nir: Drop the vs_inputs_dual_locations option
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "nir/nir.h"
35 #include "nir/nir_builder.h"
36 #include "spirv/nir_spirv.h"
37
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 #include <llvm-c/Support.h>
41
42 #include "sid.h"
43 #include "gfx9d.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "vk_format.h"
48 #include "util/debug.h"
49 #include "ac_exp_param.h"
50
51 #include "util/string_buffer.h"
52
53 static const struct nir_shader_compiler_options nir_options = {
54 .vertex_id_zero_based = true,
55 .lower_scmp = true,
56 .lower_flrp32 = true,
57 .lower_flrp64 = true,
58 .lower_device_index_to_zero = true,
59 .lower_fsat = true,
60 .lower_fdiv = true,
61 .lower_sub = true,
62 .lower_pack_snorm_2x16 = true,
63 .lower_pack_snorm_4x8 = true,
64 .lower_pack_unorm_2x16 = true,
65 .lower_pack_unorm_4x8 = true,
66 .lower_unpack_snorm_2x16 = true,
67 .lower_unpack_snorm_4x8 = true,
68 .lower_unpack_unorm_2x16 = true,
69 .lower_unpack_unorm_4x8 = true,
70 .lower_extract_byte = true,
71 .lower_extract_word = true,
72 .lower_ffma = true,
73 .lower_fpow = true,
74 .max_unroll_iterations = 32
75 };
76
77 VkResult radv_CreateShaderModule(
78 VkDevice _device,
79 const VkShaderModuleCreateInfo* pCreateInfo,
80 const VkAllocationCallbacks* pAllocator,
81 VkShaderModule* pShaderModule)
82 {
83 RADV_FROM_HANDLE(radv_device, device, _device);
84 struct radv_shader_module *module;
85
86 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
87 assert(pCreateInfo->flags == 0);
88
89 module = vk_alloc2(&device->alloc, pAllocator,
90 sizeof(*module) + pCreateInfo->codeSize, 8,
91 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
92 if (module == NULL)
93 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
94
95 module->nir = NULL;
96 module->size = pCreateInfo->codeSize;
97 memcpy(module->data, pCreateInfo->pCode, module->size);
98
99 _mesa_sha1_compute(module->data, module->size, module->sha1);
100
101 *pShaderModule = radv_shader_module_to_handle(module);
102
103 return VK_SUCCESS;
104 }
105
106 void radv_DestroyShaderModule(
107 VkDevice _device,
108 VkShaderModule _module,
109 const VkAllocationCallbacks* pAllocator)
110 {
111 RADV_FROM_HANDLE(radv_device, device, _device);
112 RADV_FROM_HANDLE(radv_shader_module, module, _module);
113
114 if (!module)
115 return;
116
117 vk_free2(&device->alloc, pAllocator, module);
118 }
119
120 void
121 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
122 {
123 bool progress;
124
125 do {
126 progress = false;
127
128 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
129 NIR_PASS_V(shader, nir_lower_pack);
130 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
131 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
132
133 NIR_PASS(progress, shader, nir_copy_prop);
134 NIR_PASS(progress, shader, nir_opt_remove_phis);
135 NIR_PASS(progress, shader, nir_opt_dce);
136 if (nir_opt_trivial_continues(shader)) {
137 progress = true;
138 NIR_PASS(progress, shader, nir_copy_prop);
139 NIR_PASS(progress, shader, nir_opt_remove_phis);
140 NIR_PASS(progress, shader, nir_opt_dce);
141 }
142 NIR_PASS(progress, shader, nir_opt_if);
143 NIR_PASS(progress, shader, nir_opt_dead_cf);
144 NIR_PASS(progress, shader, nir_opt_cse);
145 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
146 NIR_PASS(progress, shader, nir_opt_algebraic);
147 NIR_PASS(progress, shader, nir_opt_constant_folding);
148 NIR_PASS(progress, shader, nir_opt_undef);
149 NIR_PASS(progress, shader, nir_opt_conditional_discard);
150 if (shader->options->max_unroll_iterations) {
151 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
152 }
153 } while (progress && !optimize_conservatively);
154
155 NIR_PASS(progress, shader, nir_opt_shrink_load);
156 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
157 }
158
159 nir_shader *
160 radv_shader_compile_to_nir(struct radv_device *device,
161 struct radv_shader_module *module,
162 const char *entrypoint_name,
163 gl_shader_stage stage,
164 const VkSpecializationInfo *spec_info,
165 const VkPipelineCreateFlags flags)
166 {
167 nir_shader *nir;
168 nir_function *entry_point;
169 if (module->nir) {
170 /* Some things such as our meta clear/blit code will give us a NIR
171 * shader directly. In that case, we just ignore the SPIR-V entirely
172 * and just use the NIR shader */
173 nir = module->nir;
174 nir->options = &nir_options;
175 nir_validate_shader(nir);
176
177 assert(exec_list_length(&nir->functions) == 1);
178 struct exec_node *node = exec_list_get_head(&nir->functions);
179 entry_point = exec_node_data(nir_function, node, node);
180 } else {
181 uint32_t *spirv = (uint32_t *) module->data;
182 assert(module->size % 4 == 0);
183
184 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
185 radv_print_spirv(spirv, module->size, stderr);
186
187 uint32_t num_spec_entries = 0;
188 struct nir_spirv_specialization *spec_entries = NULL;
189 if (spec_info && spec_info->mapEntryCount > 0) {
190 num_spec_entries = spec_info->mapEntryCount;
191 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
192 for (uint32_t i = 0; i < num_spec_entries; i++) {
193 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
194 const void *data = spec_info->pData + entry.offset;
195 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
196
197 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
198 if (spec_info->dataSize == 8)
199 spec_entries[i].data64 = *(const uint64_t *)data;
200 else
201 spec_entries[i].data32 = *(const uint32_t *)data;
202 }
203 }
204 const struct spirv_to_nir_options spirv_options = {
205 .caps = {
206 .device_group = true,
207 .draw_parameters = true,
208 .float64 = true,
209 .image_read_without_format = true,
210 .image_write_without_format = true,
211 .tessellation = true,
212 .int64 = true,
213 .multiview = true,
214 .subgroup_ballot = true,
215 .subgroup_basic = true,
216 .subgroup_quad = true,
217 .subgroup_shuffle = true,
218 .subgroup_vote = true,
219 .variable_pointers = true,
220 .gcn_shader = true,
221 .trinary_minmax = true,
222 .shader_viewport_index_layer = true,
223 .descriptor_array_dynamic_indexing = true,
224 .runtime_descriptor_array = true,
225 .stencil_export = true,
226 .storage_16bit = true,
227 },
228 };
229 entry_point = spirv_to_nir(spirv, module->size / 4,
230 spec_entries, num_spec_entries,
231 stage, entrypoint_name,
232 &spirv_options, &nir_options);
233 nir = entry_point->shader;
234 assert(nir->info.stage == stage);
235 nir_validate_shader(nir);
236
237 free(spec_entries);
238
239 /* We have to lower away local constant initializers right before we
240 * inline functions. That way they get properly initialized at the top
241 * of the function and not at the top of its caller.
242 */
243 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
244 NIR_PASS_V(nir, nir_lower_returns);
245 NIR_PASS_V(nir, nir_inline_functions);
246 NIR_PASS_V(nir, nir_copy_prop);
247
248 /* Pick off the single entrypoint that we want */
249 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
250 if (func != entry_point)
251 exec_node_remove(&func->node);
252 }
253 assert(exec_list_length(&nir->functions) == 1);
254 entry_point->name = ralloc_strdup(entry_point, "main");
255
256 /* Make sure we lower constant initializers on output variables so that
257 * nir_remove_dead_variables below sees the corresponding stores
258 */
259 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
260
261 /* Now that we've deleted all but the main function, we can go ahead and
262 * lower the rest of the constant initializers.
263 */
264 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
265
266 /* Split member structs. We do this before lower_io_to_temporaries so that
267 * it doesn't lower system values to temporaries by accident.
268 */
269 NIR_PASS_V(nir, nir_split_var_copies);
270 NIR_PASS_V(nir, nir_split_per_member_structs);
271
272 NIR_PASS_V(nir, nir_remove_dead_variables,
273 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
274
275 NIR_PASS_V(nir, nir_lower_system_values);
276 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
277 }
278
279 /* Vulkan uses the separate-shader linking model */
280 nir->info.separate_shader = true;
281
282 nir_shader_gather_info(nir, entry_point->impl);
283
284 static const nir_lower_tex_options tex_options = {
285 .lower_txp = ~0,
286 };
287
288 nir_lower_tex(nir, &tex_options);
289
290 nir_lower_vars_to_ssa(nir);
291
292 if (nir->info.stage == MESA_SHADER_VERTEX ||
293 nir->info.stage == MESA_SHADER_GEOMETRY) {
294 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
295 nir_shader_get_entrypoint(nir), true, true);
296 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
297 nir->info.stage == MESA_SHADER_FRAGMENT) {
298 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
299 nir_shader_get_entrypoint(nir), true, false);
300 }
301
302 nir_split_var_copies(nir);
303 nir_lower_var_copies(nir);
304
305 nir_lower_global_vars_to_local(nir);
306 nir_remove_dead_variables(nir, nir_var_local);
307 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
308 .subgroup_size = 64,
309 .ballot_bit_size = 64,
310 .lower_to_scalar = 1,
311 .lower_subgroup_masks = 1,
312 .lower_shuffle = 1,
313 .lower_shuffle_to_32bit = 1,
314 .lower_vote_eq_to_ballot = 1,
315 });
316
317 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
318 radv_optimize_nir(nir, false);
319
320 /* Indirect lowering must be called after the radv_optimize_nir() loop
321 * has been called at least once. Otherwise indirect lowering can
322 * bloat the instruction count of the loop and cause it to be
323 * considered too large for unrolling.
324 */
325 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
326 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT);
327
328 return nir;
329 }
330
331 void *
332 radv_alloc_shader_memory(struct radv_device *device,
333 struct radv_shader_variant *shader)
334 {
335 mtx_lock(&device->shader_slab_mutex);
336 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
337 uint64_t offset = 0;
338 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
339 if (s->bo_offset - offset >= shader->code_size) {
340 shader->bo = slab->bo;
341 shader->bo_offset = offset;
342 list_addtail(&shader->slab_list, &s->slab_list);
343 mtx_unlock(&device->shader_slab_mutex);
344 return slab->ptr + offset;
345 }
346 offset = align_u64(s->bo_offset + s->code_size, 256);
347 }
348 if (slab->size - offset >= shader->code_size) {
349 shader->bo = slab->bo;
350 shader->bo_offset = offset;
351 list_addtail(&shader->slab_list, &slab->shaders);
352 mtx_unlock(&device->shader_slab_mutex);
353 return slab->ptr + offset;
354 }
355 }
356
357 mtx_unlock(&device->shader_slab_mutex);
358 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
359
360 slab->size = 256 * 1024;
361 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
362 RADEON_DOMAIN_VRAM,
363 RADEON_FLAG_NO_INTERPROCESS_SHARING |
364 (device->physical_device->cpdma_prefetch_writes_memory ?
365 0 : RADEON_FLAG_READ_ONLY));
366 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
367 list_inithead(&slab->shaders);
368
369 mtx_lock(&device->shader_slab_mutex);
370 list_add(&slab->slabs, &device->shader_slabs);
371
372 shader->bo = slab->bo;
373 shader->bo_offset = 0;
374 list_add(&shader->slab_list, &slab->shaders);
375 mtx_unlock(&device->shader_slab_mutex);
376 return slab->ptr;
377 }
378
379 void
380 radv_destroy_shader_slabs(struct radv_device *device)
381 {
382 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
383 device->ws->buffer_destroy(slab->bo);
384 free(slab);
385 }
386 mtx_destroy(&device->shader_slab_mutex);
387 }
388
389 /* For the UMR disassembler. */
390 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
391 #define DEBUGGER_NUM_MARKERS 5
392
393 static unsigned
394 radv_get_shader_binary_size(struct ac_shader_binary *binary)
395 {
396 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
397 }
398
399 static void
400 radv_fill_shader_variant(struct radv_device *device,
401 struct radv_shader_variant *variant,
402 struct ac_shader_binary *binary,
403 gl_shader_stage stage)
404 {
405 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
406 struct radv_shader_info *info = &variant->info.info;
407 unsigned vgpr_comp_cnt = 0;
408
409 variant->code_size = radv_get_shader_binary_size(binary);
410 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
411 S_00B12C_SCRATCH_EN(scratch_enabled);
412
413 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
414 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
415 S_00B848_DX10_CLAMP(1) |
416 S_00B848_FLOAT_MODE(variant->config.float_mode);
417
418 switch (stage) {
419 case MESA_SHADER_TESS_EVAL:
420 vgpr_comp_cnt = 3;
421 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 if (device->physical_device->rad_info.chip_class >= GFX9) {
425 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
426 } else {
427 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
428 }
429 break;
430 case MESA_SHADER_VERTEX:
431 case MESA_SHADER_GEOMETRY:
432 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
433 break;
434 case MESA_SHADER_FRAGMENT:
435 break;
436 case MESA_SHADER_COMPUTE:
437 variant->rsrc2 |=
438 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
439 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
440 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
441 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
442 info->cs.uses_thread_id[1] ? 1 : 0) |
443 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
444 S_00B84C_LDS_SIZE(variant->config.lds_size);
445 break;
446 default:
447 unreachable("unsupported shader type");
448 break;
449 }
450
451 if (device->physical_device->rad_info.chip_class >= GFX9 &&
452 stage == MESA_SHADER_GEOMETRY) {
453 unsigned es_type = variant->info.gs.es_type;
454 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
455
456 if (es_type == MESA_SHADER_VERTEX) {
457 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
458 } else if (es_type == MESA_SHADER_TESS_EVAL) {
459 es_vgpr_comp_cnt = 3;
460 } else {
461 unreachable("invalid shader ES type");
462 }
463
464 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
465 * VGPR[0:4] are always loaded.
466 */
467 if (info->uses_invocation_id) {
468 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
469 } else if (info->uses_prim_id) {
470 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
471 } else if (variant->info.gs.vertices_in >= 3) {
472 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
473 } else {
474 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
475 }
476
477 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
478 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
479 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
480 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
481 stage == MESA_SHADER_TESS_CTRL) {
482 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
483 } else {
484 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
485 }
486
487 void *ptr = radv_alloc_shader_memory(device, variant);
488 memcpy(ptr, binary->code, binary->code_size);
489
490 /* Add end-of-code markers for the UMR disassembler. */
491 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
492 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
493 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
494
495 }
496
497 static void radv_init_llvm_target()
498 {
499 LLVMInitializeAMDGPUTargetInfo();
500 LLVMInitializeAMDGPUTarget();
501 LLVMInitializeAMDGPUTargetMC();
502 LLVMInitializeAMDGPUAsmPrinter();
503
504 /* For inline assembly. */
505 LLVMInitializeAMDGPUAsmParser();
506
507 /* Workaround for bug in llvm 4.0 that causes image intrinsics
508 * to disappear.
509 * https://reviews.llvm.org/D26348
510 *
511 * Workaround for bug in llvm that causes the GPU to hang in presence
512 * of nested loops because there is an exec mask issue. The proper
513 * solution is to fix LLVM but this might require a bunch of work.
514 * https://bugs.llvm.org/show_bug.cgi?id=37744
515 *
516 * "mesa" is the prefix for error messages.
517 */
518 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
519 "-amdgpu-skip-threshold=1" };
520 LLVMParseCommandLineOptions(3, argv, NULL);
521 }
522
523 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
524
525 static void radv_init_llvm_once(void)
526 {
527 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
528 }
529
530 static struct radv_shader_variant *
531 shader_variant_create(struct radv_device *device,
532 struct radv_shader_module *module,
533 struct nir_shader * const *shaders,
534 int shader_count,
535 gl_shader_stage stage,
536 struct radv_nir_compiler_options *options,
537 bool gs_copy_shader,
538 void **code_out,
539 unsigned *code_size_out)
540 {
541 enum radeon_family chip_family = device->physical_device->rad_info.family;
542 enum ac_target_machine_options tm_options = 0;
543 struct radv_shader_variant *variant;
544 struct ac_shader_binary binary;
545 struct ac_llvm_compiler ac_llvm;
546 bool thread_compiler;
547 variant = calloc(1, sizeof(struct radv_shader_variant));
548 if (!variant)
549 return NULL;
550
551 options->family = chip_family;
552 options->chip_class = device->physical_device->rad_info.chip_class;
553 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
554 options->dump_preoptir = options->dump_shader &&
555 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
556 options->record_llvm_ir = device->keep_shader_info;
557 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
558 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
559 options->address32_hi = device->physical_device->rad_info.address32_hi;
560
561 if (options->supports_spill)
562 tm_options |= AC_TM_SUPPORTS_SPILL;
563 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
564 tm_options |= AC_TM_SISCHED;
565 if (options->check_ir)
566 tm_options |= AC_TM_CHECK_IR;
567
568 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
569 radv_init_llvm_once();
570 radv_init_llvm_compiler(&ac_llvm, false,
571 thread_compiler,
572 chip_family, tm_options);
573 if (gs_copy_shader) {
574 assert(shader_count == 1);
575 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
576 &variant->config, &variant->info,
577 options);
578 } else {
579 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
580 &variant->info, shaders, shader_count,
581 options);
582 }
583
584 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
585
586 radv_fill_shader_variant(device, variant, &binary, stage);
587
588 if (code_out) {
589 *code_out = binary.code;
590 *code_size_out = binary.code_size;
591 } else
592 free(binary.code);
593 free(binary.config);
594 free(binary.rodata);
595 free(binary.global_symbol_offsets);
596 free(binary.relocs);
597 variant->ref_count = 1;
598
599 if (device->keep_shader_info) {
600 variant->disasm_string = binary.disasm_string;
601 variant->llvm_ir_string = binary.llvm_ir_string;
602 if (!gs_copy_shader && !module->nir) {
603 variant->nir = *shaders;
604 variant->spirv = (uint32_t *)module->data;
605 variant->spirv_size = module->size;
606 }
607 } else {
608 free(binary.disasm_string);
609 }
610
611 return variant;
612 }
613
614 struct radv_shader_variant *
615 radv_shader_variant_create(struct radv_device *device,
616 struct radv_shader_module *module,
617 struct nir_shader *const *shaders,
618 int shader_count,
619 struct radv_pipeline_layout *layout,
620 const struct radv_shader_variant_key *key,
621 void **code_out,
622 unsigned *code_size_out)
623 {
624 struct radv_nir_compiler_options options = {0};
625
626 options.layout = layout;
627 if (key)
628 options.key = *key;
629
630 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
631 options.supports_spill = true;
632
633 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
634 &options, false, code_out, code_size_out);
635 }
636
637 struct radv_shader_variant *
638 radv_create_gs_copy_shader(struct radv_device *device,
639 struct nir_shader *shader,
640 void **code_out,
641 unsigned *code_size_out,
642 bool multiview)
643 {
644 struct radv_nir_compiler_options options = {0};
645
646 options.key.has_multiview_view_index = multiview;
647
648 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
649 &options, true, code_out, code_size_out);
650 }
651
652 void
653 radv_shader_variant_destroy(struct radv_device *device,
654 struct radv_shader_variant *variant)
655 {
656 if (!p_atomic_dec_zero(&variant->ref_count))
657 return;
658
659 mtx_lock(&device->shader_slab_mutex);
660 list_del(&variant->slab_list);
661 mtx_unlock(&device->shader_slab_mutex);
662
663 ralloc_free(variant->nir);
664 free(variant->disasm_string);
665 free(variant->llvm_ir_string);
666 free(variant);
667 }
668
669 const char *
670 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
671 {
672 switch (stage) {
673 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
674 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
675 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
676 case MESA_SHADER_COMPUTE: return "Compute Shader";
677 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
678 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
679 default:
680 return "Unknown shader";
681 };
682 }
683
684 static void
685 generate_shader_stats(struct radv_device *device,
686 struct radv_shader_variant *variant,
687 gl_shader_stage stage,
688 struct _mesa_string_buffer *buf)
689 {
690 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
691 struct ac_shader_config *conf;
692 unsigned max_simd_waves;
693 unsigned lds_per_wave = 0;
694
695 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
696
697 conf = &variant->config;
698
699 if (stage == MESA_SHADER_FRAGMENT) {
700 lds_per_wave = conf->lds_size * lds_increment +
701 align(variant->info.fs.num_interp * 48,
702 lds_increment);
703 }
704
705 if (conf->num_sgprs)
706 max_simd_waves =
707 MIN2(max_simd_waves,
708 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
709
710 if (conf->num_vgprs)
711 max_simd_waves =
712 MIN2(max_simd_waves,
713 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
714
715 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
716 * that PS can use.
717 */
718 if (lds_per_wave)
719 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
720
721 if (stage == MESA_SHADER_FRAGMENT) {
722 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
723 "SPI_PS_INPUT_ADDR = 0x%04x\n"
724 "SPI_PS_INPUT_ENA = 0x%04x\n",
725 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
726 }
727
728 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
729 "SGPRS: %d\n"
730 "VGPRS: %d\n"
731 "Spilled SGPRs: %d\n"
732 "Spilled VGPRs: %d\n"
733 "PrivMem VGPRS: %d\n"
734 "Code Size: %d bytes\n"
735 "LDS: %d blocks\n"
736 "Scratch: %d bytes per wave\n"
737 "Max Waves: %d\n"
738 "********************\n\n\n",
739 conf->num_sgprs, conf->num_vgprs,
740 conf->spilled_sgprs, conf->spilled_vgprs,
741 variant->info.private_mem_vgprs, variant->code_size,
742 conf->lds_size, conf->scratch_bytes_per_wave,
743 max_simd_waves);
744 }
745
746 void
747 radv_shader_dump_stats(struct radv_device *device,
748 struct radv_shader_variant *variant,
749 gl_shader_stage stage,
750 FILE *file)
751 {
752 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
753
754 generate_shader_stats(device, variant, stage, buf);
755
756 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
757 fprintf(file, "%s", buf->buf);
758
759 _mesa_string_buffer_destroy(buf);
760 }
761
762 VkResult
763 radv_GetShaderInfoAMD(VkDevice _device,
764 VkPipeline _pipeline,
765 VkShaderStageFlagBits shaderStage,
766 VkShaderInfoTypeAMD infoType,
767 size_t* pInfoSize,
768 void* pInfo)
769 {
770 RADV_FROM_HANDLE(radv_device, device, _device);
771 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
772 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
773 struct radv_shader_variant *variant = pipeline->shaders[stage];
774 struct _mesa_string_buffer *buf;
775 VkResult result = VK_SUCCESS;
776
777 /* Spec doesn't indicate what to do if the stage is invalid, so just
778 * return no info for this. */
779 if (!variant)
780 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
781
782 switch (infoType) {
783 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
784 if (!pInfo) {
785 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
786 } else {
787 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
788 struct ac_shader_config *conf = &variant->config;
789
790 VkShaderStatisticsInfoAMD statistics = {};
791 statistics.shaderStageMask = shaderStage;
792 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
793 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
794 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
795
796 if (stage == MESA_SHADER_COMPUTE) {
797 unsigned *local_size = variant->nir->info.cs.local_size;
798 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
799
800 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
801 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
802
803 statistics.computeWorkGroupSize[0] = local_size[0];
804 statistics.computeWorkGroupSize[1] = local_size[1];
805 statistics.computeWorkGroupSize[2] = local_size[2];
806 } else {
807 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
808 }
809
810 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
811 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
812 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
813 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
814 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
815
816 size_t size = *pInfoSize;
817 *pInfoSize = sizeof(statistics);
818
819 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
820
821 if (size < *pInfoSize)
822 result = VK_INCOMPLETE;
823 }
824
825 break;
826 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
827 buf = _mesa_string_buffer_create(NULL, 1024);
828
829 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
830 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
831 generate_shader_stats(device, variant, stage, buf);
832
833 /* Need to include the null terminator. */
834 size_t length = buf->length + 1;
835
836 if (!pInfo) {
837 *pInfoSize = length;
838 } else {
839 size_t size = *pInfoSize;
840 *pInfoSize = length;
841
842 memcpy(pInfo, buf->buf, MIN2(size, length));
843
844 if (size < length)
845 result = VK_INCOMPLETE;
846 }
847
848 _mesa_string_buffer_destroy(buf);
849 break;
850 default:
851 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
852 result = VK_ERROR_FEATURE_NOT_PRESENT;
853 break;
854 }
855
856 return result;
857 }