648fb6586f738fd36c22ac259346f0db06d81c76
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "nir/nir.h"
35 #include "nir/nir_builder.h"
36 #include "spirv/nir_spirv.h"
37
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 #include <llvm-c/Support.h>
41
42 #include "sid.h"
43 #include "gfx9d.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "vk_format.h"
48 #include "util/debug.h"
49 #include "ac_exp_param.h"
50
51 #include "util/string_buffer.h"
52
53 static const struct nir_shader_compiler_options nir_options = {
54 .vertex_id_zero_based = true,
55 .lower_scmp = true,
56 .lower_flrp16 = true,
57 .lower_flrp32 = true,
58 .lower_flrp64 = true,
59 .lower_device_index_to_zero = true,
60 .lower_fsat = true,
61 .lower_fdiv = true,
62 .lower_sub = true,
63 .lower_pack_snorm_2x16 = true,
64 .lower_pack_snorm_4x8 = true,
65 .lower_pack_unorm_2x16 = true,
66 .lower_pack_unorm_4x8 = true,
67 .lower_unpack_snorm_2x16 = true,
68 .lower_unpack_snorm_4x8 = true,
69 .lower_unpack_unorm_2x16 = true,
70 .lower_unpack_unorm_4x8 = true,
71 .lower_extract_byte = true,
72 .lower_extract_word = true,
73 .lower_ffma = true,
74 .lower_fpow = true,
75 .lower_mul_2x32_64 = true,
76 .max_unroll_iterations = 32
77 };
78
79 VkResult radv_CreateShaderModule(
80 VkDevice _device,
81 const VkShaderModuleCreateInfo* pCreateInfo,
82 const VkAllocationCallbacks* pAllocator,
83 VkShaderModule* pShaderModule)
84 {
85 RADV_FROM_HANDLE(radv_device, device, _device);
86 struct radv_shader_module *module;
87
88 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
89 assert(pCreateInfo->flags == 0);
90
91 module = vk_alloc2(&device->alloc, pAllocator,
92 sizeof(*module) + pCreateInfo->codeSize, 8,
93 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
94 if (module == NULL)
95 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
96
97 module->nir = NULL;
98 module->size = pCreateInfo->codeSize;
99 memcpy(module->data, pCreateInfo->pCode, module->size);
100
101 _mesa_sha1_compute(module->data, module->size, module->sha1);
102
103 *pShaderModule = radv_shader_module_to_handle(module);
104
105 return VK_SUCCESS;
106 }
107
108 void radv_DestroyShaderModule(
109 VkDevice _device,
110 VkShaderModule _module,
111 const VkAllocationCallbacks* pAllocator)
112 {
113 RADV_FROM_HANDLE(radv_device, device, _device);
114 RADV_FROM_HANDLE(radv_shader_module, module, _module);
115
116 if (!module)
117 return;
118
119 vk_free2(&device->alloc, pAllocator, module);
120 }
121
122 void
123 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
124 bool allow_copies)
125 {
126 bool progress;
127
128 do {
129 progress = false;
130
131 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
132 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
133
134 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
135 NIR_PASS_V(shader, nir_lower_pack);
136
137 if (allow_copies) {
138 /* Only run this pass in the first call to
139 * radv_optimize_nir. Later calls assume that we've
140 * lowered away any copy_deref instructions and we
141 * don't want to introduce any more.
142 */
143 NIR_PASS(progress, shader, nir_opt_find_array_copies);
144 }
145
146 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
147 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
148
149 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
150 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
151
152 NIR_PASS(progress, shader, nir_copy_prop);
153 NIR_PASS(progress, shader, nir_opt_remove_phis);
154 NIR_PASS(progress, shader, nir_opt_dce);
155 if (nir_opt_trivial_continues(shader)) {
156 progress = true;
157 NIR_PASS(progress, shader, nir_copy_prop);
158 NIR_PASS(progress, shader, nir_opt_remove_phis);
159 NIR_PASS(progress, shader, nir_opt_dce);
160 }
161 NIR_PASS(progress, shader, nir_opt_if, true);
162 NIR_PASS(progress, shader, nir_opt_dead_cf);
163 NIR_PASS(progress, shader, nir_opt_cse);
164 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
165 NIR_PASS(progress, shader, nir_opt_algebraic);
166 NIR_PASS(progress, shader, nir_opt_constant_folding);
167 NIR_PASS(progress, shader, nir_opt_undef);
168 NIR_PASS(progress, shader, nir_opt_conditional_discard);
169 if (shader->options->max_unroll_iterations) {
170 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
171 }
172 } while (progress && !optimize_conservatively);
173
174 NIR_PASS(progress, shader, nir_opt_shrink_load);
175 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
176 }
177
178 nir_shader *
179 radv_shader_compile_to_nir(struct radv_device *device,
180 struct radv_shader_module *module,
181 const char *entrypoint_name,
182 gl_shader_stage stage,
183 const VkSpecializationInfo *spec_info,
184 const VkPipelineCreateFlags flags,
185 const struct radv_pipeline_layout *layout)
186 {
187 nir_shader *nir;
188 nir_function *entry_point;
189 if (module->nir) {
190 /* Some things such as our meta clear/blit code will give us a NIR
191 * shader directly. In that case, we just ignore the SPIR-V entirely
192 * and just use the NIR shader */
193 nir = module->nir;
194 nir->options = &nir_options;
195 nir_validate_shader(nir, "in internal shader");
196
197 assert(exec_list_length(&nir->functions) == 1);
198 struct exec_node *node = exec_list_get_head(&nir->functions);
199 entry_point = exec_node_data(nir_function, node, node);
200 } else {
201 uint32_t *spirv = (uint32_t *) module->data;
202 assert(module->size % 4 == 0);
203
204 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
205 radv_print_spirv(spirv, module->size, stderr);
206
207 uint32_t num_spec_entries = 0;
208 struct nir_spirv_specialization *spec_entries = NULL;
209 if (spec_info && spec_info->mapEntryCount > 0) {
210 num_spec_entries = spec_info->mapEntryCount;
211 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
212 for (uint32_t i = 0; i < num_spec_entries; i++) {
213 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
214 const void *data = spec_info->pData + entry.offset;
215 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
216
217 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
218 if (spec_info->dataSize == 8)
219 spec_entries[i].data64 = *(const uint64_t *)data;
220 else
221 spec_entries[i].data32 = *(const uint32_t *)data;
222 }
223 }
224 const struct spirv_to_nir_options spirv_options = {
225 .lower_ubo_ssbo_access_to_offsets = true,
226 .caps = {
227 .derivative_group = true,
228 .descriptor_array_dynamic_indexing = true,
229 .descriptor_array_non_uniform_indexing = true,
230 .descriptor_indexing = true,
231 .device_group = true,
232 .draw_parameters = true,
233 .float16 = true,
234 .float64 = true,
235 .gcn_shader = true,
236 .geometry_streams = true,
237 .image_read_without_format = true,
238 .image_write_without_format = true,
239 .int8 = true,
240 .int16 = true,
241 .int64 = true,
242 .int64_atomics = true,
243 .multiview = true,
244 .physical_storage_buffer_address = true,
245 .runtime_descriptor_array = true,
246 .shader_viewport_index_layer = true,
247 .stencil_export = true,
248 .storage_8bit = true,
249 .storage_16bit = true,
250 .storage_image_ms = true,
251 .subgroup_arithmetic = true,
252 .subgroup_ballot = true,
253 .subgroup_basic = true,
254 .subgroup_quad = true,
255 .subgroup_shuffle = true,
256 .subgroup_vote = true,
257 .tessellation = true,
258 .transform_feedback = true,
259 .trinary_minmax = true,
260 .variable_pointers = true,
261 },
262 .ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
263 .ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
264 .phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1),
265 .push_const_ptr_type = glsl_uint_type(),
266 .shared_ptr_type = glsl_uint_type(),
267 };
268 entry_point = spirv_to_nir(spirv, module->size / 4,
269 spec_entries, num_spec_entries,
270 stage, entrypoint_name,
271 &spirv_options, &nir_options);
272 nir = entry_point->shader;
273 assert(nir->info.stage == stage);
274 nir_validate_shader(nir, "after spirv_to_nir");
275
276 free(spec_entries);
277
278 /* We have to lower away local constant initializers right before we
279 * inline functions. That way they get properly initialized at the top
280 * of the function and not at the top of its caller.
281 */
282 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
283 NIR_PASS_V(nir, nir_lower_returns);
284 NIR_PASS_V(nir, nir_inline_functions);
285 NIR_PASS_V(nir, nir_opt_deref);
286
287 /* Pick off the single entrypoint that we want */
288 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
289 if (func != entry_point)
290 exec_node_remove(&func->node);
291 }
292 assert(exec_list_length(&nir->functions) == 1);
293 entry_point->name = ralloc_strdup(entry_point, "main");
294
295 /* Make sure we lower constant initializers on output variables so that
296 * nir_remove_dead_variables below sees the corresponding stores
297 */
298 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
299
300 /* Now that we've deleted all but the main function, we can go ahead and
301 * lower the rest of the constant initializers.
302 */
303 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
304
305 /* Split member structs. We do this before lower_io_to_temporaries so that
306 * it doesn't lower system values to temporaries by accident.
307 */
308 NIR_PASS_V(nir, nir_split_var_copies);
309 NIR_PASS_V(nir, nir_split_per_member_structs);
310
311 NIR_PASS_V(nir, nir_remove_dead_variables,
312 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
313
314 NIR_PASS_V(nir, nir_lower_system_values);
315 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
316 NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout);
317 }
318
319 /* Vulkan uses the separate-shader linking model */
320 nir->info.separate_shader = true;
321
322 nir_shader_gather_info(nir, entry_point->impl);
323
324 static const nir_lower_tex_options tex_options = {
325 .lower_txp = ~0,
326 .lower_tg4_offsets = true,
327 };
328
329 nir_lower_tex(nir, &tex_options);
330
331 nir_lower_vars_to_ssa(nir);
332
333 if (nir->info.stage == MESA_SHADER_VERTEX ||
334 nir->info.stage == MESA_SHADER_GEOMETRY) {
335 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
336 nir_shader_get_entrypoint(nir), true, true);
337 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
338 nir->info.stage == MESA_SHADER_FRAGMENT) {
339 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
340 nir_shader_get_entrypoint(nir), true, false);
341 }
342
343 nir_split_var_copies(nir);
344
345 nir_lower_global_vars_to_local(nir);
346 nir_remove_dead_variables(nir, nir_var_function_temp);
347 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
348 .subgroup_size = 64,
349 .ballot_bit_size = 64,
350 .lower_to_scalar = 1,
351 .lower_subgroup_masks = 1,
352 .lower_shuffle = 1,
353 .lower_shuffle_to_32bit = 1,
354 .lower_vote_eq_to_ballot = 1,
355 });
356
357 nir_lower_load_const_to_scalar(nir);
358
359 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
360 radv_optimize_nir(nir, false, true);
361
362 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
363 * to remove any copies introduced by nir_opt_find_array_copies().
364 */
365 nir_lower_var_copies(nir);
366
367 /* Indirect lowering must be called after the radv_optimize_nir() loop
368 * has been called at least once. Otherwise indirect lowering can
369 * bloat the instruction count of the loop and cause it to be
370 * considered too large for unrolling.
371 */
372 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
373 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
374
375 return nir;
376 }
377
378 void *
379 radv_alloc_shader_memory(struct radv_device *device,
380 struct radv_shader_variant *shader)
381 {
382 mtx_lock(&device->shader_slab_mutex);
383 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
384 uint64_t offset = 0;
385 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
386 if (s->bo_offset - offset >= shader->code_size) {
387 shader->bo = slab->bo;
388 shader->bo_offset = offset;
389 list_addtail(&shader->slab_list, &s->slab_list);
390 mtx_unlock(&device->shader_slab_mutex);
391 return slab->ptr + offset;
392 }
393 offset = align_u64(s->bo_offset + s->code_size, 256);
394 }
395 if (slab->size - offset >= shader->code_size) {
396 shader->bo = slab->bo;
397 shader->bo_offset = offset;
398 list_addtail(&shader->slab_list, &slab->shaders);
399 mtx_unlock(&device->shader_slab_mutex);
400 return slab->ptr + offset;
401 }
402 }
403
404 mtx_unlock(&device->shader_slab_mutex);
405 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
406
407 slab->size = 256 * 1024;
408 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
409 RADEON_DOMAIN_VRAM,
410 RADEON_FLAG_NO_INTERPROCESS_SHARING |
411 (device->physical_device->cpdma_prefetch_writes_memory ?
412 0 : RADEON_FLAG_READ_ONLY),
413 RADV_BO_PRIORITY_SHADER);
414 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
415 list_inithead(&slab->shaders);
416
417 mtx_lock(&device->shader_slab_mutex);
418 list_add(&slab->slabs, &device->shader_slabs);
419
420 shader->bo = slab->bo;
421 shader->bo_offset = 0;
422 list_add(&shader->slab_list, &slab->shaders);
423 mtx_unlock(&device->shader_slab_mutex);
424 return slab->ptr;
425 }
426
427 void
428 radv_destroy_shader_slabs(struct radv_device *device)
429 {
430 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
431 device->ws->buffer_destroy(slab->bo);
432 free(slab);
433 }
434 mtx_destroy(&device->shader_slab_mutex);
435 }
436
437 /* For the UMR disassembler. */
438 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
439 #define DEBUGGER_NUM_MARKERS 5
440
441 static unsigned
442 radv_get_shader_binary_size(struct ac_shader_binary *binary)
443 {
444 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
445 }
446
447 static void
448 radv_fill_shader_variant(struct radv_device *device,
449 struct radv_shader_variant *variant,
450 struct ac_shader_binary *binary,
451 gl_shader_stage stage)
452 {
453 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
454 struct radv_shader_info *info = &variant->info.info;
455 unsigned vgpr_comp_cnt = 0;
456
457 variant->code_size = radv_get_shader_binary_size(binary);
458 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
459 S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) |
460 S_00B12C_SCRATCH_EN(scratch_enabled) |
461 S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
462 S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
463 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
464 S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
465 S_00B12C_SO_EN(!!info->so.num_outputs);
466
467 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
468 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
469 S_00B848_DX10_CLAMP(1) |
470 S_00B848_FLOAT_MODE(variant->config.float_mode);
471
472 switch (stage) {
473 case MESA_SHADER_TESS_EVAL:
474 vgpr_comp_cnt = 3;
475 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
476 break;
477 case MESA_SHADER_TESS_CTRL:
478 if (device->physical_device->rad_info.chip_class >= GFX9) {
479 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
480 } else {
481 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
482 }
483 break;
484 case MESA_SHADER_VERTEX:
485 case MESA_SHADER_GEOMETRY:
486 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
487 break;
488 case MESA_SHADER_FRAGMENT:
489 break;
490 case MESA_SHADER_COMPUTE:
491 variant->rsrc2 |=
492 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
493 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
494 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
495 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
496 info->cs.uses_thread_id[1] ? 1 : 0) |
497 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
498 S_00B84C_LDS_SIZE(variant->config.lds_size);
499 break;
500 default:
501 unreachable("unsupported shader type");
502 break;
503 }
504
505 if (device->physical_device->rad_info.chip_class >= GFX9 &&
506 stage == MESA_SHADER_GEOMETRY) {
507 unsigned es_type = variant->info.gs.es_type;
508 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
509
510 if (es_type == MESA_SHADER_VERTEX) {
511 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
512 } else if (es_type == MESA_SHADER_TESS_EVAL) {
513 es_vgpr_comp_cnt = 3;
514 } else {
515 unreachable("invalid shader ES type");
516 }
517
518 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
519 * VGPR[0:4] are always loaded.
520 */
521 if (info->uses_invocation_id) {
522 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
523 } else if (info->uses_prim_id) {
524 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
525 } else if (variant->info.gs.vertices_in >= 3) {
526 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
527 } else {
528 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
529 }
530
531 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
532 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
533 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
534 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
535 stage == MESA_SHADER_TESS_CTRL) {
536 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
537 } else {
538 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
539 }
540
541 void *ptr = radv_alloc_shader_memory(device, variant);
542 memcpy(ptr, binary->code, binary->code_size);
543
544 /* Add end-of-code markers for the UMR disassembler. */
545 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
546 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
547 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
548
549 }
550
551 static void radv_init_llvm_target()
552 {
553 LLVMInitializeAMDGPUTargetInfo();
554 LLVMInitializeAMDGPUTarget();
555 LLVMInitializeAMDGPUTargetMC();
556 LLVMInitializeAMDGPUAsmPrinter();
557
558 /* For inline assembly. */
559 LLVMInitializeAMDGPUAsmParser();
560
561 /* Workaround for bug in llvm 4.0 that causes image intrinsics
562 * to disappear.
563 * https://reviews.llvm.org/D26348
564 *
565 * Workaround for bug in llvm that causes the GPU to hang in presence
566 * of nested loops because there is an exec mask issue. The proper
567 * solution is to fix LLVM but this might require a bunch of work.
568 * https://bugs.llvm.org/show_bug.cgi?id=37744
569 *
570 * "mesa" is the prefix for error messages.
571 */
572 if (HAVE_LLVM >= 0x0800) {
573 const char *argv[2] = { "mesa", "-simplifycfg-sink-common=false" };
574 LLVMParseCommandLineOptions(2, argv, NULL);
575
576 } else {
577 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
578 "-amdgpu-skip-threshold=1" };
579 LLVMParseCommandLineOptions(3, argv, NULL);
580 }
581 }
582
583 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
584
585 static void radv_init_llvm_once(void)
586 {
587 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
588 }
589
590 static struct radv_shader_variant *
591 shader_variant_create(struct radv_device *device,
592 struct radv_shader_module *module,
593 struct nir_shader * const *shaders,
594 int shader_count,
595 gl_shader_stage stage,
596 struct radv_nir_compiler_options *options,
597 bool gs_copy_shader,
598 void **code_out,
599 unsigned *code_size_out)
600 {
601 enum radeon_family chip_family = device->physical_device->rad_info.family;
602 enum ac_target_machine_options tm_options = 0;
603 struct radv_shader_variant *variant;
604 struct ac_shader_binary binary;
605 struct ac_llvm_compiler ac_llvm;
606 bool thread_compiler;
607 variant = calloc(1, sizeof(struct radv_shader_variant));
608 if (!variant)
609 return NULL;
610
611 options->family = chip_family;
612 options->chip_class = device->physical_device->rad_info.chip_class;
613 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
614 options->dump_preoptir = options->dump_shader &&
615 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
616 options->record_llvm_ir = device->keep_shader_info;
617 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
618 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
619 options->address32_hi = device->physical_device->rad_info.address32_hi;
620
621 if (options->supports_spill)
622 tm_options |= AC_TM_SUPPORTS_SPILL;
623 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
624 tm_options |= AC_TM_SISCHED;
625 if (options->check_ir)
626 tm_options |= AC_TM_CHECK_IR;
627
628 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
629 radv_init_llvm_once();
630 radv_init_llvm_compiler(&ac_llvm,
631 thread_compiler,
632 chip_family, tm_options);
633 if (gs_copy_shader) {
634 assert(shader_count == 1);
635 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
636 &variant->config, &variant->info,
637 options);
638 } else {
639 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
640 &variant->info, shaders, shader_count,
641 options);
642 }
643
644 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
645
646 radv_fill_shader_variant(device, variant, &binary, stage);
647
648 if (code_out) {
649 *code_out = binary.code;
650 *code_size_out = binary.code_size;
651 } else
652 free(binary.code);
653 free(binary.config);
654 free(binary.rodata);
655 free(binary.global_symbol_offsets);
656 free(binary.relocs);
657 variant->ref_count = 1;
658
659 if (device->keep_shader_info) {
660 variant->disasm_string = binary.disasm_string;
661 variant->llvm_ir_string = binary.llvm_ir_string;
662 if (!gs_copy_shader && !module->nir) {
663 variant->nir = *shaders;
664 variant->spirv = (uint32_t *)module->data;
665 variant->spirv_size = module->size;
666 }
667 } else {
668 free(binary.disasm_string);
669 }
670
671 return variant;
672 }
673
674 struct radv_shader_variant *
675 radv_shader_variant_create(struct radv_device *device,
676 struct radv_shader_module *module,
677 struct nir_shader *const *shaders,
678 int shader_count,
679 struct radv_pipeline_layout *layout,
680 const struct radv_shader_variant_key *key,
681 void **code_out,
682 unsigned *code_size_out)
683 {
684 struct radv_nir_compiler_options options = {0};
685
686 options.layout = layout;
687 if (key)
688 options.key = *key;
689
690 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
691 options.supports_spill = true;
692
693 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
694 &options, false, code_out, code_size_out);
695 }
696
697 struct radv_shader_variant *
698 radv_create_gs_copy_shader(struct radv_device *device,
699 struct nir_shader *shader,
700 void **code_out,
701 unsigned *code_size_out,
702 bool multiview)
703 {
704 struct radv_nir_compiler_options options = {0};
705
706 options.key.has_multiview_view_index = multiview;
707
708 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
709 &options, true, code_out, code_size_out);
710 }
711
712 void
713 radv_shader_variant_destroy(struct radv_device *device,
714 struct radv_shader_variant *variant)
715 {
716 if (!p_atomic_dec_zero(&variant->ref_count))
717 return;
718
719 mtx_lock(&device->shader_slab_mutex);
720 list_del(&variant->slab_list);
721 mtx_unlock(&device->shader_slab_mutex);
722
723 ralloc_free(variant->nir);
724 free(variant->disasm_string);
725 free(variant->llvm_ir_string);
726 free(variant);
727 }
728
729 const char *
730 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
731 {
732 switch (stage) {
733 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
734 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
735 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
736 case MESA_SHADER_COMPUTE: return "Compute Shader";
737 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
738 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
739 default:
740 return "Unknown shader";
741 };
742 }
743
744 static void
745 generate_shader_stats(struct radv_device *device,
746 struct radv_shader_variant *variant,
747 gl_shader_stage stage,
748 struct _mesa_string_buffer *buf)
749 {
750 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
751 unsigned lds_increment = chip_class >= CIK ? 512 : 256;
752 struct ac_shader_config *conf;
753 unsigned max_simd_waves;
754 unsigned lds_per_wave = 0;
755
756 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
757
758 conf = &variant->config;
759
760 if (stage == MESA_SHADER_FRAGMENT) {
761 lds_per_wave = conf->lds_size * lds_increment +
762 align(variant->info.fs.num_interp * 48,
763 lds_increment);
764 } else if (stage == MESA_SHADER_COMPUTE) {
765 unsigned max_workgroup_size =
766 radv_nir_get_max_workgroup_size(chip_class, variant->nir);
767 lds_per_wave = (conf->lds_size * lds_increment) /
768 DIV_ROUND_UP(max_workgroup_size, 64);
769 }
770
771 if (conf->num_sgprs)
772 max_simd_waves =
773 MIN2(max_simd_waves,
774 ac_get_num_physical_sgprs(chip_class) / conf->num_sgprs);
775
776 if (conf->num_vgprs)
777 max_simd_waves =
778 MIN2(max_simd_waves,
779 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
780
781 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
782 * that PS can use.
783 */
784 if (lds_per_wave)
785 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
786
787 if (stage == MESA_SHADER_FRAGMENT) {
788 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
789 "SPI_PS_INPUT_ADDR = 0x%04x\n"
790 "SPI_PS_INPUT_ENA = 0x%04x\n",
791 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
792 }
793
794 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
795 "SGPRS: %d\n"
796 "VGPRS: %d\n"
797 "Spilled SGPRs: %d\n"
798 "Spilled VGPRs: %d\n"
799 "PrivMem VGPRS: %d\n"
800 "Code Size: %d bytes\n"
801 "LDS: %d blocks\n"
802 "Scratch: %d bytes per wave\n"
803 "Max Waves: %d\n"
804 "********************\n\n\n",
805 conf->num_sgprs, conf->num_vgprs,
806 conf->spilled_sgprs, conf->spilled_vgprs,
807 variant->info.private_mem_vgprs, variant->code_size,
808 conf->lds_size, conf->scratch_bytes_per_wave,
809 max_simd_waves);
810 }
811
812 void
813 radv_shader_dump_stats(struct radv_device *device,
814 struct radv_shader_variant *variant,
815 gl_shader_stage stage,
816 FILE *file)
817 {
818 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
819
820 generate_shader_stats(device, variant, stage, buf);
821
822 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
823 fprintf(file, "%s", buf->buf);
824
825 _mesa_string_buffer_destroy(buf);
826 }
827
828 VkResult
829 radv_GetShaderInfoAMD(VkDevice _device,
830 VkPipeline _pipeline,
831 VkShaderStageFlagBits shaderStage,
832 VkShaderInfoTypeAMD infoType,
833 size_t* pInfoSize,
834 void* pInfo)
835 {
836 RADV_FROM_HANDLE(radv_device, device, _device);
837 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
838 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
839 struct radv_shader_variant *variant = pipeline->shaders[stage];
840 struct _mesa_string_buffer *buf;
841 VkResult result = VK_SUCCESS;
842
843 /* Spec doesn't indicate what to do if the stage is invalid, so just
844 * return no info for this. */
845 if (!variant)
846 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
847
848 switch (infoType) {
849 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
850 if (!pInfo) {
851 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
852 } else {
853 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
854 struct ac_shader_config *conf = &variant->config;
855
856 VkShaderStatisticsInfoAMD statistics = {};
857 statistics.shaderStageMask = shaderStage;
858 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
859 statistics.numPhysicalSgprs = ac_get_num_physical_sgprs(device->physical_device->rad_info.chip_class);
860 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
861
862 if (stage == MESA_SHADER_COMPUTE) {
863 unsigned *local_size = variant->nir->info.cs.local_size;
864 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
865
866 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
867 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
868
869 statistics.computeWorkGroupSize[0] = local_size[0];
870 statistics.computeWorkGroupSize[1] = local_size[1];
871 statistics.computeWorkGroupSize[2] = local_size[2];
872 } else {
873 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
874 }
875
876 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
877 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
878 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
879 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
880 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
881
882 size_t size = *pInfoSize;
883 *pInfoSize = sizeof(statistics);
884
885 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
886
887 if (size < *pInfoSize)
888 result = VK_INCOMPLETE;
889 }
890
891 break;
892 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
893 buf = _mesa_string_buffer_create(NULL, 1024);
894
895 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
896 _mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string);
897 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
898 generate_shader_stats(device, variant, stage, buf);
899
900 /* Need to include the null terminator. */
901 size_t length = buf->length + 1;
902
903 if (!pInfo) {
904 *pInfoSize = length;
905 } else {
906 size_t size = *pInfoSize;
907 *pInfoSize = length;
908
909 memcpy(pInfo, buf->buf, MIN2(size, length));
910
911 if (size < length)
912 result = VK_INCOMPLETE;
913 }
914
915 _mesa_string_buffer_destroy(buf);
916 break;
917 default:
918 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
919 result = VK_ERROR_FEATURE_NOT_PRESENT;
920 break;
921 }
922
923 return result;
924 }