct ac_wg_scan primemit_scan[4] = {};
2794
2795 if (isgs) {
2796 for (unsigned stream = 0; stream < 4; ++stream) {
2797 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
2798 continue;
2799
2800 primemit_scan[stream].enable_exclusive = true;
2801 primemit_scan[stream].op = nir_op_iadd;
2802 primemit_scan[stream].src = nggso->prim_enable[stream];
2803 primemit_scan[stream].scratch =
2804 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
2805 LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
2806 primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
2807 primemit_scan[stream].numwaves = get_tgsize(ctx);
2808 primemit_scan[stream].maxwaves = 8;
2809 ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
2810 }
2811 }
2812
2813 ac_build_s_barrier(&ctx->ac);
2814
2815 /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
2816 LLVMValueRef wgoffset_dw[4] = {};
2817
2818 {
2819 LLVMValueRef scratch_vgpr;
2820
2821 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
2822 scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
2823
2824 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2825 if (stream_for_buffer[buffer] >= 0) {
2826 wgoffset_dw[buffer] = ac_build_readlane(
2827 &ctx->ac, scratch_vgpr,
2828 LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
2829 }
2830 }
2831
2832 for (unsigned stream = 0; stream < 4; ++stream) {
2833 if (ctx->args->shader_info->gs.num_stream_output_components[stream]) {
2834 nggso->emit[stream] = ac_build_readlane(
2835 &ctx->ac, scratch_vgpr,
2836 LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
2837 }
2838 }
2839 }
2840
2841 /* Write out primitive data */
2842 for (unsigned stream = 0; stream < 4; ++stream) {
2843 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
2844 continue;
2845
2846 if (isgs) {
2847 ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
2848 } else {
2849 primemit_scan[stream].result_exclusive = tid;
2850 }
2851
2852 cond = LLVMBuildICmp(builder, LLVMIntULT,
2853 primemit_scan[stream].result_exclusive,
2854 nggso->emit[stream], "");
2855 cond = LLVMBuildAnd(builder, cond, nggso->prim_enable[stream], "");
2856 ac_build_ifcc(&ctx->ac, cond, 5240);
2857 {
2858 LLVMValueRef offset_vtx =
2859 LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
2860 nggso->num_vertices, "");
2861
2862 for (unsigned i = 0; i < max_num_vertices; ++i) {
2863 cond = LLVMBuildICmp(builder, LLVMIntULT,
2864 LLVMConstInt(ctx->ac.i32, i, false),
2865 nggso->num_vertices, "");
2866 ac_build_ifcc(&ctx->ac, cond, 5241);
2867 build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
2868 stream, offset_vtx, nggso->vertices[i]);
2869 ac_build_endif(&ctx->ac, 5241);
2870 offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
2871 }
2872 }
2873 ac_build_endif(&ctx->ac, 5240);
2874 }
2875 }
2876
2877 static unsigned ngg_nogs_vertex_size(struct radv_shader_context *ctx)
2878 {
2879 unsigned lds_vertex_size = 0;
2880
2881 if (ctx->args->shader_info->so.num_outputs)
2882 lds_vertex_size = 4 * ctx->args->shader_info->so.num_outputs + 1;
2883
2884 return lds_vertex_size;
2885 }
2886
2887 /**
2888 * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
2889 * for the vertex outputs.
2890 */
2891 static LLVMValueRef ngg_nogs_vertex_ptr(struct radv_shader_context *ctx,
2892 LLVMValueRef vtxid)
2893 {
2894 /* The extra dword is used to avoid LDS bank conflicts. */
2895 unsigned vertex_size = ngg_nogs_vertex_size(ctx);
2896 LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
2897 LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
2898 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
2899 return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
2900 }
2901
2902 static void
2903 handle_ngg_outputs_post_1(struct radv_shader_context *ctx)
2904 {
2905 struct radv_streamout_info *so = &ctx->args->shader_info->so;
2906 LLVMBuilderRef builder = ctx->ac.builder;
2907 LLVMValueRef vertex_ptr = NULL;
2908 LLVMValueRef tmp, tmp2;
2909
2910 assert((ctx->stage == MESA_SHADER_VERTEX ||
2911 ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->args->is_gs_copy_shader);
2912
2913 if (!ctx->args->shader_info->so.num_outputs)
2914 return;
2915
2916 vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
2917
2918 for (unsigned i = 0; i < so->num_outputs; ++i) {
2919 struct radv_stream_output *output =
2920 &ctx->args->shader_info->so.outputs[i];
2921
2922 unsigned loc = output->location;
2923
2924 for (unsigned comp = 0; comp < 4; comp++) {
2925 if (!(output->component_mask & (1 << comp)))
2926 continue;
2927
2928 tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
2929 LLVMConstInt(ctx->ac.i32, 4 * i + comp, false));
2930 tmp2 = LLVMBuildLoad(builder,
2931 ctx->abi.outputs[4 * loc + comp], "");
2932 tmp2 = ac_to_integer(&ctx->ac, tmp2);
2933 LLVMBuildStore(builder, tmp2, tmp);
2934 }
2935 }
2936 }
2937
2938 static void
2939 handle_ngg_outputs_post_2(struct radv_shader_context *ctx)
2940 {
2941 LLVMBuilderRef builder = ctx->ac.builder;
2942 LLVMValueRef tmp;
2943
2944 assert((ctx->stage == MESA_SHADER_VERTEX ||
2945 ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->args->is_gs_copy_shader);
2946
2947 LLVMValueRef prims_in_wave = ac_unpack_param(&ctx->ac,
2948 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 8, 8);
2949 LLVMValueRef vtx_in_wave = ac_unpack_param(&ctx->ac,
2950 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 0, 8);
2951 LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
2952 ac_get_thread_id(&ctx->ac), prims_in_wave, "");
2953 LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
2954 ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
2955 LLVMValueRef vtxindex[] = {
2956 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[0]), 0, 16),
2957 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[0]), 16, 16),
2958 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[2]), 0, 16),
2959 };
2960
2961 /* Determine the number of vertices per primitive. */
2962 unsigned num_vertices;
2963 LLVMValueRef num_vertices_val;
2964
2965 if (ctx->stage == MESA_SHADER_VERTEX) {
2966 LLVMValueRef outprim_val =
2967 LLVMConstInt(ctx->ac.i32,
2968 ctx->args->options->key.vs.outprim, false);
2969 num_vertices_val = LLVMBuildAdd(builder, outprim_val,
2970 ctx->ac.i32_1, "");
2971 num_vertices = 3; /* TODO: optimize for points & lines */
2972 } else {
2973 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
2974
2975 if (ctx->shader->info.tess.point_mode)
2976 num_vertices = 1;
2977 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
2978 num_vertices = 2;
2979 else
2980 num_vertices = 3;
2981
2982 num_vertices_val = LLVMConstInt(ctx->ac.i32, num_vertices, false);
2983 }
2984
2985 /* Streamout */
2986 if (ctx->args->shader_info->so.num_outputs) {
2987 struct ngg_streamout nggso = {};
2988
2989 nggso.num_vertices = num_vertices_val;
2990 nggso.prim_enable[0] = is_gs_thread;
2991
2992 for (unsigned i = 0; i < num_vertices; ++i)
2993 nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
2994
2995 build_streamout(ctx, &nggso);
2996 }
2997
2998 /* Copy Primitive IDs from GS threads to the LDS address corresponding
2999 * to the ES thread of the provoking vertex.
3000 */
3001 if (ctx->stage == MESA_SHADER_VERTEX &&
3002 ctx->args->options->key.vs_common_out.export_prim_id) {
3003 if (ctx->args->shader_info->so.num_outputs)
3004 ac_build_s_barrier(&ctx->ac);
3005
3006 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
3007 /* Extract the PROVOKING_VTX_INDEX field. */
3008 LLVMValueRef provoking_vtx_in_prim =
3009 LLVMConstInt(ctx->ac.i32, 0, false);
3010
3011 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
3012 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
3013 LLVMValueRef provoking_vtx_index =
3014 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
3015
3016 LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args->ac.gs_prim_id),
3017 ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
3018 ac_build_endif(&ctx->ac, 5400);
3019 }
3020
3021 /* TODO: primitive culling */
3022
3023 build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
3024
3025 /* TODO: streamout queries */
3026 /* Export primitive data to the index buffer. Format is:
3027 * - bits 0..8: index 0
3028 * - bit 9: edge flag 0
3029 * - bits 10..18: index 1
3030 * - bit 19: edge flag 1
3031 * - bits 20..28: index 2
3032 * - bit 29: edge flag 2
3033 * - bit 31: null primitive (skip)
3034 *
3035 * For the first version, we will always build up all three indices
3036 * independent of the primitive type. The additional garbage data
3037 * shouldn't hurt.
3038 *
3039 * TODO: culling depends on the primitive type, so can have some
3040 * interaction here.
3041 */
3042 ac_build_ifcc(&ctx->ac, is_gs_thread, 6001);
3043 {
3044 struct ngg_prim prim = {};
3045
3046 prim.num_vertices = num_vertices;
3047 prim.isnull = ctx->ac.i1false;
3048 memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
3049
3050 for (unsigned i = 0; i < num_vertices; ++i) {
3051 tmp = LLVMBuildLShr(builder,
3052 ac_get_arg(&ctx->ac, ctx->args->ac.gs_invocation_id),
3053 LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
3054 prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3055 }
3056
3057 build_export_prim(ctx, &prim);
3058 }
3059 ac_build_endif(&ctx->ac, 6001);
3060
3061 /* Export per-vertex data (positions and parameters). */
3062 ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
3063 {
3064 struct radv_vs_output_info *outinfo =
3065 ctx->stage == MESA_SHADER_TESS_EVAL ?
3066 &ctx->args->shader_info->tes.outinfo : &ctx->args->shader_info->vs.outinfo;
3067
3068 /* Exporting the primitive ID is handled below. */
3069 /* TODO: use the new VS export path */
3070 handle_vs_outputs_post(ctx, false,
3071 ctx->args->options->key.vs_common_out.export_clip_dists,
3072 outinfo);
3073
3074 if (ctx->args->options->key.vs_common_out.export_prim_id) {
3075 unsigned param_count = outinfo->param_exports;
3076 LLVMValueRef values[4];
3077
3078 if (ctx->stage == MESA_SHADER_VERTEX) {
3079 /* Wait for GS stores to finish. */
3080 ac_build_s_barrier(&ctx->ac);
3081
3082 tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
3083 get_thread_id_in_tg(ctx));
3084 values[0] = LLVMBuildLoad(builder, tmp, "");
3085 } else {
3086 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
3087 values[0] = ac_get_arg(&ctx->ac, ctx->args->ac.tes_patch_id);
3088 }
3089
3090 values[0] = ac_to_float(&ctx->ac, values[0]);
3091 for (unsigned j = 1; j < 4; j++)
3092 values[j] = ctx->ac.f32_0;
3093
3094 radv_export_param(ctx, param_count, values, 0x1);
3095
3096 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
3097 outinfo->param_exports = param_count;
3098 }
3099 }
3100 ac_build_endif(&ctx->ac, 6002);
3101 }
3102
3103 static void gfx10_ngg_gs_emit_prologue(struct radv_shader_context *ctx)
3104 {
3105 /* Zero out the part of LDS scratch that is used to accumulate the
3106 * per-stream generated primitive count.
3107 */
3108 LLVMBuilderRef builder = ctx->ac.builder;
3109 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
3110 LLVMValueRef tid = get_thread_id_in_tg(ctx);
3111 LLVMBasicBlockRef merge_block;
3112 LLVMValueRef cond;
3113
3114 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
3115 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3116 merge_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3117
3118 cond = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
3119 LLVMBuildCondBr(ctx->ac.builder, cond, then_block, merge_block);
3120 LLVMPositionBuilderAtEnd(ctx->ac.builder, then_block);
3121
3122 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
3123 LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
3124
3125 LLVMBuildBr(ctx->ac.builder, merge_block);
3126 LLVMPositionBuilderAtEnd(ctx->ac.builder, merge_block);
3127
3128 ac_build_s_barrier(&ctx->ac);
3129 }
3130
3131 static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
3132 {
3133 LLVMBuilderRef builder = ctx->ac.builder;
3134 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
3135 LLVMValueRef tmp;
3136
3137 /* Zero out remaining (non-emitted) primitive flags.
3138 *
3139 * Note: Alternatively, we could pass the relevant gs_next_vertex to
3140 * the emit threads via LDS. This is likely worse in the expected
3141 * typical case where each GS thread emits the full set of
3142 * vertices.
3143 */
3144 for (unsigned stream = 0; stream < 4; ++stream) {
3145 unsigned num_components;
3146
3147 num_components =
3148 ctx->args->shader_info->gs.num_stream_output_components[stream];
3149 if (!num_components)
3150 continue;
3151
3152 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
3153
3154 ac_build_bgnloop(&ctx->ac, 5100);
3155
3156 const LLVMValueRef vertexidx =
3157 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3158 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
3159 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
3160 ac_build_ifcc(&ctx->ac, tmp, 5101);
3161 ac_build_break(&ctx->ac);
3162 ac_build_endif(&ctx->ac, 5101);
3163
3164 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3165 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3166
3167 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
3168 LLVMValueRef gep_idx[3] = {
3169 ctx->ac.i32_0, /* implied C-style array */
3170 ctx->ac.i32_1, /* second entry of struct */
3171 LLVMConstInt(ctx->ac.i32, stream, false),
3172 };
3173 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3174 LLVMBuildStore(builder, i8_0, tmp);
3175
3176 ac_build_endloop(&ctx->ac, 5100);
3177 }
3178
3179 /* Accumulate generated primitives counts across the entire threadgroup. */
3180 for (unsigned stream = 0; stream < 4; ++stream) {
3181 unsigned num_components;
3182
3183 num_components =
3184 ctx->args->shader_info->gs.num_stream_output_components[stream];
3185 if (!num_components)
3186 continue;
3187
3188 LLVMValueRef numprims =
3189 LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
3190 numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
3191
3192 tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
3193 ac_build_ifcc(&ctx->ac, tmp, 5105);
3194 {
3195 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
3196 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
3197 LLVMConstInt(ctx->ac.i32, stream, false)),
3198 numprims, LLVMAtomicOrderingMonotonic, false);
3199 }
3200 ac_build_endif(&ctx->ac, 5105);
3201 }
3202 }
3203
3204 static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
3205 {
3206 const unsigned verts_per_prim = si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive);
3207 LLVMBuilderRef builder = ctx->ac.builder;
3208 LLVMValueRef tmp, tmp2;
3209
3210 ac_build_s_barrier(&ctx->ac);
3211
3212 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
3213 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
3214
3215 /* Streamout */
3216 if (ctx->args->shader_info->so.num_outputs) {
3217 struct ngg_streamout nggso = {};
3218
3219 nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
3220
3221 LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
3222 for (unsigned stream = 0; stream < 4; ++stream) {
3223 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
3224 continue;
3225
3226 LLVMValueRef gep_idx[3] = {
3227 ctx->ac.i32_0, /* implicit C-style array */
3228 ctx->ac.i32_1, /* second value of struct */
3229 LLVMConstInt(ctx->ac.i32, stream, false),
3230 };
3231 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3232 tmp = LLVMBuildLoad(builder, tmp, "");
3233 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3234 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3235 nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
3236 }
3237
3238 for (unsigned i = 0; i < verts_per_prim; ++i) {
3239 tmp = LLVMBuildSub(builder, tid,
3240 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
3241 tmp = ngg_gs_vertex_ptr(ctx, tmp);
3242 nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
3243 }
3244
3245 build_streamout(ctx, &nggso);
3246 }
3247
3248 /* TODO: culling */
3249
3250 /* Determine vertex liveness. */
3251 LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
3252
3253 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3254 ac_build_ifcc(&ctx->ac, tmp, 5120);
3255 {
3256 for (unsigned i = 0; i < verts_per_prim; ++i) {
3257 const LLVMValueRef primidx =
3258 LLVMBuildAdd(builder, tid,
3259 LLVMConstInt(ctx->ac.i32, i, false), "");
3260
3261 if (i > 0) {
3262 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
3263 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
3264 }
3265
3266 /* Load primitive liveness */
3267 tmp = ngg_gs_vertex_ptr(ctx, primidx);
3268 LLVMValueRef gep_idx[3] = {
3269 ctx->ac.i32_0, /* implicit C-style array */
3270 ctx->ac.i32_1, /* second value of struct */
3271 ctx->ac.i32_0, /* stream 0 */
3272 };
3273 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3274 tmp = LLVMBuildLoad(builder, tmp, "");
3275 const LLVMValueRef primlive =
3276 LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3277
3278 tmp = LLVMBuildLoad(builder, vertliveptr, "");
3279 tmp = LLVMBuildOr(builder, tmp, primlive, ""),
3280 LLVMBuildStore(builder, tmp, vertliveptr);
3281
3282 if (i > 0)
3283 ac_build_endif(&ctx->ac, 5121 + i);
3284 }
3285 }
3286 ac_build_endif(&ctx->ac, 5120);
3287
3288 /* Inclusive scan addition across the current wave. */
3289 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
3290 struct ac_wg_scan vertlive_scan = {};
3291 vertlive_scan.op = nir_op_iadd;
3292 vertlive_scan.enable_reduce = true;
3293 vertlive_scan.enable_exclusive = true;
3294 vertlive_scan.src = vertlive;
3295 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
3296 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
3297 vertlive_scan.numwaves = get_tgsize(ctx);
3298 vertlive_scan.maxwaves = 8;
3299
3300 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
3301
3302 /* Skip all exports (including index exports) when possible. At least on
3303 * early gfx10 revisions this is also to avoid hangs.
3304 */
3305 LLVMValueRef have_exports =
3306 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
3307 num_emit_threads =
3308 LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
3309
3310 /* Allocate export space. Send this message as early as possible, to
3311 * hide the latency of the SQ <-> SPI roundtrip.
3312 *
3313 * Note: We could consider compacting primitives for export as well.
3314 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
3315 * prim data per clock and skips null primitives at no additional
3316 * cost. So compacting primitives can only be beneficial when
3317 * there are 4 or more contiguous null primitives in the export
3318 * (in the common case of single-dword prim exports).
3319 */
3320 build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
3321
3322 /* Setup the reverse vertex compaction permutation. We re-use stream 1
3323 * of the primitive liveness flags, relying on the fact that each
3324 * threadgroup can have at most 256 threads. */
3325 ac_build_ifcc(&ctx->ac, vertlive, 5130);
3326 {
3327 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
3328 LLVMValueRef gep_idx[3] = {
3329 ctx->ac.i32_0, /* implicit C-style array */
3330 ctx->ac.i32_1, /* second value of struct */
3331 ctx->ac.i32_1, /* stream 1 */
3332 };
3333 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3334 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
3335 LLVMBuildStore(builder, tmp2, tmp);
3336 }
3337 ac_build_endif(&ctx->ac, 5130);
3338
3339 ac_build_s_barrier(&ctx->ac);
3340
3341 /* Export primitive data */
3342 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3343 ac_build_ifcc(&ctx->ac, tmp, 5140);
3344 {
3345 LLVMValueRef flags;
3346 struct ngg_prim prim = {};
3347 prim.num_vertices = verts_per_prim;
3348
3349 tmp = ngg_gs_vertex_ptr(ctx, tid);
3350 LLVMValueRef gep_idx[3] = {
3351 ctx->ac.i32_0, /* implicit C-style array */
3352 ctx->ac.i32_1, /* second value of struct */
3353 ctx->ac.i32_0, /* primflag */
3354 };
3355 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3356 flags = LLVMBuildLoad(builder, tmp, "");
3357 prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
3358
3359 for (unsigned i = 0; i < verts_per_prim; ++i) {
3360 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
3361 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
3362 prim.edgeflag[i] = ctx->ac.i1false;
3363 }
3364
3365 /* Geometry shaders output triangle strips, but NGG expects
3366 * triangles. We need to change the vertex order for odd
3367 * triangles to get correct front/back facing by swapping 2
3368 * vertex indices, but we also have to keep the provoking
3369 * vertex in the same place.
3370 */
3371 if (verts_per_prim == 3) {
3372 LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
3373 is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
3374
3375 struct ngg_prim in = prim;
3376 prim.index[0] = in.index[0];
3377 prim.index[1] = LLVMBuildSelect(builder, is_odd,
3378 in.index[2], in.index[1], "");
3379 prim.index[2] = LLVMBuildSelect(builder, is_odd,
3380 in.index[1], in.index[2], "");
3381 }
3382
3383 build_export_prim(ctx, &prim);
3384 }
3385 ac_build_endif(&ctx->ac, 5140);
3386
3387 /* Export position and parameter data */
3388 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
3389 ac_build_ifcc(&ctx->ac, tmp, 5145);
3390 {
3391 struct radv_vs_output_info *outinfo = &ctx->args->shader_info->vs.outinfo;
3392 bool export_view_index = ctx->args->options->key.has_multiview_view_index;
3393 struct radv_shader_output_values *outputs;
3394 unsigned noutput = 0;
3395
3396 /* Allocate a temporary array for the output values. */
3397 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_view_index;
3398 outputs = calloc(num_outputs, sizeof(outputs[0]));
3399
3400 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
3401 sizeof(outinfo->vs_output_param_offset));
3402 outinfo->pos_exports = 0;
3403
3404 tmp = ngg_gs_vertex_ptr(ctx, tid);
3405 LLVMValueRef gep_idx[3] = {
3406 ctx->ac.i32_0, /* implicit C-style array */
3407 ctx->ac.i32_1, /* second value of struct */
3408 ctx->ac.i32_1, /* stream 1: source data index */
3409 };
3410 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3411 tmp = LLVMBuildLoad(builder, tmp, "");
3412 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
3413 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
3414
3415 unsigned out_idx = 0;
3416 gep_idx[1] = ctx->ac.i32_0;
3417 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3418 unsigned output_usage_mask =
3419 ctx->args->shader_info->gs.output_usage_mask[i];
3420 int length = util_last_bit(output_usage_mask);
3421
3422 if (!(ctx->output_mask & (1ull << i)))
3423 continue;
3424
3425 outputs[noutput].slot_name = i;
3426 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
3427 outputs[noutput].usage_mask = output_usage_mask;
3428
3429 for (unsigned j = 0; j < length; j++, out_idx++) {
3430 if (!(output_usage_mask & (1 << j)))
3431 continue;
3432
3433 gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
3434 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3435 tmp = LLVMBuildLoad(builder, tmp, "");
3436
3437 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
3438 if (ac_get_type_size(type) == 2) {
3439 tmp = ac_to_integer(&ctx->ac, tmp);
3440 tmp = LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i16, "");
3441 }
3442
3443 outputs[noutput].values[j] = ac_to_float(&ctx->ac, tmp);
3444 }
3445
3446 for (unsigned j = length; j < 4; j++)
3447 outputs[noutput].values[j] = LLVMGetUndef(ctx->ac.f32);
3448
3449 noutput++;
3450 }
3451
3452 /* Export ViewIndex. */
3453 if (export_view_index) {
3454 outputs[noutput].slot_name = VARYING_SLOT_LAYER;
3455 outputs[noutput].slot_index = 0;
3456 outputs[noutput].usage_mask = 0x1;
3457 outputs[noutput].values[0] =
3458 ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ac.view_index));
3459 for (unsigned j = 1; j < 4; j++)
3460 outputs[noutput].values[j] = ctx->ac.f32_0;
3461 noutput++;
3462 }
3463
3464 radv_llvm_export_vs(ctx, outputs, noutput, outinfo,
3465 ctx->args->options->key.vs_common_out.export_clip_dists);
3466 FREE(outputs);
3467 }
3468 ac_build_endif(&ctx->ac, 5145);
3469 }
3470
3471 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
3472 unsigned stream,
3473 LLVMValueRef *addrs)
3474 {
3475 LLVMBuilderRef builder = ctx->ac.builder;
3476 LLVMValueRef tmp;
3477 const LLVMValueRef vertexidx =
3478 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3479
3480 /* If this thread has already emitted the declared maximum number of
3481 * vertices, skip the write: excessive vertex emissions are not
3482 * supposed to have any effect.
3483 */
3484 const LLVMValueRef can_emit =
3485 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
3486 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
3487 ac_build_ifcc(&ctx->ac, can_emit, 9001);
3488
3489 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3490 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
3491 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3492
3493 const LLVMValueRef vertexptr =
3494 ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
3495 unsigned out_idx = 0;
3496 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3497 unsigned output_usage_mask =
3498 ctx->args->shader_info->gs.output_usage_mask[i];
3499 uint8_t output_stream =
3500 ctx->args->shader_info->gs.output_streams[i];
3501 LLVMValueRef *out_ptr = &addrs[i * 4];
3502 int length = util_last_bit(output_usage_mask);
3503
3504 if (!(ctx->output_mask & (1ull << i)) ||
3505 output_stream != stream)
3506 continue;
3507
3508 for (unsigned j = 0; j < length; j++, out_idx++) {
3509 if (!(output_usage_mask & (1 << j)))
3510 continue;
3511
3512 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
3513 out_ptr[j], "");
3514 LLVMValueRef gep_idx[3] = {
3515 ctx->ac.i32_0, /* implied C-style array */
3516 ctx->ac.i32_0, /* first entry of struct */
3517 LLVMConstInt(ctx->ac.i32, out_idx, false),
3518 };
3519 LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3520
3521 out_val = ac_to_integer(&ctx->ac, out_val);
3522 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
3523
3524 LLVMBuildStore(builder, out_val, ptr);
3525 }
3526 }
3527 assert(out_idx * 4 <= ctx->args->shader_info->gs.gsvs_vertex_size);
3528
3529 /* Determine and store whether this vertex completed a primitive. */
3530 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
3531
3532 tmp = LLVMConstInt(ctx->ac.i32, si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive) - 1, false);
3533 const LLVMValueRef iscompleteprim =
3534 LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
3535
3536 /* Since the geometry shader emits triangle strips, we need to
3537 * track which primitive is odd and swap vertex indices to get
3538 * the correct vertex order.
3539 */
3540 LLVMValueRef is_odd = ctx->ac.i1false;
3541 if (stream == 0 &&
3542 si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive) == 3) {
3543 tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
3544 is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
3545 }
3546
3547 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
3548 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
3549
3550 LLVMValueRef gep_idx[3] = {
3551 ctx->ac.i32_0, /* implied C-style array */
3552 ctx->ac.i32_1, /* second struct entry */
3553 LLVMConstInt(ctx->ac.i32, stream, false),
3554 };
3555 const LLVMValueRef primflagptr =
3556 LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3557
3558 /* The per-vertex primitive flag encoding:
3559 * bit 0: whether this vertex finishes a primitive
3560 * bit 1: whether the primitive is odd (if we are emitting triangle strips)
3561 */
3562 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
3563 tmp = LLVMBuildOr(builder, tmp,
3564 LLVMBuildShl(builder,
3565 LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""),
3566 ctx->ac.i8_1, ""), "");
3567 LLVMBuildStore(builder, tmp, primflagptr);
3568
3569 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
3570 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
3571 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
3572
3573 ac_build_endif(&ctx->ac, 9001);
3574 }
3575
3576 static void
3577 write_tess_factors(struct radv_shader_context *ctx)
3578 {
3579 unsigned stride, outer_comps, inner_comps;
3580 LLVMValueRef tcs_rel_ids = ac_get_arg(&ctx->ac, ctx->args->ac.tcs_rel_ids);
3581 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, tcs_rel_ids, 8, 5);
3582 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, tcs_rel_ids, 0, 8);
3583 unsigned tess_inner_index = 0, tess_outer_index;
3584 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
3585 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3586 int i;
3587 ac_emit_barrier(&ctx->ac, ctx->stage);
3588
3589 switch (ctx->args->options->key.tcs.primitive_mode) {
3590 case GL_ISOLINES:
3591 stride = 2;
3592 outer_comps = 2;
3593 inner_comps = 0;
3594 break;
3595 case GL_TRIANGLES:
3596 stride = 4;
3597 outer_comps = 3;
3598 inner_comps = 1;
3599 break;
3600 case GL_QUADS:
3601 stride = 6;
3602 outer_comps = 4;
3603 inner_comps = 2;
3604 break;
3605 default:
3606 return;
3607 }
3608
3609 ac_build_ifcc(&ctx->ac,
3610 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3611 invocation_id, ctx->ac.i32_0, ""), 6503);
3612
3613 lds_base = get_tcs_out_current_patch_data_offset(ctx);
3614
3615 if (inner_comps) {
3616 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3617 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3618 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
3619 }
3620
3621 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3622 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3623 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
3624
3625 for (i = 0; i < 4; i++) {
3626 inner[i] = LLVMGetUndef(ctx->ac.i32);
3627 outer[i] = LLVMGetUndef(ctx->ac.i32);
3628 }
3629
3630 // LINES reversal
3631 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
3632 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
3633 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3634 ctx->ac.i32_1, "");
3635 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
3636 } else {
3637 for (i = 0; i < outer_comps; i++) {
3638 outer[i] = out[i] =
3639 ac_lds_load(&ctx->ac, lds_outer);
3640 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3641 ctx->ac.i32_1, "");
3642 }
3643 for (i = 0; i < inner_comps; i++) {
3644 inner[i] = out[outer_comps+i] =
3645 ac_lds_load(&ctx->ac, lds_inner);
3646 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
3647 ctx->ac.i32_1, "");
3648 }
3649 }
3650
3651 /* Convert the outputs to vectors for stores. */
3652 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3653 vec1 = NULL;
3654
3655 if (stride > 4)
3656 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
3657
3658
3659 buffer = ctx->hs_ring_tess_factor;
3660 tf_base = ac_get_arg(&ctx->ac, ctx->args->tess_factor_offset);
3661 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3662 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
3663 unsigned tf_offset = 0;
3664
3665 if (ctx->ac.chip_class <= GFX8) {
3666 ac_build_ifcc(&ctx->ac,
3667 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3668 rel_patch_id, ctx->ac.i32_0, ""), 6504);
3669
3670 /* Store the dynamic HS control word. */
3671 ac_build_buffer_store_dword(&ctx->ac, buffer,
3672 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
3673 1, ctx->ac.i32_0, tf_base,
3674 0, ac_glc);
3675 tf_offset += 4;
3676
3677 ac_build_endif(&ctx->ac, 6504);
3678 }
3679
3680 /* Store the tessellation factors. */
3681 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3682 MIN2(stride, 4), byteoffset, tf_base,
3683 tf_offset, ac_glc);
3684 if (vec1)
3685 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3686 stride - 4, byteoffset, tf_base,
3687 16 + tf_offset, ac_glc);
3688
3689 //store to offchip for TES to read - only if TES reads them
3690 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
3691 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
3692 LLVMValueRef tf_inner_offset;
3693 unsigned param_outer, param_inner;
3694
3695 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3696 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
3697 LLVMConstInt(ctx->ac.i32, param_outer, 0));
3698
3699 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3700 util_next_power_of_two(outer_comps));
3701
3702 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
3703 outer_comps, tf_outer_offset,
3704 ac_get_arg(&ctx->ac, ctx->args->oc_lds),
3705 0, ac_glc);
3706 if (inner_comps) {
3707 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3708 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
3709 LLVMConstInt(ctx->ac.i32, param_inner, 0));
3710
3711 inner_vec = inner_comps == 1 ? inner[0] :
3712 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3713 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
3714 inner_comps, tf_inner_offset,
3715 ac_get_arg(&ctx->ac, ctx->args->oc_lds),
3716 0, ac_glc);
3717 }
3718 }
3719
3720 ac_build_endif(&ctx->ac, 6503);
3721 }
3722
3723 static void
3724 handle_tcs_outputs_post(struct radv_shader_context *ctx)
3725 {
3726 write_tess_factors(ctx);
3727 }
3728
3729 static bool
3730 si_export_mrt_color(struct radv_shader_context *ctx,
3731 LLVMValueRef *color, unsigned index,
3732 struct ac_export_args *args)
3733 {
3734 /* Export */
3735 si_llvm_init_export_args(ctx, color, 0xf,
3736 V_008DFC_SQ_EXP_MRT + index, args);
3737 if (!args->enabled_channels)
3738 return false; /* unnecessary NULL export */
3739
3740 return true;
3741 }
3742
3743 static void
3744 radv_export_mrt_z(struct radv_shader_context *ctx,
3745 LLVMValueRef depth, LLVMValueRef stencil,
3746 LLVMValueRef samplemask)
3747 {
3748 struct ac_export_args args;
3749
3750 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3751
3752 ac_build_export(&ctx->ac, &args);
3753 }
3754
3755 static void
3756 handle_fs_outputs_post(struct radv_shader_context *ctx)
3757 {
3758 unsigned index = 0;
3759 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3760 struct ac_export_args color_args[8];
3761
3762 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3763 LLVMValueRef values[4];
3764
3765 if (!(ctx->output_mask & (1ull << i)))
3766 continue;
3767
3768 if (i < FRAG_RESULT_DATA0)
3769 continue;
3770
3771 for (unsigned j = 0; j < 4; j++)
3772 values[j] = ac_to_float(&ctx->ac,
3773 radv_load_output(ctx, i, j));
3774
3775 bool ret = si_export_mrt_color(ctx, values,
3776 i - FRAG_RESULT_DATA0,
3777 &color_args[index]);
3778 if (ret)
3779 index++;
3780 }
3781
3782 /* Process depth, stencil, samplemask. */
3783 if (ctx->args->shader_info->ps.writes_z) {
3784 depth = ac_to_float(&ctx->ac,
3785 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
3786 }
3787 if (ctx->args->shader_info->ps.writes_stencil) {
3788 stencil = ac_to_float(&ctx->ac,
3789 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
3790 }
3791 if (ctx->args->shader_info->ps.writes_sample_mask) {
3792 samplemask = ac_to_float(&ctx->ac,
3793 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
3794 }
3795
3796 /* Set the DONE bit on last non-null color export only if Z isn't
3797 * exported.
3798 */
3799 if (index > 0 &&
3800 !ctx->args->shader_info->ps.writes_z &&
3801 !ctx->args->shader_info->ps.writes_stencil &&
3802 !ctx->args->shader_info->ps.writes_sample_mask) {
3803 unsigned last = index - 1;
3804
3805 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
3806 color_args[last].done = 1; /* DONE bit */
3807 }
3808
3809 /* Export PS outputs. */
3810 for (unsigned i = 0; i < index; i++)
3811 ac_build_export(&ctx->ac, &color_args[i]);
3812
3813 if (depth || stencil || samplemask)
3814 radv_export_mrt_z(ctx, depth, stencil, samplemask);
3815 else if (!index)
3816 ac_build_export_null(&ctx->ac);
3817 }
3818
3819 static void
3820 emit_gs_epilogue(struct radv_shader_context *ctx)
3821 {
3822 if (ctx->args->options->key.vs_common_out.as_ngg) {
3823 gfx10_ngg_gs_emit_epilogue_1(ctx);
3824 return;
3825 }
3826
3827 if (ctx->ac.chip_class >= GFX10)
3828 LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
3829
3830 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
3831 }
3832
3833 static void
3834 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
3835 LLVMValueRef *addrs)
3836 {
3837 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
3838
3839 switch (ctx->stage) {
3840 case MESA_SHADER_VERTEX:
3841 if (ctx->args->options->key.vs_common_out.as_ls)
3842 handle_ls_outputs_post(ctx);
3843 else if (ctx->args->options->key.vs_common_out.as_es)
3844 handle_es_outputs_post(ctx, &ctx->args->shader_info->vs.es_info);
3845 else if (ctx->args->options->key.vs_common_out.as_ngg)
3846 handle_ngg_outputs_post_1(ctx);
3847 else
3848 handle_vs_outputs_post(ctx, ctx->args->options->key.vs_common_out.export_prim_id,
3849 ctx->args->options->key.vs_common_out.export_clip_dists,
3850 &ctx->args->shader_info->vs.outinfo);
3851 break;
3852 case MESA_SHADER_FRAGMENT:
3853 handle_fs_outputs_post(ctx);
3854 break;
3855 case MESA_SHADER_GEOMETRY:
3856 emit_gs_epilogue(ctx);
3857 break;
3858 case MESA_SHADER_TESS_CTRL:
3859 handle_tcs_outputs_post(ctx);
3860 break;
3861 case MESA_SHADER_TESS_EVAL:
3862 if (ctx->args->options->key.vs_common_out.as_es)
3863 handle_es_outputs_post(ctx, &ctx->args->shader_info->tes.es_info);
3864 else if (ctx->args->options->key.vs_common_out.as_ngg)
3865 handle_ngg_outputs_post_1(ctx);
3866 else
3867 handle_vs_outputs_post(ctx, ctx->args->options->key.vs_common_out.export_prim_id,
3868 ctx->args->options->key.vs_common_out.export_clip_dists,
3869 &ctx->args->shader_info->tes.outinfo);
3870 break;
3871 default:
3872 break;
3873 }
3874 }
3875
3876 static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
3877 LLVMPassManagerRef passmgr,
3878 const struct radv_nir_compiler_options *options)
3879 {
3880 LLVMRunPassManager(passmgr, ctx->ac.module);
3881 LLVMDisposeBuilder(ctx->ac.builder);
3882
3883 ac_llvm_context_dispose(&ctx->ac);
3884 }
3885
3886 static void
3887 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
3888 {
3889 struct radv_vs_output_info *outinfo;
3890
3891 switch (ctx->stage) {
3892 case MESA_SHADER_FRAGMENT:
3893 case MESA_SHADER_COMPUTE:
3894 case MESA_SHADER_TESS_CTRL:
3895 case MESA_SHADER_GEOMETRY:
3896 return;
3897 case MESA_SHADER_VERTEX:
3898 if (ctx->args->options->key.vs_common_out.as_ls ||
3899 ctx->args->options->key.vs_common_out.as_es)
3900 return;
3901 outinfo = &ctx->args->shader_info->vs.outinfo;
3902 break;
3903 case MESA_SHADER_TESS_EVAL:
3904 if (ctx->args->options->key.vs_common_out.as_es)
3905 return;
3906 outinfo = &ctx->args->shader_info->tes.outinfo;
3907 break;
3908 default:
3909 unreachable("Unhandled shader type");
3910 }
3911
3912 ac_optimize_vs_outputs(&ctx->ac,
3913 ctx->main_function,
3914 outinfo->vs_output_param_offset,
3915 VARYING_SLOT_MAX,
3916 &outinfo->param_exports);
3917 }
3918
3919 static void
3920 ac_setup_rings(struct radv_shader_context *ctx)
3921 {
3922 if (ctx->args->options->chip_class <= GFX8 &&
3923 (ctx->stage == MESA_SHADER_GEOMETRY ||
3924 ctx->args->options->key.vs_common_out.as_es || ctx->args->options->key.vs_common_out.as_es)) {
3925 unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
3926 : RING_ESGS_VS;
3927 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
3928
3929 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
3930 ctx->ring_offsets,
3931 offset);
3932 }
3933
3934 if (ctx->args->is_gs_copy_shader) {
3935 ctx->gsvs_ring[0] =
3936 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3937 LLVMConstInt(ctx->ac.i32,
3938 RING_GSVS_VS, false));
3939 }
3940
3941 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3942 /* The conceptual layout of the GSVS ring is
3943 * v0c0 .. vLv0 v0c1 .. vLc1 ..
3944 * but the real memory layout is swizzled across
3945 * threads:
3946 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
3947 * t16v0c0 ..
3948 * Override the buffer descriptor accordingly.
3949 */
3950 LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
3951 uint64_t stream_offset = 0;
3952 unsigned num_records = ctx->ac.wave_size;
3953 LLVMValueRef base_ring;
3954
3955 base_ring =
3956 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3957 LLVMConstInt(ctx->ac.i32,
3958 RING_GSVS_GS, false));
3959
3960 for (unsigned stream = 0; stream < 4; stream++) {
3961 unsigned num_components, stride;
3962 LLVMValueRef ring, tmp;
3963
3964 num_components =
3965 ctx->args->shader_info->gs.num_stream_output_components[stream];
3966
3967 if (!num_components)
3968 continue;
3969
3970 stride = 4 * num_components * ctx->shader->info.gs.vertices_out;
3971
3972 /* Limit on the stride field for <= GFX7. */
3973 assert(stride < (1 << 14));
3974
3975 ring = LLVMBuildBitCast(ctx->ac.builder,
3976 base_ring, v2i64, "");
3977 tmp = LLVMBuildExtractElement(ctx->ac.builder,
3978 ring, ctx->ac.i32_0, "");
3979 tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
3980 LLVMConstInt(ctx->ac.i64,
3981 stream_offset, 0), "");
3982 ring = LLVMBuildInsertElement(ctx->ac.builder,
3983 ring, tmp, ctx->ac.i32_0, "");
3984
3985 stream_offset += stride * ctx->ac.wave_size;
3986
3987 ring = LLVMBuildBitCast(ctx->ac.builder, ring,
3988 ctx->ac.v4i32, "");
3989
3990 tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
3991 ctx->ac.i32_1, "");
3992 tmp = LLVMBuildOr(ctx->ac.builder, tmp,
3993 LLVMConstInt(ctx->ac.i32,
3994 S_008F04_STRIDE(stride), false), "");
3995 ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
3996 ctx->ac.i32_1, "");
3997
3998 ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
3999 LLVMConstInt(ctx->ac.i32,
4000 num_records, false),
4001 LLVMConstInt(ctx->ac.i32, 2, false), "");
4002
4003 ctx->gsvs_ring[stream] = ring;
4004 }
4005 }
4006
4007 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
4008 ctx->stage == MESA_SHADER_TESS_EVAL) {
4009 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
4010 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
4011 }
4012 }
4013
4014 unsigned
4015 radv_nir_get_max_workgroup_size(enum chip_class chip_class,
4016 gl_shader_stage stage,
4017 const struct nir_shader *nir)
4018 {
4019 const unsigned backup_sizes[] = {chip_class >= GFX9 ? 128 : 64, 1, 1};
4020 unsigned sizes[3];
4021 for (unsigned i = 0; i < 3; i++)
4022 sizes[i] = nir ? nir->info.cs.local_size[i] : backup_sizes[i];
4023 return radv_get_max_workgroup_size(chip_class, stage, sizes);
4024 }
4025
4026 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
4027 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
4028 {
4029 LLVMValueRef count =
4030 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 8, 8);
4031 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
4032 ctx->ac.i32_0, "");
4033 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty,
4034 ac_get_arg(&ctx->ac, ctx->args->rel_auto_id),
4035 ctx->abi.instance_id, "");
4036 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty,
4037 ac_get_arg(&ctx->ac, ctx->args->ac.tcs_rel_ids),
4038 ctx->rel_auto_id,
4039 "");
4040 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty,
4041 ac_get_arg(&ctx->ac, ctx->args->ac.tcs_patch_id),
4042 ctx->abi.vertex_id, "");
4043 }
4044
4045 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx, bool merged)
4046 {
4047 if (merged) {
4048 for(int i = 5; i >= 0; --i) {
4049 ctx->gs_vtx_offset[i] =
4050 ac_unpack_param(&ctx->ac,
4051 ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[i & ~1]),
4052 (i & 1) * 16, 16);
4053 }
4054
4055 ctx->gs_wave_id = ac_unpack_param(&ctx->ac,
4056 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info),
4057 16, 8);
4058 } else {
4059 for (int i = 0; i < 6; i++)
4060 ctx->gs_vtx_offset[i] = ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[i]);
4061 ctx->gs_wave_id = ac_get_arg(&ctx->ac, ctx->args->gs_wave_id);
4062 }
4063 }
4064
4065 /* Ensure that the esgs ring is declared.
4066 *
4067 * We declare it with 64KB alignment as a hint that the
4068 * pointer value will always be 0.
4069 */
4070 static void declare_esgs_ring(struct radv_shader_context *ctx)
4071 {
4072 if (ctx->esgs_ring)
4073 return;
4074
4075 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
4076
4077 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
4078 ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
4079 "esgs_ring",
4080 AC_ADDR_SPACE_LDS);
4081 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
4082 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
4083 }
4084
4085 static
4086 LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
4087 struct nir_shader *const *shaders,
4088 int shader_count,
4089 const struct radv_shader_args *args)
4090 {
4091 struct radv_shader_context ctx = {0};
4092 ctx.args = args;
4093
4094 enum ac_float_mode float_mode = AC_FLOAT_MODE_DEFAULT;
4095
4096 if (args->shader_info->float_controls_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) {
4097 float_mode = AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO;
4098 }
4099
4100 ac_llvm_context_init(&ctx.ac, ac_llvm, args->options->chip_class,
4101 args->options->family, float_mode,
4102 args->shader_info->wave_size, 64);
4103 ctx.context = ctx.ac.context;
4104
4105 ctx.max_workgroup_size = 0;
4106 for (int i = 0; i < shader_count; ++i) {
4107 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
4108 radv_nir_get_max_workgroup_size(args->options->chip_class,
4109 shaders[i]->info.stage,
4110 shaders[i]));
4111 }
4112
4113 if (ctx.ac.chip_class >= GFX10) {
4114 if (is_pre_gs_stage(shaders[0]->info.stage) &&
4115 args->options->key.vs_common_out.as_ngg) {
4116 ctx.max_workgroup_size = 128;
4117 }
4118 }
4119
4120 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2);
4121
4122 ctx.abi.inputs = &ctx.inputs[0];
4123 ctx.abi.emit_outputs = handle_shader_outputs_post;
4124 ctx.abi.emit_vertex = visit_emit_vertex;
4125 ctx.abi.load_ubo = radv_load_ubo;
4126 ctx.abi.load_ssbo = radv_load_ssbo;
4127 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
4128 ctx.abi.load_resource = radv_load_resource;
4129 ctx.abi.clamp_shadow_reference = false;
4130 ctx.abi.robust_buffer_access = args->options->robust_buffer_access;
4131
4132 bool is_ngg = is_pre_gs_stage(shaders[0]->info.stage) && args->options->key.vs_common_out.as_ngg;
4133 if (shader_count >= 2 || is_ngg)
4134 ac_init_exec_full_mask(&ctx.ac);
4135
4136 if (args->ac.vertex_id.used)
4137 ctx.abi.vertex_id = ac_get_arg(&ctx.ac, args->ac.vertex_id);
4138 if (args->rel_auto_id.used)
4139 ctx.rel_auto_id = ac_get_arg(&ctx.ac, args->rel_auto_id);
4140 if (args->ac.instance_id.used)
4141 ctx.abi.instance_id = ac_get_arg(&ctx.ac, args->ac.instance_id);
4142
4143 if (args->options->has_ls_vgpr_init_bug &&
4144 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
4145 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
4146
4147 if (is_ngg) {
4148 /* Declare scratch space base for streamout and vertex
4149 * compaction. Whether space is actually allocated is
4150 * determined during linking / PM4 creation.
4151 *
4152 * Add an extra dword per vertex to ensure an odd stride, which
4153 * avoids bank conflicts for SoA accesses.
4154 */
4155 declare_esgs_ring(&ctx);
4156
4157 /* This is really only needed when streamout and / or vertex
4158 * compaction is enabled.
4159 */
4160 LLVMTypeRef asi32 = LLVMArrayType(ctx.ac.i32, 8);
4161 ctx.gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx.ac.module,
4162 asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
4163 LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(asi32));
4164 LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
4165 }
4166
4167 for(int i = 0; i < shader_count; ++i) {
4168 ctx.stage = shaders[i]->info.stage;
4169 ctx.shader = shaders[i];
4170 ctx.output_mask = 0;
4171
4172 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4173 for (int i = 0; i < 4; i++) {
4174 ctx.gs_next_vertex[i] =
4175 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4176 }
4177 if (args->options->key.vs_common_out.as_ngg) {
4178 for (unsigned i = 0; i < 4; ++i) {
4179 ctx.gs_curprim_verts[i] =
4180 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4181 ctx.gs_generated_prims[i] =
4182 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4183 }
4184
4185 unsigned scratch_size = 8;
4186 if (args->shader_info->so.num_outputs)
4187 scratch_size = 44;
4188
4189 LLVMTypeRef ai32 = LLVMArrayType(ctx.ac.i32, scratch_size);
4190 ctx.gs_ngg_scratch =
4191 LLVMAddGlobalInAddressSpace(ctx.ac.module,
4192 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
4193 LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(ai32));
4194 LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
4195
4196 ctx.gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx.ac.module,
4197 LLVMArrayType(ctx.ac.i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
4198 LLVMSetLinkage(ctx.gs_ngg_emit, LLVMExternalLinkage);
4199 LLVMSetAlignment(ctx.gs_ngg_emit, 4);
4200 }
4201
4202 ctx.abi.load_inputs = load_gs_input;
4203 ctx.abi.emit_primitive = visit_end_primitive;
4204 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4205 ctx.abi.load_tess_varyings = load_tcs_varyings;
4206 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4207 ctx.abi.store_tcs_outputs = store_tcs_output;
4208 if (shader_count == 1)
4209 ctx.tcs_num_inputs = args->options->key.tcs.num_inputs;
4210 else
4211 ctx.tcs_num_inputs = util_last_bit64(args->shader_info->vs.ls_outputs_written);
4212 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
4213 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
4214 ctx.abi.load_tess_varyings = load_tes_input;
4215 ctx.abi.load_tess_coord = load_tess_coord;
4216 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4217 ctx.tcs_num_patches = args->options->key.tes.num_patches;
4218 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
4219 ctx.abi.load_base_vertex = radv_load_base_vertex;
4220 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
4221 ctx.abi.load_sample_position = load_sample_position;
4222 ctx.abi.load_sample_mask_in = load_sample_mask_in;
4223 ctx.abi.emit_kill = radv_emit_kill;
4224 }
4225
4226 if (shaders[i]->info.stage == MESA_SHADER_VERTEX &&
4227 args->options->key.vs_common_out.as_ngg &&
4228 args->options->key.vs_common_out.export_prim_id) {
4229 declare_esgs_ring(&ctx);
4230 }
4231
4232 bool nested_barrier = false;
4233
4234 if (i) {
4235 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4236 args->options->key.vs_common_out.as_ngg) {
4237 gfx10_ngg_gs_emit_prologue(&ctx);
4238 nested_barrier = false;
4239 } else {
4240 nested_barrier = true;
4241 }
4242 }
4243
4244 if (nested_barrier) {
4245 /* Execute a barrier before the second shader in
4246 * a merged shader.
4247 *
4248 * Execute the barrier inside the conditional block,
4249 * so that empty waves can jump directly to s_endpgm,
4250 * which will also signal the barrier.
4251 *
4252 * This is possible in gfx9, because an empty wave
4253 * for the second shader does not participate in
4254 * the epilogue. With NGG, empty waves may still
4255 * be required to export data (e.g. GS output vertices),
4256 * so we cannot let them exit early.
4257 *
4258 * If the shader is TCS and the TCS epilog is present
4259 * and contains a barrier, it will wait there and then
4260 * reach s_endpgm.
4261 */
4262 ac_emit_barrier(&ctx.ac, ctx.stage);
4263 }
4264
4265 nir_foreach_variable(variable, &shaders[i]->outputs)
4266 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
4267
4268 ac_setup_rings(&ctx);
4269
4270 LLVMBasicBlockRef merge_block;
4271 if (shader_count >= 2 || is_ngg) {
4272 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
4273 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4274 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4275
4276 LLVMValueRef count =
4277 ac_unpack_param(&ctx.ac,
4278 ac_get_arg(&ctx.ac, args->merged_wave_info),
4279 8 * i, 8);
4280 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
4281 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
4282 thread_id, count, "");
4283 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
4284
4285 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
4286 }
4287
4288 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
4289 prepare_interp_optimize(&ctx, shaders[i]);
4290 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
4291 handle_vs_inputs(&ctx, shaders[i]);
4292 else if(shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
4293 prepare_gs_input_vgprs(&ctx, shader_count >= 2);
4294
4295 ac_nir_translate(&ctx.ac, &ctx.abi, &args->ac, shaders[i]);
4296
4297 if (shader_count >= 2 || is_ngg) {
4298 LLVMBuildBr(ctx.ac.builder, merge_block);
4299 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
4300 }
4301
4302 /* This needs to be outside the if wrapping the shader body, as sometimes
4303 * the HW generates waves with 0 es/vs threads. */
4304 if (is_pre_gs_stage(shaders[i]->info.stage) &&
4305 args->options->key.vs_common_out.as_ngg &&
4306 i == shader_count - 1) {
4307 handle_ngg_outputs_post_2(&ctx);
4308 } else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4309 args->options->key.vs_common_out.as_ngg) {
4310 gfx10_ngg_gs_emit_epilogue_2(&ctx);
4311 }
4312
4313 if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4314 args->shader_info->tcs.num_patches = ctx.tcs_num_patches;
4315 args->shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
4316 }
4317 }
4318
4319 LLVMBuildRetVoid(ctx.ac.builder);
4320
4321 if (args->options->dump_preoptir) {
4322 fprintf(stderr, "%s LLVM IR:\n\n",
4323 radv_get_shader_name(args->shader_info,
4324 shaders[shader_count - 1]->info.stage));
4325 ac_dump_module(ctx.ac.module);
4326 fprintf(stderr, "\n");
4327 }
4328
4329 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, args->options);
4330
4331 if (shader_count == 1)
4332 ac_nir_eliminate_const_vs_outputs(&ctx);
4333
4334 if (args->options->dump_shader) {
4335 args->shader_info->private_mem_vgprs =
4336 ac_count_scratch_private_memory(ctx.main_function);
4337 }
4338
4339 return ctx.ac.module;
4340 }
4341
4342 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
4343 {
4344 unsigned *retval = (unsigned *)context;
4345 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
4346 char *description = LLVMGetDiagInfoDescription(di);
4347
4348 if (severity == LLVMDSError) {
4349 *retval = 1;
4350 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
4351 description);
4352 }
4353
4354 LLVMDisposeMessage(description);
4355 }
4356
4357 static unsigned radv_llvm_compile(LLVMModuleRef M,
4358 char **pelf_buffer, size_t *pelf_size,
4359 struct ac_llvm_compiler *ac_llvm)
4360 {
4361 unsigned retval = 0;
4362 LLVMContextRef llvm_ctx;
4363
4364 /* Setup Diagnostic Handler*/
4365 llvm_ctx = LLVMGetModuleContext(M);
4366
4367 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
4368 &retval);
4369
4370 /* Compile IR*/
4371 if (!radv_compile_to_elf(ac_llvm, M, pelf_buffer, pelf_size))
4372 retval = 1;
4373 return retval;
4374 }
4375
4376 static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
4377 LLVMModuleRef llvm_module,
4378 struct radv_shader_binary **rbinary,
4379 gl_shader_stage stage,
4380 const char *name,
4381 const struct radv_nir_compiler_options *options)
4382 {
4383 char *elf_buffer = NULL;
4384 size_t elf_size = 0;
4385 char *llvm_ir_string = NULL;
4386
4387 if (options->dump_shader) {
4388 fprintf(stderr, "%s LLVM IR:\n\n", name);
4389 ac_dump_module(llvm_module);
4390 fprintf(stderr, "\n");
4391 }
4392
4393 if (options->record_ir) {
4394 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
4395 llvm_ir_string = strdup(llvm_ir);
4396 LLVMDisposeMessage(llvm_ir);
4397 }
4398
4399 int v = radv_llvm_compile(llvm_module, &elf_buffer, &elf_size, ac_llvm);
4400 if (v) {
4401 fprintf(stderr, "compile failed\n");
4402 }
4403
4404 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
4405 LLVMDisposeModule(llvm_module);
4406 LLVMContextDispose(ctx);
4407
4408 size_t llvm_ir_size = llvm_ir_string ? strlen(llvm_ir_string) : 0;
4409 size_t alloc_size = sizeof(struct radv_shader_binary_rtld) + elf_size + llvm_ir_size + 1;
4410 struct radv_shader_binary_rtld *rbin = calloc(1, alloc_size);
4411 memcpy(rbin->data, elf_buffer, elf_size);
4412 if (llvm_ir_string)
4413 memcpy(rbin->data + elf_size, llvm_ir_string, llvm_ir_size + 1);
4414
4415 rbin->base.type = RADV_BINARY_TYPE_RTLD;
4416 rbin->base.stage = stage;
4417 rbin->base.total_size = alloc_size;
4418 rbin->elf_size = elf_size;
4419 rbin->llvm_ir_size = llvm_ir_size;
4420 *rbinary = &rbin->base;
4421
4422 free(llvm_ir_string);
4423 free(elf_buffer);
4424 }
4425
4426 void
4427 radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
4428 struct radv_shader_binary **rbinary,
4429 const struct radv_shader_args *args,
4430 struct nir_shader *const *nir,
4431 int nir_count)
4432 {
4433
4434 LLVMModuleRef llvm_module;
4435
4436 llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, args);
4437
4438 ac_compile_llvm_module(ac_llvm, llvm_module, rbinary,
4439 nir[nir_count - 1]->info.stage,
4440 radv_get_shader_name(args->shader_info,
4441 nir[nir_count - 1]->info.stage),
4442 args->options);
4443
4444 /* Determine the ES type (VS or TES) for the GS on GFX9. */
4445 if (args->options->chip_class >= GFX9) {
4446 if (nir_count == 2 &&
4447 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
4448 args->shader_info->gs.es_type = nir[0]->info.stage;
4449 }
4450 }
4451 }
4452
4453 static void
4454 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
4455 {
4456 LLVMValueRef vtx_offset =
4457 LLVMBuildMul(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->ac.vertex_id),
4458 LLVMConstInt(ctx->ac.i32, 4, false), "");
4459 LLVMValueRef stream_id;
4460
4461 /* Fetch the vertex stream ID. */
4462 if (!ctx->args->options->use_ngg_streamout &&
4463 ctx->args->shader_info->so.num_outputs) {
4464 stream_id =
4465 ac_unpack_param(&ctx->ac,
4466 ac_get_arg(&ctx->ac,
4467 ctx->args->streamout_config),
4468 24, 2);
4469 } else {
4470 stream_id = ctx->ac.i32_0;
4471 }
4472
4473 LLVMBasicBlockRef end_bb;
4474 LLVMValueRef switch_inst;
4475
4476 end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
4477 ctx->main_function, "end");
4478 switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);
4479
4480 for (unsigned stream = 0; stream < 4; stream++) {
4481 unsigned num_components =
4482 ctx->args->shader_info->gs.num_stream_output_components[stream];
4483 LLVMBasicBlockRef bb;
4484 unsigned offset;
4485
4486 if (stream > 0 && !num_components)
4487 continue;
4488
4489 if (stream > 0 && !ctx->args->shader_info->so.num_outputs)
4490 continue;
4491
4492 bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
4493 LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
4494 LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);
4495
4496 offset = 0;
4497 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
4498 unsigned output_usage_mask =
4499 ctx->args->shader_info->gs.output_usage_mask[i];
4500 unsigned output_stream =
4501 ctx->args->shader_info->gs.output_streams[i];
4502 int length = util_last_bit(output_usage_mask);
4503
4504 if (!(ctx->output_mask & (1ull << i)) ||
4505 output_stream != stream)
4506 continue;
4507
4508 for (unsigned j = 0; j < length; j++) {
4509 LLVMValueRef value, soffset;
4510
4511 if (!(output_usage_mask & (1 << j)))
4512 continue;
4513
4514 soffset = LLVMConstInt(ctx->ac.i32,
4515 offset *
4516 ctx->shader->info.gs.vertices_out * 16 * 4, false);
4517
4518 offset++;
4519
4520 value = ac_build_buffer_load(&ctx->ac,
4521 ctx->gsvs_ring[0],
4522 1, ctx->ac.i32_0,
4523 vtx_offset, soffset,
4524 0, ac_glc | ac_slc, true, false);
4525
4526 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4527 if (ac_get_type_size(type) == 2) {
4528 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
4529 value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
4530 }
4531
4532 LLVMBuildStore(ctx->ac.builder,
4533 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4534 }
4535 }
4536
4537 if (!ctx->args->options->use_ngg_streamout &&
4538 ctx->args->shader_info->so.num_outputs)
4539 radv_emit_streamout(ctx, stream);
4540
4541 if (stream == 0) {
4542 handle_vs_outputs_post(ctx, false, true,
4543 &ctx->args->shader_info->vs.outinfo);
4544 }
4545
4546 LLVMBuildBr(ctx->ac.builder, end_bb);
4547 }
4548
4549 LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
4550 }
4551
4552 void
4553 radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
4554 struct nir_shader *geom_shader,
4555 struct radv_shader_binary **rbinary,
4556 const struct radv_shader_args *args)
4557 {
4558 struct radv_shader_context ctx = {0};
4559 ctx.args = args;
4560
4561 assert(args->is_gs_copy_shader);
4562
4563 ac_llvm_context_init(&ctx.ac, ac_llvm, args->options->chip_class,
4564 args->options->family, AC_FLOAT_MODE_DEFAULT, 64, 64);
4565 ctx.context = ctx.ac.context;
4566
4567 ctx.stage = MESA_SHADER_VERTEX;
4568 ctx.shader = geom_shader;
4569
4570 create_function(&ctx, MESA_SHADER_VERTEX, false);
4571
4572 ac_setup_rings(&ctx);
4573
4574 nir_foreach_variable(variable, &geom_shader->outputs) {
4575 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
4576 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
4577 variable, MESA_SHADER_VERTEX);
4578 }
4579
4580 ac_gs_copy_shader_emit(&ctx);
4581
4582 LLVMBuildRetVoid(ctx.ac.builder);
4583
4584 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, args->options);
4585
4586 ac_compile_llvm_module(ac_llvm, ctx.ac.module, rbinary,
4587 MESA_SHADER_VERTEX, "GS Copy Shader", args->options);
4588 (*rbinary)->is_gs_copy_shader = true;
4589
4590 }