ac/radv: split the non-common init_once code from the common target code. (v2)
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39 #include <llvm-c/Support.h>
40
41 #include "sid.h"
42 #include "gfx9d.h"
43 #include "ac_binary.h"
44 #include "ac_llvm_util.h"
45 #include "ac_nir_to_llvm.h"
46 #include "vk_format.h"
47 #include "util/debug.h"
48 #include "ac_exp_param.h"
49
50 #include "util/string_buffer.h"
51
52 static const struct nir_shader_compiler_options nir_options = {
53 .vertex_id_zero_based = true,
54 .lower_scmp = true,
55 .lower_flrp32 = true,
56 .lower_flrp64 = true,
57 .lower_device_index_to_zero = true,
58 .lower_fsat = true,
59 .lower_fdiv = true,
60 .lower_sub = true,
61 .lower_pack_snorm_2x16 = true,
62 .lower_pack_snorm_4x8 = true,
63 .lower_pack_unorm_2x16 = true,
64 .lower_pack_unorm_4x8 = true,
65 .lower_unpack_snorm_2x16 = true,
66 .lower_unpack_snorm_4x8 = true,
67 .lower_unpack_unorm_2x16 = true,
68 .lower_unpack_unorm_4x8 = true,
69 .lower_extract_byte = true,
70 .lower_extract_word = true,
71 .lower_ffma = true,
72 .lower_fpow = true,
73 .vs_inputs_dual_locations = true,
74 .max_unroll_iterations = 32
75 };
76
77 VkResult radv_CreateShaderModule(
78 VkDevice _device,
79 const VkShaderModuleCreateInfo* pCreateInfo,
80 const VkAllocationCallbacks* pAllocator,
81 VkShaderModule* pShaderModule)
82 {
83 RADV_FROM_HANDLE(radv_device, device, _device);
84 struct radv_shader_module *module;
85
86 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
87 assert(pCreateInfo->flags == 0);
88
89 module = vk_alloc2(&device->alloc, pAllocator,
90 sizeof(*module) + pCreateInfo->codeSize, 8,
91 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
92 if (module == NULL)
93 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
94
95 module->nir = NULL;
96 module->size = pCreateInfo->codeSize;
97 memcpy(module->data, pCreateInfo->pCode, module->size);
98
99 _mesa_sha1_compute(module->data, module->size, module->sha1);
100
101 *pShaderModule = radv_shader_module_to_handle(module);
102
103 return VK_SUCCESS;
104 }
105
106 void radv_DestroyShaderModule(
107 VkDevice _device,
108 VkShaderModule _module,
109 const VkAllocationCallbacks* pAllocator)
110 {
111 RADV_FROM_HANDLE(radv_device, device, _device);
112 RADV_FROM_HANDLE(radv_shader_module, module, _module);
113
114 if (!module)
115 return;
116
117 vk_free2(&device->alloc, pAllocator, module);
118 }
119
120 void
121 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
122 {
123 bool progress;
124
125 do {
126 progress = false;
127
128 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
129 NIR_PASS_V(shader, nir_lower_pack);
130 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
131 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
132
133 NIR_PASS(progress, shader, nir_copy_prop);
134 NIR_PASS(progress, shader, nir_opt_remove_phis);
135 NIR_PASS(progress, shader, nir_opt_dce);
136 if (nir_opt_trivial_continues(shader)) {
137 progress = true;
138 NIR_PASS(progress, shader, nir_copy_prop);
139 NIR_PASS(progress, shader, nir_opt_remove_phis);
140 NIR_PASS(progress, shader, nir_opt_dce);
141 }
142 NIR_PASS(progress, shader, nir_opt_if);
143 NIR_PASS(progress, shader, nir_opt_dead_cf);
144 NIR_PASS(progress, shader, nir_opt_cse);
145 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
146 NIR_PASS(progress, shader, nir_opt_algebraic);
147 NIR_PASS(progress, shader, nir_opt_constant_folding);
148 NIR_PASS(progress, shader, nir_opt_undef);
149 NIR_PASS(progress, shader, nir_opt_conditional_discard);
150 if (shader->options->max_unroll_iterations) {
151 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
152 }
153 } while (progress && !optimize_conservatively);
154
155 NIR_PASS(progress, shader, nir_opt_shrink_load);
156 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
157 }
158
159 nir_shader *
160 radv_shader_compile_to_nir(struct radv_device *device,
161 struct radv_shader_module *module,
162 const char *entrypoint_name,
163 gl_shader_stage stage,
164 const VkSpecializationInfo *spec_info,
165 const VkPipelineCreateFlags flags)
166 {
167 nir_shader *nir;
168 nir_function *entry_point;
169 if (module->nir) {
170 /* Some things such as our meta clear/blit code will give us a NIR
171 * shader directly. In that case, we just ignore the SPIR-V entirely
172 * and just use the NIR shader */
173 nir = module->nir;
174 nir->options = &nir_options;
175 nir_validate_shader(nir);
176
177 assert(exec_list_length(&nir->functions) == 1);
178 struct exec_node *node = exec_list_get_head(&nir->functions);
179 entry_point = exec_node_data(nir_function, node, node);
180 } else {
181 uint32_t *spirv = (uint32_t *) module->data;
182 assert(module->size % 4 == 0);
183
184 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
185 radv_print_spirv(spirv, module->size, stderr);
186
187 uint32_t num_spec_entries = 0;
188 struct nir_spirv_specialization *spec_entries = NULL;
189 if (spec_info && spec_info->mapEntryCount > 0) {
190 num_spec_entries = spec_info->mapEntryCount;
191 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
192 for (uint32_t i = 0; i < num_spec_entries; i++) {
193 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
194 const void *data = spec_info->pData + entry.offset;
195 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
196
197 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
198 if (spec_info->dataSize == 8)
199 spec_entries[i].data64 = *(const uint64_t *)data;
200 else
201 spec_entries[i].data32 = *(const uint32_t *)data;
202 }
203 }
204 const struct spirv_to_nir_options spirv_options = {
205 .caps = {
206 .device_group = true,
207 .draw_parameters = true,
208 .float64 = true,
209 .image_read_without_format = true,
210 .image_write_without_format = true,
211 .tessellation = true,
212 .int64 = true,
213 .multiview = true,
214 .subgroup_ballot = true,
215 .subgroup_basic = true,
216 .subgroup_quad = true,
217 .subgroup_shuffle = true,
218 .subgroup_vote = true,
219 .variable_pointers = true,
220 .gcn_shader = true,
221 .trinary_minmax = true,
222 .shader_viewport_index_layer = true,
223 .descriptor_array_dynamic_indexing = true,
224 .runtime_descriptor_array = true,
225 .stencil_export = true,
226 },
227 };
228 entry_point = spirv_to_nir(spirv, module->size / 4,
229 spec_entries, num_spec_entries,
230 stage, entrypoint_name,
231 &spirv_options, &nir_options);
232 nir = entry_point->shader;
233 assert(nir->info.stage == stage);
234 nir_validate_shader(nir);
235
236 free(spec_entries);
237
238 /* We have to lower away local constant initializers right before we
239 * inline functions. That way they get properly initialized at the top
240 * of the function and not at the top of its caller.
241 */
242 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
243 NIR_PASS_V(nir, nir_lower_returns);
244 NIR_PASS_V(nir, nir_inline_functions);
245 NIR_PASS_V(nir, nir_copy_prop);
246
247 /* Pick off the single entrypoint that we want */
248 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
249 if (func != entry_point)
250 exec_node_remove(&func->node);
251 }
252 assert(exec_list_length(&nir->functions) == 1);
253 entry_point->name = ralloc_strdup(entry_point, "main");
254
255 /* Make sure we lower constant initializers on output variables so that
256 * nir_remove_dead_variables below sees the corresponding stores
257 */
258 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
259
260 NIR_PASS_V(nir, nir_remove_dead_variables,
261 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
262
263 /* Now that we've deleted all but the main function, we can go ahead and
264 * lower the rest of the constant initializers.
265 */
266 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
267
268 /* Split member structs. We do this before lower_io_to_temporaries so that
269 * it doesn't lower system values to temporaries by accident.
270 */
271 NIR_PASS_V(nir, nir_split_var_copies);
272 NIR_PASS_V(nir, nir_split_per_member_structs);
273
274 NIR_PASS_V(nir, nir_lower_system_values);
275 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
276 }
277
278 /* Vulkan uses the separate-shader linking model */
279 nir->info.separate_shader = true;
280
281 nir_shader_gather_info(nir, entry_point->impl);
282
283 static const nir_lower_tex_options tex_options = {
284 .lower_txp = ~0,
285 };
286
287 nir_lower_tex(nir, &tex_options);
288
289 nir_lower_vars_to_ssa(nir);
290
291 if (nir->info.stage == MESA_SHADER_VERTEX ||
292 nir->info.stage == MESA_SHADER_GEOMETRY) {
293 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
294 nir_shader_get_entrypoint(nir), true, true);
295 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
296 nir->info.stage == MESA_SHADER_FRAGMENT) {
297 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
298 nir_shader_get_entrypoint(nir), true, false);
299 }
300
301 nir_split_var_copies(nir);
302 nir_lower_var_copies(nir);
303
304 nir_lower_global_vars_to_local(nir);
305 nir_remove_dead_variables(nir, nir_var_local);
306 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
307 .subgroup_size = 64,
308 .ballot_bit_size = 64,
309 .lower_to_scalar = 1,
310 .lower_subgroup_masks = 1,
311 .lower_shuffle = 1,
312 .lower_shuffle_to_32bit = 1,
313 .lower_vote_eq_to_ballot = 1,
314 });
315
316 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
317 radv_optimize_nir(nir, false);
318
319 /* Indirect lowering must be called after the radv_optimize_nir() loop
320 * has been called at least once. Otherwise indirect lowering can
321 * bloat the instruction count of the loop and cause it to be
322 * considered too large for unrolling.
323 */
324 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
325 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT);
326
327 return nir;
328 }
329
330 void *
331 radv_alloc_shader_memory(struct radv_device *device,
332 struct radv_shader_variant *shader)
333 {
334 mtx_lock(&device->shader_slab_mutex);
335 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
336 uint64_t offset = 0;
337 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
338 if (s->bo_offset - offset >= shader->code_size) {
339 shader->bo = slab->bo;
340 shader->bo_offset = offset;
341 list_addtail(&shader->slab_list, &s->slab_list);
342 mtx_unlock(&device->shader_slab_mutex);
343 return slab->ptr + offset;
344 }
345 offset = align_u64(s->bo_offset + s->code_size, 256);
346 }
347 if (slab->size - offset >= shader->code_size) {
348 shader->bo = slab->bo;
349 shader->bo_offset = offset;
350 list_addtail(&shader->slab_list, &slab->shaders);
351 mtx_unlock(&device->shader_slab_mutex);
352 return slab->ptr + offset;
353 }
354 }
355
356 mtx_unlock(&device->shader_slab_mutex);
357 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
358
359 slab->size = 256 * 1024;
360 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
361 RADEON_DOMAIN_VRAM,
362 RADEON_FLAG_NO_INTERPROCESS_SHARING |
363 device->physical_device->cpdma_prefetch_writes_memory ?
364 0 : RADEON_FLAG_READ_ONLY);
365 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
366 list_inithead(&slab->shaders);
367
368 mtx_lock(&device->shader_slab_mutex);
369 list_add(&slab->slabs, &device->shader_slabs);
370
371 shader->bo = slab->bo;
372 shader->bo_offset = 0;
373 list_add(&shader->slab_list, &slab->shaders);
374 mtx_unlock(&device->shader_slab_mutex);
375 return slab->ptr;
376 }
377
378 void
379 radv_destroy_shader_slabs(struct radv_device *device)
380 {
381 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
382 device->ws->buffer_destroy(slab->bo);
383 free(slab);
384 }
385 mtx_destroy(&device->shader_slab_mutex);
386 }
387
388 /* For the UMR disassembler. */
389 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
390 #define DEBUGGER_NUM_MARKERS 5
391
392 static unsigned
393 radv_get_shader_binary_size(struct ac_shader_binary *binary)
394 {
395 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
396 }
397
398 static void
399 radv_fill_shader_variant(struct radv_device *device,
400 struct radv_shader_variant *variant,
401 struct ac_shader_binary *binary,
402 gl_shader_stage stage)
403 {
404 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
405 struct radv_shader_info *info = &variant->info.info;
406 unsigned vgpr_comp_cnt = 0;
407
408 variant->code_size = radv_get_shader_binary_size(binary);
409 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
410 S_00B12C_SCRATCH_EN(scratch_enabled);
411
412 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
413 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
414 S_00B848_DX10_CLAMP(1) |
415 S_00B848_FLOAT_MODE(variant->config.float_mode);
416
417 switch (stage) {
418 case MESA_SHADER_TESS_EVAL:
419 vgpr_comp_cnt = 3;
420 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
421 break;
422 case MESA_SHADER_TESS_CTRL:
423 if (device->physical_device->rad_info.chip_class >= GFX9) {
424 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
425 } else {
426 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
427 }
428 break;
429 case MESA_SHADER_VERTEX:
430 case MESA_SHADER_GEOMETRY:
431 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
432 break;
433 case MESA_SHADER_FRAGMENT:
434 break;
435 case MESA_SHADER_COMPUTE:
436 variant->rsrc2 |=
437 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
438 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
439 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
440 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
441 info->cs.uses_thread_id[1] ? 1 : 0) |
442 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
443 S_00B84C_LDS_SIZE(variant->config.lds_size);
444 break;
445 default:
446 unreachable("unsupported shader type");
447 break;
448 }
449
450 if (device->physical_device->rad_info.chip_class >= GFX9 &&
451 stage == MESA_SHADER_GEOMETRY) {
452 unsigned es_type = variant->info.gs.es_type;
453 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
454
455 if (es_type == MESA_SHADER_VERTEX) {
456 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
457 } else if (es_type == MESA_SHADER_TESS_EVAL) {
458 es_vgpr_comp_cnt = 3;
459 } else {
460 unreachable("invalid shader ES type");
461 }
462
463 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
464 * VGPR[0:4] are always loaded.
465 */
466 if (info->uses_invocation_id) {
467 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
468 } else if (info->uses_prim_id) {
469 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
470 } else if (variant->info.gs.vertices_in >= 3) {
471 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
472 } else {
473 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
474 }
475
476 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
477 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
478 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
479 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
480 stage == MESA_SHADER_TESS_CTRL) {
481 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
482 } else {
483 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
484 }
485
486 void *ptr = radv_alloc_shader_memory(device, variant);
487 memcpy(ptr, binary->code, binary->code_size);
488
489 /* Add end-of-code markers for the UMR disassembler. */
490 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
491 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
492 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
493
494 }
495
496 static void radv_init_llvm_target()
497 {
498 LLVMInitializeAMDGPUTargetInfo();
499 LLVMInitializeAMDGPUTarget();
500 LLVMInitializeAMDGPUTargetMC();
501 LLVMInitializeAMDGPUAsmPrinter();
502
503 /* For inline assembly. */
504 LLVMInitializeAMDGPUAsmParser();
505
506 /* Workaround for bug in llvm 4.0 that causes image intrinsics
507 * to disappear.
508 * https://reviews.llvm.org/D26348
509 *
510 * Workaround for bug in llvm that causes the GPU to hang in presence
511 * of nested loops because there is an exec mask issue. The proper
512 * solution is to fix LLVM but this might require a bunch of work.
513 * https://bugs.llvm.org/show_bug.cgi?id=37744
514 *
515 * "mesa" is the prefix for error messages.
516 */
517 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
518 "-amdgpu-skip-threshold=1" };
519 LLVMParseCommandLineOptions(3, argv, NULL);
520 }
521
522 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
523
524 static void radv_init_llvm_once(void)
525 {
526 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
527 }
528
529 static LLVMTargetMachineRef radv_create_target_machine(enum radeon_family family,
530 enum ac_target_machine_options tm_options,
531 const char **out_triple)
532 {
533 assert(family >= CHIP_TAHITI);
534 char features[256];
535 const char *triple = (tm_options & AC_TM_SUPPORTS_SPILL) ? "amdgcn-mesa-mesa3d" : "amdgcn--";
536 LLVMTargetRef target = ac_get_llvm_target(triple);
537
538 snprintf(features, sizeof(features),
539 "+DumpCode,+vgpr-spilling,-fp32-denormals,+fp64-denormals%s%s%s%s",
540 tm_options & AC_TM_SISCHED ? ",+si-scheduler" : "",
541 tm_options & AC_TM_FORCE_ENABLE_XNACK ? ",+xnack" : "",
542 tm_options & AC_TM_FORCE_DISABLE_XNACK ? ",-xnack" : "",
543 tm_options & AC_TM_PROMOTE_ALLOCA_TO_SCRATCH ? ",-promote-alloca" : "");
544
545 LLVMTargetMachineRef tm = LLVMCreateTargetMachine(
546 target,
547 triple,
548 ac_get_llvm_processor_name(family),
549 features,
550 LLVMCodeGenLevelDefault,
551 LLVMRelocDefault,
552 LLVMCodeModelDefault);
553
554 if (out_triple)
555 *out_triple = triple;
556 return tm;
557 }
558
559 static struct radv_shader_variant *
560 shader_variant_create(struct radv_device *device,
561 struct radv_shader_module *module,
562 struct nir_shader * const *shaders,
563 int shader_count,
564 gl_shader_stage stage,
565 struct radv_nir_compiler_options *options,
566 bool gs_copy_shader,
567 void **code_out,
568 unsigned *code_size_out)
569 {
570 enum radeon_family chip_family = device->physical_device->rad_info.family;
571 enum ac_target_machine_options tm_options = 0;
572 struct radv_shader_variant *variant;
573 struct ac_shader_binary binary;
574 LLVMTargetMachineRef tm;
575
576 variant = calloc(1, sizeof(struct radv_shader_variant));
577 if (!variant)
578 return NULL;
579
580 options->family = chip_family;
581 options->chip_class = device->physical_device->rad_info.chip_class;
582 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
583 options->dump_preoptir = options->dump_shader &&
584 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
585 options->record_llvm_ir = device->keep_shader_info;
586 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
587 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
588 options->address32_hi = device->physical_device->rad_info.address32_hi;
589
590 if (options->supports_spill)
591 tm_options |= AC_TM_SUPPORTS_SPILL;
592 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
593 tm_options |= AC_TM_SISCHED;
594
595 radv_init_llvm_once();
596 tm = radv_create_target_machine(chip_family, tm_options, NULL);
597 if (gs_copy_shader) {
598 assert(shader_count == 1);
599 radv_compile_gs_copy_shader(tm, *shaders, &binary,
600 &variant->config, &variant->info,
601 options);
602 } else {
603 radv_compile_nir_shader(tm, &binary, &variant->config,
604 &variant->info, shaders, shader_count,
605 options);
606 }
607
608 LLVMDisposeTargetMachine(tm);
609
610 radv_fill_shader_variant(device, variant, &binary, stage);
611
612 if (code_out) {
613 *code_out = binary.code;
614 *code_size_out = variant->code_size;
615 } else
616 free(binary.code);
617 free(binary.config);
618 free(binary.rodata);
619 free(binary.global_symbol_offsets);
620 free(binary.relocs);
621 variant->ref_count = 1;
622
623 if (device->keep_shader_info) {
624 variant->disasm_string = binary.disasm_string;
625 variant->llvm_ir_string = binary.llvm_ir_string;
626 if (!gs_copy_shader && !module->nir) {
627 variant->nir = *shaders;
628 variant->spirv = (uint32_t *)module->data;
629 variant->spirv_size = module->size;
630 }
631 } else {
632 free(binary.disasm_string);
633 }
634
635 return variant;
636 }
637
638 struct radv_shader_variant *
639 radv_shader_variant_create(struct radv_device *device,
640 struct radv_shader_module *module,
641 struct nir_shader *const *shaders,
642 int shader_count,
643 struct radv_pipeline_layout *layout,
644 const struct radv_shader_variant_key *key,
645 void **code_out,
646 unsigned *code_size_out)
647 {
648 struct radv_nir_compiler_options options = {0};
649
650 options.layout = layout;
651 if (key)
652 options.key = *key;
653
654 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
655 options.supports_spill = true;
656
657 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
658 &options, false, code_out, code_size_out);
659 }
660
661 struct radv_shader_variant *
662 radv_create_gs_copy_shader(struct radv_device *device,
663 struct nir_shader *shader,
664 void **code_out,
665 unsigned *code_size_out,
666 bool multiview)
667 {
668 struct radv_nir_compiler_options options = {0};
669
670 options.key.has_multiview_view_index = multiview;
671
672 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
673 &options, true, code_out, code_size_out);
674 }
675
676 void
677 radv_shader_variant_destroy(struct radv_device *device,
678 struct radv_shader_variant *variant)
679 {
680 if (!p_atomic_dec_zero(&variant->ref_count))
681 return;
682
683 mtx_lock(&device->shader_slab_mutex);
684 list_del(&variant->slab_list);
685 mtx_unlock(&device->shader_slab_mutex);
686
687 ralloc_free(variant->nir);
688 free(variant->disasm_string);
689 free(variant->llvm_ir_string);
690 free(variant);
691 }
692
693 const char *
694 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
695 {
696 switch (stage) {
697 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
698 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
699 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
700 case MESA_SHADER_COMPUTE: return "Compute Shader";
701 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
702 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
703 default:
704 return "Unknown shader";
705 };
706 }
707
708 static void
709 generate_shader_stats(struct radv_device *device,
710 struct radv_shader_variant *variant,
711 gl_shader_stage stage,
712 struct _mesa_string_buffer *buf)
713 {
714 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
715 struct ac_shader_config *conf;
716 unsigned max_simd_waves;
717 unsigned lds_per_wave = 0;
718
719 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
720
721 conf = &variant->config;
722
723 if (stage == MESA_SHADER_FRAGMENT) {
724 lds_per_wave = conf->lds_size * lds_increment +
725 align(variant->info.fs.num_interp * 48,
726 lds_increment);
727 }
728
729 if (conf->num_sgprs)
730 max_simd_waves =
731 MIN2(max_simd_waves,
732 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
733
734 if (conf->num_vgprs)
735 max_simd_waves =
736 MIN2(max_simd_waves,
737 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
738
739 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
740 * that PS can use.
741 */
742 if (lds_per_wave)
743 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
744
745 if (stage == MESA_SHADER_FRAGMENT) {
746 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
747 "SPI_PS_INPUT_ADDR = 0x%04x\n"
748 "SPI_PS_INPUT_ENA = 0x%04x\n",
749 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
750 }
751
752 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
753 "SGPRS: %d\n"
754 "VGPRS: %d\n"
755 "Spilled SGPRs: %d\n"
756 "Spilled VGPRs: %d\n"
757 "PrivMem VGPRS: %d\n"
758 "Code Size: %d bytes\n"
759 "LDS: %d blocks\n"
760 "Scratch: %d bytes per wave\n"
761 "Max Waves: %d\n"
762 "********************\n\n\n",
763 conf->num_sgprs, conf->num_vgprs,
764 conf->spilled_sgprs, conf->spilled_vgprs,
765 variant->info.private_mem_vgprs, variant->code_size,
766 conf->lds_size, conf->scratch_bytes_per_wave,
767 max_simd_waves);
768 }
769
770 void
771 radv_shader_dump_stats(struct radv_device *device,
772 struct radv_shader_variant *variant,
773 gl_shader_stage stage,
774 FILE *file)
775 {
776 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
777
778 generate_shader_stats(device, variant, stage, buf);
779
780 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
781 fprintf(file, "%s", buf->buf);
782
783 _mesa_string_buffer_destroy(buf);
784 }
785
786 VkResult
787 radv_GetShaderInfoAMD(VkDevice _device,
788 VkPipeline _pipeline,
789 VkShaderStageFlagBits shaderStage,
790 VkShaderInfoTypeAMD infoType,
791 size_t* pInfoSize,
792 void* pInfo)
793 {
794 RADV_FROM_HANDLE(radv_device, device, _device);
795 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
796 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
797 struct radv_shader_variant *variant = pipeline->shaders[stage];
798 struct _mesa_string_buffer *buf;
799 VkResult result = VK_SUCCESS;
800
801 /* Spec doesn't indicate what to do if the stage is invalid, so just
802 * return no info for this. */
803 if (!variant)
804 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
805
806 switch (infoType) {
807 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
808 if (!pInfo) {
809 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
810 } else {
811 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
812 struct ac_shader_config *conf = &variant->config;
813
814 VkShaderStatisticsInfoAMD statistics = {};
815 statistics.shaderStageMask = shaderStage;
816 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
817 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
818 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
819
820 if (stage == MESA_SHADER_COMPUTE) {
821 unsigned *local_size = variant->nir->info.cs.local_size;
822 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
823
824 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
825 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
826
827 statistics.computeWorkGroupSize[0] = local_size[0];
828 statistics.computeWorkGroupSize[1] = local_size[1];
829 statistics.computeWorkGroupSize[2] = local_size[2];
830 } else {
831 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
832 }
833
834 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
835 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
836 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
837 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
838 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
839
840 size_t size = *pInfoSize;
841 *pInfoSize = sizeof(statistics);
842
843 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
844
845 if (size < *pInfoSize)
846 result = VK_INCOMPLETE;
847 }
848
849 break;
850 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
851 buf = _mesa_string_buffer_create(NULL, 1024);
852
853 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
854 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
855 generate_shader_stats(device, variant, stage, buf);
856
857 /* Need to include the null terminator. */
858 size_t length = buf->length + 1;
859
860 if (!pInfo) {
861 *pInfoSize = length;
862 } else {
863 size_t size = *pInfoSize;
864 *pInfoSize = length;
865
866 memcpy(pInfo, buf->buf, MIN2(size, length));
867
868 if (size < length)
869 result = VK_INCOMPLETE;
870 }
871
872 _mesa_string_buffer_destroy(buf);
873 break;
874 default:
875 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
876 result = VK_ERROR_FEATURE_NOT_PRESENT;
877 break;
878 }
879
880 return result;
881 }