aco: implement GS on GFX7-8
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "radv_shader_args.h"
35 #include "nir/nir.h"
36 #include "nir/nir_builder.h"
37 #include "spirv/nir_spirv.h"
38
39 #include <llvm-c/Core.h>
40 #include <llvm-c/TargetMachine.h>
41 #include <llvm-c/Support.h>
42
43 #include "sid.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "ac_rtld.h"
48 #include "vk_format.h"
49 #include "util/debug.h"
50 #include "ac_exp_param.h"
51
52 #include "aco_interface.h"
53
54 #include "util/string_buffer.h"
55
56 static const struct nir_shader_compiler_options nir_options_llvm = {
57 .vertex_id_zero_based = true,
58 .lower_scmp = true,
59 .lower_flrp16 = true,
60 .lower_flrp32 = true,
61 .lower_flrp64 = true,
62 .lower_device_index_to_zero = true,
63 .lower_fsat = true,
64 .lower_fdiv = true,
65 .lower_fmod = true,
66 .lower_bitfield_insert_to_bitfield_select = true,
67 .lower_bitfield_extract = true,
68 .lower_sub = true,
69 .lower_pack_snorm_2x16 = true,
70 .lower_pack_snorm_4x8 = true,
71 .lower_pack_unorm_2x16 = true,
72 .lower_pack_unorm_4x8 = true,
73 .lower_unpack_snorm_2x16 = true,
74 .lower_unpack_snorm_4x8 = true,
75 .lower_unpack_unorm_2x16 = true,
76 .lower_unpack_unorm_4x8 = true,
77 .lower_extract_byte = true,
78 .lower_extract_word = true,
79 .lower_ffma = true,
80 .lower_fpow = true,
81 .lower_mul_2x32_64 = true,
82 .lower_rotate = true,
83 .max_unroll_iterations = 32,
84 .use_interpolated_input_intrinsics = true,
85 /* nir_lower_int64() isn't actually called for the LLVM backend, but
86 * this helps the loop unrolling heuristics. */
87 .lower_int64_options = nir_lower_imul64 |
88 nir_lower_imul_high64 |
89 nir_lower_imul_2x32_64 |
90 nir_lower_divmod64 |
91 nir_lower_minmax64 |
92 nir_lower_iabs64,
93 };
94
95 static const struct nir_shader_compiler_options nir_options_aco = {
96 .vertex_id_zero_based = true,
97 .lower_scmp = true,
98 .lower_flrp16 = true,
99 .lower_flrp32 = true,
100 .lower_flrp64 = true,
101 .lower_device_index_to_zero = true,
102 .lower_fdiv = true,
103 .lower_fmod = true,
104 .lower_bitfield_insert_to_bitfield_select = true,
105 .lower_bitfield_extract = true,
106 .lower_pack_snorm_2x16 = true,
107 .lower_pack_snorm_4x8 = true,
108 .lower_pack_unorm_2x16 = true,
109 .lower_pack_unorm_4x8 = true,
110 .lower_unpack_snorm_2x16 = true,
111 .lower_unpack_snorm_4x8 = true,
112 .lower_unpack_unorm_2x16 = true,
113 .lower_unpack_unorm_4x8 = true,
114 .lower_unpack_half_2x16 = true,
115 .lower_extract_byte = true,
116 .lower_extract_word = true,
117 .lower_ffma = true,
118 .lower_fpow = true,
119 .lower_mul_2x32_64 = true,
120 .lower_rotate = true,
121 .max_unroll_iterations = 32,
122 .use_interpolated_input_intrinsics = true,
123 .lower_int64_options = nir_lower_imul64 |
124 nir_lower_imul_high64 |
125 nir_lower_imul_2x32_64 |
126 nir_lower_divmod64 |
127 nir_lower_logic64 |
128 nir_lower_minmax64 |
129 nir_lower_iabs64,
130 };
131
132 bool
133 radv_can_dump_shader(struct radv_device *device,
134 struct radv_shader_module *module,
135 bool is_gs_copy_shader)
136 {
137 if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS))
138 return false;
139 if (module)
140 return !module->nir ||
141 (device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS);
142
143 return is_gs_copy_shader;
144 }
145
146 bool
147 radv_can_dump_shader_stats(struct radv_device *device,
148 struct radv_shader_module *module)
149 {
150 /* Only dump non-meta shader stats. */
151 return device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS &&
152 module && !module->nir;
153 }
154
155 VkResult radv_CreateShaderModule(
156 VkDevice _device,
157 const VkShaderModuleCreateInfo* pCreateInfo,
158 const VkAllocationCallbacks* pAllocator,
159 VkShaderModule* pShaderModule)
160 {
161 RADV_FROM_HANDLE(radv_device, device, _device);
162 struct radv_shader_module *module;
163
164 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
165 assert(pCreateInfo->flags == 0);
166
167 module = vk_alloc2(&device->alloc, pAllocator,
168 sizeof(*module) + pCreateInfo->codeSize, 8,
169 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
170 if (module == NULL)
171 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
172
173 module->nir = NULL;
174 module->size = pCreateInfo->codeSize;
175 memcpy(module->data, pCreateInfo->pCode, module->size);
176
177 _mesa_sha1_compute(module->data, module->size, module->sha1);
178
179 *pShaderModule = radv_shader_module_to_handle(module);
180
181 return VK_SUCCESS;
182 }
183
184 void radv_DestroyShaderModule(
185 VkDevice _device,
186 VkShaderModule _module,
187 const VkAllocationCallbacks* pAllocator)
188 {
189 RADV_FROM_HANDLE(radv_device, device, _device);
190 RADV_FROM_HANDLE(radv_shader_module, module, _module);
191
192 if (!module)
193 return;
194
195 vk_free2(&device->alloc, pAllocator, module);
196 }
197
198 void
199 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
200 bool allow_copies)
201 {
202 bool progress;
203 unsigned lower_flrp =
204 (shader->options->lower_flrp16 ? 16 : 0) |
205 (shader->options->lower_flrp32 ? 32 : 0) |
206 (shader->options->lower_flrp64 ? 64 : 0);
207
208 do {
209 progress = false;
210
211 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
212 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
213
214 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
215 NIR_PASS_V(shader, nir_lower_pack);
216
217 if (allow_copies) {
218 /* Only run this pass in the first call to
219 * radv_optimize_nir. Later calls assume that we've
220 * lowered away any copy_deref instructions and we
221 * don't want to introduce any more.
222 */
223 NIR_PASS(progress, shader, nir_opt_find_array_copies);
224 }
225
226 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
227 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
228 NIR_PASS(progress, shader, nir_remove_dead_variables,
229 nir_var_function_temp | nir_var_shader_in | nir_var_shader_out);
230
231 NIR_PASS_V(shader, nir_lower_alu_to_scalar, NULL, NULL);
232 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
233
234 NIR_PASS(progress, shader, nir_copy_prop);
235 NIR_PASS(progress, shader, nir_opt_remove_phis);
236 NIR_PASS(progress, shader, nir_opt_dce);
237 if (nir_opt_trivial_continues(shader)) {
238 progress = true;
239 NIR_PASS(progress, shader, nir_copy_prop);
240 NIR_PASS(progress, shader, nir_opt_remove_phis);
241 NIR_PASS(progress, shader, nir_opt_dce);
242 }
243 NIR_PASS(progress, shader, nir_opt_if, true);
244 NIR_PASS(progress, shader, nir_opt_dead_cf);
245 NIR_PASS(progress, shader, nir_opt_cse);
246 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
247 NIR_PASS(progress, shader, nir_opt_constant_folding);
248 NIR_PASS(progress, shader, nir_opt_algebraic);
249
250 if (lower_flrp != 0) {
251 bool lower_flrp_progress = false;
252 NIR_PASS(lower_flrp_progress,
253 shader,
254 nir_lower_flrp,
255 lower_flrp,
256 false /* always_precise */,
257 shader->options->lower_ffma);
258 if (lower_flrp_progress) {
259 NIR_PASS(progress, shader,
260 nir_opt_constant_folding);
261 progress = true;
262 }
263
264 /* Nothing should rematerialize any flrps, so we only
265 * need to do this lowering once.
266 */
267 lower_flrp = 0;
268 }
269
270 NIR_PASS(progress, shader, nir_opt_undef);
271 if (shader->options->max_unroll_iterations) {
272 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
273 }
274 } while (progress && !optimize_conservatively);
275
276 NIR_PASS(progress, shader, nir_opt_conditional_discard);
277 NIR_PASS(progress, shader, nir_opt_shrink_load);
278 NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo);
279 }
280
281 static void
282 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
283 {
284 assert(glsl_type_is_vector_or_scalar(type));
285
286 uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
287 unsigned length = glsl_get_vector_elements(type);
288 *size = comp_size * length,
289 *align = comp_size;
290 }
291
292 nir_shader *
293 radv_shader_compile_to_nir(struct radv_device *device,
294 struct radv_shader_module *module,
295 const char *entrypoint_name,
296 gl_shader_stage stage,
297 const VkSpecializationInfo *spec_info,
298 const VkPipelineCreateFlags flags,
299 const struct radv_pipeline_layout *layout,
300 bool use_aco)
301 {
302 nir_shader *nir;
303 const nir_shader_compiler_options *nir_options = use_aco ? &nir_options_aco :
304 &nir_options_llvm;
305 if (module->nir) {
306 /* Some things such as our meta clear/blit code will give us a NIR
307 * shader directly. In that case, we just ignore the SPIR-V entirely
308 * and just use the NIR shader */
309 nir = module->nir;
310 nir->options = nir_options;
311 nir_validate_shader(nir, "in internal shader");
312
313 assert(exec_list_length(&nir->functions) == 1);
314 } else {
315 uint32_t *spirv = (uint32_t *) module->data;
316 assert(module->size % 4 == 0);
317
318 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
319 radv_print_spirv(module->data, module->size, stderr);
320
321 uint32_t num_spec_entries = 0;
322 struct nir_spirv_specialization *spec_entries = NULL;
323 if (spec_info && spec_info->mapEntryCount > 0) {
324 num_spec_entries = spec_info->mapEntryCount;
325 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
326 for (uint32_t i = 0; i < num_spec_entries; i++) {
327 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
328 const void *data = spec_info->pData + entry.offset;
329 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
330
331 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
332 if (spec_info->dataSize == 8)
333 spec_entries[i].data64 = *(const uint64_t *)data;
334 else
335 spec_entries[i].data32 = *(const uint32_t *)data;
336 }
337 }
338 const struct spirv_to_nir_options spirv_options = {
339 .lower_ubo_ssbo_access_to_offsets = true,
340 .caps = {
341 .amd_fragment_mask = true,
342 .amd_gcn_shader = true,
343 .amd_image_read_write_lod = true,
344 .amd_shader_ballot = device->physical_device->use_shader_ballot,
345 .amd_trinary_minmax = true,
346 .demote_to_helper_invocation = device->physical_device->use_aco,
347 .derivative_group = true,
348 .descriptor_array_dynamic_indexing = true,
349 .descriptor_array_non_uniform_indexing = true,
350 .descriptor_indexing = true,
351 .device_group = true,
352 .draw_parameters = true,
353 .float_controls = true,
354 .float16 = !device->physical_device->use_aco,
355 .float64 = true,
356 .geometry_streams = true,
357 .image_ms_array = true,
358 .image_read_without_format = true,
359 .image_write_without_format = true,
360 .int8 = !device->physical_device->use_aco,
361 .int16 = !device->physical_device->use_aco,
362 .int64 = true,
363 .int64_atomics = true,
364 .multiview = true,
365 .physical_storage_buffer_address = true,
366 .post_depth_coverage = true,
367 .runtime_descriptor_array = true,
368 .shader_clock = true,
369 .shader_viewport_index_layer = true,
370 .stencil_export = true,
371 .storage_8bit = !device->physical_device->use_aco,
372 .storage_16bit = !device->physical_device->use_aco,
373 .storage_image_ms = true,
374 .subgroup_arithmetic = true,
375 .subgroup_ballot = true,
376 .subgroup_basic = true,
377 .subgroup_quad = true,
378 .subgroup_shuffle = true,
379 .subgroup_vote = true,
380 .tessellation = true,
381 .transform_feedback = true,
382 .variable_pointers = true,
383 },
384 .ubo_addr_format = nir_address_format_32bit_index_offset,
385 .ssbo_addr_format = nir_address_format_32bit_index_offset,
386 .phys_ssbo_addr_format = nir_address_format_64bit_global,
387 .push_const_addr_format = nir_address_format_logical,
388 .shared_addr_format = nir_address_format_32bit_offset,
389 .frag_coord_is_sysval = true,
390 };
391 nir = spirv_to_nir(spirv, module->size / 4,
392 spec_entries, num_spec_entries,
393 stage, entrypoint_name,
394 &spirv_options, nir_options);
395 assert(nir->info.stage == stage);
396 nir_validate_shader(nir, "after spirv_to_nir");
397
398 free(spec_entries);
399
400 /* We have to lower away local constant initializers right before we
401 * inline functions. That way they get properly initialized at the top
402 * of the function and not at the top of its caller.
403 */
404 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
405 NIR_PASS_V(nir, nir_lower_returns);
406 NIR_PASS_V(nir, nir_inline_functions);
407 NIR_PASS_V(nir, nir_opt_deref);
408
409 /* Pick off the single entrypoint that we want */
410 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
411 if (func->is_entrypoint)
412 func->name = ralloc_strdup(func, "main");
413 else
414 exec_node_remove(&func->node);
415 }
416 assert(exec_list_length(&nir->functions) == 1);
417
418 /* Make sure we lower constant initializers on output variables so that
419 * nir_remove_dead_variables below sees the corresponding stores
420 */
421 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
422
423 /* Now that we've deleted all but the main function, we can go ahead and
424 * lower the rest of the constant initializers.
425 */
426 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
427
428 /* Split member structs. We do this before lower_io_to_temporaries so that
429 * it doesn't lower system values to temporaries by accident.
430 */
431 NIR_PASS_V(nir, nir_split_var_copies);
432 NIR_PASS_V(nir, nir_split_per_member_structs);
433
434 if (nir->info.stage == MESA_SHADER_FRAGMENT && use_aco)
435 NIR_PASS_V(nir, nir_lower_io_to_vector, nir_var_shader_out);
436 if (nir->info.stage == MESA_SHADER_FRAGMENT)
437 NIR_PASS_V(nir, nir_lower_input_attachments, true);
438
439 NIR_PASS_V(nir, nir_remove_dead_variables,
440 nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared);
441
442 NIR_PASS_V(nir, nir_propagate_invariant);
443
444 NIR_PASS_V(nir, nir_lower_system_values);
445 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
446 NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout);
447 }
448
449 /* Vulkan uses the separate-shader linking model */
450 nir->info.separate_shader = true;
451
452 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
453
454 if (nir->info.stage == MESA_SHADER_GEOMETRY && use_aco)
455 nir_lower_gs_intrinsics(nir, true);
456
457 static const nir_lower_tex_options tex_options = {
458 .lower_txp = ~0,
459 .lower_tg4_offsets = true,
460 };
461
462 nir_lower_tex(nir, &tex_options);
463
464 nir_lower_vars_to_ssa(nir);
465
466 if (nir->info.stage == MESA_SHADER_VERTEX ||
467 nir->info.stage == MESA_SHADER_GEOMETRY ||
468 nir->info.stage == MESA_SHADER_FRAGMENT) {
469 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
470 nir_shader_get_entrypoint(nir), true, true);
471 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
472 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
473 nir_shader_get_entrypoint(nir), true, false);
474 }
475
476 nir_split_var_copies(nir);
477
478 nir_lower_global_vars_to_local(nir);
479 nir_remove_dead_variables(nir, nir_var_function_temp);
480 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
481 .subgroup_size = 64,
482 .ballot_bit_size = 64,
483 .lower_to_scalar = 1,
484 .lower_subgroup_masks = 1,
485 .lower_shuffle = 1,
486 .lower_shuffle_to_32bit = 1,
487 .lower_vote_eq_to_ballot = 1,
488 });
489
490 nir_lower_load_const_to_scalar(nir);
491
492 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
493 radv_optimize_nir(nir, false, true);
494
495 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
496 * to remove any copies introduced by nir_opt_find_array_copies().
497 */
498 nir_lower_var_copies(nir);
499
500 /* Lower deref operations for compute shared memory. */
501 if (nir->info.stage == MESA_SHADER_COMPUTE) {
502 NIR_PASS_V(nir, nir_lower_vars_to_explicit_types,
503 nir_var_mem_shared, shared_var_info);
504 NIR_PASS_V(nir, nir_lower_explicit_io,
505 nir_var_mem_shared, nir_address_format_32bit_offset);
506 }
507
508 /* Lower large variables that are always constant with load_constant
509 * intrinsics, which get turned into PC-relative loads from a data
510 * section next to the shader.
511 */
512 NIR_PASS_V(nir, nir_opt_large_constants,
513 glsl_get_natural_size_align_bytes, 16);
514
515 /* Indirect lowering must be called after the radv_optimize_nir() loop
516 * has been called at least once. Otherwise indirect lowering can
517 * bloat the instruction count of the loop and cause it to be
518 * considered too large for unrolling.
519 */
520 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
521 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
522
523 return nir;
524 }
525
526 static int
527 type_size_vec4(const struct glsl_type *type, bool bindless)
528 {
529 return glsl_count_attribute_slots(type, false);
530 }
531
532 static nir_variable *
533 find_layer_in_var(nir_shader *nir)
534 {
535 nir_foreach_variable(var, &nir->inputs) {
536 if (var->data.location == VARYING_SLOT_LAYER) {
537 return var;
538 }
539 }
540
541 nir_variable *var =
542 nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id");
543 var->data.location = VARYING_SLOT_LAYER;
544 var->data.interpolation = INTERP_MODE_FLAT;
545 return var;
546 }
547
548 /* We use layered rendering to implement multiview, which means we need to map
549 * view_index to gl_Layer. The attachment lowering also uses needs to know the
550 * layer so that it can sample from the correct layer. The code generates a
551 * load from the layer_id sysval, but since we don't have a way to get at this
552 * information from the fragment shader, we also need to lower this to the
553 * gl_Layer varying. This pass lowers both to a varying load from the LAYER
554 * slot, before lowering io, so that nir_assign_var_locations() will give the
555 * LAYER varying the correct driver_location.
556 */
557
558 static bool
559 lower_view_index(nir_shader *nir)
560 {
561 bool progress = false;
562 nir_function_impl *entry = nir_shader_get_entrypoint(nir);
563 nir_builder b;
564 nir_builder_init(&b, entry);
565
566 nir_variable *layer = NULL;
567 nir_foreach_block(block, entry) {
568 nir_foreach_instr_safe(instr, block) {
569 if (instr->type != nir_instr_type_intrinsic)
570 continue;
571
572 nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
573 if (load->intrinsic != nir_intrinsic_load_view_index &&
574 load->intrinsic != nir_intrinsic_load_layer_id)
575 continue;
576
577 if (!layer)
578 layer = find_layer_in_var(nir);
579
580 b.cursor = nir_before_instr(instr);
581 nir_ssa_def *def = nir_load_var(&b, layer);
582 nir_ssa_def_rewrite_uses(&load->dest.ssa,
583 nir_src_for_ssa(def));
584
585 nir_instr_remove(instr);
586 progress = true;
587 }
588 }
589
590 return progress;
591 }
592
593 void
594 radv_lower_fs_io(nir_shader *nir)
595 {
596 NIR_PASS_V(nir, lower_view_index);
597 nir_assign_io_var_locations(&nir->inputs, &nir->num_inputs,
598 MESA_SHADER_FRAGMENT);
599
600 NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in, type_size_vec4, 0);
601
602 /* This pass needs actual constants */
603 nir_opt_constant_folding(nir);
604
605 NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
606 }
607
608
609 void *
610 radv_alloc_shader_memory(struct radv_device *device,
611 struct radv_shader_variant *shader)
612 {
613 mtx_lock(&device->shader_slab_mutex);
614 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
615 uint64_t offset = 0;
616 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
617 if (s->bo_offset - offset >= shader->code_size) {
618 shader->bo = slab->bo;
619 shader->bo_offset = offset;
620 list_addtail(&shader->slab_list, &s->slab_list);
621 mtx_unlock(&device->shader_slab_mutex);
622 return slab->ptr + offset;
623 }
624 offset = align_u64(s->bo_offset + s->code_size, 256);
625 }
626 if (slab->size - offset >= shader->code_size) {
627 shader->bo = slab->bo;
628 shader->bo_offset = offset;
629 list_addtail(&shader->slab_list, &slab->shaders);
630 mtx_unlock(&device->shader_slab_mutex);
631 return slab->ptr + offset;
632 }
633 }
634
635 mtx_unlock(&device->shader_slab_mutex);
636 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
637
638 slab->size = 256 * 1024;
639 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
640 RADEON_DOMAIN_VRAM,
641 RADEON_FLAG_NO_INTERPROCESS_SHARING |
642 (device->physical_device->rad_info.cpdma_prefetch_writes_memory ?
643 0 : RADEON_FLAG_READ_ONLY),
644 RADV_BO_PRIORITY_SHADER);
645 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
646 list_inithead(&slab->shaders);
647
648 mtx_lock(&device->shader_slab_mutex);
649 list_add(&slab->slabs, &device->shader_slabs);
650
651 shader->bo = slab->bo;
652 shader->bo_offset = 0;
653 list_add(&shader->slab_list, &slab->shaders);
654 mtx_unlock(&device->shader_slab_mutex);
655 return slab->ptr;
656 }
657
658 void
659 radv_destroy_shader_slabs(struct radv_device *device)
660 {
661 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
662 device->ws->buffer_destroy(slab->bo);
663 free(slab);
664 }
665 mtx_destroy(&device->shader_slab_mutex);
666 }
667
668 /* For the UMR disassembler. */
669 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
670 #define DEBUGGER_NUM_MARKERS 5
671
672 static unsigned
673 radv_get_shader_binary_size(size_t code_size)
674 {
675 return code_size + DEBUGGER_NUM_MARKERS * 4;
676 }
677
678 static void radv_postprocess_config(const struct radv_physical_device *pdevice,
679 const struct ac_shader_config *config_in,
680 const struct radv_shader_info *info,
681 gl_shader_stage stage,
682 struct ac_shader_config *config_out)
683 {
684 bool scratch_enabled = config_in->scratch_bytes_per_wave > 0;
685 unsigned vgpr_comp_cnt = 0;
686 unsigned num_input_vgprs = info->num_input_vgprs;
687
688 if (stage == MESA_SHADER_FRAGMENT) {
689 num_input_vgprs = ac_get_fs_input_vgpr_cnt(config_in, NULL, NULL);
690 }
691
692 unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs);
693 /* +3 for scratch wave offset and VCC */
694 unsigned num_sgprs = MAX2(config_in->num_sgprs, info->num_input_sgprs + 3);
695 unsigned num_shared_vgprs = config_in->num_shared_vgprs;
696 /* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */
697 assert((pdevice->rad_info.chip_class >= GFX10 && num_shared_vgprs % 8 == 0)
698 || (pdevice->rad_info.chip_class < GFX10 && num_shared_vgprs == 0));
699 unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8;
700
701 *config_out = *config_in;
702 config_out->num_vgprs = num_vgprs;
703 config_out->num_sgprs = num_sgprs;
704 config_out->num_shared_vgprs = num_shared_vgprs;
705
706 config_out->rsrc2 = S_00B12C_USER_SGPR(info->num_user_sgprs) |
707 S_00B12C_SCRATCH_EN(scratch_enabled);
708
709 if (!pdevice->use_ngg_streamout) {
710 config_out->rsrc2 |= S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
711 S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
712 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
713 S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
714 S_00B12C_SO_EN(!!info->so.num_outputs);
715 }
716
717 config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) /
718 (info->wave_size == 32 ? 8 : 4)) |
719 S_00B848_DX10_CLAMP(1) |
720 S_00B848_FLOAT_MODE(config_out->float_mode);
721
722 if (pdevice->rad_info.chip_class >= GFX10) {
723 config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(info->num_user_sgprs >> 5);
724 } else {
725 config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
726 config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(info->num_user_sgprs >> 5);
727 }
728
729 switch (stage) {
730 case MESA_SHADER_TESS_EVAL:
731 if (info->is_ngg) {
732 config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
733 config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1);
734 } else if (info->tes.as_es) {
735 assert(pdevice->rad_info.chip_class <= GFX8);
736 vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
737
738 config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
739 } else {
740 bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id;
741 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
742
743 config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
744 config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
745 }
746 config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
747 break;
748 case MESA_SHADER_TESS_CTRL:
749 if (pdevice->rad_info.chip_class >= GFX9) {
750 /* We need at least 2 components for LS.
751 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
752 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
753 */
754 if (pdevice->rad_info.chip_class >= GFX10) {
755 vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 1;
756 } else {
757 vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
758 }
759 } else {
760 config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
761 }
762 config_out->rsrc1 |= S_00B428_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) |
763 S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10);
764 config_out->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
765 break;
766 case MESA_SHADER_VERTEX:
767 if (info->is_ngg) {
768 config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
769 } else if (info->vs.as_ls) {
770 assert(pdevice->rad_info.chip_class <= GFX8);
771 /* We need at least 2 components for LS.
772 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
773 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
774 */
775 vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
776 } else if (info->vs.as_es) {
777 assert(pdevice->rad_info.chip_class <= GFX8);
778 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
779 vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0;
780 } else {
781 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
782 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
783 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
784 */
785 if (info->vs.needs_instance_id && pdevice->rad_info.chip_class >= GFX10) {
786 vgpr_comp_cnt = 3;
787 } else if (info->vs.export_prim_id) {
788 vgpr_comp_cnt = 2;
789 } else if (info->vs.needs_instance_id) {
790 vgpr_comp_cnt = 1;
791 } else {
792 vgpr_comp_cnt = 0;
793 }
794
795 config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
796 config_out->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
797 }
798 break;
799 case MESA_SHADER_FRAGMENT:
800 config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
801 config_out->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
802 break;
803 case MESA_SHADER_GEOMETRY:
804 config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) |
805 S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10);
806 config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
807 break;
808 case MESA_SHADER_COMPUTE:
809 config_out->rsrc1 |= S_00B848_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) |
810 S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10);
811 config_out->rsrc2 |=
812 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
813 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
814 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
815 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
816 info->cs.uses_thread_id[1] ? 1 : 0) |
817 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
818 S_00B84C_LDS_SIZE(config_in->lds_size);
819 config_out->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
820
821 break;
822 default:
823 unreachable("unsupported shader type");
824 break;
825 }
826
827 if (pdevice->rad_info.chip_class >= GFX10 && info->is_ngg &&
828 (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY)) {
829 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
830 gl_shader_stage es_stage = stage;
831 if (stage == MESA_SHADER_GEOMETRY)
832 es_stage = info->gs.es_type;
833
834 /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */
835 if (es_stage == MESA_SHADER_VERTEX) {
836 es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0;
837 } else if (es_stage == MESA_SHADER_TESS_EVAL) {
838 bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id;
839 es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
840 } else
841 unreachable("Unexpected ES shader stage");
842
843 bool tes_triangles = stage == MESA_SHADER_TESS_EVAL &&
844 info->tes.primitive_mode >= 4; /* GL_TRIANGLES */
845 if (info->uses_invocation_id || stage == MESA_SHADER_VERTEX) {
846 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
847 } else if (info->uses_prim_id) {
848 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
849 } else if (info->gs.vertices_in >= 3 || tes_triangles) {
850 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
851 } else {
852 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
853 }
854
855 config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) |
856 S_00B228_WGP_MODE(1);
857 config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
858 S_00B22C_LDS_SIZE(config_in->lds_size) |
859 S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
860 } else if (pdevice->rad_info.chip_class >= GFX9 &&
861 stage == MESA_SHADER_GEOMETRY) {
862 unsigned es_type = info->gs.es_type;
863 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
864
865 if (es_type == MESA_SHADER_VERTEX) {
866 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
867 if (info->vs.needs_instance_id) {
868 es_vgpr_comp_cnt = pdevice->rad_info.chip_class >= GFX10 ? 3 : 1;
869 } else {
870 es_vgpr_comp_cnt = 0;
871 }
872 } else if (es_type == MESA_SHADER_TESS_EVAL) {
873 es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
874 } else {
875 unreachable("invalid shader ES type");
876 }
877
878 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
879 * VGPR[0:4] are always loaded.
880 */
881 if (info->uses_invocation_id) {
882 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
883 } else if (info->uses_prim_id) {
884 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
885 } else if (info->gs.vertices_in >= 3) {
886 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
887 } else {
888 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
889 }
890
891 config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
892 config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
893 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
894 } else if (pdevice->rad_info.chip_class >= GFX9 &&
895 stage == MESA_SHADER_TESS_CTRL) {
896 config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
897 } else {
898 config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
899 }
900 }
901
902 struct radv_shader_variant *
903 radv_shader_variant_create(struct radv_device *device,
904 const struct radv_shader_binary *binary,
905 bool keep_shader_info)
906 {
907 struct ac_shader_config config = {0};
908 struct ac_rtld_binary rtld_binary = {0};
909 struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
910 if (!variant)
911 return NULL;
912
913 variant->ref_count = 1;
914
915 if (binary->type == RADV_BINARY_TYPE_RTLD) {
916 struct ac_rtld_symbol lds_symbols[2];
917 unsigned num_lds_symbols = 0;
918 const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
919 size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;
920
921 if (device->physical_device->rad_info.chip_class >= GFX9 &&
922 (binary->stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg) &&
923 !binary->is_gs_copy_shader) {
924 /* We add this symbol even on LLVM <= 8 to ensure that
925 * shader->config.lds_size is set correctly below.
926 */
927 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
928 sym->name = "esgs_ring";
929 sym->size = binary->info.ngg_info.esgs_ring_size;
930 sym->align = 64 * 1024;
931 }
932
933 if (binary->info.is_ngg &&
934 binary->stage == MESA_SHADER_GEOMETRY) {
935 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
936 sym->name = "ngg_emit";
937 sym->size = binary->info.ngg_info.ngg_emit_size * 4;
938 sym->align = 4;
939 }
940
941 struct ac_rtld_open_info open_info = {
942 .info = &device->physical_device->rad_info,
943 .shader_type = binary->stage,
944 .wave_size = binary->info.wave_size,
945 .num_parts = 1,
946 .elf_ptrs = &elf_data,
947 .elf_sizes = &elf_size,
948 .num_shared_lds_symbols = num_lds_symbols,
949 .shared_lds_symbols = lds_symbols,
950 };
951
952 if (!ac_rtld_open(&rtld_binary, open_info)) {
953 free(variant);
954 return NULL;
955 }
956
957 if (!ac_rtld_read_config(&rtld_binary, &config)) {
958 ac_rtld_close(&rtld_binary);
959 free(variant);
960 return NULL;
961 }
962
963 /* Enable 64-bit and 16-bit denormals, because there is no performance
964 * cost.
965 *
966 * If denormals are enabled, all floating-point output modifiers are
967 * ignored.
968 *
969 * Don't enable denormals for 32-bit floats, because:
970 * - Floating-point output modifiers would be ignored by the hw.
971 * - Some opcodes don't support denormals, such as v_mad_f32. We would
972 * have to stop using those.
973 * - GFX6 & GFX7 would be very slow.
974 */
975 config.float_mode |= V_00B028_FP_64_DENORMS;
976
977 if (rtld_binary.lds_size > 0) {
978 unsigned alloc_granularity = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256;
979 config.lds_size = align(rtld_binary.lds_size, alloc_granularity) / alloc_granularity;
980 }
981
982 variant->code_size = rtld_binary.rx_size;
983 variant->exec_size = rtld_binary.exec_size;
984 } else {
985 assert(binary->type == RADV_BINARY_TYPE_LEGACY);
986 config = ((struct radv_shader_binary_legacy *)binary)->config;
987 variant->code_size = radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size);
988 variant->exec_size = ((struct radv_shader_binary_legacy *)binary)->exec_size;
989 }
990
991 variant->info = binary->info;
992 radv_postprocess_config(device->physical_device, &config, &binary->info,
993 binary->stage, &variant->config);
994
995 if (radv_device_use_secure_compile(device->instance)) {
996 if (binary->type == RADV_BINARY_TYPE_RTLD)
997 ac_rtld_close(&rtld_binary);
998
999 return variant;
1000 }
1001
1002 void *dest_ptr = radv_alloc_shader_memory(device, variant);
1003
1004 if (binary->type == RADV_BINARY_TYPE_RTLD) {
1005 struct radv_shader_binary_rtld* bin = (struct radv_shader_binary_rtld *)binary;
1006 struct ac_rtld_upload_info info = {
1007 .binary = &rtld_binary,
1008 .rx_va = radv_buffer_get_va(variant->bo) + variant->bo_offset,
1009 .rx_ptr = dest_ptr,
1010 };
1011
1012 if (!ac_rtld_upload(&info)) {
1013 radv_shader_variant_destroy(device, variant);
1014 ac_rtld_close(&rtld_binary);
1015 return NULL;
1016 }
1017
1018 if (keep_shader_info ||
1019 (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) {
1020 const char *disasm_data;
1021 size_t disasm_size;
1022 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) {
1023 radv_shader_variant_destroy(device, variant);
1024 ac_rtld_close(&rtld_binary);
1025 return NULL;
1026 }
1027
1028 variant->ir_string = bin->llvm_ir_size ? strdup((const char*)(bin->data + bin->elf_size)) : NULL;
1029 variant->disasm_string = malloc(disasm_size + 1);
1030 memcpy(variant->disasm_string, disasm_data, disasm_size);
1031 variant->disasm_string[disasm_size] = 0;
1032 }
1033
1034 ac_rtld_close(&rtld_binary);
1035 } else {
1036 struct radv_shader_binary_legacy* bin = (struct radv_shader_binary_legacy *)binary;
1037 memcpy(dest_ptr, bin->data, bin->code_size);
1038
1039 /* Add end-of-code markers for the UMR disassembler. */
1040 uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4;
1041 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
1042 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
1043
1044 variant->ir_string = bin->ir_size ? strdup((const char*)(bin->data + bin->code_size)) : NULL;
1045 variant->disasm_string = bin->disasm_size ? strdup((const char*)(bin->data + bin->code_size + bin->ir_size)) : NULL;
1046 }
1047 return variant;
1048 }
1049
1050 static char *
1051 radv_dump_nir_shaders(struct nir_shader * const *shaders,
1052 int shader_count)
1053 {
1054 char *data = NULL;
1055 char *ret = NULL;
1056 size_t size = 0;
1057 FILE *f = open_memstream(&data, &size);
1058 if (f) {
1059 for (int i = 0; i < shader_count; ++i)
1060 nir_print_shader(shaders[i], f);
1061 fclose(f);
1062 }
1063
1064 ret = malloc(size + 1);
1065 if (ret) {
1066 memcpy(ret, data, size);
1067 ret[size] = 0;
1068 }
1069 free(data);
1070 return ret;
1071 }
1072
1073 static struct radv_shader_variant *
1074 shader_variant_compile(struct radv_device *device,
1075 struct radv_shader_module *module,
1076 struct nir_shader * const *shaders,
1077 int shader_count,
1078 gl_shader_stage stage,
1079 struct radv_shader_info *info,
1080 struct radv_nir_compiler_options *options,
1081 bool gs_copy_shader,
1082 bool keep_shader_info,
1083 bool use_aco,
1084 struct radv_shader_binary **binary_out)
1085 {
1086 enum radeon_family chip_family = device->physical_device->rad_info.family;
1087 struct radv_shader_binary *binary = NULL;
1088
1089 options->family = chip_family;
1090 options->chip_class = device->physical_device->rad_info.chip_class;
1091 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
1092 options->dump_preoptir = options->dump_shader &&
1093 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
1094 options->record_ir = keep_shader_info;
1095 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
1096 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
1097 options->address32_hi = device->physical_device->rad_info.address32_hi;
1098 options->has_ls_vgpr_init_bug = device->physical_device->rad_info.has_ls_vgpr_init_bug;
1099 options->use_ngg_streamout = device->physical_device->use_ngg_streamout;
1100
1101 struct radv_shader_args args = {};
1102 args.options = options;
1103 args.shader_info = info;
1104 args.is_gs_copy_shader = gs_copy_shader;
1105 radv_declare_shader_args(&args,
1106 gs_copy_shader ? MESA_SHADER_VERTEX
1107 : shaders[shader_count - 1]->info.stage,
1108 shader_count >= 2,
1109 shader_count >= 2 ? shaders[shader_count - 2]->info.stage
1110 : MESA_SHADER_VERTEX);
1111
1112 if (!use_aco || options->dump_shader || options->record_ir)
1113 ac_init_llvm_once();
1114
1115 if (use_aco) {
1116 aco_compile_shader(shader_count, shaders, &binary, &args);
1117 binary->info = *info;
1118 } else {
1119 enum ac_target_machine_options tm_options = 0;
1120 struct ac_llvm_compiler ac_llvm;
1121 bool thread_compiler;
1122
1123 tm_options |= AC_TM_SUPPORTS_SPILL;
1124 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
1125 tm_options |= AC_TM_SISCHED;
1126 if (options->check_ir)
1127 tm_options |= AC_TM_CHECK_IR;
1128 if (device->instance->debug_flags & RADV_DEBUG_NO_LOAD_STORE_OPT)
1129 tm_options |= AC_TM_NO_LOAD_STORE_OPT;
1130
1131 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
1132 radv_init_llvm_compiler(&ac_llvm,
1133 thread_compiler,
1134 chip_family, tm_options,
1135 info->wave_size);
1136
1137 if (gs_copy_shader) {
1138 assert(shader_count == 1);
1139 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
1140 &args);
1141 } else {
1142 radv_compile_nir_shader(&ac_llvm, &binary, &args,
1143 shaders, shader_count);
1144 }
1145
1146 binary->info = *info;
1147 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
1148 }
1149
1150 struct radv_shader_variant *variant = radv_shader_variant_create(device, binary,
1151 keep_shader_info);
1152 if (!variant) {
1153 free(binary);
1154 return NULL;
1155 }
1156 variant->aco_used = use_aco;
1157
1158 if (options->dump_shader) {
1159 fprintf(stderr, "disasm:\n%s\n", variant->disasm_string);
1160 }
1161
1162
1163 if (keep_shader_info) {
1164 variant->nir_string = radv_dump_nir_shaders(shaders, shader_count);
1165 if (!gs_copy_shader && !module->nir) {
1166 variant->spirv = malloc(module->size);
1167 if (!variant->spirv) {
1168 free(variant);
1169 free(binary);
1170 return NULL;
1171 }
1172
1173 memcpy(variant->spirv, module->data, module->size);
1174 variant->spirv_size = module->size;
1175 }
1176 }
1177
1178 if (binary_out)
1179 *binary_out = binary;
1180 else
1181 free(binary);
1182
1183 return variant;
1184 }
1185
1186 struct radv_shader_variant *
1187 radv_shader_variant_compile(struct radv_device *device,
1188 struct radv_shader_module *module,
1189 struct nir_shader *const *shaders,
1190 int shader_count,
1191 struct radv_pipeline_layout *layout,
1192 const struct radv_shader_variant_key *key,
1193 struct radv_shader_info *info,
1194 bool keep_shader_info,
1195 bool use_aco,
1196 struct radv_shader_binary **binary_out)
1197 {
1198 struct radv_nir_compiler_options options = {0};
1199
1200 options.layout = layout;
1201 if (key)
1202 options.key = *key;
1203
1204 options.explicit_scratch_args = use_aco;
1205 options.robust_buffer_access = device->robust_buffer_access;
1206
1207 return shader_variant_compile(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage, info,
1208 &options, false, keep_shader_info, use_aco, binary_out);
1209 }
1210
1211 struct radv_shader_variant *
1212 radv_create_gs_copy_shader(struct radv_device *device,
1213 struct nir_shader *shader,
1214 struct radv_shader_info *info,
1215 struct radv_shader_binary **binary_out,
1216 bool keep_shader_info,
1217 bool multiview)
1218 {
1219 struct radv_nir_compiler_options options = {0};
1220
1221 options.key.has_multiview_view_index = multiview;
1222
1223 return shader_variant_compile(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
1224 info, &options, true, keep_shader_info, false, binary_out);
1225 }
1226
1227 void
1228 radv_shader_variant_destroy(struct radv_device *device,
1229 struct radv_shader_variant *variant)
1230 {
1231 if (!p_atomic_dec_zero(&variant->ref_count))
1232 return;
1233
1234 mtx_lock(&device->shader_slab_mutex);
1235 list_del(&variant->slab_list);
1236 mtx_unlock(&device->shader_slab_mutex);
1237
1238 free(variant->spirv);
1239 free(variant->nir_string);
1240 free(variant->disasm_string);
1241 free(variant->ir_string);
1242 free(variant);
1243 }
1244
1245 const char *
1246 radv_get_shader_name(struct radv_shader_info *info,
1247 gl_shader_stage stage)
1248 {
1249 switch (stage) {
1250 case MESA_SHADER_VERTEX:
1251 if (info->vs.as_ls)
1252 return "Vertex Shader as LS";
1253 else if (info->vs.as_es)
1254 return "Vertex Shader as ES";
1255 else if (info->is_ngg)
1256 return "Vertex Shader as ESGS";
1257 else
1258 return "Vertex Shader as VS";
1259 case MESA_SHADER_TESS_CTRL:
1260 return "Tessellation Control Shader";
1261 case MESA_SHADER_TESS_EVAL:
1262 if (info->tes.as_es)
1263 return "Tessellation Evaluation Shader as ES";
1264 else if (info->is_ngg)
1265 return "Tessellation Evaluation Shader as ESGS";
1266 else
1267 return "Tessellation Evaluation Shader as VS";
1268 case MESA_SHADER_GEOMETRY:
1269 return "Geometry Shader";
1270 case MESA_SHADER_FRAGMENT:
1271 return "Pixel Shader";
1272 case MESA_SHADER_COMPUTE:
1273 return "Compute Shader";
1274 default:
1275 return "Unknown shader";
1276 };
1277 }
1278
1279 unsigned
1280 radv_get_max_workgroup_size(enum chip_class chip_class,
1281 gl_shader_stage stage,
1282 const unsigned *sizes)
1283 {
1284 switch (stage) {
1285 case MESA_SHADER_TESS_CTRL:
1286 return chip_class >= GFX7 ? 128 : 64;
1287 case MESA_SHADER_GEOMETRY:
1288 return chip_class >= GFX9 ? 128 : 64;
1289 case MESA_SHADER_COMPUTE:
1290 break;
1291 default:
1292 return 0;
1293 }
1294
1295 unsigned max_workgroup_size = sizes[0] * sizes[1] * sizes[2];
1296 return max_workgroup_size;
1297 }
1298
1299 unsigned
1300 radv_get_max_waves(struct radv_device *device,
1301 struct radv_shader_variant *variant,
1302 gl_shader_stage stage)
1303 {
1304 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
1305 unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
1306 uint8_t wave_size = variant->info.wave_size;
1307 struct ac_shader_config *conf = &variant->config;
1308 unsigned max_simd_waves;
1309 unsigned lds_per_wave = 0;
1310
1311 max_simd_waves = device->physical_device->rad_info.max_wave64_per_simd;
1312
1313 if (stage == MESA_SHADER_FRAGMENT) {
1314 lds_per_wave = conf->lds_size * lds_increment +
1315 align(variant->info.ps.num_interp * 48,
1316 lds_increment);
1317 } else if (stage == MESA_SHADER_COMPUTE) {
1318 unsigned max_workgroup_size =
1319 radv_get_max_workgroup_size(chip_class, stage, variant->info.cs.block_size);
1320 lds_per_wave = (conf->lds_size * lds_increment) /
1321 DIV_ROUND_UP(max_workgroup_size, wave_size);
1322 }
1323
1324 if (conf->num_sgprs) {
1325 unsigned sgprs = align(conf->num_sgprs, chip_class >= GFX8 ? 16 : 8);
1326 max_simd_waves =
1327 MIN2(max_simd_waves,
1328 device->physical_device->rad_info.num_physical_sgprs_per_simd /
1329 sgprs);
1330 }
1331
1332 if (conf->num_vgprs) {
1333 unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4);
1334 max_simd_waves =
1335 MIN2(max_simd_waves,
1336 RADV_NUM_PHYSICAL_VGPRS / vgprs);
1337 }
1338
1339 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
1340 * that PS can use.
1341 */
1342 if (lds_per_wave)
1343 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
1344
1345 return max_simd_waves;
1346 }
1347
1348 static void
1349 generate_shader_stats(struct radv_device *device,
1350 struct radv_shader_variant *variant,
1351 gl_shader_stage stage,
1352 struct _mesa_string_buffer *buf)
1353 {
1354 struct ac_shader_config *conf = &variant->config;
1355 unsigned max_simd_waves = radv_get_max_waves(device, variant, stage);
1356
1357 if (stage == MESA_SHADER_FRAGMENT) {
1358 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
1359 "SPI_PS_INPUT_ADDR = 0x%04x\n"
1360 "SPI_PS_INPUT_ENA = 0x%04x\n",
1361 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
1362 }
1363
1364 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
1365 "SGPRS: %d\n"
1366 "VGPRS: %d\n"
1367 "Spilled SGPRs: %d\n"
1368 "Spilled VGPRs: %d\n"
1369 "PrivMem VGPRS: %d\n"
1370 "Code Size: %d bytes\n"
1371 "LDS: %d blocks\n"
1372 "Scratch: %d bytes per wave\n"
1373 "Max Waves: %d\n"
1374 "********************\n\n\n",
1375 conf->num_sgprs, conf->num_vgprs,
1376 conf->spilled_sgprs, conf->spilled_vgprs,
1377 variant->info.private_mem_vgprs, variant->exec_size,
1378 conf->lds_size, conf->scratch_bytes_per_wave,
1379 max_simd_waves);
1380 }
1381
1382 void
1383 radv_shader_dump_stats(struct radv_device *device,
1384 struct radv_shader_variant *variant,
1385 gl_shader_stage stage,
1386 FILE *file)
1387 {
1388 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
1389
1390 generate_shader_stats(device, variant, stage, buf);
1391
1392 fprintf(file, "\n%s:\n", radv_get_shader_name(&variant->info, stage));
1393 fprintf(file, "%s", buf->buf);
1394
1395 _mesa_string_buffer_destroy(buf);
1396 }
1397
1398 VkResult
1399 radv_GetShaderInfoAMD(VkDevice _device,
1400 VkPipeline _pipeline,
1401 VkShaderStageFlagBits shaderStage,
1402 VkShaderInfoTypeAMD infoType,
1403 size_t* pInfoSize,
1404 void* pInfo)
1405 {
1406 RADV_FROM_HANDLE(radv_device, device, _device);
1407 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
1408 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
1409 struct radv_shader_variant *variant = pipeline->shaders[stage];
1410 struct _mesa_string_buffer *buf;
1411 VkResult result = VK_SUCCESS;
1412
1413 /* Spec doesn't indicate what to do if the stage is invalid, so just
1414 * return no info for this. */
1415 if (!variant)
1416 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
1417
1418 switch (infoType) {
1419 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
1420 if (!pInfo) {
1421 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
1422 } else {
1423 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256;
1424 struct ac_shader_config *conf = &variant->config;
1425
1426 VkShaderStatisticsInfoAMD statistics = {};
1427 statistics.shaderStageMask = shaderStage;
1428 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
1429 statistics.numPhysicalSgprs = device->physical_device->rad_info.num_physical_sgprs_per_simd;
1430 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
1431
1432 if (stage == MESA_SHADER_COMPUTE) {
1433 unsigned *local_size = variant->info.cs.block_size;
1434 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
1435
1436 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
1437 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
1438
1439 statistics.computeWorkGroupSize[0] = local_size[0];
1440 statistics.computeWorkGroupSize[1] = local_size[1];
1441 statistics.computeWorkGroupSize[2] = local_size[2];
1442 } else {
1443 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
1444 }
1445
1446 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
1447 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
1448 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
1449 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
1450 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
1451
1452 size_t size = *pInfoSize;
1453 *pInfoSize = sizeof(statistics);
1454
1455 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
1456
1457 if (size < *pInfoSize)
1458 result = VK_INCOMPLETE;
1459 }
1460
1461 break;
1462 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
1463 buf = _mesa_string_buffer_create(NULL, 1024);
1464
1465 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(&variant->info, stage));
1466 _mesa_string_buffer_printf(buf, "%s\n\n", variant->ir_string);
1467 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
1468 generate_shader_stats(device, variant, stage, buf);
1469
1470 /* Need to include the null terminator. */
1471 size_t length = buf->length + 1;
1472
1473 if (!pInfo) {
1474 *pInfoSize = length;
1475 } else {
1476 size_t size = *pInfoSize;
1477 *pInfoSize = length;
1478
1479 memcpy(pInfo, buf->buf, MIN2(size, length));
1480
1481 if (size < length)
1482 result = VK_INCOMPLETE;
1483 }
1484
1485 _mesa_string_buffer_destroy(buf);
1486 break;
1487 default:
1488 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
1489 result = VK_ERROR_FEATURE_NOT_PRESENT;
1490 break;
1491 }
1492
1493 return result;
1494 }