radv: simplify a check in radv_fixup_vertex_input_fetches()
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "radv_shader_helper.h"
31 #include "radv_shader_args.h"
32 #include "nir/nir.h"
33
34 #include <llvm-c/Core.h>
35 #include <llvm-c/TargetMachine.h>
36 #include <llvm-c/Transforms/Scalar.h>
37 #include <llvm-c/Transforms/Utils.h>
38
39 #include "sid.h"
40 #include "ac_binary.h"
41 #include "ac_llvm_util.h"
42 #include "ac_llvm_build.h"
43 #include "ac_shader_abi.h"
44 #include "ac_shader_util.h"
45 #include "ac_exp_param.h"
46
47 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
48
49 struct radv_shader_context {
50 struct ac_llvm_context ac;
51 const struct nir_shader *shader;
52 struct ac_shader_abi abi;
53 const struct radv_shader_args *args;
54
55 gl_shader_stage stage;
56
57 unsigned max_workgroup_size;
58 LLVMContextRef context;
59 LLVMValueRef main_function;
60
61 LLVMValueRef descriptor_sets[MAX_SETS];
62
63 LLVMValueRef ring_offsets;
64
65 LLVMValueRef rel_auto_id;
66
67 LLVMValueRef gs_wave_id;
68 LLVMValueRef gs_vtx_offset[6];
69
70 LLVMValueRef esgs_ring;
71 LLVMValueRef gsvs_ring[4];
72 LLVMValueRef hs_ring_tess_offchip;
73 LLVMValueRef hs_ring_tess_factor;
74
75 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
76
77 uint64_t output_mask;
78
79 LLVMValueRef gs_next_vertex[4];
80 LLVMValueRef gs_curprim_verts[4];
81 LLVMValueRef gs_generated_prims[4];
82 LLVMValueRef gs_ngg_emit;
83 LLVMValueRef gs_ngg_scratch;
84
85 uint32_t tcs_num_inputs;
86 uint32_t tcs_num_patches;
87
88 LLVMValueRef vertexptr; /* GFX10 only */
89 };
90
91 struct radv_shader_output_values {
92 LLVMValueRef values[4];
93 unsigned slot_name;
94 unsigned slot_index;
95 unsigned usage_mask;
96 };
97
98 static inline struct radv_shader_context *
99 radv_shader_context_from_abi(struct ac_shader_abi *abi)
100 {
101 struct radv_shader_context *ctx = NULL;
102 return container_of(abi, ctx, abi);
103 }
104
105 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
106 {
107 switch (ctx->stage) {
108 case MESA_SHADER_TESS_CTRL:
109 return ac_unpack_param(&ctx->ac,
110 ac_get_arg(&ctx->ac, ctx->args->ac.tcs_rel_ids),
111 0, 8);
112 case MESA_SHADER_TESS_EVAL:
113 return ac_get_arg(&ctx->ac, ctx->args->tes_rel_patch_id);
114 break;
115 default:
116 unreachable("Illegal stage");
117 }
118 }
119
120 static unsigned
121 get_tcs_num_patches(struct radv_shader_context *ctx)
122 {
123 unsigned num_tcs_input_cp = ctx->args->options->key.tcs.input_vertices;
124 unsigned num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
125 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
126 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
127 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
128 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
129 uint32_t output_vertex_size = num_tcs_outputs * 16;
130 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
131 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
132 unsigned num_patches;
133 unsigned hardware_lds_size;
134
135 /* Ensure that we only need one wave per SIMD so we don't need to check
136 * resource usage. Also ensures that the number of tcs in and out
137 * vertices per threadgroup are at most 256.
138 */
139 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
140 /* Make sure that the data fits in LDS. This assumes the shaders only
141 * use LDS for the inputs and outputs.
142 */
143 hardware_lds_size = 32768;
144
145 /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
146 * threadgroup, even though there is more than 32 KiB LDS.
147 *
148 * Test: dEQP-VK.tessellation.shader_input_output.barrier
149 */
150 if (ctx->args->options->chip_class >= GFX7 && ctx->args->options->family != CHIP_STONEY)
151 hardware_lds_size = 65536;
152
153 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
154 /* Make sure the output data fits in the offchip buffer */
155 num_patches = MIN2(num_patches, (ctx->args->options->tess_offchip_block_dw_size * 4) / output_patch_size);
156 /* Not necessary for correctness, but improves performance. The
157 * specific value is taken from the proprietary driver.
158 */
159 num_patches = MIN2(num_patches, 40);
160
161 /* GFX6 bug workaround - limit LS-HS threadgroups to only one wave. */
162 if (ctx->args->options->chip_class == GFX6) {
163 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
164 num_patches = MIN2(num_patches, one_wave);
165 }
166 return num_patches;
167 }
168
169 static unsigned
170 calculate_tess_lds_size(struct radv_shader_context *ctx)
171 {
172 unsigned num_tcs_input_cp = ctx->args->options->key.tcs.input_vertices;
173 unsigned num_tcs_output_cp;
174 unsigned num_tcs_outputs, num_tcs_patch_outputs;
175 unsigned input_vertex_size, output_vertex_size;
176 unsigned input_patch_size, output_patch_size;
177 unsigned pervertex_output_patch_size;
178 unsigned output_patch0_offset;
179 unsigned num_patches;
180 unsigned lds_size;
181
182 num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
183 num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
184 num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
185
186 input_vertex_size = ctx->tcs_num_inputs * 16;
187 output_vertex_size = num_tcs_outputs * 16;
188
189 input_patch_size = num_tcs_input_cp * input_vertex_size;
190
191 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
192 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
193
194 num_patches = ctx->tcs_num_patches;
195 output_patch0_offset = input_patch_size * num_patches;
196
197 lds_size = output_patch0_offset + output_patch_size * num_patches;
198 return lds_size;
199 }
200
201 /* Tessellation shaders pass outputs to the next shader using LDS.
202 *
203 * LS outputs = TCS inputs
204 * TCS outputs = TES inputs
205 *
206 * The LDS layout is:
207 * - TCS inputs for patch 0
208 * - TCS inputs for patch 1
209 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
210 * - ...
211 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
212 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
213 * - TCS outputs for patch 1
214 * - Per-patch TCS outputs for patch 1
215 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
216 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
217 * - ...
218 *
219 * All three shaders VS(LS), TCS, TES share the same LDS space.
220 */
221 static LLVMValueRef
222 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
223 {
224 assert(ctx->stage == MESA_SHADER_TESS_CTRL);
225 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
226 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
227
228 input_patch_size /= 4;
229 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
230 }
231
232 static LLVMValueRef
233 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
234 {
235 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
236 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
237 uint32_t output_vertex_size = num_tcs_outputs * 16;
238 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
239 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
240 output_patch_size /= 4;
241 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
242 }
243
244 static LLVMValueRef
245 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
246 {
247 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
248 uint32_t output_vertex_size = num_tcs_outputs * 16;
249 output_vertex_size /= 4;
250 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
251 }
252
253 static LLVMValueRef
254 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
255 {
256 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
257 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
258 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
259 uint32_t output_patch0_offset = input_patch_size;
260 unsigned num_patches = ctx->tcs_num_patches;
261
262 output_patch0_offset *= num_patches;
263 output_patch0_offset /= 4;
264 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
265 }
266
267 static LLVMValueRef
268 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
269 {
270 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
271 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
272 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * input_vertex_size;
273 uint32_t output_patch0_offset = input_patch_size;
274
275 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
276 uint32_t output_vertex_size = num_tcs_outputs * 16;
277 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
278 unsigned num_patches = ctx->tcs_num_patches;
279
280 output_patch0_offset *= num_patches;
281 output_patch0_offset += pervertex_output_patch_size;
282 output_patch0_offset /= 4;
283 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
284 }
285
286 static LLVMValueRef
287 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
288 {
289 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
290 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
291
292 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
293 }
294
295 static LLVMValueRef
296 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
297 {
298 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
299 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
300 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
301
302 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
303 patch0_offset);
304 }
305
306 static LLVMValueRef
307 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
308 {
309 LLVMValueRef patch0_patch_data_offset =
310 get_tcs_out_patch0_patch_data_offset(ctx);
311 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
312 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
313
314 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
315 patch0_patch_data_offset);
316 }
317
318 static LLVMValueRef
319 create_llvm_function(struct ac_llvm_context *ctx, LLVMModuleRef module,
320 LLVMBuilderRef builder,
321 const struct ac_shader_args *args,
322 enum ac_llvm_calling_convention convention,
323 unsigned max_workgroup_size,
324 const struct radv_nir_compiler_options *options)
325 {
326 LLVMValueRef main_function =
327 ac_build_main(args, ctx, convention, "main", ctx->voidt, module);
328
329 if (options->address32_hi) {
330 ac_llvm_add_target_dep_function_attr(main_function,
331 "amdgpu-32bit-address-high-bits",
332 options->address32_hi);
333 }
334
335 ac_llvm_set_workgroup_size(main_function, max_workgroup_size);
336
337 return main_function;
338 }
339
340 static void
341 load_descriptor_sets(struct radv_shader_context *ctx)
342 {
343 uint32_t mask = ctx->args->shader_info->desc_set_used_mask;
344 if (ctx->args->shader_info->need_indirect_descriptor_sets) {
345 LLVMValueRef desc_sets =
346 ac_get_arg(&ctx->ac, ctx->args->descriptor_sets[0]);
347 while (mask) {
348 int i = u_bit_scan(&mask);
349
350 ctx->descriptor_sets[i] =
351 ac_build_load_to_sgpr(&ctx->ac, desc_sets,
352 LLVMConstInt(ctx->ac.i32, i, false));
353
354 }
355 } else {
356 while (mask) {
357 int i = u_bit_scan(&mask);
358
359 ctx->descriptor_sets[i] =
360 ac_get_arg(&ctx->ac, ctx->args->descriptor_sets[i]);
361 }
362 }
363 }
364
365 static enum ac_llvm_calling_convention
366 get_llvm_calling_convention(LLVMValueRef func, gl_shader_stage stage)
367 {
368 switch (stage) {
369 case MESA_SHADER_VERTEX:
370 case MESA_SHADER_TESS_EVAL:
371 return AC_LLVM_AMDGPU_VS;
372 break;
373 case MESA_SHADER_GEOMETRY:
374 return AC_LLVM_AMDGPU_GS;
375 break;
376 case MESA_SHADER_TESS_CTRL:
377 return AC_LLVM_AMDGPU_HS;
378 break;
379 case MESA_SHADER_FRAGMENT:
380 return AC_LLVM_AMDGPU_PS;
381 break;
382 case MESA_SHADER_COMPUTE:
383 return AC_LLVM_AMDGPU_CS;
384 break;
385 default:
386 unreachable("Unhandle shader type");
387 }
388 }
389
390 /* Returns whether the stage is a stage that can be directly before the GS */
391 static bool is_pre_gs_stage(gl_shader_stage stage)
392 {
393 return stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL;
394 }
395
396 static void create_function(struct radv_shader_context *ctx,
397 gl_shader_stage stage,
398 bool has_previous_stage)
399 {
400 if (ctx->ac.chip_class >= GFX10) {
401 if (is_pre_gs_stage(stage) && ctx->args->options->key.vs_common_out.as_ngg) {
402 /* On GFX10, VS is merged into GS for NGG. */
403 stage = MESA_SHADER_GEOMETRY;
404 has_previous_stage = true;
405 }
406 }
407
408 ctx->main_function = create_llvm_function(
409 &ctx->ac, ctx->ac.module, ctx->ac.builder, &ctx->args->ac,
410 get_llvm_calling_convention(ctx->main_function, stage),
411 ctx->max_workgroup_size,
412 ctx->args->options);
413
414 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
415 LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
416 NULL, 0, AC_FUNC_ATTR_READNONE);
417 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
418 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
419
420 load_descriptor_sets(ctx);
421
422 if (stage == MESA_SHADER_TESS_CTRL ||
423 (stage == MESA_SHADER_VERTEX && ctx->args->options->key.vs_common_out.as_ls) ||
424 /* GFX9 has the ESGS ring buffer in LDS. */
425 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
426 ac_declare_lds_as_pointer(&ctx->ac);
427 }
428
429 }
430
431
432 static LLVMValueRef
433 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
434 unsigned desc_set, unsigned binding)
435 {
436 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
437 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
438 struct radv_pipeline_layout *pipeline_layout = ctx->args->options->layout;
439 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
440 unsigned base_offset = layout->binding[binding].offset;
441 LLVMValueRef offset, stride;
442
443 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
444 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
445 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
446 layout->binding[binding].dynamic_offset_offset;
447 desc_ptr = ac_get_arg(&ctx->ac, ctx->args->ac.push_constants);
448 base_offset = pipeline_layout->push_constant_size + 16 * idx;
449 stride = LLVMConstInt(ctx->ac.i32, 16, false);
450 } else
451 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
452
453 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
454
455 if (layout->binding[binding].type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
456 offset = ac_build_imad(&ctx->ac, index, stride, offset);
457 }
458
459 desc_ptr = LLVMBuildGEP(ctx->ac.builder, desc_ptr, &offset, 1, "");
460 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
461 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
462
463 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
464 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
465 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
466 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
467 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
468
469 if (ctx->ac.chip_class >= GFX10) {
470 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
471 S_008F0C_OOB_SELECT(3) |
472 S_008F0C_RESOURCE_LEVEL(1);
473 } else {
474 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
475 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
476 }
477
478 LLVMValueRef desc_components[4] = {
479 LLVMBuildPtrToInt(ctx->ac.builder, desc_ptr, ctx->ac.intptr, ""),
480 LLVMConstInt(ctx->ac.i32, S_008F04_BASE_ADDRESS_HI(ctx->args->options->address32_hi), false),
481 /* High limit to support variable sizes. */
482 LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
483 LLVMConstInt(ctx->ac.i32, desc_type, false),
484 };
485
486 return ac_build_gather_values(&ctx->ac, desc_components, 4);
487 }
488
489 return desc_ptr;
490 }
491
492
493 /* The offchip buffer layout for TCS->TES is
494 *
495 * - attribute 0 of patch 0 vertex 0
496 * - attribute 0 of patch 0 vertex 1
497 * - attribute 0 of patch 0 vertex 2
498 * ...
499 * - attribute 0 of patch 1 vertex 0
500 * - attribute 0 of patch 1 vertex 1
501 * ...
502 * - attribute 1 of patch 0 vertex 0
503 * - attribute 1 of patch 0 vertex 1
504 * ...
505 * - per patch attribute 0 of patch 0
506 * - per patch attribute 0 of patch 1
507 * ...
508 *
509 * Note that every attribute has 4 components.
510 */
511 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
512 {
513 uint32_t num_patches = ctx->tcs_num_patches;
514 uint32_t num_tcs_outputs;
515 if (ctx->stage == MESA_SHADER_TESS_CTRL)
516 num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
517 else
518 num_tcs_outputs = ctx->args->options->key.tes.tcs_num_outputs;
519
520 uint32_t output_vertex_size = num_tcs_outputs * 16;
521 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
522
523 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
524 }
525
526 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
527 LLVMValueRef vertex_index)
528 {
529 LLVMValueRef param_stride;
530 if (vertex_index)
531 param_stride = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out * ctx->tcs_num_patches, false);
532 else
533 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
534 return param_stride;
535 }
536
537 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
538 LLVMValueRef vertex_index,
539 LLVMValueRef param_index)
540 {
541 LLVMValueRef base_addr;
542 LLVMValueRef param_stride, constant16;
543 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
544 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out, false);
545 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
546 param_stride = calc_param_stride(ctx, vertex_index);
547 if (vertex_index) {
548 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
549 vertices_per_patch, vertex_index);
550 } else {
551 base_addr = rel_patch_id;
552 }
553
554 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
555 LLVMBuildMul(ctx->ac.builder, param_index,
556 param_stride, ""), "");
557
558 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
559
560 if (!vertex_index) {
561 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
562
563 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
564 patch_data_offset, "");
565 }
566 return base_addr;
567 }
568
569 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
570 unsigned param,
571 unsigned const_index,
572 bool is_compact,
573 LLVMValueRef vertex_index,
574 LLVMValueRef indir_index)
575 {
576 LLVMValueRef param_index;
577
578 if (indir_index)
579 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
580 indir_index, "");
581 else {
582 if (const_index && !is_compact)
583 param += const_index;
584 param_index = LLVMConstInt(ctx->ac.i32, param, false);
585 }
586 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
587 }
588
589 static LLVMValueRef
590 get_dw_address(struct radv_shader_context *ctx,
591 LLVMValueRef dw_addr,
592 unsigned param,
593 unsigned const_index,
594 bool compact_const_index,
595 LLVMValueRef vertex_index,
596 LLVMValueRef stride,
597 LLVMValueRef indir_index)
598
599 {
600
601 if (vertex_index) {
602 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
603 LLVMBuildMul(ctx->ac.builder,
604 vertex_index,
605 stride, ""), "");
606 }
607
608 if (indir_index)
609 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
610 LLVMBuildMul(ctx->ac.builder, indir_index,
611 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
612 else if (const_index && !compact_const_index)
613 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
614 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
615
616 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
617 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
618
619 if (const_index && compact_const_index)
620 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
621 LLVMConstInt(ctx->ac.i32, const_index, false), "");
622 return dw_addr;
623 }
624
625 static LLVMValueRef
626 load_tcs_varyings(struct ac_shader_abi *abi,
627 LLVMTypeRef type,
628 LLVMValueRef vertex_index,
629 LLVMValueRef indir_index,
630 unsigned const_index,
631 unsigned location,
632 unsigned driver_location,
633 unsigned component,
634 unsigned num_components,
635 bool is_patch,
636 bool is_compact,
637 bool load_input)
638 {
639 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
640 LLVMValueRef dw_addr, stride;
641 LLVMValueRef value[4], result;
642 unsigned param = shader_io_get_unique_index(location);
643
644 if (load_input) {
645 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
646 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
647 dw_addr = get_tcs_in_current_patch_offset(ctx);
648 } else {
649 if (!is_patch) {
650 stride = get_tcs_out_vertex_stride(ctx);
651 dw_addr = get_tcs_out_current_patch_offset(ctx);
652 } else {
653 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
654 stride = NULL;
655 }
656 }
657
658 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
659 indir_index);
660
661 for (unsigned i = 0; i < num_components + component; i++) {
662 value[i] = ac_lds_load(&ctx->ac, dw_addr);
663 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
664 ctx->ac.i32_1, "");
665 }
666 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
667 return result;
668 }
669
670 static void
671 store_tcs_output(struct ac_shader_abi *abi,
672 const nir_variable *var,
673 LLVMValueRef vertex_index,
674 LLVMValueRef param_index,
675 unsigned const_index,
676 LLVMValueRef src,
677 unsigned writemask)
678 {
679 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
680 const unsigned location = var->data.location;
681 unsigned component = var->data.location_frac;
682 const bool is_patch = var->data.patch;
683 const bool is_compact = var->data.compact;
684 LLVMValueRef dw_addr;
685 LLVMValueRef stride = NULL;
686 LLVMValueRef buf_addr = NULL;
687 LLVMValueRef oc_lds = ac_get_arg(&ctx->ac, ctx->args->oc_lds);
688 unsigned param;
689 bool store_lds = true;
690
691 if (is_patch) {
692 if (!(ctx->shader->info.patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
693 store_lds = false;
694 } else {
695 if (!(ctx->shader->info.outputs_read & (1ULL << location)))
696 store_lds = false;
697 }
698
699 param = shader_io_get_unique_index(location);
700 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
701 const_index += component;
702 component = 0;
703
704 if (const_index >= 4) {
705 const_index -= 4;
706 param++;
707 }
708 }
709
710 if (!is_patch) {
711 stride = get_tcs_out_vertex_stride(ctx);
712 dw_addr = get_tcs_out_current_patch_offset(ctx);
713 } else {
714 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
715 }
716
717 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
718 param_index);
719 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
720 vertex_index, param_index);
721
722 bool is_tess_factor = false;
723 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
724 location == VARYING_SLOT_TESS_LEVEL_OUTER)
725 is_tess_factor = true;
726
727 unsigned base = is_compact ? const_index : 0;
728 for (unsigned chan = 0; chan < 8; chan++) {
729 if (!(writemask & (1 << chan)))
730 continue;
731 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
732 value = ac_to_integer(&ctx->ac, value);
733 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
734
735 if (store_lds || is_tess_factor) {
736 LLVMValueRef dw_addr_chan =
737 LLVMBuildAdd(ctx->ac.builder, dw_addr,
738 LLVMConstInt(ctx->ac.i32, chan, false), "");
739 ac_lds_store(&ctx->ac, dw_addr_chan, value);
740 }
741
742 if (!is_tess_factor && writemask != 0xF)
743 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
744 buf_addr, oc_lds,
745 4 * (base + chan), ac_glc);
746 }
747
748 if (writemask == 0xF) {
749 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
750 buf_addr, oc_lds,
751 (base * 4), ac_glc);
752 }
753 }
754
755 static LLVMValueRef
756 load_tes_input(struct ac_shader_abi *abi,
757 LLVMTypeRef type,
758 LLVMValueRef vertex_index,
759 LLVMValueRef param_index,
760 unsigned const_index,
761 unsigned location,
762 unsigned driver_location,
763 unsigned component,
764 unsigned num_components,
765 bool is_patch,
766 bool is_compact,
767 bool load_input)
768 {
769 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
770 LLVMValueRef buf_addr;
771 LLVMValueRef result;
772 LLVMValueRef oc_lds = ac_get_arg(&ctx->ac, ctx->args->oc_lds);
773 unsigned param = shader_io_get_unique_index(location);
774
775 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
776 const_index += component;
777 component = 0;
778 if (const_index >= 4) {
779 const_index -= 4;
780 param++;
781 }
782 }
783
784 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
785 is_compact, vertex_index, param_index);
786
787 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
788 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
789
790 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
791 buf_addr, oc_lds, is_compact ? (4 * const_index) : 0, ac_glc, true, false);
792 result = ac_trim_vector(&ctx->ac, result, num_components);
793 return result;
794 }
795
796 static LLVMValueRef
797 radv_emit_fetch_64bit(struct radv_shader_context *ctx,
798 LLVMTypeRef type, LLVMValueRef a, LLVMValueRef b)
799 {
800 LLVMValueRef values[2] = {
801 ac_to_integer(&ctx->ac, a),
802 ac_to_integer(&ctx->ac, b),
803 };
804 LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, 2);
805 return LLVMBuildBitCast(ctx->ac.builder, result, type, "");
806 }
807
808 static LLVMValueRef
809 load_gs_input(struct ac_shader_abi *abi,
810 unsigned location,
811 unsigned driver_location,
812 unsigned component,
813 unsigned num_components,
814 unsigned vertex_index,
815 unsigned const_index,
816 LLVMTypeRef type)
817 {
818 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
819 LLVMValueRef vtx_offset;
820 unsigned param, vtx_offset_param;
821 LLVMValueRef value[4], result;
822
823 vtx_offset_param = vertex_index;
824 assert(vtx_offset_param < 6);
825 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
826 LLVMConstInt(ctx->ac.i32, 4, false), "");
827
828 param = shader_io_get_unique_index(location);
829
830 for (unsigned i = component; i < num_components + component; i++) {
831 if (ctx->ac.chip_class >= GFX9) {
832 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
833 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
834 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
835 value[i] = ac_lds_load(&ctx->ac, dw_addr);
836
837 if (ac_get_type_size(type) == 8) {
838 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
839 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index + 1, 0), "");
840 LLVMValueRef tmp = ac_lds_load(&ctx->ac, dw_addr);
841
842 value[i] = radv_emit_fetch_64bit(ctx, type, value[i], tmp);
843 }
844 } else {
845 LLVMValueRef soffset =
846 LLVMConstInt(ctx->ac.i32,
847 (param * 4 + i + const_index) * 256,
848 false);
849
850 value[i] = ac_build_buffer_load(&ctx->ac,
851 ctx->esgs_ring, 1,
852 ctx->ac.i32_0,
853 vtx_offset, soffset,
854 0, ac_glc, true, false);
855
856 if (ac_get_type_size(type) == 8) {
857 soffset = LLVMConstInt(ctx->ac.i32,
858 (param * 4 + i + const_index + 1) * 256,
859 false);
860
861 LLVMValueRef tmp =
862 ac_build_buffer_load(&ctx->ac,
863 ctx->esgs_ring, 1,
864 ctx->ac.i32_0,
865 vtx_offset, soffset,
866 0, ac_glc, true, false);
867
868 value[i] = radv_emit_fetch_64bit(ctx, type, value[i], tmp);
869 }
870 }
871
872 if (ac_get_type_size(type) == 2) {
873 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
874 value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
875 }
876 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
877 }
878 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
879 result = ac_to_integer(&ctx->ac, result);
880 return result;
881 }
882
883
884 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
885 {
886 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
887 ac_build_kill_if_false(&ctx->ac, visible);
888 }
889
890 static uint32_t
891 radv_get_sample_pos_offset(uint32_t num_samples)
892 {
893 uint32_t sample_pos_offset = 0;
894
895 switch (num_samples) {
896 case 2:
897 sample_pos_offset = 1;
898 break;
899 case 4:
900 sample_pos_offset = 3;
901 break;
902 case 8:
903 sample_pos_offset = 7;
904 break;
905 default:
906 break;
907 }
908 return sample_pos_offset;
909 }
910
911 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
912 LLVMValueRef sample_id)
913 {
914 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
915
916 LLVMValueRef result;
917 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false);
918 LLVMValueRef ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ring_offsets, &index, 1, "");
919
920 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
921 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
922
923 uint32_t sample_pos_offset =
924 radv_get_sample_pos_offset(ctx->args->options->key.fs.num_samples);
925
926 sample_id =
927 LLVMBuildAdd(ctx->ac.builder, sample_id,
928 LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
929 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
930
931 return result;
932 }
933
934
935 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
936 {
937 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
938 uint8_t log2_ps_iter_samples;
939
940 if (ctx->args->shader_info->ps.force_persample) {
941 log2_ps_iter_samples =
942 util_logbase2(ctx->args->options->key.fs.num_samples);
943 } else {
944 log2_ps_iter_samples = ctx->args->options->key.fs.log2_ps_iter_samples;
945 }
946
947 /* The bit pattern matches that used by fixed function fragment
948 * processing. */
949 static const uint16_t ps_iter_masks[] = {
950 0xffff, /* not used */
951 0x5555,
952 0x1111,
953 0x0101,
954 0x0001,
955 };
956 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
957
958 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
959
960 LLVMValueRef result, sample_id;
961 sample_id = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ac.ancillary), 8, 4);
962 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
963 result = LLVMBuildAnd(ctx->ac.builder, sample_id,
964 ac_get_arg(&ctx->ac, ctx->args->ac.sample_coverage), "");
965 return result;
966 }
967
968
969 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
970 unsigned stream,
971 LLVMValueRef *addrs);
972
973 static void
974 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
975 {
976 LLVMValueRef gs_next_vertex;
977 LLVMValueRef can_emit;
978 unsigned offset = 0;
979 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
980
981 if (ctx->args->options->key.vs_common_out.as_ngg) {
982 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
983 return;
984 }
985
986 /* Write vertex attribute values to GSVS ring */
987 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
988 ctx->gs_next_vertex[stream],
989 "");
990
991 /* If this thread has already emitted the declared maximum number of
992 * vertices, don't emit any more: excessive vertex emissions are not
993 * supposed to have any effect.
994 */
995 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
996 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
997
998 bool use_kill = !ctx->args->shader_info->gs.writes_memory;
999 if (use_kill)
1000 ac_build_kill_if_false(&ctx->ac, can_emit);
1001 else
1002 ac_build_ifcc(&ctx->ac, can_emit, 6505);
1003
1004 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1005 unsigned output_usage_mask =
1006 ctx->args->shader_info->gs.output_usage_mask[i];
1007 uint8_t output_stream =
1008 ctx->args->shader_info->gs.output_streams[i];
1009 LLVMValueRef *out_ptr = &addrs[i * 4];
1010 int length = util_last_bit(output_usage_mask);
1011
1012 if (!(ctx->output_mask & (1ull << i)) ||
1013 output_stream != stream)
1014 continue;
1015
1016 for (unsigned j = 0; j < length; j++) {
1017 if (!(output_usage_mask & (1 << j)))
1018 continue;
1019
1020 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1021 out_ptr[j], "");
1022 LLVMValueRef voffset =
1023 LLVMConstInt(ctx->ac.i32, offset *
1024 ctx->shader->info.gs.vertices_out, false);
1025
1026 offset++;
1027
1028 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1029 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1030
1031 out_val = ac_to_integer(&ctx->ac, out_val);
1032 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1033
1034 ac_build_buffer_store_dword(&ctx->ac,
1035 ctx->gsvs_ring[stream],
1036 out_val, 1,
1037 voffset,
1038 ac_get_arg(&ctx->ac,
1039 ctx->args->gs2vs_offset),
1040 0, ac_glc | ac_slc | ac_swizzled);
1041 }
1042 }
1043
1044 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1045 ctx->ac.i32_1, "");
1046 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
1047
1048 ac_build_sendmsg(&ctx->ac,
1049 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
1050 ctx->gs_wave_id);
1051
1052 if (!use_kill)
1053 ac_build_endif(&ctx->ac, 6505);
1054 }
1055
1056 static void
1057 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1058 {
1059 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1060
1061 if (ctx->args->options->key.vs_common_out.as_ngg) {
1062 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
1063 return;
1064 }
1065
1066 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1067 }
1068
1069 static LLVMValueRef
1070 load_tess_coord(struct ac_shader_abi *abi)
1071 {
1072 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1073
1074 LLVMValueRef coord[4] = {
1075 ac_get_arg(&ctx->ac, ctx->args->tes_u),
1076 ac_get_arg(&ctx->ac, ctx->args->tes_v),
1077 ctx->ac.f32_0,
1078 ctx->ac.f32_0,
1079 };
1080
1081 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES)
1082 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1083 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1084
1085 return ac_build_gather_values(&ctx->ac, coord, 3);
1086 }
1087
1088 static LLVMValueRef
1089 load_patch_vertices_in(struct ac_shader_abi *abi)
1090 {
1091 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1092 return LLVMConstInt(ctx->ac.i32, ctx->args->options->key.tcs.input_vertices, false);
1093 }
1094
1095
1096 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1097 {
1098 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1099 return ac_get_arg(&ctx->ac, ctx->args->ac.base_vertex);
1100 }
1101
1102 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1103 LLVMValueRef buffer_ptr, bool write)
1104 {
1105 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1106 LLVMValueRef result;
1107
1108 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1109
1110 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1111 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1112
1113 return result;
1114 }
1115
1116 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1117 {
1118 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1119 LLVMValueRef result;
1120
1121 if (LLVMGetTypeKind(LLVMTypeOf(buffer_ptr)) != LLVMPointerTypeKind) {
1122 /* Do not load the descriptor for inlined uniform blocks. */
1123 return buffer_ptr;
1124 }
1125
1126 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1127
1128 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1129 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1130
1131 return result;
1132 }
1133
1134 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1135 unsigned descriptor_set,
1136 unsigned base_index,
1137 unsigned constant_index,
1138 LLVMValueRef index,
1139 enum ac_descriptor_type desc_type,
1140 bool image, bool write,
1141 bool bindless)
1142 {
1143 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1144 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
1145 struct radv_descriptor_set_layout *layout = ctx->args->options->layout->set[descriptor_set].layout;
1146 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
1147 unsigned offset = binding->offset;
1148 unsigned stride = binding->size;
1149 unsigned type_size;
1150 LLVMBuilderRef builder = ctx->ac.builder;
1151 LLVMTypeRef type;
1152
1153 assert(base_index < layout->binding_count);
1154
1155 switch (desc_type) {
1156 case AC_DESC_IMAGE:
1157 type = ctx->ac.v8i32;
1158 type_size = 32;
1159 break;
1160 case AC_DESC_FMASK:
1161 type = ctx->ac.v8i32;
1162 offset += 32;
1163 type_size = 32;
1164 break;
1165 case AC_DESC_SAMPLER:
1166 type = ctx->ac.v4i32;
1167 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
1168 offset += radv_combined_image_descriptor_sampler_offset(binding);
1169 }
1170
1171 type_size = 16;
1172 break;
1173 case AC_DESC_BUFFER:
1174 type = ctx->ac.v4i32;
1175 type_size = 16;
1176 break;
1177 case AC_DESC_PLANE_0:
1178 case AC_DESC_PLANE_1:
1179 case AC_DESC_PLANE_2:
1180 type = ctx->ac.v8i32;
1181 type_size = 32;
1182 offset += 32 * (desc_type - AC_DESC_PLANE_0);
1183 break;
1184 default:
1185 unreachable("invalid desc_type\n");
1186 }
1187
1188 offset += constant_index * stride;
1189
1190 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
1191 (!index || binding->immutable_samplers_equal)) {
1192 if (binding->immutable_samplers_equal)
1193 constant_index = 0;
1194
1195 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
1196
1197 LLVMValueRef constants[] = {
1198 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
1199 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
1200 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
1201 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
1202 };
1203 return ac_build_gather_values(&ctx->ac, constants, 4);
1204 }
1205
1206 assert(stride % type_size == 0);
1207
1208 LLVMValueRef adjusted_index = index;
1209 if (!adjusted_index)
1210 adjusted_index = ctx->ac.i32_0;
1211
1212 adjusted_index = LLVMBuildMul(builder, adjusted_index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
1213
1214 LLVMValueRef val_offset = LLVMConstInt(ctx->ac.i32, offset, 0);
1215 list = LLVMBuildGEP(builder, list, &val_offset, 1, "");
1216 list = LLVMBuildPointerCast(builder, list,
1217 ac_array_in_const32_addr_space(type), "");
1218
1219 LLVMValueRef descriptor = ac_build_load_to_sgpr(&ctx->ac, list, adjusted_index);
1220
1221 /* 3 plane formats always have same size and format for plane 1 & 2, so
1222 * use the tail from plane 1 so that we can store only the first 16 bytes
1223 * of the last plane. */
1224 if (desc_type == AC_DESC_PLANE_2) {
1225 LLVMValueRef descriptor2 = radv_get_sampler_desc(abi, descriptor_set, base_index, constant_index, index, AC_DESC_PLANE_1,image, write, bindless);
1226
1227 LLVMValueRef components[8];
1228 for (unsigned i = 0; i < 4; ++i)
1229 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor, i);
1230
1231 for (unsigned i = 4; i < 8; ++i)
1232 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor2, i);
1233 descriptor = ac_build_gather_values(&ctx->ac, components, 8);
1234 }
1235
1236 return descriptor;
1237 }
1238
1239 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
1240 * so we may need to fix it up. */
1241 static LLVMValueRef
1242 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
1243 unsigned adjustment,
1244 LLVMValueRef alpha)
1245 {
1246 if (adjustment == RADV_ALPHA_ADJUST_NONE)
1247 return alpha;
1248
1249 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
1250
1251 alpha = LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.f32, "");
1252
1253 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
1254 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
1255 else
1256 alpha = ac_to_integer(&ctx->ac, alpha);
1257
1258 /* For the integer-like cases, do a natural sign extension.
1259 *
1260 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
1261 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
1262 * exponent.
1263 */
1264 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
1265 adjustment == RADV_ALPHA_ADJUST_SNORM ?
1266 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
1267 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
1268
1269 /* Convert back to the right type. */
1270 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
1271 LLVMValueRef clamp;
1272 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
1273 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
1274 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
1275 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
1276 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
1277 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
1278 }
1279
1280 return LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.i32, "");
1281 }
1282
1283 static unsigned
1284 get_num_channels_from_data_format(unsigned data_format)
1285 {
1286 switch (data_format) {
1287 case V_008F0C_BUF_DATA_FORMAT_8:
1288 case V_008F0C_BUF_DATA_FORMAT_16:
1289 case V_008F0C_BUF_DATA_FORMAT_32:
1290 return 1;
1291 case V_008F0C_BUF_DATA_FORMAT_8_8:
1292 case V_008F0C_BUF_DATA_FORMAT_16_16:
1293 case V_008F0C_BUF_DATA_FORMAT_32_32:
1294 return 2;
1295 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
1296 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
1297 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
1298 return 3;
1299 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
1300 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
1301 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
1302 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
1303 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
1304 return 4;
1305 default:
1306 break;
1307 }
1308
1309 return 4;
1310 }
1311
1312 static LLVMValueRef
1313 radv_fixup_vertex_input_fetches(struct radv_shader_context *ctx,
1314 LLVMValueRef value,
1315 unsigned num_channels,
1316 bool is_float)
1317 {
1318 LLVMValueRef zero = is_float ? ctx->ac.f32_0 : ctx->ac.i32_0;
1319 LLVMValueRef one = is_float ? ctx->ac.f32_1 : ctx->ac.i32_1;
1320 LLVMValueRef chan[4];
1321
1322 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
1323 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
1324
1325 if (num_channels == 4 && num_channels == vec_size)
1326 return value;
1327
1328 num_channels = MIN2(num_channels, vec_size);
1329
1330 for (unsigned i = 0; i < num_channels; i++)
1331 chan[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
1332 } else {
1333 assert(num_channels == 1);
1334 chan[0] = value;
1335 }
1336
1337 for (unsigned i = num_channels; i < 4; i++) {
1338 chan[i] = i == 3 ? one : zero;
1339 chan[i] = ac_to_integer(&ctx->ac, chan[i]);
1340 }
1341
1342 return ac_build_gather_values(&ctx->ac, chan, 4);
1343 }
1344
1345 static void
1346 handle_vs_input_decl(struct radv_shader_context *ctx,
1347 struct nir_variable *variable)
1348 {
1349 LLVMValueRef t_list_ptr = ac_get_arg(&ctx->ac, ctx->args->vertex_buffers);
1350 LLVMValueRef t_offset;
1351 LLVMValueRef t_list;
1352 LLVMValueRef input;
1353 LLVMValueRef buffer_index;
1354 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
1355 uint8_t input_usage_mask =
1356 ctx->args->shader_info->vs.input_usage_mask[variable->data.location];
1357 unsigned num_input_channels = util_last_bit(input_usage_mask);
1358
1359 variable->data.driver_location = variable->data.location * 4;
1360
1361 enum glsl_base_type type = glsl_get_base_type(variable->type);
1362 for (unsigned i = 0; i < attrib_count; ++i) {
1363 LLVMValueRef output[4];
1364 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
1365 unsigned attrib_format = ctx->args->options->key.vs.vertex_attribute_formats[attrib_index];
1366 unsigned data_format = attrib_format & 0x0f;
1367 unsigned num_format = (attrib_format >> 4) & 0x07;
1368 bool is_float = num_format != V_008F0C_BUF_NUM_FORMAT_UINT &&
1369 num_format != V_008F0C_BUF_NUM_FORMAT_SINT;
1370
1371 if (ctx->args->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
1372 uint32_t divisor = ctx->args->options->key.vs.instance_rate_divisors[attrib_index];
1373
1374 if (divisor) {
1375 buffer_index = ctx->abi.instance_id;
1376
1377 if (divisor != 1) {
1378 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
1379 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
1380 }
1381 } else {
1382 buffer_index = ctx->ac.i32_0;
1383 }
1384
1385 buffer_index = LLVMBuildAdd(ctx->ac.builder,
1386 ac_get_arg(&ctx->ac,
1387 ctx->args->ac.start_instance),\
1388 buffer_index, "");
1389 } else {
1390 buffer_index = LLVMBuildAdd(ctx->ac.builder,
1391 ctx->abi.vertex_id,
1392 ac_get_arg(&ctx->ac,
1393 ctx->args->ac.base_vertex), "");
1394 }
1395
1396 /* Adjust the number of channels to load based on the vertex
1397 * attribute format.
1398 */
1399 unsigned num_format_channels = get_num_channels_from_data_format(data_format);
1400 unsigned num_channels = MIN2(num_input_channels, num_format_channels);
1401 unsigned attrib_binding = ctx->args->options->key.vs.vertex_attribute_bindings[attrib_index];
1402 unsigned attrib_offset = ctx->args->options->key.vs.vertex_attribute_offsets[attrib_index];
1403 unsigned attrib_stride = ctx->args->options->key.vs.vertex_attribute_strides[attrib_index];
1404
1405 if (ctx->args->options->key.vs.post_shuffle & (1 << attrib_index)) {
1406 /* Always load, at least, 3 channels for formats that
1407 * need to be shuffled because X<->Z.
1408 */
1409 num_channels = MAX2(num_channels, 3);
1410 }
1411
1412 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
1413 LLVMValueRef buffer_offset =
1414 LLVMConstInt(ctx->ac.i32,
1415 attrib_offset / attrib_stride, false);
1416
1417 buffer_index = LLVMBuildAdd(ctx->ac.builder,
1418 buffer_index,
1419 buffer_offset, "");
1420
1421 attrib_offset = attrib_offset % attrib_stride;
1422 }
1423
1424 t_offset = LLVMConstInt(ctx->ac.i32, attrib_binding, false);
1425 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
1426
1427 input = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
1428 buffer_index,
1429 LLVMConstInt(ctx->ac.i32, attrib_offset, false),
1430 ctx->ac.i32_0, ctx->ac.i32_0,
1431 num_channels,
1432 data_format, num_format, 0, true);
1433
1434 if (ctx->args->options->key.vs.post_shuffle & (1 << attrib_index)) {
1435 LLVMValueRef c[4];
1436 c[0] = ac_llvm_extract_elem(&ctx->ac, input, 2);
1437 c[1] = ac_llvm_extract_elem(&ctx->ac, input, 1);
1438 c[2] = ac_llvm_extract_elem(&ctx->ac, input, 0);
1439 c[3] = ac_llvm_extract_elem(&ctx->ac, input, 3);
1440
1441 input = ac_build_gather_values(&ctx->ac, c, 4);
1442 }
1443
1444 input = radv_fixup_vertex_input_fetches(ctx, input, num_channels,
1445 is_float);
1446
1447 for (unsigned chan = 0; chan < 4; chan++) {
1448 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
1449 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
1450 if (type == GLSL_TYPE_FLOAT16) {
1451 output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
1452 output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
1453 }
1454 }
1455
1456 unsigned alpha_adjust = (ctx->args->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
1457 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
1458
1459 for (unsigned chan = 0; chan < 4; chan++) {
1460 output[chan] = ac_to_integer(&ctx->ac, output[chan]);
1461 if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
1462 output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
1463
1464 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
1465 }
1466 }
1467 }
1468
1469 static void
1470 handle_vs_inputs(struct radv_shader_context *ctx,
1471 struct nir_shader *nir) {
1472 nir_foreach_variable(variable, &nir->inputs)
1473 handle_vs_input_decl(ctx, variable);
1474 }
1475
1476 static void
1477 prepare_interp_optimize(struct radv_shader_context *ctx,
1478 struct nir_shader *nir)
1479 {
1480 bool uses_center = false;
1481 bool uses_centroid = false;
1482 nir_foreach_variable(variable, &nir->inputs) {
1483 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
1484 variable->data.sample)
1485 continue;
1486
1487 if (variable->data.centroid)
1488 uses_centroid = true;
1489 else
1490 uses_center = true;
1491 }
1492
1493 ctx->abi.persp_centroid = ac_get_arg(&ctx->ac, ctx->args->ac.persp_centroid);
1494 ctx->abi.linear_centroid = ac_get_arg(&ctx->ac, ctx->args->ac.linear_centroid);
1495
1496 if (uses_center && uses_centroid) {
1497 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT,
1498 ac_get_arg(&ctx->ac, ctx->args->ac.prim_mask),
1499 ctx->ac.i32_0, "");
1500 ctx->abi.persp_centroid =
1501 LLVMBuildSelect(ctx->ac.builder, sel,
1502 ac_get_arg(&ctx->ac, ctx->args->ac.persp_center),
1503 ctx->abi.persp_centroid, "");
1504 ctx->abi.linear_centroid =
1505 LLVMBuildSelect(ctx->ac.builder, sel,
1506 ac_get_arg(&ctx->ac, ctx->args->ac.linear_center),
1507 ctx->abi.linear_centroid, "");
1508 }
1509 }
1510
1511 static void
1512 scan_shader_output_decl(struct radv_shader_context *ctx,
1513 struct nir_variable *variable,
1514 struct nir_shader *shader,
1515 gl_shader_stage stage)
1516 {
1517 int idx = variable->data.location + variable->data.index;
1518 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
1519 uint64_t mask_attribs;
1520
1521 variable->data.driver_location = idx * 4;
1522
1523 /* tess ctrl has it's own load/store paths for outputs */
1524 if (stage == MESA_SHADER_TESS_CTRL)
1525 return;
1526
1527 if (variable->data.compact) {
1528 unsigned component_count = variable->data.location_frac +
1529 glsl_get_length(variable->type);
1530 attrib_count = (component_count + 3) / 4;
1531 }
1532
1533 mask_attribs = ((1ull << attrib_count) - 1) << idx;
1534
1535 ctx->output_mask |= mask_attribs;
1536 }
1537
1538
1539 /* Initialize arguments for the shader export intrinsic */
1540 static void
1541 si_llvm_init_export_args(struct radv_shader_context *ctx,
1542 LLVMValueRef *values,
1543 unsigned enabled_channels,
1544 unsigned target,
1545 struct ac_export_args *args)
1546 {
1547 /* Specify the channels that are enabled. */
1548 args->enabled_channels = enabled_channels;
1549
1550 /* Specify whether the EXEC mask represents the valid mask */
1551 args->valid_mask = 0;
1552
1553 /* Specify whether this is the last export */
1554 args->done = 0;
1555
1556 /* Specify the target we are exporting */
1557 args->target = target;
1558
1559 args->compr = false;
1560 args->out[0] = LLVMGetUndef(ctx->ac.f32);
1561 args->out[1] = LLVMGetUndef(ctx->ac.f32);
1562 args->out[2] = LLVMGetUndef(ctx->ac.f32);
1563 args->out[3] = LLVMGetUndef(ctx->ac.f32);
1564
1565 if (!values)
1566 return;
1567
1568 bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
1569 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1570 unsigned index = target - V_008DFC_SQ_EXP_MRT;
1571 unsigned col_format = (ctx->args->options->key.fs.col_format >> (4 * index)) & 0xf;
1572 bool is_int8 = (ctx->args->options->key.fs.is_int8 >> index) & 1;
1573 bool is_int10 = (ctx->args->options->key.fs.is_int10 >> index) & 1;
1574 unsigned chan;
1575
1576 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
1577 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
1578 unsigned bits, bool hi) = NULL;
1579
1580 switch(col_format) {
1581 case V_028714_SPI_SHADER_ZERO:
1582 args->enabled_channels = 0; /* writemask */
1583 args->target = V_008DFC_SQ_EXP_NULL;
1584 break;
1585
1586 case V_028714_SPI_SHADER_32_R:
1587 args->enabled_channels = 1;
1588 args->out[0] = values[0];
1589 break;
1590
1591 case V_028714_SPI_SHADER_32_GR:
1592 args->enabled_channels = 0x3;
1593 args->out[0] = values[0];
1594 args->out[1] = values[1];
1595 break;
1596
1597 case V_028714_SPI_SHADER_32_AR:
1598 if (ctx->ac.chip_class >= GFX10) {
1599 args->enabled_channels = 0x3;
1600 args->out[0] = values[0];
1601 args->out[1] = values[3];
1602 } else {
1603 args->enabled_channels = 0x9;
1604 args->out[0] = values[0];
1605 args->out[3] = values[3];
1606 }
1607 break;
1608
1609 case V_028714_SPI_SHADER_FP16_ABGR:
1610 args->enabled_channels = 0x5;
1611 packf = ac_build_cvt_pkrtz_f16;
1612 if (is_16bit) {
1613 for (unsigned chan = 0; chan < 4; chan++)
1614 values[chan] = LLVMBuildFPExt(ctx->ac.builder,
1615 values[chan],
1616 ctx->ac.f32, "");
1617 }
1618 break;
1619
1620 case V_028714_SPI_SHADER_UNORM16_ABGR:
1621 args->enabled_channels = 0x5;
1622 packf = ac_build_cvt_pknorm_u16;
1623 break;
1624
1625 case V_028714_SPI_SHADER_SNORM16_ABGR:
1626 args->enabled_channels = 0x5;
1627 packf = ac_build_cvt_pknorm_i16;
1628 break;
1629
1630 case V_028714_SPI_SHADER_UINT16_ABGR:
1631 args->enabled_channels = 0x5;
1632 packi = ac_build_cvt_pk_u16;
1633 if (is_16bit) {
1634 for (unsigned chan = 0; chan < 4; chan++)
1635 values[chan] = LLVMBuildZExt(ctx->ac.builder,
1636 ac_to_integer(&ctx->ac, values[chan]),
1637 ctx->ac.i32, "");
1638 }
1639 break;
1640
1641 case V_028714_SPI_SHADER_SINT16_ABGR:
1642 args->enabled_channels = 0x5;
1643 packi = ac_build_cvt_pk_i16;
1644 if (is_16bit) {
1645 for (unsigned chan = 0; chan < 4; chan++)
1646 values[chan] = LLVMBuildSExt(ctx->ac.builder,
1647 ac_to_integer(&ctx->ac, values[chan]),
1648 ctx->ac.i32, "");
1649 }
1650 break;
1651
1652 default:
1653 case V_028714_SPI_SHADER_32_ABGR:
1654 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
1655 break;
1656 }
1657
1658 /* Pack f16 or norm_i16/u16. */
1659 if (packf) {
1660 for (chan = 0; chan < 2; chan++) {
1661 LLVMValueRef pack_args[2] = {
1662 values[2 * chan],
1663 values[2 * chan + 1]
1664 };
1665 LLVMValueRef packed;
1666
1667 packed = packf(&ctx->ac, pack_args);
1668 args->out[chan] = ac_to_float(&ctx->ac, packed);
1669 }
1670 args->compr = 1; /* COMPR flag */
1671 }
1672
1673 /* Pack i16/u16. */
1674 if (packi) {
1675 for (chan = 0; chan < 2; chan++) {
1676 LLVMValueRef pack_args[2] = {
1677 ac_to_integer(&ctx->ac, values[2 * chan]),
1678 ac_to_integer(&ctx->ac, values[2 * chan + 1])
1679 };
1680 LLVMValueRef packed;
1681
1682 packed = packi(&ctx->ac, pack_args,
1683 is_int8 ? 8 : is_int10 ? 10 : 16,
1684 chan == 1);
1685 args->out[chan] = ac_to_float(&ctx->ac, packed);
1686 }
1687 args->compr = 1; /* COMPR flag */
1688 }
1689 return;
1690 }
1691
1692 if (is_16bit) {
1693 for (unsigned chan = 0; chan < 4; chan++) {
1694 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
1695 args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
1696 }
1697 } else
1698 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
1699
1700 for (unsigned i = 0; i < 4; ++i)
1701 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
1702 }
1703
1704 static void
1705 radv_export_param(struct radv_shader_context *ctx, unsigned index,
1706 LLVMValueRef *values, unsigned enabled_channels)
1707 {
1708 struct ac_export_args args;
1709
1710 si_llvm_init_export_args(ctx, values, enabled_channels,
1711 V_008DFC_SQ_EXP_PARAM + index, &args);
1712 ac_build_export(&ctx->ac, &args);
1713 }
1714
1715 static LLVMValueRef
1716 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
1717 {
1718 LLVMValueRef output = ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
1719 return LLVMBuildLoad(ctx->ac.builder, output, "");
1720 }
1721
1722 static void
1723 radv_emit_stream_output(struct radv_shader_context *ctx,
1724 LLVMValueRef const *so_buffers,
1725 LLVMValueRef const *so_write_offsets,
1726 const struct radv_stream_output *output,
1727 struct radv_shader_output_values *shader_out)
1728 {
1729 unsigned num_comps = util_bitcount(output->component_mask);
1730 unsigned buf = output->buffer;
1731 unsigned offset = output->offset;
1732 unsigned start;
1733 LLVMValueRef out[4];
1734
1735 assert(num_comps && num_comps <= 4);
1736 if (!num_comps || num_comps > 4)
1737 return;
1738
1739 /* Get the first component. */
1740 start = ffs(output->component_mask) - 1;
1741
1742 /* Load the output as int. */
1743 for (int i = 0; i < num_comps; i++) {
1744 out[i] = ac_to_integer(&ctx->ac, shader_out->values[start + i]);
1745 }
1746
1747 /* Pack the output. */
1748 LLVMValueRef vdata = NULL;
1749
1750 switch (num_comps) {
1751 case 1: /* as i32 */
1752 vdata = out[0];
1753 break;
1754 case 2: /* as v2i32 */
1755 case 3: /* as v4i32 (aligned to 4) */
1756 out[3] = LLVMGetUndef(ctx->ac.i32);
1757 /* fall through */
1758 case 4: /* as v4i32 */
1759 vdata = ac_build_gather_values(&ctx->ac, out,
1760 !ac_has_vec3_support(ctx->ac.chip_class, false) ?
1761 util_next_power_of_two(num_comps) :
1762 num_comps);
1763 break;
1764 }
1765
1766 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
1767 vdata, num_comps, so_write_offsets[buf],
1768 ctx->ac.i32_0, offset,
1769 ac_glc | ac_slc);
1770 }
1771
1772 static void
1773 radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
1774 {
1775 int i;
1776
1777 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
1778 assert(ctx->args->streamout_config.used);
1779 LLVMValueRef so_vtx_count =
1780 ac_build_bfe(&ctx->ac,
1781 ac_get_arg(&ctx->ac, ctx->args->streamout_config),
1782 LLVMConstInt(ctx->ac.i32, 16, false),
1783 LLVMConstInt(ctx->ac.i32, 7, false), false);
1784
1785 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
1786
1787 /* can_emit = tid < so_vtx_count; */
1788 LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
1789 tid, so_vtx_count, "");
1790
1791 /* Emit the streamout code conditionally. This actually avoids
1792 * out-of-bounds buffer access. The hw tells us via the SGPR
1793 * (so_vtx_count) which threads are allowed to emit streamout data.
1794 */
1795 ac_build_ifcc(&ctx->ac, can_emit, 6501);
1796 {
1797 /* The buffer offset is computed as follows:
1798 * ByteOffset = streamout_offset[buffer_id]*4 +
1799 * (streamout_write_index + thread_id)*stride[buffer_id] +
1800 * attrib_offset
1801 */
1802 LLVMValueRef so_write_index =
1803 ac_get_arg(&ctx->ac, ctx->args->streamout_write_idx);
1804
1805 /* Compute (streamout_write_index + thread_id). */
1806 so_write_index =
1807 LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");
1808
1809 /* Load the descriptor and compute the write offset for each
1810 * enabled buffer.
1811 */
1812 LLVMValueRef so_write_offset[4] = {};
1813 LLVMValueRef so_buffers[4] = {};
1814 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->args->streamout_buffers);
1815
1816 for (i = 0; i < 4; i++) {
1817 uint16_t stride = ctx->args->shader_info->so.strides[i];
1818
1819 if (!stride)
1820 continue;
1821
1822 LLVMValueRef offset =
1823 LLVMConstInt(ctx->ac.i32, i, false);
1824
1825 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
1826 buf_ptr, offset);
1827
1828 LLVMValueRef so_offset =
1829 ac_get_arg(&ctx->ac, ctx->args->streamout_offset[i]);
1830
1831 so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
1832 LLVMConstInt(ctx->ac.i32, 4, false), "");
1833
1834 so_write_offset[i] =
1835 ac_build_imad(&ctx->ac, so_write_index,
1836 LLVMConstInt(ctx->ac.i32,
1837 stride * 4, false),
1838 so_offset);
1839 }
1840
1841 /* Write streamout data. */
1842 for (i = 0; i < ctx->args->shader_info->so.num_outputs; i++) {
1843 struct radv_shader_output_values shader_out = {};
1844 struct radv_stream_output *output =
1845 &ctx->args->shader_info->so.outputs[i];
1846
1847 if (stream != output->stream)
1848 continue;
1849
1850 for (int j = 0; j < 4; j++) {
1851 shader_out.values[j] =
1852 radv_load_output(ctx, output->location, j);
1853 }
1854
1855 radv_emit_stream_output(ctx, so_buffers,so_write_offset,
1856 output, &shader_out);
1857 }
1858 }
1859 ac_build_endif(&ctx->ac, 6501);
1860 }
1861
1862 static void
1863 radv_build_param_exports(struct radv_shader_context *ctx,
1864 struct radv_shader_output_values *outputs,
1865 unsigned noutput,
1866 struct radv_vs_output_info *outinfo,
1867 bool export_clip_dists)
1868 {
1869 unsigned param_count = 0;
1870
1871 for (unsigned i = 0; i < noutput; i++) {
1872 unsigned slot_name = outputs[i].slot_name;
1873 unsigned usage_mask = outputs[i].usage_mask;
1874
1875 if (slot_name != VARYING_SLOT_LAYER &&
1876 slot_name != VARYING_SLOT_PRIMITIVE_ID &&
1877 slot_name != VARYING_SLOT_CLIP_DIST0 &&
1878 slot_name != VARYING_SLOT_CLIP_DIST1 &&
1879 slot_name < VARYING_SLOT_VAR0)
1880 continue;
1881
1882 if ((slot_name == VARYING_SLOT_CLIP_DIST0 ||
1883 slot_name == VARYING_SLOT_CLIP_DIST1) && !export_clip_dists)
1884 continue;
1885
1886 radv_export_param(ctx, param_count, outputs[i].values, usage_mask);
1887
1888 assert(i < ARRAY_SIZE(outinfo->vs_output_param_offset));
1889 outinfo->vs_output_param_offset[slot_name] = param_count++;
1890 }
1891
1892 outinfo->param_exports = param_count;
1893 }
1894
1895 /* Generate export instructions for hardware VS shader stage or NGG GS stage
1896 * (position and parameter data only).
1897 */
1898 static void
1899 radv_llvm_export_vs(struct radv_shader_context *ctx,
1900 struct radv_shader_output_values *outputs,
1901 unsigned noutput,
1902 struct radv_vs_output_info *outinfo,
1903 bool export_clip_dists)
1904 {
1905 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_value = NULL;
1906 struct ac_export_args pos_args[4] = {};
1907 unsigned pos_idx, index;
1908 int i;
1909
1910 /* Build position exports */
1911 for (i = 0; i < noutput; i++) {
1912 switch (outputs[i].slot_name) {
1913 case VARYING_SLOT_POS:
1914 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
1915 V_008DFC_SQ_EXP_POS, &pos_args[0]);
1916 break;
1917 case VARYING_SLOT_PSIZ:
1918 psize_value = outputs[i].values[0];
1919 break;
1920 case VARYING_SLOT_LAYER:
1921 layer_value = outputs[i].values[0];
1922 break;
1923 case VARYING_SLOT_VIEWPORT:
1924 viewport_value = outputs[i].values[0];
1925 break;
1926 case VARYING_SLOT_CLIP_DIST0:
1927 case VARYING_SLOT_CLIP_DIST1:
1928 index = 2 + outputs[i].slot_index;
1929 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
1930 V_008DFC_SQ_EXP_POS + index,
1931 &pos_args[index]);
1932 break;
1933 default:
1934 break;
1935 }
1936 }
1937
1938 /* We need to add the position output manually if it's missing. */
1939 if (!pos_args[0].out[0]) {
1940 pos_args[0].enabled_channels = 0xf; /* writemask */
1941 pos_args[0].valid_mask = 0; /* EXEC mask */
1942 pos_args[0].done = 0; /* last export? */
1943 pos_args[0].target = V_008DFC_SQ_EXP_POS;
1944 pos_args[0].compr = 0; /* COMPR flag */
1945 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
1946 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
1947 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
1948 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
1949 }
1950
1951 if (outinfo->writes_pointsize ||
1952 outinfo->writes_layer ||
1953 outinfo->writes_viewport_index) {
1954 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
1955 (outinfo->writes_layer == true ? 4 : 0));
1956 pos_args[1].valid_mask = 0;
1957 pos_args[1].done = 0;
1958 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
1959 pos_args[1].compr = 0;
1960 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
1961 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
1962 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
1963 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
1964
1965 if (outinfo->writes_pointsize == true)
1966 pos_args[1].out[0] = psize_value;
1967 if (outinfo->writes_layer == true)
1968 pos_args[1].out[2] = layer_value;
1969 if (outinfo->writes_viewport_index == true) {
1970 if (ctx->args->options->chip_class >= GFX9) {
1971 /* GFX9 has the layer in out.z[10:0] and the viewport
1972 * index in out.z[19:16].
1973 */
1974 LLVMValueRef v = viewport_value;
1975 v = ac_to_integer(&ctx->ac, v);
1976 v = LLVMBuildShl(ctx->ac.builder, v,
1977 LLVMConstInt(ctx->ac.i32, 16, false),
1978 "");
1979 v = LLVMBuildOr(ctx->ac.builder, v,
1980 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
1981
1982 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
1983 pos_args[1].enabled_channels |= 1 << 2;
1984 } else {
1985 pos_args[1].out[3] = viewport_value;
1986 pos_args[1].enabled_channels |= 1 << 3;
1987 }
1988 }
1989 }
1990
1991 for (i = 0; i < 4; i++) {
1992 if (pos_args[i].out[0])
1993 outinfo->pos_exports++;
1994 }
1995
1996 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
1997 * Setting valid_mask=1 prevents it and has no other effect.
1998 */
1999 if (ctx->ac.family == CHIP_NAVI10 ||
2000 ctx->ac.family == CHIP_NAVI12 ||
2001 ctx->ac.family == CHIP_NAVI14)
2002 pos_args[0].valid_mask = 1;
2003
2004 pos_idx = 0;
2005 for (i = 0; i < 4; i++) {
2006 if (!pos_args[i].out[0])
2007 continue;
2008
2009 /* Specify the target we are exporting */
2010 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2011
2012 if (pos_idx == outinfo->pos_exports)
2013 /* Specify that this is the last export */
2014 pos_args[i].done = 1;
2015
2016 ac_build_export(&ctx->ac, &pos_args[i]);
2017 }
2018
2019 /* Build parameter exports */
2020 radv_build_param_exports(ctx, outputs, noutput, outinfo, export_clip_dists);
2021 }
2022
2023 static void
2024 handle_vs_outputs_post(struct radv_shader_context *ctx,
2025 bool export_prim_id,
2026 bool export_clip_dists,
2027 struct radv_vs_output_info *outinfo)
2028 {
2029 struct radv_shader_output_values *outputs;
2030 unsigned noutput = 0;
2031
2032 if (ctx->args->options->key.has_multiview_view_index) {
2033 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2034 if(!*tmp_out) {
2035 for(unsigned i = 0; i < 4; ++i)
2036 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2037 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2038 }
2039
2040 LLVMValueRef view_index = ac_get_arg(&ctx->ac, ctx->args->ac.view_index);
2041 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, view_index), *tmp_out);
2042 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2043 }
2044
2045 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2046 sizeof(outinfo->vs_output_param_offset));
2047 outinfo->pos_exports = 0;
2048
2049 if (!ctx->args->options->use_ngg_streamout &&
2050 ctx->args->shader_info->so.num_outputs &&
2051 !ctx->args->is_gs_copy_shader) {
2052 /* The GS copy shader emission already emits streamout. */
2053 radv_emit_streamout(ctx, 0);
2054 }
2055
2056 /* Allocate a temporary array for the output values. */
2057 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_prim_id;
2058 outputs = malloc(num_outputs * sizeof(outputs[0]));
2059
2060 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2061 if (!(ctx->output_mask & (1ull << i)))
2062 continue;
2063
2064 outputs[noutput].slot_name = i;
2065 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
2066
2067 if (ctx->stage == MESA_SHADER_VERTEX &&
2068 !ctx->args->is_gs_copy_shader) {
2069 outputs[noutput].usage_mask =
2070 ctx->args->shader_info->vs.output_usage_mask[i];
2071 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2072 outputs[noutput].usage_mask =
2073 ctx->args->shader_info->tes.output_usage_mask[i];
2074 } else {
2075 assert(ctx->args->is_gs_copy_shader);
2076 outputs[noutput].usage_mask =
2077 ctx->args->shader_info->gs.output_usage_mask[i];
2078 }
2079
2080 for (unsigned j = 0; j < 4; j++) {
2081 outputs[noutput].values[j] =
2082 ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2083 }
2084
2085 noutput++;
2086 }
2087
2088 /* Export PrimitiveID. */
2089 if (export_prim_id) {
2090 outputs[noutput].slot_name = VARYING_SLOT_PRIMITIVE_ID;
2091 outputs[noutput].slot_index = 0;
2092 outputs[noutput].usage_mask = 0x1;
2093 outputs[noutput].values[0] =
2094 ac_get_arg(&ctx->ac, ctx->args->vs_prim_id);
2095 for (unsigned j = 1; j < 4; j++)
2096 outputs[noutput].values[j] = ctx->ac.f32_0;
2097 noutput++;
2098 }
2099
2100 radv_llvm_export_vs(ctx, outputs, noutput, outinfo, export_clip_dists);
2101
2102 free(outputs);
2103 }
2104
2105 static void
2106 handle_es_outputs_post(struct radv_shader_context *ctx,
2107 struct radv_es_output_info *outinfo)
2108 {
2109 int j;
2110 LLVMValueRef lds_base = NULL;
2111
2112 if (ctx->ac.chip_class >= GFX9) {
2113 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
2114 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
2115 LLVMValueRef wave_idx =
2116 ac_unpack_param(&ctx->ac,
2117 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 24, 4);
2118 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
2119 LLVMBuildMul(ctx->ac.builder, wave_idx,
2120 LLVMConstInt(ctx->ac.i32,
2121 ctx->ac.wave_size, false), ""), "");
2122 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
2123 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
2124 }
2125
2126 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2127 LLVMValueRef dw_addr = NULL;
2128 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2129 unsigned output_usage_mask;
2130 int param_index;
2131
2132 if (!(ctx->output_mask & (1ull << i)))
2133 continue;
2134
2135 if (ctx->stage == MESA_SHADER_VERTEX) {
2136 output_usage_mask =
2137 ctx->args->shader_info->vs.output_usage_mask[i];
2138 } else {
2139 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
2140 output_usage_mask =
2141 ctx->args->shader_info->tes.output_usage_mask[i];
2142 }
2143
2144 param_index = shader_io_get_unique_index(i);
2145
2146 if (lds_base) {
2147 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
2148 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
2149 "");
2150 }
2151
2152 for (j = 0; j < 4; j++) {
2153 if (!(output_usage_mask & (1 << j)))
2154 continue;
2155
2156 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2157 out_val = ac_to_integer(&ctx->ac, out_val);
2158 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
2159
2160 if (ctx->ac.chip_class >= GFX9) {
2161 LLVMValueRef dw_addr_offset =
2162 LLVMBuildAdd(ctx->ac.builder, dw_addr,
2163 LLVMConstInt(ctx->ac.i32,
2164 j, false), "");
2165
2166 ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
2167 } else {
2168 ac_build_buffer_store_dword(&ctx->ac,
2169 ctx->esgs_ring,
2170 out_val, 1,
2171 NULL,
2172 ac_get_arg(&ctx->ac, ctx->args->es2gs_offset),
2173 (4 * param_index + j) * 4,
2174 ac_glc | ac_slc | ac_swizzled);
2175 }
2176 }
2177 }
2178 }
2179
2180 static void
2181 handle_ls_outputs_post(struct radv_shader_context *ctx)
2182 {
2183 LLVMValueRef vertex_id = ctx->rel_auto_id;
2184 uint32_t num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
2185 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
2186 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
2187 vertex_dw_stride, "");
2188
2189 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2190 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2191
2192 if (!(ctx->output_mask & (1ull << i)))
2193 continue;
2194
2195 int param = shader_io_get_unique_index(i);
2196 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
2197 LLVMConstInt(ctx->ac.i32, param * 4, false),
2198 "");
2199 for (unsigned j = 0; j < 4; j++) {
2200 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2201 value = ac_to_integer(&ctx->ac, value);
2202 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
2203 ac_lds_store(&ctx->ac, dw_addr, value);
2204 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
2205 }
2206 }
2207 }
2208
2209 static LLVMValueRef get_wave_id_in_tg(struct radv_shader_context *ctx)
2210 {
2211 return ac_unpack_param(&ctx->ac,
2212 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 24, 4);
2213 }
2214
2215 static LLVMValueRef get_tgsize(struct radv_shader_context *ctx)
2216 {
2217 return ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 28, 4);
2218 }
2219
2220 static LLVMValueRef get_thread_id_in_tg(struct radv_shader_context *ctx)
2221 {
2222 LLVMBuilderRef builder = ctx->ac.builder;
2223 LLVMValueRef tmp;
2224 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
2225 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
2226 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
2227 }
2228
2229 static LLVMValueRef ngg_get_vtx_cnt(struct radv_shader_context *ctx)
2230 {
2231 return ac_build_bfe(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info),
2232 LLVMConstInt(ctx->ac.i32, 12, false),
2233 LLVMConstInt(ctx->ac.i32, 9, false),
2234 false);
2235 }
2236
2237 static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
2238 {
2239 return ac_build_bfe(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info),
2240 LLVMConstInt(ctx->ac.i32, 22, false),
2241 LLVMConstInt(ctx->ac.i32, 9, false),
2242 false);
2243 }
2244
2245 static LLVMValueRef ngg_get_ordered_id(struct radv_shader_context *ctx)
2246 {
2247 return ac_build_bfe(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info),
2248 ctx->ac.i32_0,
2249 LLVMConstInt(ctx->ac.i32, 11, false),
2250 false);
2251 }
2252
2253 static LLVMValueRef
2254 ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
2255 {
2256 unsigned num_outputs = util_bitcount64(ctx->output_mask);
2257
2258 if (ctx->args->options->key.has_multiview_view_index)
2259 num_outputs++;
2260
2261 LLVMTypeRef elements[2] = {
2262 LLVMArrayType(ctx->ac.i32, 4 * num_outputs),
2263 LLVMArrayType(ctx->ac.i8, 4),
2264 };
2265 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
2266 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
2267 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
2268 }
2269
2270 /**
2271 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
2272 * is in emit order; that is:
2273 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
2274 * - during vertex emit, i.e. while the API GS shader invocation is running,
2275 * N = threadidx * gs_max_out_vertices + emitidx
2276 *
2277 * Goals of the LDS memory layout:
2278 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
2279 * in uniform control flow
2280 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
2281 * culling
2282 * 3. Agnostic to the number of waves (since we don't know it before compiling)
2283 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
2284 * 5. Avoid wasting memory.
2285 *
2286 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
2287 * layout, elimination of bank conflicts requires that each vertex occupy an
2288 * odd number of dwords. We use the additional dword to store the output stream
2289 * index as well as a flag to indicate whether this vertex ends a primitive
2290 * for rasterization.
2291 *
2292 * Swizzling is required to satisfy points 1 and 2 simultaneously.
2293 *
2294 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
2295 * Indices are swizzled in groups of 32, which ensures point 1 without
2296 * disturbing point 2.
2297 *
2298 * \return an LDS pointer to type {[N x i32], [4 x i8]}
2299 */
2300 static LLVMValueRef
2301 ngg_gs_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef vertexidx)
2302 {
2303 LLVMBuilderRef builder = ctx->ac.builder;
2304 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
2305
2306 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
2307 unsigned write_stride_2exp = ffs(ctx->shader->info.gs.vertices_out) - 1;
2308 if (write_stride_2exp) {
2309 LLVMValueRef row =
2310 LLVMBuildLShr(builder, vertexidx,
2311 LLVMConstInt(ctx->ac.i32, 5, false), "");
2312 LLVMValueRef swizzle =
2313 LLVMBuildAnd(builder, row,
2314 LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
2315 false), "");
2316 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
2317 }
2318
2319 return ac_build_gep0(&ctx->ac, storage, vertexidx);
2320 }
2321
2322 static LLVMValueRef
2323 ngg_gs_emit_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef gsthread,
2324 LLVMValueRef emitidx)
2325 {
2326 LLVMBuilderRef builder = ctx->ac.builder;
2327 LLVMValueRef tmp;
2328
2329 tmp = LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false);
2330 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
2331 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
2332 return ngg_gs_vertex_ptr(ctx, vertexidx);
2333 }
2334
2335 /* Send GS Alloc Req message from the first wave of the group to SPI.
2336 * Message payload is:
2337 * - bits 0..10: vertices in group
2338 * - bits 12..22: primitives in group
2339 */
2340 static void build_sendmsg_gs_alloc_req(struct radv_shader_context *ctx,
2341 LLVMValueRef vtx_cnt,
2342 LLVMValueRef prim_cnt)
2343 {
2344 LLVMBuilderRef builder = ctx->ac.builder;
2345 LLVMValueRef tmp;
2346
2347 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
2348 ac_build_ifcc(&ctx->ac, tmp, 5020);
2349
2350 tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
2351 tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
2352 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
2353
2354 ac_build_endif(&ctx->ac, 5020);
2355 }
2356
2357 struct ngg_prim {
2358 unsigned num_vertices;
2359 LLVMValueRef isnull;
2360 LLVMValueRef swap;
2361 LLVMValueRef index[3];
2362 LLVMValueRef edgeflag[3];
2363 };
2364
2365 static void build_export_prim(struct radv_shader_context *ctx,
2366 const struct ngg_prim *prim)
2367 {
2368 LLVMBuilderRef builder = ctx->ac.builder;
2369 struct ac_export_args args;
2370 LLVMValueRef vertices[3];
2371 LLVMValueRef odd, even;
2372 LLVMValueRef tmp;
2373
2374 tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
2375 args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
2376
2377 for (unsigned i = 0; i < prim->num_vertices; ++i) {
2378 tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
2379 tmp = LLVMBuildShl(builder, tmp,
2380 LLVMConstInt(ctx->ac.i32, 9, false), "");
2381 vertices[i] = LLVMBuildOr(builder, prim->index[i], tmp, "");
2382 }
2383
2384 switch (prim->num_vertices) {
2385 case 1:
2386 args.out[0] = LLVMBuildOr(builder, args.out[0], vertices[0], "");
2387 break;
2388 case 2:
2389 tmp = LLVMBuildShl(builder, vertices[1],
2390 LLVMConstInt(ctx->ac.i32, 10, false), "");
2391 tmp = LLVMBuildOr(builder, args.out[0], tmp, "");
2392 args.out[0] = LLVMBuildOr(builder, tmp, vertices[0], "");
2393 break;
2394 case 3:
2395 /* Swap vertices if needed to follow drawing order. */
2396 tmp = LLVMBuildShl(builder, vertices[2],
2397 LLVMConstInt(ctx->ac.i32, 20, false), "");
2398 even = LLVMBuildOr(builder, args.out[0], tmp, "");
2399 tmp = LLVMBuildShl(builder, vertices[1],
2400 LLVMConstInt(ctx->ac.i32, 10, false), "");
2401 even = LLVMBuildOr(builder, even, tmp, "");
2402 even = LLVMBuildOr(builder, even, vertices[0], "");
2403
2404 tmp = LLVMBuildShl(builder, vertices[1],
2405 LLVMConstInt(ctx->ac.i32, 20, false), "");
2406 odd = LLVMBuildOr(builder, args.out[0], tmp, "");
2407 tmp = LLVMBuildShl(builder, vertices[2],
2408 LLVMConstInt(ctx->ac.i32, 10, false), "");
2409 odd = LLVMBuildOr(builder, odd, tmp, "");
2410 odd = LLVMBuildOr(builder, odd, vertices[0], "");
2411
2412 args.out[0] = LLVMBuildSelect(builder, prim->swap, odd, even, "");
2413 break;
2414 default:
2415 unreachable("invalid number of vertices");
2416 }
2417
2418 args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
2419 args.out[1] = LLVMGetUndef(ctx->ac.f32);
2420 args.out[2] = LLVMGetUndef(ctx->ac.f32);
2421 args.out[3] = LLVMGetUndef(ctx->ac.f32);
2422
2423 args.target = V_008DFC_SQ_EXP_PRIM;
2424 args.enabled_channels = 1;
2425 args.done = true;
2426 args.valid_mask = false;
2427 args.compr = false;
2428
2429 ac_build_export(&ctx->ac, &args);
2430 }
2431
2432 static struct radv_stream_output *
2433 radv_get_stream_output_by_loc(struct radv_streamout_info *so, unsigned location)
2434 {
2435 for (unsigned i = 0; i < so->num_outputs; ++i) {
2436 if (so->outputs[i].location == location)
2437 return &so->outputs[i];
2438 }
2439
2440 return NULL;
2441 }
2442
2443 static void build_streamout_vertex(struct radv_shader_context *ctx,
2444 LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
2445 unsigned stream, LLVMValueRef offset_vtx,
2446 LLVMValueRef vertexptr)
2447 {
2448 struct radv_streamout_info *so = &ctx->args->shader_info->so;
2449 LLVMBuilderRef builder = ctx->ac.builder;
2450 LLVMValueRef offset[4] = {};
2451 LLVMValueRef tmp;
2452
2453 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2454 if (!wg_offset_dw[buffer])
2455 continue;
2456
2457 tmp = LLVMBuildMul(builder, offset_vtx,
2458 LLVMConstInt(ctx->ac.i32, so->strides[buffer], false), "");
2459 tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
2460 offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
2461 }
2462
2463 if (ctx->stage == MESA_SHADER_GEOMETRY) {
2464 struct radv_shader_output_values outputs[AC_LLVM_MAX_OUTPUTS];
2465 unsigned noutput = 0;
2466 unsigned out_idx = 0;
2467
2468 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2469 unsigned output_usage_mask =
2470 ctx->args->shader_info->gs.output_usage_mask[i];
2471 uint8_t output_stream =
2472 output_stream = ctx->args->shader_info->gs.output_streams[i];
2473
2474 if (!(ctx->output_mask & (1ull << i)) ||
2475 output_stream != stream)
2476 continue;
2477
2478 outputs[noutput].slot_name = i;
2479 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
2480 outputs[noutput].usage_mask = output_usage_mask;
2481
2482 int length = util_last_bit(output_usage_mask);
2483
2484 for (unsigned j = 0; j < length; j++, out_idx++) {
2485 if (!(output_usage_mask & (1 << j)))
2486 continue;
2487
2488 tmp = ac_build_gep0(&ctx->ac, vertexptr,
2489 LLVMConstInt(ctx->ac.i32, out_idx, false));
2490 outputs[noutput].values[j] = LLVMBuildLoad(builder, tmp, "");
2491 }
2492
2493 for (unsigned j = length; j < 4; j++)
2494 outputs[noutput].values[j] = LLVMGetUndef(ctx->ac.f32);
2495
2496 noutput++;
2497 }
2498
2499 for (unsigned i = 0; i < noutput; i++) {
2500 struct radv_stream_output *output =
2501 radv_get_stream_output_by_loc(so, outputs[i].slot_name);
2502
2503 if (!output ||
2504 output->stream != stream)
2505 continue;
2506
2507 struct radv_shader_output_values out = {};
2508
2509 for (unsigned j = 0; j < 4; j++) {
2510 out.values[j] = outputs[i].values[j];
2511 }
2512
2513 radv_emit_stream_output(ctx, so_buffer, offset, output, &out);
2514 }
2515 } else {
2516 for (unsigned i = 0; i < so->num_outputs; ++i) {
2517 struct radv_stream_output *output =
2518 &ctx->args->shader_info->so.outputs[i];
2519
2520 if (stream != output->stream)
2521 continue;
2522
2523 struct radv_shader_output_values out = {};
2524
2525 for (unsigned comp = 0; comp < 4; comp++) {
2526 if (!(output->component_mask & (1 << comp)))
2527 continue;
2528
2529 tmp = ac_build_gep0(&ctx->ac, vertexptr,
2530 LLVMConstInt(ctx->ac.i32, 4 * i + comp, false));
2531 out.values[comp] = LLVMBuildLoad(builder, tmp, "");
2532 }
2533
2534 radv_emit_stream_output(ctx, so_buffer, offset, output, &out);
2535 }
2536 }
2537 }
2538
2539 struct ngg_streamout {
2540 LLVMValueRef num_vertices;
2541
2542 /* per-thread data */
2543 LLVMValueRef prim_enable[4]; /* i1 per stream */
2544 LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
2545
2546 /* Output */
2547 LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
2548 };
2549
2550 /**
2551 * Build streamout logic.
2552 *
2553 * Implies a barrier.
2554 *
2555 * Writes number of emitted primitives to gs_ngg_scratch[4:7].
2556 *
2557 * Clobbers gs_ngg_scratch[8:].
2558 */
2559 static void build_streamout(struct radv_shader_context *ctx,
2560 struct ngg_streamout *nggso)
2561 {
2562 struct radv_streamout_info *so = &ctx->args->shader_info->so;
2563 LLVMBuilderRef builder = ctx->ac.builder;
2564 LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->args->streamout_buffers);
2565 LLVMValueRef tid = get_thread_id_in_tg(ctx);
2566 LLVMValueRef cond, tmp, tmp2;
2567 LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
2568 LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
2569 LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
2570 LLVMValueRef so_buffer[4] = {};
2571 unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
2572 (nggso->vertices[2] ? 1 : 0);
2573 LLVMValueRef prim_stride_dw[4] = {};
2574 LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
2575 int stream_for_buffer[4] = { -1, -1, -1, -1 };
2576 unsigned bufmask_for_stream[4] = {};
2577 bool isgs = ctx->stage == MESA_SHADER_GEOMETRY;
2578 unsigned scratch_emit_base = isgs ? 4 : 0;
2579 LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
2580 unsigned scratch_offset_base = isgs ? 8 : 4;
2581 LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
2582
2583 ac_llvm_add_target_dep_function_attr(ctx->main_function,
2584 "amdgpu-gds-size", 256);
2585
2586 /* Determine the mapping of streamout buffers to vertex streams. */
2587 for (unsigned i = 0; i < so->num_outputs; ++i) {
2588 unsigned buf = so->outputs[i].buffer;
2589 unsigned stream = so->outputs[i].stream;
2590 assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
2591 stream_for_buffer[buf] = stream;
2592 bufmask_for_stream[stream] |= 1 << buf;
2593 }
2594
2595 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2596 if (stream_for_buffer[buffer] == -1)
2597 continue;
2598
2599 assert(so->strides[buffer]);
2600
2601 LLVMValueRef stride_for_buffer =
2602 LLVMConstInt(ctx->ac.i32, so->strides[buffer], false);
2603 prim_stride_dw[buffer] =
2604 LLVMBuildMul(builder, stride_for_buffer,
2605 nggso->num_vertices, "");
2606 prim_stride_dw_vgpr = ac_build_writelane(
2607 &ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
2608 LLVMConstInt(ctx->ac.i32, buffer, false));
2609
2610 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, buffer, false);
2611 so_buffer[buffer] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
2612 offset);
2613 }
2614
2615 cond = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
2616 ac_build_ifcc(&ctx->ac, cond, 5200);
2617 {
2618 LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
2619 LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
2620
2621 /* Advance the streamout offsets in GDS. */
2622 LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
2623 LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
2624
2625 cond = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
2626 ac_build_ifcc(&ctx->ac, cond, 5210);
2627 {
2628 /* Fetch the number of generated primitives and store
2629 * it in GDS for later use.
2630 */
2631 if (isgs) {
2632 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
2633 tmp = LLVMBuildLoad(builder, tmp, "");
2634 } else {
2635 tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0,
2636 ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
2637 }
2638 LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
2639
2640 unsigned swizzle[4];
2641 int unused_stream = -1;
2642 for (unsigned stream = 0; stream < 4; ++stream) {
2643 if (!ctx->args->shader_info->gs.num_stream_output_components[stream]) {
2644 unused_stream = stream;
2645 break;
2646 }
2647 }
2648 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2649 if (stream_for_buffer[buffer] >= 0) {
2650 swizzle[buffer] = stream_for_buffer[buffer];
2651 } else {
2652 assert(unused_stream >= 0);
2653 swizzle[buffer] = unused_stream;
2654 }
2655 }
2656
2657 tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
2658 swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2659 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
2660
2661 LLVMValueRef args[] = {
2662 LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
2663 tmp,
2664 ctx->ac.i32_0, // ordering
2665 ctx->ac.i32_0, // scope
2666 ctx->ac.i1false, // isVolatile
2667 LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
2668 ctx->ac.i1true, // wave release
2669 ctx->ac.i1true, // wave done
2670 };
2671
2672 tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
2673 ctx->ac.i32, args, ARRAY_SIZE(args), 0);
2674
2675 /* Keep offsets in a VGPR for quick retrieval via readlane by
2676 * the first wave for bounds checking, and also store in LDS
2677 * for retrieval by all waves later. */
2678 LLVMBuildStore(builder, tmp, offsets_vgpr);
2679
2680 tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
2681 scratch_offset_basev, "");
2682 tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
2683 LLVMBuildStore(builder, tmp, tmp2);
2684 }
2685 ac_build_endif(&ctx->ac, 5210);
2686
2687 /* Determine the max emit per buffer. This is done via the SALU, in part
2688 * because LLVM can't generate divide-by-multiply if we try to do this
2689 * via VALU with one lane per buffer.
2690 */
2691 LLVMValueRef max_emit[4] = {};
2692 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2693 if (stream_for_buffer[buffer] == -1)
2694 continue;
2695
2696 /* Compute the streamout buffer size in DWORD. */
2697 LLVMValueRef bufsize_dw =
2698 LLVMBuildLShr(builder,
2699 LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
2700 i32_2, "");
2701
2702 /* Load the streamout buffer offset from GDS. */
2703 tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
2704 LLVMValueRef offset_dw =
2705 ac_build_readlane(&ctx->ac, tmp,
2706 LLVMConstInt(ctx->ac.i32, buffer, false));
2707
2708 /* Compute the remaining size to emit. */
2709 LLVMValueRef remaining_dw =
2710 LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
2711 tmp = LLVMBuildUDiv(builder, remaining_dw,
2712 prim_stride_dw[buffer], "");
2713
2714 cond = LLVMBuildICmp(builder, LLVMIntULT,
2715 bufsize_dw, offset_dw, "");
2716 max_emit[buffer] = LLVMBuildSelect(builder, cond,
2717 ctx->ac.i32_0, tmp, "");
2718 }
2719
2720 /* Determine the number of emitted primitives per stream and fixup the
2721 * GDS counter if necessary.
2722 *
2723 * This is complicated by the fact that a single stream can emit to
2724 * multiple buffers (but luckily not vice versa).
2725 */
2726 LLVMValueRef emit_vgpr = ctx->ac.i32_0;
2727
2728 for (unsigned stream = 0; stream < 4; ++stream) {
2729 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
2730 continue;
2731
2732 /* Load the number of generated primitives from GDS and
2733 * determine that number for the given stream.
2734 */
2735 tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
2736 LLVMValueRef generated =
2737 ac_build_readlane(&ctx->ac, tmp,
2738 LLVMConstInt(ctx->ac.i32, stream, false));
2739
2740
2741 /* Compute the number of emitted primitives. */
2742 LLVMValueRef emit = generated;
2743 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2744 if (stream_for_buffer[buffer] == stream)
2745 emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
2746 }
2747
2748 /* Store the number of emitted primitives for that
2749 * stream.
2750 */
2751 emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
2752 LLVMConstInt(ctx->ac.i32, stream, false));
2753
2754 /* Fixup the offset using a plain GDS atomic if we overflowed. */
2755 cond = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
2756 ac_build_ifcc(&ctx->ac, cond, 5221); /* scalar branch */
2757 tmp = LLVMBuildLShr(builder,
2758 LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
2759 ac_get_thread_id(&ctx->ac), "");
2760 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
2761 ac_build_ifcc(&ctx->ac, tmp, 5222);
2762 {
2763 tmp = LLVMBuildSub(builder, generated, emit, "");
2764 tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
2765 tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
2766 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
2767 LLVMAtomicOrderingMonotonic, false);
2768 }
2769 ac_build_endif(&ctx->ac, 5222);
2770 ac_build_endif(&ctx->ac, 5221);
2771 }
2772
2773 /* Store the number of emitted primitives to LDS for later use. */
2774 cond = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
2775 ac_build_ifcc(&ctx->ac, cond, 5225);
2776 {
2777 tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
2778 scratch_emit_basev, "");
2779 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
2780 LLVMBuildStore(builder, emit_vgpr, tmp);
2781 }
2782 ac_build_endif(&ctx->ac, 5225);
2783 }
2784 ac_build_endif(&ctx->ac, 5200);
2785
2786 /* Determine the workgroup-relative per-thread / primitive offset into
2787 * the streamout buffers */
2788 struct ac_wg_scan primemit_scan[4] = {};
2789
2790 if (isgs) {
2791 for (unsigned stream = 0; stream < 4; ++stream) {
2792 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
2793 continue;
2794
2795 primemit_scan[stream].enable_exclusive = true;
2796 primemit_scan[stream].op = nir_op_iadd;
2797 primemit_scan[stream].src = nggso->prim_enable[stream];
2798 primemit_scan[stream].scratch =
2799 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
2800 LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
2801 primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
2802 primemit_scan[stream].numwaves = get_tgsize(ctx);
2803 primemit_scan[stream].maxwaves = 8;
2804 ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
2805 }
2806 }
2807
2808 ac_build_s_barrier(&ctx->ac);
2809
2810 /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
2811 LLVMValueRef wgoffset_dw[4] = {};
2812
2813 {
2814 LLVMValueRef scratch_vgpr;
2815
2816 tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
2817 scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
2818
2819 for (unsigned buffer = 0; buffer < 4; ++buffer) {
2820 if (stream_for_buffer[buffer] >= 0) {
2821 wgoffset_dw[buffer] = ac_build_readlane(
2822 &ctx->ac, scratch_vgpr,
2823 LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
2824 }
2825 }
2826
2827 for (unsigned stream = 0; stream < 4; ++stream) {
2828 if (ctx->args->shader_info->gs.num_stream_output_components[stream]) {
2829 nggso->emit[stream] = ac_build_readlane(
2830 &ctx->ac, scratch_vgpr,
2831 LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
2832 }
2833 }
2834 }
2835
2836 /* Write out primitive data */
2837 for (unsigned stream = 0; stream < 4; ++stream) {
2838 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
2839 continue;
2840
2841 if (isgs) {
2842 ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
2843 } else {
2844 primemit_scan[stream].result_exclusive = tid;
2845 }
2846
2847 cond = LLVMBuildICmp(builder, LLVMIntULT,
2848 primemit_scan[stream].result_exclusive,
2849 nggso->emit[stream], "");
2850 cond = LLVMBuildAnd(builder, cond, nggso->prim_enable[stream], "");
2851 ac_build_ifcc(&ctx->ac, cond, 5240);
2852 {
2853 LLVMValueRef offset_vtx =
2854 LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
2855 nggso->num_vertices, "");
2856
2857 for (unsigned i = 0; i < max_num_vertices; ++i) {
2858 cond = LLVMBuildICmp(builder, LLVMIntULT,
2859 LLVMConstInt(ctx->ac.i32, i, false),
2860 nggso->num_vertices, "");
2861 ac_build_ifcc(&ctx->ac, cond, 5241);
2862 build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
2863 stream, offset_vtx, nggso->vertices[i]);
2864 ac_build_endif(&ctx->ac, 5241);
2865 offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
2866 }
2867 }
2868 ac_build_endif(&ctx->ac, 5240);
2869 }
2870 }
2871
2872 static unsigned ngg_nogs_vertex_size(struct radv_shader_context *ctx)
2873 {
2874 unsigned lds_vertex_size = 0;
2875
2876 if (ctx->args->shader_info->so.num_outputs)
2877 lds_vertex_size = 4 * ctx->args->shader_info->so.num_outputs + 1;
2878
2879 return lds_vertex_size;
2880 }
2881
2882 /**
2883 * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
2884 * for the vertex outputs.
2885 */
2886 static LLVMValueRef ngg_nogs_vertex_ptr(struct radv_shader_context *ctx,
2887 LLVMValueRef vtxid)
2888 {
2889 /* The extra dword is used to avoid LDS bank conflicts. */
2890 unsigned vertex_size = ngg_nogs_vertex_size(ctx);
2891 LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
2892 LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
2893 LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
2894 return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
2895 }
2896
2897 static void
2898 handle_ngg_outputs_post_1(struct radv_shader_context *ctx)
2899 {
2900 struct radv_streamout_info *so = &ctx->args->shader_info->so;
2901 LLVMBuilderRef builder = ctx->ac.builder;
2902 LLVMValueRef vertex_ptr = NULL;
2903 LLVMValueRef tmp, tmp2;
2904
2905 assert((ctx->stage == MESA_SHADER_VERTEX ||
2906 ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->args->is_gs_copy_shader);
2907
2908 if (!ctx->args->shader_info->so.num_outputs)
2909 return;
2910
2911 vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
2912
2913 for (unsigned i = 0; i < so->num_outputs; ++i) {
2914 struct radv_stream_output *output =
2915 &ctx->args->shader_info->so.outputs[i];
2916
2917 unsigned loc = output->location;
2918
2919 for (unsigned comp = 0; comp < 4; comp++) {
2920 if (!(output->component_mask & (1 << comp)))
2921 continue;
2922
2923 tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
2924 LLVMConstInt(ctx->ac.i32, 4 * i + comp, false));
2925 tmp2 = LLVMBuildLoad(builder,
2926 ctx->abi.outputs[4 * loc + comp], "");
2927 tmp2 = ac_to_integer(&ctx->ac, tmp2);
2928 LLVMBuildStore(builder, tmp2, tmp);
2929 }
2930 }
2931 }
2932
2933 static void
2934 handle_ngg_outputs_post_2(struct radv_shader_context *ctx)
2935 {
2936 LLVMBuilderRef builder = ctx->ac.builder;
2937 LLVMValueRef tmp;
2938
2939 assert((ctx->stage == MESA_SHADER_VERTEX ||
2940 ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->args->is_gs_copy_shader);
2941
2942 LLVMValueRef prims_in_wave = ac_unpack_param(&ctx->ac,
2943 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 8, 8);
2944 LLVMValueRef vtx_in_wave = ac_unpack_param(&ctx->ac,
2945 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 0, 8);
2946 LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
2947 ac_get_thread_id(&ctx->ac), prims_in_wave, "");
2948 LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
2949 ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
2950 LLVMValueRef vtxindex[] = {
2951 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[0]), 0, 16),
2952 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[0]), 16, 16),
2953 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[2]), 0, 16),
2954 };
2955
2956 /* Determine the number of vertices per primitive. */
2957 unsigned num_vertices;
2958 LLVMValueRef num_vertices_val;
2959
2960 if (ctx->stage == MESA_SHADER_VERTEX) {
2961 LLVMValueRef outprim_val =
2962 LLVMConstInt(ctx->ac.i32,
2963 ctx->args->options->key.vs.outprim, false);
2964 num_vertices_val = LLVMBuildAdd(builder, outprim_val,
2965 ctx->ac.i32_1, "");
2966 num_vertices = 3; /* TODO: optimize for points & lines */
2967 } else {
2968 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
2969
2970 if (ctx->shader->info.tess.point_mode)
2971 num_vertices = 1;
2972 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
2973 num_vertices = 2;
2974 else
2975 num_vertices = 3;
2976
2977 num_vertices_val = LLVMConstInt(ctx->ac.i32, num_vertices, false);
2978 }
2979
2980 /* Streamout */
2981 if (ctx->args->shader_info->so.num_outputs) {
2982 struct ngg_streamout nggso = {};
2983
2984 nggso.num_vertices = num_vertices_val;
2985 nggso.prim_enable[0] = is_gs_thread;
2986
2987 for (unsigned i = 0; i < num_vertices; ++i)
2988 nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
2989
2990 build_streamout(ctx, &nggso);
2991 }
2992
2993 /* Copy Primitive IDs from GS threads to the LDS address corresponding
2994 * to the ES thread of the provoking vertex.
2995 */
2996 if (ctx->stage == MESA_SHADER_VERTEX &&
2997 ctx->args->options->key.vs_common_out.export_prim_id) {
2998 if (ctx->args->shader_info->so.num_outputs)
2999 ac_build_s_barrier(&ctx->ac);
3000
3001 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
3002 /* Extract the PROVOKING_VTX_INDEX field. */
3003 LLVMValueRef provoking_vtx_in_prim =
3004 LLVMConstInt(ctx->ac.i32, 0, false);
3005
3006 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
3007 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
3008 LLVMValueRef provoking_vtx_index =
3009 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
3010
3011 LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args->ac.gs_prim_id),
3012 ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
3013 ac_build_endif(&ctx->ac, 5400);
3014 }
3015
3016 /* TODO: primitive culling */
3017
3018 build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
3019
3020 /* TODO: streamout queries */
3021 /* Export primitive data to the index buffer. Format is:
3022 * - bits 0..8: index 0
3023 * - bit 9: edge flag 0
3024 * - bits 10..18: index 1
3025 * - bit 19: edge flag 1
3026 * - bits 20..28: index 2
3027 * - bit 29: edge flag 2
3028 * - bit 31: null primitive (skip)
3029 *
3030 * For the first version, we will always build up all three indices
3031 * independent of the primitive type. The additional garbage data
3032 * shouldn't hurt.
3033 *
3034 * TODO: culling depends on the primitive type, so can have some
3035 * interaction here.
3036 */
3037 ac_build_ifcc(&ctx->ac, is_gs_thread, 6001);
3038 {
3039 struct ngg_prim prim = {};
3040
3041 prim.num_vertices = num_vertices;
3042 prim.isnull = ctx->ac.i1false;
3043 prim.swap = ctx->ac.i1false;
3044 memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
3045
3046 for (unsigned i = 0; i < num_vertices; ++i) {
3047 tmp = LLVMBuildLShr(builder,
3048 ac_get_arg(&ctx->ac, ctx->args->ac.gs_invocation_id),
3049 LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
3050 prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3051 }
3052
3053 build_export_prim(ctx, &prim);
3054 }
3055 ac_build_endif(&ctx->ac, 6001);
3056
3057 /* Export per-vertex data (positions and parameters). */
3058 ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
3059 {
3060 struct radv_vs_output_info *outinfo =
3061 ctx->stage == MESA_SHADER_TESS_EVAL ?
3062 &ctx->args->shader_info->tes.outinfo : &ctx->args->shader_info->vs.outinfo;
3063
3064 /* Exporting the primitive ID is handled below. */
3065 /* TODO: use the new VS export path */
3066 handle_vs_outputs_post(ctx, false,
3067 ctx->args->options->key.vs_common_out.export_clip_dists,
3068 outinfo);
3069
3070 if (ctx->args->options->key.vs_common_out.export_prim_id) {
3071 unsigned param_count = outinfo->param_exports;
3072 LLVMValueRef values[4];
3073
3074 if (ctx->stage == MESA_SHADER_VERTEX) {
3075 /* Wait for GS stores to finish. */
3076 ac_build_s_barrier(&ctx->ac);
3077
3078 tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
3079 get_thread_id_in_tg(ctx));
3080 values[0] = LLVMBuildLoad(builder, tmp, "");
3081 } else {
3082 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
3083 values[0] = ac_get_arg(&ctx->ac, ctx->args->ac.tes_patch_id);
3084 }
3085
3086 values[0] = ac_to_float(&ctx->ac, values[0]);
3087 for (unsigned j = 1; j < 4; j++)
3088 values[j] = ctx->ac.f32_0;
3089
3090 radv_export_param(ctx, param_count, values, 0x1);
3091
3092 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
3093 outinfo->param_exports = param_count;
3094 }
3095 }
3096 ac_build_endif(&ctx->ac, 6002);
3097 }
3098
3099 static void gfx10_ngg_gs_emit_prologue(struct radv_shader_context *ctx)
3100 {
3101 /* Zero out the part of LDS scratch that is used to accumulate the
3102 * per-stream generated primitive count.
3103 */
3104 LLVMBuilderRef builder = ctx->ac.builder;
3105 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
3106 LLVMValueRef tid = get_thread_id_in_tg(ctx);
3107 LLVMBasicBlockRef merge_block;
3108 LLVMValueRef cond;
3109
3110 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
3111 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3112 merge_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3113
3114 cond = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
3115 LLVMBuildCondBr(ctx->ac.builder, cond, then_block, merge_block);
3116 LLVMPositionBuilderAtEnd(ctx->ac.builder, then_block);
3117
3118 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
3119 LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
3120
3121 LLVMBuildBr(ctx->ac.builder, merge_block);
3122 LLVMPositionBuilderAtEnd(ctx->ac.builder, merge_block);
3123
3124 ac_build_s_barrier(&ctx->ac);
3125 }
3126
3127 static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
3128 {
3129 LLVMBuilderRef builder = ctx->ac.builder;
3130 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
3131 LLVMValueRef tmp;
3132
3133 /* Zero out remaining (non-emitted) primitive flags.
3134 *
3135 * Note: Alternatively, we could pass the relevant gs_next_vertex to
3136 * the emit threads via LDS. This is likely worse in the expected
3137 * typical case where each GS thread emits the full set of
3138 * vertices.
3139 */
3140 for (unsigned stream = 0; stream < 4; ++stream) {
3141 unsigned num_components;
3142
3143 num_components =
3144 ctx->args->shader_info->gs.num_stream_output_components[stream];
3145 if (!num_components)
3146 continue;
3147
3148 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
3149
3150 ac_build_bgnloop(&ctx->ac, 5100);
3151
3152 const LLVMValueRef vertexidx =
3153 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3154 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
3155 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
3156 ac_build_ifcc(&ctx->ac, tmp, 5101);
3157 ac_build_break(&ctx->ac);
3158 ac_build_endif(&ctx->ac, 5101);
3159
3160 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3161 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3162
3163 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
3164 LLVMValueRef gep_idx[3] = {
3165 ctx->ac.i32_0, /* implied C-style array */
3166 ctx->ac.i32_1, /* second entry of struct */
3167 LLVMConstInt(ctx->ac.i32, stream, false),
3168 };
3169 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3170 LLVMBuildStore(builder, i8_0, tmp);
3171
3172 ac_build_endloop(&ctx->ac, 5100);
3173 }
3174
3175 /* Accumulate generated primitives counts across the entire threadgroup. */
3176 for (unsigned stream = 0; stream < 4; ++stream) {
3177 unsigned num_components;
3178
3179 num_components =
3180 ctx->args->shader_info->gs.num_stream_output_components[stream];
3181 if (!num_components)
3182 continue;
3183
3184 LLVMValueRef numprims =
3185 LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
3186 numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
3187
3188 tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
3189 ac_build_ifcc(&ctx->ac, tmp, 5105);
3190 {
3191 LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
3192 ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
3193 LLVMConstInt(ctx->ac.i32, stream, false)),
3194 numprims, LLVMAtomicOrderingMonotonic, false);
3195 }
3196 ac_build_endif(&ctx->ac, 5105);
3197 }
3198 }
3199
3200 static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
3201 {
3202 const unsigned verts_per_prim = si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive);
3203 LLVMBuilderRef builder = ctx->ac.builder;
3204 LLVMValueRef tmp, tmp2;
3205
3206 ac_build_s_barrier(&ctx->ac);
3207
3208 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
3209 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
3210
3211 /* Streamout */
3212 if (ctx->args->shader_info->so.num_outputs) {
3213 struct ngg_streamout nggso = {};
3214
3215 nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
3216
3217 LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
3218 for (unsigned stream = 0; stream < 4; ++stream) {
3219 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
3220 continue;
3221
3222 LLVMValueRef gep_idx[3] = {
3223 ctx->ac.i32_0, /* implicit C-style array */
3224 ctx->ac.i32_1, /* second value of struct */
3225 LLVMConstInt(ctx->ac.i32, stream, false),
3226 };
3227 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3228 tmp = LLVMBuildLoad(builder, tmp, "");
3229 tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3230 tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3231 nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
3232 }
3233
3234 for (unsigned i = 0; i < verts_per_prim; ++i) {
3235 tmp = LLVMBuildSub(builder, tid,
3236 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
3237 tmp = ngg_gs_vertex_ptr(ctx, tmp);
3238 nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
3239 }
3240
3241 build_streamout(ctx, &nggso);
3242 }
3243
3244 /* TODO: culling */
3245
3246 /* Determine vertex liveness. */
3247 LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
3248
3249 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3250 ac_build_ifcc(&ctx->ac, tmp, 5120);
3251 {
3252 for (unsigned i = 0; i < verts_per_prim; ++i) {
3253 const LLVMValueRef primidx =
3254 LLVMBuildAdd(builder, tid,
3255 LLVMConstInt(ctx->ac.i32, i, false), "");
3256
3257 if (i > 0) {
3258 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
3259 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
3260 }
3261
3262 /* Load primitive liveness */
3263 tmp = ngg_gs_vertex_ptr(ctx, primidx);
3264 LLVMValueRef gep_idx[3] = {
3265 ctx->ac.i32_0, /* implicit C-style array */
3266 ctx->ac.i32_1, /* second value of struct */
3267 ctx->ac.i32_0, /* stream 0 */
3268 };
3269 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3270 tmp = LLVMBuildLoad(builder, tmp, "");
3271 const LLVMValueRef primlive =
3272 LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3273
3274 tmp = LLVMBuildLoad(builder, vertliveptr, "");
3275 tmp = LLVMBuildOr(builder, tmp, primlive, ""),
3276 LLVMBuildStore(builder, tmp, vertliveptr);
3277
3278 if (i > 0)
3279 ac_build_endif(&ctx->ac, 5121 + i);
3280 }
3281 }
3282 ac_build_endif(&ctx->ac, 5120);
3283
3284 /* Inclusive scan addition across the current wave. */
3285 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
3286 struct ac_wg_scan vertlive_scan = {};
3287 vertlive_scan.op = nir_op_iadd;
3288 vertlive_scan.enable_reduce = true;
3289 vertlive_scan.enable_exclusive = true;
3290 vertlive_scan.src = vertlive;
3291 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
3292 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
3293 vertlive_scan.numwaves = get_tgsize(ctx);
3294 vertlive_scan.maxwaves = 8;
3295
3296 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
3297
3298 /* Skip all exports (including index exports) when possible. At least on
3299 * early gfx10 revisions this is also to avoid hangs.
3300 */
3301 LLVMValueRef have_exports =
3302 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
3303 num_emit_threads =
3304 LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
3305
3306 /* Allocate export space. Send this message as early as possible, to
3307 * hide the latency of the SQ <-> SPI roundtrip.
3308 *
3309 * Note: We could consider compacting primitives for export as well.
3310 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
3311 * prim data per clock and skips null primitives at no additional
3312 * cost. So compacting primitives can only be beneficial when
3313 * there are 4 or more contiguous null primitives in the export
3314 * (in the common case of single-dword prim exports).
3315 */
3316 build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
3317
3318 /* Setup the reverse vertex compaction permutation. We re-use stream 1
3319 * of the primitive liveness flags, relying on the fact that each
3320 * threadgroup can have at most 256 threads. */
3321 ac_build_ifcc(&ctx->ac, vertlive, 5130);
3322 {
3323 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
3324 LLVMValueRef gep_idx[3] = {
3325 ctx->ac.i32_0, /* implicit C-style array */
3326 ctx->ac.i32_1, /* second value of struct */
3327 ctx->ac.i32_1, /* stream 1 */
3328 };
3329 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3330 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
3331 LLVMBuildStore(builder, tmp2, tmp);
3332 }
3333 ac_build_endif(&ctx->ac, 5130);
3334
3335 ac_build_s_barrier(&ctx->ac);
3336
3337 /* Export primitive data */
3338 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3339 ac_build_ifcc(&ctx->ac, tmp, 5140);
3340 {
3341 struct ngg_prim prim = {};
3342 prim.num_vertices = verts_per_prim;
3343
3344 tmp = ngg_gs_vertex_ptr(ctx, tid);
3345 LLVMValueRef gep_idx[3] = {
3346 ctx->ac.i32_0, /* implicit C-style array */
3347 ctx->ac.i32_1, /* second value of struct */
3348 ctx->ac.i32_0, /* primflag */
3349 };
3350 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3351 tmp = LLVMBuildLoad(builder, tmp, "");
3352 prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
3353 LLVMConstInt(ctx->ac.i8, 0, false), "");
3354 prim.swap = LLVMBuildICmp(builder, LLVMIntEQ,
3355 LLVMBuildAnd(builder, tid, LLVMConstInt(ctx->ac.i32, 1, false), ""),
3356 LLVMConstInt(ctx->ac.i32, 1, false), "");
3357
3358 for (unsigned i = 0; i < verts_per_prim; ++i) {
3359 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
3360 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
3361 prim.edgeflag[i] = ctx->ac.i1false;
3362 }
3363
3364 build_export_prim(ctx, &prim);
3365 }
3366 ac_build_endif(&ctx->ac, 5140);
3367
3368 /* Export position and parameter data */
3369 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
3370 ac_build_ifcc(&ctx->ac, tmp, 5145);
3371 {
3372 struct radv_vs_output_info *outinfo = &ctx->args->shader_info->vs.outinfo;
3373 bool export_view_index = ctx->args->options->key.has_multiview_view_index;
3374 struct radv_shader_output_values *outputs;
3375 unsigned noutput = 0;
3376
3377 /* Allocate a temporary array for the output values. */
3378 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_view_index;
3379 outputs = calloc(num_outputs, sizeof(outputs[0]));
3380
3381 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
3382 sizeof(outinfo->vs_output_param_offset));
3383 outinfo->pos_exports = 0;
3384
3385 tmp = ngg_gs_vertex_ptr(ctx, tid);
3386 LLVMValueRef gep_idx[3] = {
3387 ctx->ac.i32_0, /* implicit C-style array */
3388 ctx->ac.i32_1, /* second value of struct */
3389 ctx->ac.i32_1, /* stream 1: source data index */
3390 };
3391 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3392 tmp = LLVMBuildLoad(builder, tmp, "");
3393 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
3394 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
3395
3396 unsigned out_idx = 0;
3397 gep_idx[1] = ctx->ac.i32_0;
3398 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3399 unsigned output_usage_mask =
3400 ctx->args->shader_info->gs.output_usage_mask[i];
3401 int length = util_last_bit(output_usage_mask);
3402
3403 if (!(ctx->output_mask & (1ull << i)))
3404 continue;
3405
3406 outputs[noutput].slot_name = i;
3407 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
3408 outputs[noutput].usage_mask = output_usage_mask;
3409
3410 for (unsigned j = 0; j < length; j++, out_idx++) {
3411 if (!(output_usage_mask & (1 << j)))
3412 continue;
3413
3414 gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
3415 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3416 tmp = LLVMBuildLoad(builder, tmp, "");
3417
3418 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
3419 if (ac_get_type_size(type) == 2) {
3420 tmp = ac_to_integer(&ctx->ac, tmp);
3421 tmp = LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i16, "");
3422 }
3423
3424 outputs[noutput].values[j] = ac_to_float(&ctx->ac, tmp);
3425 }
3426
3427 for (unsigned j = length; j < 4; j++)
3428 outputs[noutput].values[j] = LLVMGetUndef(ctx->ac.f32);
3429
3430 noutput++;
3431 }
3432
3433 /* Export ViewIndex. */
3434 if (export_view_index) {
3435 outputs[noutput].slot_name = VARYING_SLOT_LAYER;
3436 outputs[noutput].slot_index = 0;
3437 outputs[noutput].usage_mask = 0x1;
3438 outputs[noutput].values[0] =
3439 ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ac.view_index));
3440 for (unsigned j = 1; j < 4; j++)
3441 outputs[noutput].values[j] = ctx->ac.f32_0;
3442 noutput++;
3443 }
3444
3445 radv_llvm_export_vs(ctx, outputs, noutput, outinfo,
3446 ctx->args->options->key.vs_common_out.export_clip_dists);
3447 FREE(outputs);
3448 }
3449 ac_build_endif(&ctx->ac, 5145);
3450 }
3451
3452 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
3453 unsigned stream,
3454 LLVMValueRef *addrs)
3455 {
3456 LLVMBuilderRef builder = ctx->ac.builder;
3457 LLVMValueRef tmp;
3458 const LLVMValueRef vertexidx =
3459 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3460
3461 /* If this thread has already emitted the declared maximum number of
3462 * vertices, skip the write: excessive vertex emissions are not
3463 * supposed to have any effect.
3464 */
3465 const LLVMValueRef can_emit =
3466 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
3467 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
3468 ac_build_ifcc(&ctx->ac, can_emit, 9001);
3469
3470 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3471 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
3472 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3473
3474 const LLVMValueRef vertexptr =
3475 ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
3476 unsigned out_idx = 0;
3477 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3478 unsigned output_usage_mask =
3479 ctx->args->shader_info->gs.output_usage_mask[i];
3480 uint8_t output_stream =
3481 ctx->args->shader_info->gs.output_streams[i];
3482 LLVMValueRef *out_ptr = &addrs[i * 4];
3483 int length = util_last_bit(output_usage_mask);
3484
3485 if (!(ctx->output_mask & (1ull << i)) ||
3486 output_stream != stream)
3487 continue;
3488
3489 for (unsigned j = 0; j < length; j++, out_idx++) {
3490 if (!(output_usage_mask & (1 << j)))
3491 continue;
3492
3493 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
3494 out_ptr[j], "");
3495 LLVMValueRef gep_idx[3] = {
3496 ctx->ac.i32_0, /* implied C-style array */
3497 ctx->ac.i32_0, /* first entry of struct */
3498 LLVMConstInt(ctx->ac.i32, out_idx, false),
3499 };
3500 LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3501
3502 out_val = ac_to_integer(&ctx->ac, out_val);
3503 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
3504
3505 LLVMBuildStore(builder, out_val, ptr);
3506 }
3507 }
3508 assert(out_idx * 4 <= ctx->args->shader_info->gs.gsvs_vertex_size);
3509
3510 /* Determine and store whether this vertex completed a primitive. */
3511 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
3512
3513 tmp = LLVMConstInt(ctx->ac.i32, si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive) - 1, false);
3514 const LLVMValueRef iscompleteprim =
3515 LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
3516
3517 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
3518 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
3519
3520 LLVMValueRef gep_idx[3] = {
3521 ctx->ac.i32_0, /* implied C-style array */
3522 ctx->ac.i32_1, /* second struct entry */
3523 LLVMConstInt(ctx->ac.i32, stream, false),
3524 };
3525 const LLVMValueRef primflagptr =
3526 LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3527
3528 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
3529 LLVMBuildStore(builder, tmp, primflagptr);
3530
3531 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
3532 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
3533 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
3534
3535 ac_build_endif(&ctx->ac, 9001);
3536 }
3537
3538 static void
3539 write_tess_factors(struct radv_shader_context *ctx)
3540 {
3541 unsigned stride, outer_comps, inner_comps;
3542 LLVMValueRef tcs_rel_ids = ac_get_arg(&ctx->ac, ctx->args->ac.tcs_rel_ids);
3543 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, tcs_rel_ids, 8, 5);
3544 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, tcs_rel_ids, 0, 8);
3545 unsigned tess_inner_index = 0, tess_outer_index;
3546 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
3547 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3548 int i;
3549 ac_emit_barrier(&ctx->ac, ctx->stage);
3550
3551 switch (ctx->args->options->key.tcs.primitive_mode) {
3552 case GL_ISOLINES:
3553 stride = 2;
3554 outer_comps = 2;
3555 inner_comps = 0;
3556 break;
3557 case GL_TRIANGLES:
3558 stride = 4;
3559 outer_comps = 3;
3560 inner_comps = 1;
3561 break;
3562 case GL_QUADS:
3563 stride = 6;
3564 outer_comps = 4;
3565 inner_comps = 2;
3566 break;
3567 default:
3568 return;
3569 }
3570
3571 ac_build_ifcc(&ctx->ac,
3572 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3573 invocation_id, ctx->ac.i32_0, ""), 6503);
3574
3575 lds_base = get_tcs_out_current_patch_data_offset(ctx);
3576
3577 if (inner_comps) {
3578 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3579 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3580 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
3581 }
3582
3583 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3584 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3585 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
3586
3587 for (i = 0; i < 4; i++) {
3588 inner[i] = LLVMGetUndef(ctx->ac.i32);
3589 outer[i] = LLVMGetUndef(ctx->ac.i32);
3590 }
3591
3592 // LINES reversal
3593 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
3594 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
3595 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3596 ctx->ac.i32_1, "");
3597 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
3598 } else {
3599 for (i = 0; i < outer_comps; i++) {
3600 outer[i] = out[i] =
3601 ac_lds_load(&ctx->ac, lds_outer);
3602 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3603 ctx->ac.i32_1, "");
3604 }
3605 for (i = 0; i < inner_comps; i++) {
3606 inner[i] = out[outer_comps+i] =
3607 ac_lds_load(&ctx->ac, lds_inner);
3608 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
3609 ctx->ac.i32_1, "");
3610 }
3611 }
3612
3613 /* Convert the outputs to vectors for stores. */
3614 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3615 vec1 = NULL;
3616
3617 if (stride > 4)
3618 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
3619
3620
3621 buffer = ctx->hs_ring_tess_factor;
3622 tf_base = ac_get_arg(&ctx->ac, ctx->args->tess_factor_offset);
3623 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3624 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
3625 unsigned tf_offset = 0;
3626
3627 if (ctx->ac.chip_class <= GFX8) {
3628 ac_build_ifcc(&ctx->ac,
3629 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3630 rel_patch_id, ctx->ac.i32_0, ""), 6504);
3631
3632 /* Store the dynamic HS control word. */
3633 ac_build_buffer_store_dword(&ctx->ac, buffer,
3634 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
3635 1, ctx->ac.i32_0, tf_base,
3636 0, ac_glc);
3637 tf_offset += 4;
3638
3639 ac_build_endif(&ctx->ac, 6504);
3640 }
3641
3642 /* Store the tessellation factors. */
3643 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3644 MIN2(stride, 4), byteoffset, tf_base,
3645 tf_offset, ac_glc);
3646 if (vec1)
3647 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3648 stride - 4, byteoffset, tf_base,
3649 16 + tf_offset, ac_glc);
3650
3651 //store to offchip for TES to read - only if TES reads them
3652 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
3653 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
3654 LLVMValueRef tf_inner_offset;
3655 unsigned param_outer, param_inner;
3656
3657 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3658 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
3659 LLVMConstInt(ctx->ac.i32, param_outer, 0));
3660
3661 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3662 util_next_power_of_two(outer_comps));
3663
3664 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
3665 outer_comps, tf_outer_offset,
3666 ac_get_arg(&ctx->ac, ctx->args->oc_lds),
3667 0, ac_glc);
3668 if (inner_comps) {
3669 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3670 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
3671 LLVMConstInt(ctx->ac.i32, param_inner, 0));
3672
3673 inner_vec = inner_comps == 1 ? inner[0] :
3674 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3675 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
3676 inner_comps, tf_inner_offset,
3677 ac_get_arg(&ctx->ac, ctx->args->oc_lds),
3678 0, ac_glc);
3679 }
3680 }
3681
3682 ac_build_endif(&ctx->ac, 6503);
3683 }
3684
3685 static void
3686 handle_tcs_outputs_post(struct radv_shader_context *ctx)
3687 {
3688 write_tess_factors(ctx);
3689 }
3690
3691 static bool
3692 si_export_mrt_color(struct radv_shader_context *ctx,
3693 LLVMValueRef *color, unsigned index,
3694 struct ac_export_args *args)
3695 {
3696 /* Export */
3697 si_llvm_init_export_args(ctx, color, 0xf,
3698 V_008DFC_SQ_EXP_MRT + index, args);
3699 if (!args->enabled_channels)
3700 return false; /* unnecessary NULL export */
3701
3702 return true;
3703 }
3704
3705 static void
3706 radv_export_mrt_z(struct radv_shader_context *ctx,
3707 LLVMValueRef depth, LLVMValueRef stencil,
3708 LLVMValueRef samplemask)
3709 {
3710 struct ac_export_args args;
3711
3712 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3713
3714 ac_build_export(&ctx->ac, &args);
3715 }
3716
3717 static void
3718 handle_fs_outputs_post(struct radv_shader_context *ctx)
3719 {
3720 unsigned index = 0;
3721 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3722 struct ac_export_args color_args[8];
3723
3724 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3725 LLVMValueRef values[4];
3726
3727 if (!(ctx->output_mask & (1ull << i)))
3728 continue;
3729
3730 if (i < FRAG_RESULT_DATA0)
3731 continue;
3732
3733 for (unsigned j = 0; j < 4; j++)
3734 values[j] = ac_to_float(&ctx->ac,
3735 radv_load_output(ctx, i, j));
3736
3737 bool ret = si_export_mrt_color(ctx, values,
3738 i - FRAG_RESULT_DATA0,
3739 &color_args[index]);
3740 if (ret)
3741 index++;
3742 }
3743
3744 /* Process depth, stencil, samplemask. */
3745 if (ctx->args->shader_info->ps.writes_z) {
3746 depth = ac_to_float(&ctx->ac,
3747 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
3748 }
3749 if (ctx->args->shader_info->ps.writes_stencil) {
3750 stencil = ac_to_float(&ctx->ac,
3751 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
3752 }
3753 if (ctx->args->shader_info->ps.writes_sample_mask) {
3754 samplemask = ac_to_float(&ctx->ac,
3755 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
3756 }
3757
3758 /* Set the DONE bit on last non-null color export only if Z isn't
3759 * exported.
3760 */
3761 if (index > 0 &&
3762 !ctx->args->shader_info->ps.writes_z &&
3763 !ctx->args->shader_info->ps.writes_stencil &&
3764 !ctx->args->shader_info->ps.writes_sample_mask) {
3765 unsigned last = index - 1;
3766
3767 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
3768 color_args[last].done = 1; /* DONE bit */
3769 }
3770
3771 /* Export PS outputs. */
3772 for (unsigned i = 0; i < index; i++)
3773 ac_build_export(&ctx->ac, &color_args[i]);
3774
3775 if (depth || stencil || samplemask)
3776 radv_export_mrt_z(ctx, depth, stencil, samplemask);
3777 else if (!index)
3778 ac_build_export_null(&ctx->ac);
3779 }
3780
3781 static void
3782 emit_gs_epilogue(struct radv_shader_context *ctx)
3783 {
3784 if (ctx->args->options->key.vs_common_out.as_ngg) {
3785 gfx10_ngg_gs_emit_epilogue_1(ctx);
3786 return;
3787 }
3788
3789 if (ctx->ac.chip_class >= GFX10)
3790 LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
3791
3792 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
3793 }
3794
3795 static void
3796 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
3797 LLVMValueRef *addrs)
3798 {
3799 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
3800
3801 switch (ctx->stage) {
3802 case MESA_SHADER_VERTEX:
3803 if (ctx->args->options->key.vs_common_out.as_ls)
3804 handle_ls_outputs_post(ctx);
3805 else if (ctx->args->options->key.vs_common_out.as_es)
3806 handle_es_outputs_post(ctx, &ctx->args->shader_info->vs.es_info);
3807 else if (ctx->args->options->key.vs_common_out.as_ngg)
3808 handle_ngg_outputs_post_1(ctx);
3809 else
3810 handle_vs_outputs_post(ctx, ctx->args->options->key.vs_common_out.export_prim_id,
3811 ctx->args->options->key.vs_common_out.export_clip_dists,
3812 &ctx->args->shader_info->vs.outinfo);
3813 break;
3814 case MESA_SHADER_FRAGMENT:
3815 handle_fs_outputs_post(ctx);
3816 break;
3817 case MESA_SHADER_GEOMETRY:
3818 emit_gs_epilogue(ctx);
3819 break;
3820 case MESA_SHADER_TESS_CTRL:
3821 handle_tcs_outputs_post(ctx);
3822 break;
3823 case MESA_SHADER_TESS_EVAL:
3824 if (ctx->args->options->key.vs_common_out.as_es)
3825 handle_es_outputs_post(ctx, &ctx->args->shader_info->tes.es_info);
3826 else if (ctx->args->options->key.vs_common_out.as_ngg)
3827 handle_ngg_outputs_post_1(ctx);
3828 else
3829 handle_vs_outputs_post(ctx, ctx->args->options->key.vs_common_out.export_prim_id,
3830 ctx->args->options->key.vs_common_out.export_clip_dists,
3831 &ctx->args->shader_info->tes.outinfo);
3832 break;
3833 default:
3834 break;
3835 }
3836 }
3837
3838 static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
3839 LLVMPassManagerRef passmgr,
3840 const struct radv_nir_compiler_options *options)
3841 {
3842 LLVMRunPassManager(passmgr, ctx->ac.module);
3843 LLVMDisposeBuilder(ctx->ac.builder);
3844
3845 ac_llvm_context_dispose(&ctx->ac);
3846 }
3847
3848 static void
3849 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
3850 {
3851 struct radv_vs_output_info *outinfo;
3852
3853 switch (ctx->stage) {
3854 case MESA_SHADER_FRAGMENT:
3855 case MESA_SHADER_COMPUTE:
3856 case MESA_SHADER_TESS_CTRL:
3857 case MESA_SHADER_GEOMETRY:
3858 return;
3859 case MESA_SHADER_VERTEX:
3860 if (ctx->args->options->key.vs_common_out.as_ls ||
3861 ctx->args->options->key.vs_common_out.as_es)
3862 return;
3863 outinfo = &ctx->args->shader_info->vs.outinfo;
3864 break;
3865 case MESA_SHADER_TESS_EVAL:
3866 if (ctx->args->options->key.vs_common_out.as_es)
3867 return;
3868 outinfo = &ctx->args->shader_info->tes.outinfo;
3869 break;
3870 default:
3871 unreachable("Unhandled shader type");
3872 }
3873
3874 ac_optimize_vs_outputs(&ctx->ac,
3875 ctx->main_function,
3876 outinfo->vs_output_param_offset,
3877 VARYING_SLOT_MAX,
3878 &outinfo->param_exports);
3879 }
3880
3881 static void
3882 ac_setup_rings(struct radv_shader_context *ctx)
3883 {
3884 if (ctx->args->options->chip_class <= GFX8 &&
3885 (ctx->stage == MESA_SHADER_GEOMETRY ||
3886 ctx->args->options->key.vs_common_out.as_es || ctx->args->options->key.vs_common_out.as_es)) {
3887 unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
3888 : RING_ESGS_VS;
3889 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
3890
3891 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
3892 ctx->ring_offsets,
3893 offset);
3894 }
3895
3896 if (ctx->args->is_gs_copy_shader) {
3897 ctx->gsvs_ring[0] =
3898 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3899 LLVMConstInt(ctx->ac.i32,
3900 RING_GSVS_VS, false));
3901 }
3902
3903 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3904 /* The conceptual layout of the GSVS ring is
3905 * v0c0 .. vLv0 v0c1 .. vLc1 ..
3906 * but the real memory layout is swizzled across
3907 * threads:
3908 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
3909 * t16v0c0 ..
3910 * Override the buffer descriptor accordingly.
3911 */
3912 LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
3913 uint64_t stream_offset = 0;
3914 unsigned num_records = ctx->ac.wave_size;
3915 LLVMValueRef base_ring;
3916
3917 base_ring =
3918 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3919 LLVMConstInt(ctx->ac.i32,
3920 RING_GSVS_GS, false));
3921
3922 for (unsigned stream = 0; stream < 4; stream++) {
3923 unsigned num_components, stride;
3924 LLVMValueRef ring, tmp;
3925
3926 num_components =
3927 ctx->args->shader_info->gs.num_stream_output_components[stream];
3928
3929 if (!num_components)
3930 continue;
3931
3932 stride = 4 * num_components * ctx->shader->info.gs.vertices_out;
3933
3934 /* Limit on the stride field for <= GFX7. */
3935 assert(stride < (1 << 14));
3936
3937 ring = LLVMBuildBitCast(ctx->ac.builder,
3938 base_ring, v2i64, "");
3939 tmp = LLVMBuildExtractElement(ctx->ac.builder,
3940 ring, ctx->ac.i32_0, "");
3941 tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
3942 LLVMConstInt(ctx->ac.i64,
3943 stream_offset, 0), "");
3944 ring = LLVMBuildInsertElement(ctx->ac.builder,
3945 ring, tmp, ctx->ac.i32_0, "");
3946
3947 stream_offset += stride * ctx->ac.wave_size;
3948
3949 ring = LLVMBuildBitCast(ctx->ac.builder, ring,
3950 ctx->ac.v4i32, "");
3951
3952 tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
3953 ctx->ac.i32_1, "");
3954 tmp = LLVMBuildOr(ctx->ac.builder, tmp,
3955 LLVMConstInt(ctx->ac.i32,
3956 S_008F04_STRIDE(stride), false), "");
3957 ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
3958 ctx->ac.i32_1, "");
3959
3960 ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
3961 LLVMConstInt(ctx->ac.i32,
3962 num_records, false),
3963 LLVMConstInt(ctx->ac.i32, 2, false), "");
3964
3965 ctx->gsvs_ring[stream] = ring;
3966 }
3967 }
3968
3969 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
3970 ctx->stage == MESA_SHADER_TESS_EVAL) {
3971 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
3972 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
3973 }
3974 }
3975
3976 unsigned
3977 radv_nir_get_max_workgroup_size(enum chip_class chip_class,
3978 gl_shader_stage stage,
3979 const struct nir_shader *nir)
3980 {
3981 const unsigned backup_sizes[] = {chip_class >= GFX9 ? 128 : 64, 1, 1};
3982 unsigned sizes[3];
3983 for (unsigned i = 0; i < 3; i++)
3984 sizes[i] = nir ? nir->info.cs.local_size[i] : backup_sizes[i];
3985 return radv_get_max_workgroup_size(chip_class, stage, sizes);
3986 }
3987
3988 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
3989 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
3990 {
3991 LLVMValueRef count =
3992 ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 8, 8);
3993 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
3994 ctx->ac.i32_0, "");
3995 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty,
3996 ac_get_arg(&ctx->ac, ctx->args->rel_auto_id),
3997 ctx->abi.instance_id, "");
3998 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty,
3999 ac_get_arg(&ctx->ac, ctx->args->ac.tcs_rel_ids),
4000 ctx->rel_auto_id,
4001 "");
4002 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty,
4003 ac_get_arg(&ctx->ac, ctx->args->ac.tcs_patch_id),
4004 ctx->abi.vertex_id, "");
4005 }
4006
4007 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx, bool merged)
4008 {
4009 if (merged) {
4010 for(int i = 5; i >= 0; --i) {
4011 ctx->gs_vtx_offset[i] =
4012 ac_unpack_param(&ctx->ac,
4013 ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[i & ~1]),
4014 (i & 1) * 16, 16);
4015 }
4016
4017 ctx->gs_wave_id = ac_unpack_param(&ctx->ac,
4018 ac_get_arg(&ctx->ac, ctx->args->merged_wave_info),
4019 16, 8);
4020 } else {
4021 for (int i = 0; i < 6; i++)
4022 ctx->gs_vtx_offset[i] = ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[i]);
4023 ctx->gs_wave_id = ac_get_arg(&ctx->ac, ctx->args->gs_wave_id);
4024 }
4025 }
4026
4027 /* Ensure that the esgs ring is declared.
4028 *
4029 * We declare it with 64KB alignment as a hint that the
4030 * pointer value will always be 0.
4031 */
4032 static void declare_esgs_ring(struct radv_shader_context *ctx)
4033 {
4034 if (ctx->esgs_ring)
4035 return;
4036
4037 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
4038
4039 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
4040 ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
4041 "esgs_ring",
4042 AC_ADDR_SPACE_LDS);
4043 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
4044 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
4045 }
4046
4047 static
4048 LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
4049 struct nir_shader *const *shaders,
4050 int shader_count,
4051 const struct radv_shader_args *args)
4052 {
4053 struct radv_shader_context ctx = {0};
4054 ctx.args = args;
4055
4056 enum ac_float_mode float_mode = AC_FLOAT_MODE_DEFAULT;
4057
4058 if (args->shader_info->float_controls_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) {
4059 float_mode = AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO;
4060 }
4061
4062 ac_llvm_context_init(&ctx.ac, ac_llvm, args->options->chip_class,
4063 args->options->family, float_mode,
4064 args->shader_info->wave_size, 64);
4065 ctx.context = ctx.ac.context;
4066
4067 ctx.max_workgroup_size = 0;
4068 for (int i = 0; i < shader_count; ++i) {
4069 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
4070 radv_nir_get_max_workgroup_size(args->options->chip_class,
4071 shaders[i]->info.stage,
4072 shaders[i]));
4073 }
4074
4075 if (ctx.ac.chip_class >= GFX10) {
4076 if (is_pre_gs_stage(shaders[0]->info.stage) &&
4077 args->options->key.vs_common_out.as_ngg) {
4078 ctx.max_workgroup_size = 128;
4079 }
4080 }
4081
4082 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2);
4083
4084 ctx.abi.inputs = &ctx.inputs[0];
4085 ctx.abi.emit_outputs = handle_shader_outputs_post;
4086 ctx.abi.emit_vertex = visit_emit_vertex;
4087 ctx.abi.load_ubo = radv_load_ubo;
4088 ctx.abi.load_ssbo = radv_load_ssbo;
4089 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
4090 ctx.abi.load_resource = radv_load_resource;
4091 ctx.abi.clamp_shadow_reference = false;
4092 ctx.abi.robust_buffer_access = args->options->robust_buffer_access;
4093
4094 bool is_ngg = is_pre_gs_stage(shaders[0]->info.stage) && args->options->key.vs_common_out.as_ngg;
4095 if (shader_count >= 2 || is_ngg)
4096 ac_init_exec_full_mask(&ctx.ac);
4097
4098 if (args->ac.vertex_id.used)
4099 ctx.abi.vertex_id = ac_get_arg(&ctx.ac, args->ac.vertex_id);
4100 if (args->rel_auto_id.used)
4101 ctx.rel_auto_id = ac_get_arg(&ctx.ac, args->rel_auto_id);
4102 if (args->ac.instance_id.used)
4103 ctx.abi.instance_id = ac_get_arg(&ctx.ac, args->ac.instance_id);
4104
4105 if (args->options->has_ls_vgpr_init_bug &&
4106 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
4107 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
4108
4109 if (is_ngg) {
4110 /* Declare scratch space base for streamout and vertex
4111 * compaction. Whether space is actually allocated is
4112 * determined during linking / PM4 creation.
4113 *
4114 * Add an extra dword per vertex to ensure an odd stride, which
4115 * avoids bank conflicts for SoA accesses.
4116 */
4117 declare_esgs_ring(&ctx);
4118
4119 /* This is really only needed when streamout and / or vertex
4120 * compaction is enabled.
4121 */
4122 LLVMTypeRef asi32 = LLVMArrayType(ctx.ac.i32, 8);
4123 ctx.gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx.ac.module,
4124 asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
4125 LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(asi32));
4126 LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
4127 }
4128
4129 for(int i = 0; i < shader_count; ++i) {
4130 ctx.stage = shaders[i]->info.stage;
4131 ctx.shader = shaders[i];
4132 ctx.output_mask = 0;
4133
4134 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4135 for (int i = 0; i < 4; i++) {
4136 ctx.gs_next_vertex[i] =
4137 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4138 }
4139 if (args->options->key.vs_common_out.as_ngg) {
4140 for (unsigned i = 0; i < 4; ++i) {
4141 ctx.gs_curprim_verts[i] =
4142 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4143 ctx.gs_generated_prims[i] =
4144 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4145 }
4146
4147 unsigned scratch_size = 8;
4148 if (args->shader_info->so.num_outputs)
4149 scratch_size = 44;
4150
4151 LLVMTypeRef ai32 = LLVMArrayType(ctx.ac.i32, scratch_size);
4152 ctx.gs_ngg_scratch =
4153 LLVMAddGlobalInAddressSpace(ctx.ac.module,
4154 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
4155 LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(ai32));
4156 LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
4157
4158 ctx.gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx.ac.module,
4159 LLVMArrayType(ctx.ac.i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
4160 LLVMSetLinkage(ctx.gs_ngg_emit, LLVMExternalLinkage);
4161 LLVMSetAlignment(ctx.gs_ngg_emit, 4);
4162 }
4163
4164 ctx.abi.load_inputs = load_gs_input;
4165 ctx.abi.emit_primitive = visit_end_primitive;
4166 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4167 ctx.abi.load_tess_varyings = load_tcs_varyings;
4168 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4169 ctx.abi.store_tcs_outputs = store_tcs_output;
4170 if (shader_count == 1)
4171 ctx.tcs_num_inputs = args->options->key.tcs.num_inputs;
4172 else
4173 ctx.tcs_num_inputs = util_last_bit64(args->shader_info->vs.ls_outputs_written);
4174 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
4175 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
4176 ctx.abi.load_tess_varyings = load_tes_input;
4177 ctx.abi.load_tess_coord = load_tess_coord;
4178 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4179 ctx.tcs_num_patches = args->options->key.tes.num_patches;
4180 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
4181 ctx.abi.load_base_vertex = radv_load_base_vertex;
4182 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
4183 ctx.abi.load_sample_position = load_sample_position;
4184 ctx.abi.load_sample_mask_in = load_sample_mask_in;
4185 ctx.abi.emit_kill = radv_emit_kill;
4186 }
4187
4188 if (shaders[i]->info.stage == MESA_SHADER_VERTEX &&
4189 args->options->key.vs_common_out.as_ngg &&
4190 args->options->key.vs_common_out.export_prim_id) {
4191 declare_esgs_ring(&ctx);
4192 }
4193
4194 bool nested_barrier = false;
4195
4196 if (i) {
4197 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4198 args->options->key.vs_common_out.as_ngg) {
4199 gfx10_ngg_gs_emit_prologue(&ctx);
4200 nested_barrier = false;
4201 } else {
4202 nested_barrier = true;
4203 }
4204 }
4205
4206 if (nested_barrier) {
4207 /* Execute a barrier before the second shader in
4208 * a merged shader.
4209 *
4210 * Execute the barrier inside the conditional block,
4211 * so that empty waves can jump directly to s_endpgm,
4212 * which will also signal the barrier.
4213 *
4214 * This is possible in gfx9, because an empty wave
4215 * for the second shader does not participate in
4216 * the epilogue. With NGG, empty waves may still
4217 * be required to export data (e.g. GS output vertices),
4218 * so we cannot let them exit early.
4219 *
4220 * If the shader is TCS and the TCS epilog is present
4221 * and contains a barrier, it will wait there and then
4222 * reach s_endpgm.
4223 */
4224 ac_emit_barrier(&ctx.ac, ctx.stage);
4225 }
4226
4227 nir_foreach_variable(variable, &shaders[i]->outputs)
4228 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
4229
4230 ac_setup_rings(&ctx);
4231
4232 LLVMBasicBlockRef merge_block;
4233 if (shader_count >= 2 || is_ngg) {
4234 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
4235 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4236 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4237
4238 LLVMValueRef count =
4239 ac_unpack_param(&ctx.ac,
4240 ac_get_arg(&ctx.ac, args->merged_wave_info),
4241 8 * i, 8);
4242 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
4243 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
4244 thread_id, count, "");
4245 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
4246
4247 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
4248 }
4249
4250 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
4251 prepare_interp_optimize(&ctx, shaders[i]);
4252 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
4253 handle_vs_inputs(&ctx, shaders[i]);
4254 else if(shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
4255 prepare_gs_input_vgprs(&ctx, shader_count >= 2);
4256
4257 ac_nir_translate(&ctx.ac, &ctx.abi, &args->ac, shaders[i]);
4258
4259 if (shader_count >= 2 || is_ngg) {
4260 LLVMBuildBr(ctx.ac.builder, merge_block);
4261 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
4262 }
4263
4264 /* This needs to be outside the if wrapping the shader body, as sometimes
4265 * the HW generates waves with 0 es/vs threads. */
4266 if (is_pre_gs_stage(shaders[i]->info.stage) &&
4267 args->options->key.vs_common_out.as_ngg &&
4268 i == shader_count - 1) {
4269 handle_ngg_outputs_post_2(&ctx);
4270 } else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4271 args->options->key.vs_common_out.as_ngg) {
4272 gfx10_ngg_gs_emit_epilogue_2(&ctx);
4273 }
4274
4275 if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4276 args->shader_info->tcs.num_patches = ctx.tcs_num_patches;
4277 args->shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
4278 }
4279 }
4280
4281 LLVMBuildRetVoid(ctx.ac.builder);
4282
4283 if (args->options->dump_preoptir) {
4284 fprintf(stderr, "%s LLVM IR:\n\n",
4285 radv_get_shader_name(args->shader_info,
4286 shaders[shader_count - 1]->info.stage));
4287 ac_dump_module(ctx.ac.module);
4288 fprintf(stderr, "\n");
4289 }
4290
4291 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, args->options);
4292
4293 if (shader_count == 1)
4294 ac_nir_eliminate_const_vs_outputs(&ctx);
4295
4296 if (args->options->dump_shader) {
4297 args->shader_info->private_mem_vgprs =
4298 ac_count_scratch_private_memory(ctx.main_function);
4299 }
4300
4301 return ctx.ac.module;
4302 }
4303
4304 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
4305 {
4306 unsigned *retval = (unsigned *)context;
4307 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
4308 char *description = LLVMGetDiagInfoDescription(di);
4309
4310 if (severity == LLVMDSError) {
4311 *retval = 1;
4312 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
4313 description);
4314 }
4315
4316 LLVMDisposeMessage(description);
4317 }
4318
4319 static unsigned radv_llvm_compile(LLVMModuleRef M,
4320 char **pelf_buffer, size_t *pelf_size,
4321 struct ac_llvm_compiler *ac_llvm)
4322 {
4323 unsigned retval = 0;
4324 LLVMContextRef llvm_ctx;
4325
4326 /* Setup Diagnostic Handler*/
4327 llvm_ctx = LLVMGetModuleContext(M);
4328
4329 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
4330 &retval);
4331
4332 /* Compile IR*/
4333 if (!radv_compile_to_elf(ac_llvm, M, pelf_buffer, pelf_size))
4334 retval = 1;
4335 return retval;
4336 }
4337
4338 static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
4339 LLVMModuleRef llvm_module,
4340 struct radv_shader_binary **rbinary,
4341 gl_shader_stage stage,
4342 const char *name,
4343 const struct radv_nir_compiler_options *options)
4344 {
4345 char *elf_buffer = NULL;
4346 size_t elf_size = 0;
4347 char *llvm_ir_string = NULL;
4348
4349 if (options->dump_shader) {
4350 fprintf(stderr, "%s LLVM IR:\n\n", name);
4351 ac_dump_module(llvm_module);
4352 fprintf(stderr, "\n");
4353 }
4354
4355 if (options->record_ir) {
4356 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
4357 llvm_ir_string = strdup(llvm_ir);
4358 LLVMDisposeMessage(llvm_ir);
4359 }
4360
4361 int v = radv_llvm_compile(llvm_module, &elf_buffer, &elf_size, ac_llvm);
4362 if (v) {
4363 fprintf(stderr, "compile failed\n");
4364 }
4365
4366 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
4367 LLVMDisposeModule(llvm_module);
4368 LLVMContextDispose(ctx);
4369
4370 size_t llvm_ir_size = llvm_ir_string ? strlen(llvm_ir_string) : 0;
4371 size_t alloc_size = sizeof(struct radv_shader_binary_rtld) + elf_size + llvm_ir_size + 1;
4372 struct radv_shader_binary_rtld *rbin = calloc(1, alloc_size);
4373 memcpy(rbin->data, elf_buffer, elf_size);
4374 if (llvm_ir_string)
4375 memcpy(rbin->data + elf_size, llvm_ir_string, llvm_ir_size + 1);
4376
4377 rbin->base.type = RADV_BINARY_TYPE_RTLD;
4378 rbin->base.stage = stage;
4379 rbin->base.total_size = alloc_size;
4380 rbin->elf_size = elf_size;
4381 rbin->llvm_ir_size = llvm_ir_size;
4382 *rbinary = &rbin->base;
4383
4384 free(llvm_ir_string);
4385 free(elf_buffer);
4386 }
4387
4388 void
4389 radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
4390 struct radv_shader_binary **rbinary,
4391 const struct radv_shader_args *args,
4392 struct nir_shader *const *nir,
4393 int nir_count)
4394 {
4395
4396 LLVMModuleRef llvm_module;
4397
4398 llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, args);
4399
4400 ac_compile_llvm_module(ac_llvm, llvm_module, rbinary,
4401 nir[nir_count - 1]->info.stage,
4402 radv_get_shader_name(args->shader_info,
4403 nir[nir_count - 1]->info.stage),
4404 args->options);
4405
4406 /* Determine the ES type (VS or TES) for the GS on GFX9. */
4407 if (args->options->chip_class >= GFX9) {
4408 if (nir_count == 2 &&
4409 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
4410 args->shader_info->gs.es_type = nir[0]->info.stage;
4411 }
4412 }
4413 }
4414
4415 static void
4416 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
4417 {
4418 LLVMValueRef vtx_offset =
4419 LLVMBuildMul(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->ac.vertex_id),
4420 LLVMConstInt(ctx->ac.i32, 4, false), "");
4421 LLVMValueRef stream_id;
4422
4423 /* Fetch the vertex stream ID. */
4424 if (!ctx->args->options->use_ngg_streamout &&
4425 ctx->args->shader_info->so.num_outputs) {
4426 stream_id =
4427 ac_unpack_param(&ctx->ac,
4428 ac_get_arg(&ctx->ac,
4429 ctx->args->streamout_config),
4430 24, 2);
4431 } else {
4432 stream_id = ctx->ac.i32_0;
4433 }
4434
4435 LLVMBasicBlockRef end_bb;
4436 LLVMValueRef switch_inst;
4437
4438 end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
4439 ctx->main_function, "end");
4440 switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);
4441
4442 for (unsigned stream = 0; stream < 4; stream++) {
4443 unsigned num_components =
4444 ctx->args->shader_info->gs.num_stream_output_components[stream];
4445 LLVMBasicBlockRef bb;
4446 unsigned offset;
4447
4448 if (stream > 0 && !num_components)
4449 continue;
4450
4451 if (stream > 0 && !ctx->args->shader_info->so.num_outputs)
4452 continue;
4453
4454 bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
4455 LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
4456 LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);
4457
4458 offset = 0;
4459 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
4460 unsigned output_usage_mask =
4461 ctx->args->shader_info->gs.output_usage_mask[i];
4462 unsigned output_stream =
4463 ctx->args->shader_info->gs.output_streams[i];
4464 int length = util_last_bit(output_usage_mask);
4465
4466 if (!(ctx->output_mask & (1ull << i)) ||
4467 output_stream != stream)
4468 continue;
4469
4470 for (unsigned j = 0; j < length; j++) {
4471 LLVMValueRef value, soffset;
4472
4473 if (!(output_usage_mask & (1 << j)))
4474 continue;
4475
4476 soffset = LLVMConstInt(ctx->ac.i32,
4477 offset *
4478 ctx->shader->info.gs.vertices_out * 16 * 4, false);
4479
4480 offset++;
4481
4482 value = ac_build_buffer_load(&ctx->ac,
4483 ctx->gsvs_ring[0],
4484 1, ctx->ac.i32_0,
4485 vtx_offset, soffset,
4486 0, ac_glc | ac_slc, true, false);
4487
4488 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4489 if (ac_get_type_size(type) == 2) {
4490 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
4491 value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
4492 }
4493
4494 LLVMBuildStore(ctx->ac.builder,
4495 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4496 }
4497 }
4498
4499 if (!ctx->args->options->use_ngg_streamout &&
4500 ctx->args->shader_info->so.num_outputs)
4501 radv_emit_streamout(ctx, stream);
4502
4503 if (stream == 0) {
4504 handle_vs_outputs_post(ctx, false, true,
4505 &ctx->args->shader_info->vs.outinfo);
4506 }
4507
4508 LLVMBuildBr(ctx->ac.builder, end_bb);
4509 }
4510
4511 LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
4512 }
4513
4514 void
4515 radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
4516 struct nir_shader *geom_shader,
4517 struct radv_shader_binary **rbinary,
4518 const struct radv_shader_args *args)
4519 {
4520 struct radv_shader_context ctx = {0};
4521 ctx.args = args;
4522
4523 assert(args->is_gs_copy_shader);
4524
4525 ac_llvm_context_init(&ctx.ac, ac_llvm, args->options->chip_class,
4526 args->options->family, AC_FLOAT_MODE_DEFAULT, 64, 64);
4527 ctx.context = ctx.ac.context;
4528
4529 ctx.stage = MESA_SHADER_VERTEX;
4530 ctx.shader = geom_shader;
4531
4532 create_function(&ctx, MESA_SHADER_VERTEX, false);
4533
4534 ac_setup_rings(&ctx);
4535
4536 nir_foreach_variable(variable, &geom_shader->outputs) {
4537 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
4538 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
4539 variable, MESA_SHADER_VERTEX);
4540 }
4541
4542 ac_gs_copy_shader_emit(&ctx);
4543
4544 LLVMBuildRetVoid(ctx.ac.builder);
4545
4546 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, args->options);
4547
4548 ac_compile_llvm_module(ac_llvm, ctx.ac.module, rbinary,
4549 MESA_SHADER_VERTEX, "GS Copy Shader", args->options);
4550 (*rbinary)->is_gs_copy_shader = true;
4551
4552 }