nir/opt_peephole_select: Don't peephole_select expensive math instructions
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "nir/nir.h"
35 #include "nir/nir_builder.h"
36 #include "spirv/nir_spirv.h"
37
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 #include <llvm-c/Support.h>
41
42 #include "sid.h"
43 #include "gfx9d.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "vk_format.h"
48 #include "util/debug.h"
49 #include "ac_exp_param.h"
50
51 #include "util/string_buffer.h"
52
53 static const struct nir_shader_compiler_options nir_options = {
54 .vertex_id_zero_based = true,
55 .lower_scmp = true,
56 .lower_flrp32 = true,
57 .lower_flrp64 = true,
58 .lower_device_index_to_zero = true,
59 .lower_fsat = true,
60 .lower_fdiv = true,
61 .lower_sub = true,
62 .lower_pack_snorm_2x16 = true,
63 .lower_pack_snorm_4x8 = true,
64 .lower_pack_unorm_2x16 = true,
65 .lower_pack_unorm_4x8 = true,
66 .lower_unpack_snorm_2x16 = true,
67 .lower_unpack_snorm_4x8 = true,
68 .lower_unpack_unorm_2x16 = true,
69 .lower_unpack_unorm_4x8 = true,
70 .lower_extract_byte = true,
71 .lower_extract_word = true,
72 .lower_ffma = true,
73 .lower_fpow = true,
74 .max_unroll_iterations = 32
75 };
76
77 VkResult radv_CreateShaderModule(
78 VkDevice _device,
79 const VkShaderModuleCreateInfo* pCreateInfo,
80 const VkAllocationCallbacks* pAllocator,
81 VkShaderModule* pShaderModule)
82 {
83 RADV_FROM_HANDLE(radv_device, device, _device);
84 struct radv_shader_module *module;
85
86 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
87 assert(pCreateInfo->flags == 0);
88
89 module = vk_alloc2(&device->alloc, pAllocator,
90 sizeof(*module) + pCreateInfo->codeSize, 8,
91 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
92 if (module == NULL)
93 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
94
95 module->nir = NULL;
96 module->size = pCreateInfo->codeSize;
97 memcpy(module->data, pCreateInfo->pCode, module->size);
98
99 _mesa_sha1_compute(module->data, module->size, module->sha1);
100
101 *pShaderModule = radv_shader_module_to_handle(module);
102
103 return VK_SUCCESS;
104 }
105
106 void radv_DestroyShaderModule(
107 VkDevice _device,
108 VkShaderModule _module,
109 const VkAllocationCallbacks* pAllocator)
110 {
111 RADV_FROM_HANDLE(radv_device, device, _device);
112 RADV_FROM_HANDLE(radv_shader_module, module, _module);
113
114 if (!module)
115 return;
116
117 vk_free2(&device->alloc, pAllocator, module);
118 }
119
120 void
121 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
122 bool allow_copies)
123 {
124 bool progress;
125
126 do {
127 progress = false;
128
129 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_local);
130 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_local);
131
132 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
133 NIR_PASS_V(shader, nir_lower_pack);
134
135 if (allow_copies) {
136 /* Only run this pass in the first call to
137 * radv_optimize_nir. Later calls assume that we've
138 * lowered away any copy_deref instructions and we
139 * don't want to introduce any more.
140 */
141 NIR_PASS(progress, shader, nir_opt_find_array_copies);
142 }
143
144 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
145 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
146
147 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
148 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
149
150 NIR_PASS(progress, shader, nir_copy_prop);
151 NIR_PASS(progress, shader, nir_opt_remove_phis);
152 NIR_PASS(progress, shader, nir_opt_dce);
153 if (nir_opt_trivial_continues(shader)) {
154 progress = true;
155 NIR_PASS(progress, shader, nir_copy_prop);
156 NIR_PASS(progress, shader, nir_opt_remove_phis);
157 NIR_PASS(progress, shader, nir_opt_dce);
158 }
159 NIR_PASS(progress, shader, nir_opt_if);
160 NIR_PASS(progress, shader, nir_opt_dead_cf);
161 NIR_PASS(progress, shader, nir_opt_cse);
162 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
163 NIR_PASS(progress, shader, nir_opt_algebraic);
164 NIR_PASS(progress, shader, nir_opt_constant_folding);
165 NIR_PASS(progress, shader, nir_opt_undef);
166 NIR_PASS(progress, shader, nir_opt_conditional_discard);
167 if (shader->options->max_unroll_iterations) {
168 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
169 }
170 } while (progress && !optimize_conservatively);
171
172 NIR_PASS(progress, shader, nir_opt_shrink_load);
173 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
174 }
175
176 nir_shader *
177 radv_shader_compile_to_nir(struct radv_device *device,
178 struct radv_shader_module *module,
179 const char *entrypoint_name,
180 gl_shader_stage stage,
181 const VkSpecializationInfo *spec_info,
182 const VkPipelineCreateFlags flags)
183 {
184 nir_shader *nir;
185 nir_function *entry_point;
186 if (module->nir) {
187 /* Some things such as our meta clear/blit code will give us a NIR
188 * shader directly. In that case, we just ignore the SPIR-V entirely
189 * and just use the NIR shader */
190 nir = module->nir;
191 nir->options = &nir_options;
192 nir_validate_shader(nir, "in internal shader");
193
194 assert(exec_list_length(&nir->functions) == 1);
195 struct exec_node *node = exec_list_get_head(&nir->functions);
196 entry_point = exec_node_data(nir_function, node, node);
197 } else {
198 uint32_t *spirv = (uint32_t *) module->data;
199 assert(module->size % 4 == 0);
200
201 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
202 radv_print_spirv(spirv, module->size, stderr);
203
204 uint32_t num_spec_entries = 0;
205 struct nir_spirv_specialization *spec_entries = NULL;
206 if (spec_info && spec_info->mapEntryCount > 0) {
207 num_spec_entries = spec_info->mapEntryCount;
208 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
209 for (uint32_t i = 0; i < num_spec_entries; i++) {
210 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
211 const void *data = spec_info->pData + entry.offset;
212 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
213
214 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
215 if (spec_info->dataSize == 8)
216 spec_entries[i].data64 = *(const uint64_t *)data;
217 else
218 spec_entries[i].data32 = *(const uint32_t *)data;
219 }
220 }
221 const struct spirv_to_nir_options spirv_options = {
222 .caps = {
223 .device_group = true,
224 .draw_parameters = true,
225 .float64 = true,
226 .image_read_without_format = true,
227 .image_write_without_format = true,
228 .tessellation = true,
229 .int64 = true,
230 .int16 = true,
231 .multiview = true,
232 .subgroup_arithmetic = true,
233 .subgroup_ballot = true,
234 .subgroup_basic = true,
235 .subgroup_quad = true,
236 .subgroup_shuffle = true,
237 .subgroup_vote = true,
238 .variable_pointers = true,
239 .gcn_shader = true,
240 .trinary_minmax = true,
241 .shader_viewport_index_layer = true,
242 .descriptor_array_dynamic_indexing = true,
243 .runtime_descriptor_array = true,
244 .stencil_export = true,
245 .storage_16bit = true,
246 .geometry_streams = true,
247 .transform_feedback = true,
248 },
249 };
250 entry_point = spirv_to_nir(spirv, module->size / 4,
251 spec_entries, num_spec_entries,
252 stage, entrypoint_name,
253 &spirv_options, &nir_options);
254 nir = entry_point->shader;
255 assert(nir->info.stage == stage);
256 nir_validate_shader(nir, "after spirv_to_nir");
257
258 free(spec_entries);
259
260 /* We have to lower away local constant initializers right before we
261 * inline functions. That way they get properly initialized at the top
262 * of the function and not at the top of its caller.
263 */
264 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
265 NIR_PASS_V(nir, nir_lower_returns);
266 NIR_PASS_V(nir, nir_inline_functions);
267 NIR_PASS_V(nir, nir_copy_prop);
268
269 /* Pick off the single entrypoint that we want */
270 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
271 if (func != entry_point)
272 exec_node_remove(&func->node);
273 }
274 assert(exec_list_length(&nir->functions) == 1);
275 entry_point->name = ralloc_strdup(entry_point, "main");
276
277 /* Make sure we lower constant initializers on output variables so that
278 * nir_remove_dead_variables below sees the corresponding stores
279 */
280 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
281
282 /* Now that we've deleted all but the main function, we can go ahead and
283 * lower the rest of the constant initializers.
284 */
285 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
286
287 /* Split member structs. We do this before lower_io_to_temporaries so that
288 * it doesn't lower system values to temporaries by accident.
289 */
290 NIR_PASS_V(nir, nir_split_var_copies);
291 NIR_PASS_V(nir, nir_split_per_member_structs);
292
293 NIR_PASS_V(nir, nir_remove_dead_variables,
294 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
295
296 NIR_PASS_V(nir, nir_lower_system_values);
297 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
298 }
299
300 /* Vulkan uses the separate-shader linking model */
301 nir->info.separate_shader = true;
302
303 nir_shader_gather_info(nir, entry_point->impl);
304
305 static const nir_lower_tex_options tex_options = {
306 .lower_txp = ~0,
307 };
308
309 nir_lower_tex(nir, &tex_options);
310
311 nir_lower_vars_to_ssa(nir);
312
313 if (nir->info.stage == MESA_SHADER_VERTEX ||
314 nir->info.stage == MESA_SHADER_GEOMETRY) {
315 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
316 nir_shader_get_entrypoint(nir), true, true);
317 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
318 nir->info.stage == MESA_SHADER_FRAGMENT) {
319 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
320 nir_shader_get_entrypoint(nir), true, false);
321 }
322
323 nir_split_var_copies(nir);
324
325 nir_lower_global_vars_to_local(nir);
326 nir_remove_dead_variables(nir, nir_var_local);
327 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
328 .subgroup_size = 64,
329 .ballot_bit_size = 64,
330 .lower_to_scalar = 1,
331 .lower_subgroup_masks = 1,
332 .lower_shuffle = 1,
333 .lower_shuffle_to_32bit = 1,
334 .lower_vote_eq_to_ballot = 1,
335 });
336
337 nir_lower_load_const_to_scalar(nir);
338
339 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
340 radv_optimize_nir(nir, false, true);
341
342 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
343 * to remove any copies introduced by nir_opt_find_array_copies().
344 */
345 nir_lower_var_copies(nir);
346
347 /* Indirect lowering must be called after the radv_optimize_nir() loop
348 * has been called at least once. Otherwise indirect lowering can
349 * bloat the instruction count of the loop and cause it to be
350 * considered too large for unrolling.
351 */
352 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
353 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
354
355 return nir;
356 }
357
358 void *
359 radv_alloc_shader_memory(struct radv_device *device,
360 struct radv_shader_variant *shader)
361 {
362 mtx_lock(&device->shader_slab_mutex);
363 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
364 uint64_t offset = 0;
365 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
366 if (s->bo_offset - offset >= shader->code_size) {
367 shader->bo = slab->bo;
368 shader->bo_offset = offset;
369 list_addtail(&shader->slab_list, &s->slab_list);
370 mtx_unlock(&device->shader_slab_mutex);
371 return slab->ptr + offset;
372 }
373 offset = align_u64(s->bo_offset + s->code_size, 256);
374 }
375 if (slab->size - offset >= shader->code_size) {
376 shader->bo = slab->bo;
377 shader->bo_offset = offset;
378 list_addtail(&shader->slab_list, &slab->shaders);
379 mtx_unlock(&device->shader_slab_mutex);
380 return slab->ptr + offset;
381 }
382 }
383
384 mtx_unlock(&device->shader_slab_mutex);
385 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
386
387 slab->size = 256 * 1024;
388 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
389 RADEON_DOMAIN_VRAM,
390 RADEON_FLAG_NO_INTERPROCESS_SHARING |
391 (device->physical_device->cpdma_prefetch_writes_memory ?
392 0 : RADEON_FLAG_READ_ONLY));
393 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
394 list_inithead(&slab->shaders);
395
396 mtx_lock(&device->shader_slab_mutex);
397 list_add(&slab->slabs, &device->shader_slabs);
398
399 shader->bo = slab->bo;
400 shader->bo_offset = 0;
401 list_add(&shader->slab_list, &slab->shaders);
402 mtx_unlock(&device->shader_slab_mutex);
403 return slab->ptr;
404 }
405
406 void
407 radv_destroy_shader_slabs(struct radv_device *device)
408 {
409 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
410 device->ws->buffer_destroy(slab->bo);
411 free(slab);
412 }
413 mtx_destroy(&device->shader_slab_mutex);
414 }
415
416 /* For the UMR disassembler. */
417 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
418 #define DEBUGGER_NUM_MARKERS 5
419
420 static unsigned
421 radv_get_shader_binary_size(struct ac_shader_binary *binary)
422 {
423 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
424 }
425
426 static void
427 radv_fill_shader_variant(struct radv_device *device,
428 struct radv_shader_variant *variant,
429 struct ac_shader_binary *binary,
430 gl_shader_stage stage)
431 {
432 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
433 struct radv_shader_info *info = &variant->info.info;
434 unsigned vgpr_comp_cnt = 0;
435
436 variant->code_size = radv_get_shader_binary_size(binary);
437 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
438 S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) |
439 S_00B12C_SCRATCH_EN(scratch_enabled) |
440 S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
441 S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
442 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
443 S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
444 S_00B12C_SO_EN(!!info->so.num_outputs);
445
446 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
447 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
448 S_00B848_DX10_CLAMP(1) |
449 S_00B848_FLOAT_MODE(variant->config.float_mode);
450
451 switch (stage) {
452 case MESA_SHADER_TESS_EVAL:
453 vgpr_comp_cnt = 3;
454 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
455 break;
456 case MESA_SHADER_TESS_CTRL:
457 if (device->physical_device->rad_info.chip_class >= GFX9) {
458 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
459 } else {
460 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
461 }
462 break;
463 case MESA_SHADER_VERTEX:
464 case MESA_SHADER_GEOMETRY:
465 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
466 break;
467 case MESA_SHADER_FRAGMENT:
468 break;
469 case MESA_SHADER_COMPUTE:
470 variant->rsrc2 |=
471 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
472 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
473 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
474 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
475 info->cs.uses_thread_id[1] ? 1 : 0) |
476 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
477 S_00B84C_LDS_SIZE(variant->config.lds_size);
478 break;
479 default:
480 unreachable("unsupported shader type");
481 break;
482 }
483
484 if (device->physical_device->rad_info.chip_class >= GFX9 &&
485 stage == MESA_SHADER_GEOMETRY) {
486 unsigned es_type = variant->info.gs.es_type;
487 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
488
489 if (es_type == MESA_SHADER_VERTEX) {
490 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
491 } else if (es_type == MESA_SHADER_TESS_EVAL) {
492 es_vgpr_comp_cnt = 3;
493 } else {
494 unreachable("invalid shader ES type");
495 }
496
497 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
498 * VGPR[0:4] are always loaded.
499 */
500 if (info->uses_invocation_id) {
501 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
502 } else if (info->uses_prim_id) {
503 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
504 } else if (variant->info.gs.vertices_in >= 3) {
505 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
506 } else {
507 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
508 }
509
510 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
511 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
512 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
513 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
514 stage == MESA_SHADER_TESS_CTRL) {
515 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
516 } else {
517 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
518 }
519
520 void *ptr = radv_alloc_shader_memory(device, variant);
521 memcpy(ptr, binary->code, binary->code_size);
522
523 /* Add end-of-code markers for the UMR disassembler. */
524 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
525 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
526 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
527
528 }
529
530 static void radv_init_llvm_target()
531 {
532 LLVMInitializeAMDGPUTargetInfo();
533 LLVMInitializeAMDGPUTarget();
534 LLVMInitializeAMDGPUTargetMC();
535 LLVMInitializeAMDGPUAsmPrinter();
536
537 /* For inline assembly. */
538 LLVMInitializeAMDGPUAsmParser();
539
540 /* Workaround for bug in llvm 4.0 that causes image intrinsics
541 * to disappear.
542 * https://reviews.llvm.org/D26348
543 *
544 * Workaround for bug in llvm that causes the GPU to hang in presence
545 * of nested loops because there is an exec mask issue. The proper
546 * solution is to fix LLVM but this might require a bunch of work.
547 * https://bugs.llvm.org/show_bug.cgi?id=37744
548 *
549 * "mesa" is the prefix for error messages.
550 */
551 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
552 "-amdgpu-skip-threshold=1" };
553 LLVMParseCommandLineOptions(3, argv, NULL);
554 }
555
556 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
557
558 static void radv_init_llvm_once(void)
559 {
560 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
561 }
562
563 static struct radv_shader_variant *
564 shader_variant_create(struct radv_device *device,
565 struct radv_shader_module *module,
566 struct nir_shader * const *shaders,
567 int shader_count,
568 gl_shader_stage stage,
569 struct radv_nir_compiler_options *options,
570 bool gs_copy_shader,
571 void **code_out,
572 unsigned *code_size_out)
573 {
574 enum radeon_family chip_family = device->physical_device->rad_info.family;
575 enum ac_target_machine_options tm_options = 0;
576 struct radv_shader_variant *variant;
577 struct ac_shader_binary binary;
578 struct ac_llvm_compiler ac_llvm;
579 bool thread_compiler;
580 variant = calloc(1, sizeof(struct radv_shader_variant));
581 if (!variant)
582 return NULL;
583
584 options->family = chip_family;
585 options->chip_class = device->physical_device->rad_info.chip_class;
586 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
587 options->dump_preoptir = options->dump_shader &&
588 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
589 options->record_llvm_ir = device->keep_shader_info;
590 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
591 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
592 options->address32_hi = device->physical_device->rad_info.address32_hi;
593
594 if (options->supports_spill)
595 tm_options |= AC_TM_SUPPORTS_SPILL;
596 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
597 tm_options |= AC_TM_SISCHED;
598 if (options->check_ir)
599 tm_options |= AC_TM_CHECK_IR;
600
601 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
602 radv_init_llvm_once();
603 radv_init_llvm_compiler(&ac_llvm,
604 thread_compiler,
605 chip_family, tm_options);
606 if (gs_copy_shader) {
607 assert(shader_count == 1);
608 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
609 &variant->config, &variant->info,
610 options);
611 } else {
612 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
613 &variant->info, shaders, shader_count,
614 options);
615 }
616
617 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
618
619 radv_fill_shader_variant(device, variant, &binary, stage);
620
621 if (code_out) {
622 *code_out = binary.code;
623 *code_size_out = binary.code_size;
624 } else
625 free(binary.code);
626 free(binary.config);
627 free(binary.rodata);
628 free(binary.global_symbol_offsets);
629 free(binary.relocs);
630 variant->ref_count = 1;
631
632 if (device->keep_shader_info) {
633 variant->disasm_string = binary.disasm_string;
634 variant->llvm_ir_string = binary.llvm_ir_string;
635 if (!gs_copy_shader && !module->nir) {
636 variant->nir = *shaders;
637 variant->spirv = (uint32_t *)module->data;
638 variant->spirv_size = module->size;
639 }
640 } else {
641 free(binary.disasm_string);
642 }
643
644 return variant;
645 }
646
647 struct radv_shader_variant *
648 radv_shader_variant_create(struct radv_device *device,
649 struct radv_shader_module *module,
650 struct nir_shader *const *shaders,
651 int shader_count,
652 struct radv_pipeline_layout *layout,
653 const struct radv_shader_variant_key *key,
654 void **code_out,
655 unsigned *code_size_out)
656 {
657 struct radv_nir_compiler_options options = {0};
658
659 options.layout = layout;
660 if (key)
661 options.key = *key;
662
663 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
664 options.supports_spill = true;
665
666 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
667 &options, false, code_out, code_size_out);
668 }
669
670 struct radv_shader_variant *
671 radv_create_gs_copy_shader(struct radv_device *device,
672 struct nir_shader *shader,
673 void **code_out,
674 unsigned *code_size_out,
675 bool multiview)
676 {
677 struct radv_nir_compiler_options options = {0};
678
679 options.key.has_multiview_view_index = multiview;
680
681 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
682 &options, true, code_out, code_size_out);
683 }
684
685 void
686 radv_shader_variant_destroy(struct radv_device *device,
687 struct radv_shader_variant *variant)
688 {
689 if (!p_atomic_dec_zero(&variant->ref_count))
690 return;
691
692 mtx_lock(&device->shader_slab_mutex);
693 list_del(&variant->slab_list);
694 mtx_unlock(&device->shader_slab_mutex);
695
696 ralloc_free(variant->nir);
697 free(variant->disasm_string);
698 free(variant->llvm_ir_string);
699 free(variant);
700 }
701
702 const char *
703 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
704 {
705 switch (stage) {
706 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
707 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
708 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
709 case MESA_SHADER_COMPUTE: return "Compute Shader";
710 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
711 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
712 default:
713 return "Unknown shader";
714 };
715 }
716
717 static void
718 generate_shader_stats(struct radv_device *device,
719 struct radv_shader_variant *variant,
720 gl_shader_stage stage,
721 struct _mesa_string_buffer *buf)
722 {
723 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
724 struct ac_shader_config *conf;
725 unsigned max_simd_waves;
726 unsigned lds_per_wave = 0;
727
728 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
729
730 conf = &variant->config;
731
732 if (stage == MESA_SHADER_FRAGMENT) {
733 lds_per_wave = conf->lds_size * lds_increment +
734 align(variant->info.fs.num_interp * 48,
735 lds_increment);
736 }
737
738 if (conf->num_sgprs)
739 max_simd_waves =
740 MIN2(max_simd_waves,
741 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
742
743 if (conf->num_vgprs)
744 max_simd_waves =
745 MIN2(max_simd_waves,
746 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
747
748 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
749 * that PS can use.
750 */
751 if (lds_per_wave)
752 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
753
754 if (stage == MESA_SHADER_FRAGMENT) {
755 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
756 "SPI_PS_INPUT_ADDR = 0x%04x\n"
757 "SPI_PS_INPUT_ENA = 0x%04x\n",
758 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
759 }
760
761 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
762 "SGPRS: %d\n"
763 "VGPRS: %d\n"
764 "Spilled SGPRs: %d\n"
765 "Spilled VGPRs: %d\n"
766 "PrivMem VGPRS: %d\n"
767 "Code Size: %d bytes\n"
768 "LDS: %d blocks\n"
769 "Scratch: %d bytes per wave\n"
770 "Max Waves: %d\n"
771 "********************\n\n\n",
772 conf->num_sgprs, conf->num_vgprs,
773 conf->spilled_sgprs, conf->spilled_vgprs,
774 variant->info.private_mem_vgprs, variant->code_size,
775 conf->lds_size, conf->scratch_bytes_per_wave,
776 max_simd_waves);
777 }
778
779 void
780 radv_shader_dump_stats(struct radv_device *device,
781 struct radv_shader_variant *variant,
782 gl_shader_stage stage,
783 FILE *file)
784 {
785 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
786
787 generate_shader_stats(device, variant, stage, buf);
788
789 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
790 fprintf(file, "%s", buf->buf);
791
792 _mesa_string_buffer_destroy(buf);
793 }
794
795 VkResult
796 radv_GetShaderInfoAMD(VkDevice _device,
797 VkPipeline _pipeline,
798 VkShaderStageFlagBits shaderStage,
799 VkShaderInfoTypeAMD infoType,
800 size_t* pInfoSize,
801 void* pInfo)
802 {
803 RADV_FROM_HANDLE(radv_device, device, _device);
804 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
805 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
806 struct radv_shader_variant *variant = pipeline->shaders[stage];
807 struct _mesa_string_buffer *buf;
808 VkResult result = VK_SUCCESS;
809
810 /* Spec doesn't indicate what to do if the stage is invalid, so just
811 * return no info for this. */
812 if (!variant)
813 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
814
815 switch (infoType) {
816 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
817 if (!pInfo) {
818 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
819 } else {
820 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
821 struct ac_shader_config *conf = &variant->config;
822
823 VkShaderStatisticsInfoAMD statistics = {};
824 statistics.shaderStageMask = shaderStage;
825 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
826 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
827 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
828
829 if (stage == MESA_SHADER_COMPUTE) {
830 unsigned *local_size = variant->nir->info.cs.local_size;
831 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
832
833 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
834 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
835
836 statistics.computeWorkGroupSize[0] = local_size[0];
837 statistics.computeWorkGroupSize[1] = local_size[1];
838 statistics.computeWorkGroupSize[2] = local_size[2];
839 } else {
840 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
841 }
842
843 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
844 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
845 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
846 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
847 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
848
849 size_t size = *pInfoSize;
850 *pInfoSize = sizeof(statistics);
851
852 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
853
854 if (size < *pInfoSize)
855 result = VK_INCOMPLETE;
856 }
857
858 break;
859 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
860 buf = _mesa_string_buffer_create(NULL, 1024);
861
862 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
863 _mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string);
864 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
865 generate_shader_stats(device, variant, stage, buf);
866
867 /* Need to include the null terminator. */
868 size_t length = buf->length + 1;
869
870 if (!pInfo) {
871 *pInfoSize = length;
872 } else {
873 size_t size = *pInfoSize;
874 *pInfoSize = length;
875
876 memcpy(pInfo, buf->buf, MIN2(size, length));
877
878 if (size < length)
879 result = VK_INCOMPLETE;
880 }
881
882 _mesa_string_buffer_destroy(buf);
883 break;
884 default:
885 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
886 result = VK_ERROR_FEATURE_NOT_PRESENT;
887 break;
888 }
889
890 return result;
891 }