radv: use nir_opt_copy_prop_vars and nir_opt_dead_write_vars
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "nir/nir.h"
35 #include "nir/nir_builder.h"
36 #include "spirv/nir_spirv.h"
37
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 #include <llvm-c/Support.h>
41
42 #include "sid.h"
43 #include "gfx9d.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "vk_format.h"
48 #include "util/debug.h"
49 #include "ac_exp_param.h"
50
51 #include "util/string_buffer.h"
52
53 static const struct nir_shader_compiler_options nir_options = {
54 .vertex_id_zero_based = true,
55 .lower_scmp = true,
56 .lower_flrp32 = true,
57 .lower_flrp64 = true,
58 .lower_device_index_to_zero = true,
59 .lower_fsat = true,
60 .lower_fdiv = true,
61 .lower_sub = true,
62 .lower_pack_snorm_2x16 = true,
63 .lower_pack_snorm_4x8 = true,
64 .lower_pack_unorm_2x16 = true,
65 .lower_pack_unorm_4x8 = true,
66 .lower_unpack_snorm_2x16 = true,
67 .lower_unpack_snorm_4x8 = true,
68 .lower_unpack_unorm_2x16 = true,
69 .lower_unpack_unorm_4x8 = true,
70 .lower_extract_byte = true,
71 .lower_extract_word = true,
72 .lower_ffma = true,
73 .lower_fpow = true,
74 .max_unroll_iterations = 32
75 };
76
77 VkResult radv_CreateShaderModule(
78 VkDevice _device,
79 const VkShaderModuleCreateInfo* pCreateInfo,
80 const VkAllocationCallbacks* pAllocator,
81 VkShaderModule* pShaderModule)
82 {
83 RADV_FROM_HANDLE(radv_device, device, _device);
84 struct radv_shader_module *module;
85
86 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
87 assert(pCreateInfo->flags == 0);
88
89 module = vk_alloc2(&device->alloc, pAllocator,
90 sizeof(*module) + pCreateInfo->codeSize, 8,
91 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
92 if (module == NULL)
93 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
94
95 module->nir = NULL;
96 module->size = pCreateInfo->codeSize;
97 memcpy(module->data, pCreateInfo->pCode, module->size);
98
99 _mesa_sha1_compute(module->data, module->size, module->sha1);
100
101 *pShaderModule = radv_shader_module_to_handle(module);
102
103 return VK_SUCCESS;
104 }
105
106 void radv_DestroyShaderModule(
107 VkDevice _device,
108 VkShaderModule _module,
109 const VkAllocationCallbacks* pAllocator)
110 {
111 RADV_FROM_HANDLE(radv_device, device, _device);
112 RADV_FROM_HANDLE(radv_shader_module, module, _module);
113
114 if (!module)
115 return;
116
117 vk_free2(&device->alloc, pAllocator, module);
118 }
119
120 void
121 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
122 {
123 bool progress;
124
125 do {
126 progress = false;
127
128 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
129 NIR_PASS_V(shader, nir_lower_pack);
130
131 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
132 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
133
134 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
135 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
136
137 NIR_PASS(progress, shader, nir_copy_prop);
138 NIR_PASS(progress, shader, nir_opt_remove_phis);
139 NIR_PASS(progress, shader, nir_opt_dce);
140 if (nir_opt_trivial_continues(shader)) {
141 progress = true;
142 NIR_PASS(progress, shader, nir_copy_prop);
143 NIR_PASS(progress, shader, nir_opt_remove_phis);
144 NIR_PASS(progress, shader, nir_opt_dce);
145 }
146 NIR_PASS(progress, shader, nir_opt_if);
147 NIR_PASS(progress, shader, nir_opt_dead_cf);
148 NIR_PASS(progress, shader, nir_opt_cse);
149 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
150 NIR_PASS(progress, shader, nir_opt_algebraic);
151 NIR_PASS(progress, shader, nir_opt_constant_folding);
152 NIR_PASS(progress, shader, nir_opt_undef);
153 NIR_PASS(progress, shader, nir_opt_conditional_discard);
154 if (shader->options->max_unroll_iterations) {
155 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
156 }
157 } while (progress && !optimize_conservatively);
158
159 NIR_PASS(progress, shader, nir_opt_shrink_load);
160 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
161 }
162
163 nir_shader *
164 radv_shader_compile_to_nir(struct radv_device *device,
165 struct radv_shader_module *module,
166 const char *entrypoint_name,
167 gl_shader_stage stage,
168 const VkSpecializationInfo *spec_info,
169 const VkPipelineCreateFlags flags)
170 {
171 nir_shader *nir;
172 nir_function *entry_point;
173 if (module->nir) {
174 /* Some things such as our meta clear/blit code will give us a NIR
175 * shader directly. In that case, we just ignore the SPIR-V entirely
176 * and just use the NIR shader */
177 nir = module->nir;
178 nir->options = &nir_options;
179 nir_validate_shader(nir);
180
181 assert(exec_list_length(&nir->functions) == 1);
182 struct exec_node *node = exec_list_get_head(&nir->functions);
183 entry_point = exec_node_data(nir_function, node, node);
184 } else {
185 uint32_t *spirv = (uint32_t *) module->data;
186 assert(module->size % 4 == 0);
187
188 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
189 radv_print_spirv(spirv, module->size, stderr);
190
191 uint32_t num_spec_entries = 0;
192 struct nir_spirv_specialization *spec_entries = NULL;
193 if (spec_info && spec_info->mapEntryCount > 0) {
194 num_spec_entries = spec_info->mapEntryCount;
195 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
196 for (uint32_t i = 0; i < num_spec_entries; i++) {
197 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
198 const void *data = spec_info->pData + entry.offset;
199 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
200
201 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
202 if (spec_info->dataSize == 8)
203 spec_entries[i].data64 = *(const uint64_t *)data;
204 else
205 spec_entries[i].data32 = *(const uint32_t *)data;
206 }
207 }
208 const struct spirv_to_nir_options spirv_options = {
209 .caps = {
210 .device_group = true,
211 .draw_parameters = true,
212 .float64 = true,
213 .image_read_without_format = true,
214 .image_write_without_format = true,
215 .tessellation = true,
216 .int64 = true,
217 .int16 = true,
218 .multiview = true,
219 .subgroup_arithmetic = true,
220 .subgroup_ballot = true,
221 .subgroup_basic = true,
222 .subgroup_quad = true,
223 .subgroup_shuffle = true,
224 .subgroup_vote = true,
225 .variable_pointers = true,
226 .gcn_shader = true,
227 .trinary_minmax = true,
228 .shader_viewport_index_layer = true,
229 .descriptor_array_dynamic_indexing = true,
230 .runtime_descriptor_array = true,
231 .stencil_export = true,
232 .storage_16bit = true,
233 },
234 };
235 entry_point = spirv_to_nir(spirv, module->size / 4,
236 spec_entries, num_spec_entries,
237 stage, entrypoint_name,
238 &spirv_options, &nir_options);
239 nir = entry_point->shader;
240 assert(nir->info.stage == stage);
241 nir_validate_shader(nir);
242
243 free(spec_entries);
244
245 /* We have to lower away local constant initializers right before we
246 * inline functions. That way they get properly initialized at the top
247 * of the function and not at the top of its caller.
248 */
249 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
250 NIR_PASS_V(nir, nir_lower_returns);
251 NIR_PASS_V(nir, nir_inline_functions);
252 NIR_PASS_V(nir, nir_copy_prop);
253
254 /* Pick off the single entrypoint that we want */
255 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
256 if (func != entry_point)
257 exec_node_remove(&func->node);
258 }
259 assert(exec_list_length(&nir->functions) == 1);
260 entry_point->name = ralloc_strdup(entry_point, "main");
261
262 /* Make sure we lower constant initializers on output variables so that
263 * nir_remove_dead_variables below sees the corresponding stores
264 */
265 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
266
267 /* Now that we've deleted all but the main function, we can go ahead and
268 * lower the rest of the constant initializers.
269 */
270 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
271
272 /* Split member structs. We do this before lower_io_to_temporaries so that
273 * it doesn't lower system values to temporaries by accident.
274 */
275 NIR_PASS_V(nir, nir_split_var_copies);
276 NIR_PASS_V(nir, nir_split_per_member_structs);
277
278 NIR_PASS_V(nir, nir_remove_dead_variables,
279 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
280
281 NIR_PASS_V(nir, nir_lower_system_values);
282 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
283 }
284
285 /* Vulkan uses the separate-shader linking model */
286 nir->info.separate_shader = true;
287
288 nir_shader_gather_info(nir, entry_point->impl);
289
290 static const nir_lower_tex_options tex_options = {
291 .lower_txp = ~0,
292 };
293
294 nir_lower_tex(nir, &tex_options);
295
296 nir_lower_vars_to_ssa(nir);
297
298 if (nir->info.stage == MESA_SHADER_VERTEX ||
299 nir->info.stage == MESA_SHADER_GEOMETRY) {
300 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
301 nir_shader_get_entrypoint(nir), true, true);
302 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
303 nir->info.stage == MESA_SHADER_FRAGMENT) {
304 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
305 nir_shader_get_entrypoint(nir), true, false);
306 }
307
308 nir_split_var_copies(nir);
309 nir_lower_var_copies(nir);
310
311 nir_lower_global_vars_to_local(nir);
312 nir_remove_dead_variables(nir, nir_var_local);
313 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
314 .subgroup_size = 64,
315 .ballot_bit_size = 64,
316 .lower_to_scalar = 1,
317 .lower_subgroup_masks = 1,
318 .lower_shuffle = 1,
319 .lower_shuffle_to_32bit = 1,
320 .lower_vote_eq_to_ballot = 1,
321 });
322
323 nir_lower_load_const_to_scalar(nir);
324
325 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
326 radv_optimize_nir(nir, false);
327
328 /* Indirect lowering must be called after the radv_optimize_nir() loop
329 * has been called at least once. Otherwise indirect lowering can
330 * bloat the instruction count of the loop and cause it to be
331 * considered too large for unrolling.
332 */
333 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
334 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT);
335
336 return nir;
337 }
338
339 void *
340 radv_alloc_shader_memory(struct radv_device *device,
341 struct radv_shader_variant *shader)
342 {
343 mtx_lock(&device->shader_slab_mutex);
344 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
345 uint64_t offset = 0;
346 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
347 if (s->bo_offset - offset >= shader->code_size) {
348 shader->bo = slab->bo;
349 shader->bo_offset = offset;
350 list_addtail(&shader->slab_list, &s->slab_list);
351 mtx_unlock(&device->shader_slab_mutex);
352 return slab->ptr + offset;
353 }
354 offset = align_u64(s->bo_offset + s->code_size, 256);
355 }
356 if (slab->size - offset >= shader->code_size) {
357 shader->bo = slab->bo;
358 shader->bo_offset = offset;
359 list_addtail(&shader->slab_list, &slab->shaders);
360 mtx_unlock(&device->shader_slab_mutex);
361 return slab->ptr + offset;
362 }
363 }
364
365 mtx_unlock(&device->shader_slab_mutex);
366 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
367
368 slab->size = 256 * 1024;
369 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
370 RADEON_DOMAIN_VRAM,
371 RADEON_FLAG_NO_INTERPROCESS_SHARING |
372 (device->physical_device->cpdma_prefetch_writes_memory ?
373 0 : RADEON_FLAG_READ_ONLY));
374 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
375 list_inithead(&slab->shaders);
376
377 mtx_lock(&device->shader_slab_mutex);
378 list_add(&slab->slabs, &device->shader_slabs);
379
380 shader->bo = slab->bo;
381 shader->bo_offset = 0;
382 list_add(&shader->slab_list, &slab->shaders);
383 mtx_unlock(&device->shader_slab_mutex);
384 return slab->ptr;
385 }
386
387 void
388 radv_destroy_shader_slabs(struct radv_device *device)
389 {
390 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
391 device->ws->buffer_destroy(slab->bo);
392 free(slab);
393 }
394 mtx_destroy(&device->shader_slab_mutex);
395 }
396
397 /* For the UMR disassembler. */
398 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
399 #define DEBUGGER_NUM_MARKERS 5
400
401 static unsigned
402 radv_get_shader_binary_size(struct ac_shader_binary *binary)
403 {
404 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
405 }
406
407 static void
408 radv_fill_shader_variant(struct radv_device *device,
409 struct radv_shader_variant *variant,
410 struct ac_shader_binary *binary,
411 gl_shader_stage stage)
412 {
413 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
414 struct radv_shader_info *info = &variant->info.info;
415 unsigned vgpr_comp_cnt = 0;
416
417 variant->code_size = radv_get_shader_binary_size(binary);
418 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
419 S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) |
420 S_00B12C_SCRATCH_EN(scratch_enabled);
421
422 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
423 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
424 S_00B848_DX10_CLAMP(1) |
425 S_00B848_FLOAT_MODE(variant->config.float_mode);
426
427 switch (stage) {
428 case MESA_SHADER_TESS_EVAL:
429 vgpr_comp_cnt = 3;
430 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
431 break;
432 case MESA_SHADER_TESS_CTRL:
433 if (device->physical_device->rad_info.chip_class >= GFX9) {
434 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
435 } else {
436 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
437 }
438 break;
439 case MESA_SHADER_VERTEX:
440 case MESA_SHADER_GEOMETRY:
441 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
442 break;
443 case MESA_SHADER_FRAGMENT:
444 break;
445 case MESA_SHADER_COMPUTE:
446 variant->rsrc2 |=
447 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
448 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
449 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
450 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
451 info->cs.uses_thread_id[1] ? 1 : 0) |
452 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
453 S_00B84C_LDS_SIZE(variant->config.lds_size);
454 break;
455 default:
456 unreachable("unsupported shader type");
457 break;
458 }
459
460 if (device->physical_device->rad_info.chip_class >= GFX9 &&
461 stage == MESA_SHADER_GEOMETRY) {
462 unsigned es_type = variant->info.gs.es_type;
463 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
464
465 if (es_type == MESA_SHADER_VERTEX) {
466 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
467 } else if (es_type == MESA_SHADER_TESS_EVAL) {
468 es_vgpr_comp_cnt = 3;
469 } else {
470 unreachable("invalid shader ES type");
471 }
472
473 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
474 * VGPR[0:4] are always loaded.
475 */
476 if (info->uses_invocation_id) {
477 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
478 } else if (info->uses_prim_id) {
479 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
480 } else if (variant->info.gs.vertices_in >= 3) {
481 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
482 } else {
483 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
484 }
485
486 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
487 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
488 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
489 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
490 stage == MESA_SHADER_TESS_CTRL) {
491 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
492 } else {
493 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
494 }
495
496 void *ptr = radv_alloc_shader_memory(device, variant);
497 memcpy(ptr, binary->code, binary->code_size);
498
499 /* Add end-of-code markers for the UMR disassembler. */
500 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
501 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
502 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
503
504 }
505
506 static void radv_init_llvm_target()
507 {
508 LLVMInitializeAMDGPUTargetInfo();
509 LLVMInitializeAMDGPUTarget();
510 LLVMInitializeAMDGPUTargetMC();
511 LLVMInitializeAMDGPUAsmPrinter();
512
513 /* For inline assembly. */
514 LLVMInitializeAMDGPUAsmParser();
515
516 /* Workaround for bug in llvm 4.0 that causes image intrinsics
517 * to disappear.
518 * https://reviews.llvm.org/D26348
519 *
520 * Workaround for bug in llvm that causes the GPU to hang in presence
521 * of nested loops because there is an exec mask issue. The proper
522 * solution is to fix LLVM but this might require a bunch of work.
523 * https://bugs.llvm.org/show_bug.cgi?id=37744
524 *
525 * "mesa" is the prefix for error messages.
526 */
527 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
528 "-amdgpu-skip-threshold=1" };
529 LLVMParseCommandLineOptions(3, argv, NULL);
530 }
531
532 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
533
534 static void radv_init_llvm_once(void)
535 {
536 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
537 }
538
539 static struct radv_shader_variant *
540 shader_variant_create(struct radv_device *device,
541 struct radv_shader_module *module,
542 struct nir_shader * const *shaders,
543 int shader_count,
544 gl_shader_stage stage,
545 struct radv_nir_compiler_options *options,
546 bool gs_copy_shader,
547 void **code_out,
548 unsigned *code_size_out)
549 {
550 enum radeon_family chip_family = device->physical_device->rad_info.family;
551 enum ac_target_machine_options tm_options = 0;
552 struct radv_shader_variant *variant;
553 struct ac_shader_binary binary;
554 struct ac_llvm_compiler ac_llvm;
555 bool thread_compiler;
556 variant = calloc(1, sizeof(struct radv_shader_variant));
557 if (!variant)
558 return NULL;
559
560 options->family = chip_family;
561 options->chip_class = device->physical_device->rad_info.chip_class;
562 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
563 options->dump_preoptir = options->dump_shader &&
564 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
565 options->record_llvm_ir = device->keep_shader_info;
566 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
567 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
568 options->address32_hi = device->physical_device->rad_info.address32_hi;
569
570 if (options->supports_spill)
571 tm_options |= AC_TM_SUPPORTS_SPILL;
572 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
573 tm_options |= AC_TM_SISCHED;
574 if (options->check_ir)
575 tm_options |= AC_TM_CHECK_IR;
576
577 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
578 radv_init_llvm_once();
579 radv_init_llvm_compiler(&ac_llvm, false,
580 thread_compiler,
581 chip_family, tm_options);
582 if (gs_copy_shader) {
583 assert(shader_count == 1);
584 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
585 &variant->config, &variant->info,
586 options);
587 } else {
588 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
589 &variant->info, shaders, shader_count,
590 options);
591 }
592
593 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
594
595 radv_fill_shader_variant(device, variant, &binary, stage);
596
597 if (code_out) {
598 *code_out = binary.code;
599 *code_size_out = binary.code_size;
600 } else
601 free(binary.code);
602 free(binary.config);
603 free(binary.rodata);
604 free(binary.global_symbol_offsets);
605 free(binary.relocs);
606 variant->ref_count = 1;
607
608 if (device->keep_shader_info) {
609 variant->disasm_string = binary.disasm_string;
610 variant->llvm_ir_string = binary.llvm_ir_string;
611 if (!gs_copy_shader && !module->nir) {
612 variant->nir = *shaders;
613 variant->spirv = (uint32_t *)module->data;
614 variant->spirv_size = module->size;
615 }
616 } else {
617 free(binary.disasm_string);
618 }
619
620 return variant;
621 }
622
623 struct radv_shader_variant *
624 radv_shader_variant_create(struct radv_device *device,
625 struct radv_shader_module *module,
626 struct nir_shader *const *shaders,
627 int shader_count,
628 struct radv_pipeline_layout *layout,
629 const struct radv_shader_variant_key *key,
630 void **code_out,
631 unsigned *code_size_out)
632 {
633 struct radv_nir_compiler_options options = {0};
634
635 options.layout = layout;
636 if (key)
637 options.key = *key;
638
639 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
640 options.supports_spill = true;
641
642 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
643 &options, false, code_out, code_size_out);
644 }
645
646 struct radv_shader_variant *
647 radv_create_gs_copy_shader(struct radv_device *device,
648 struct nir_shader *shader,
649 void **code_out,
650 unsigned *code_size_out,
651 bool multiview)
652 {
653 struct radv_nir_compiler_options options = {0};
654
655 options.key.has_multiview_view_index = multiview;
656
657 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
658 &options, true, code_out, code_size_out);
659 }
660
661 void
662 radv_shader_variant_destroy(struct radv_device *device,
663 struct radv_shader_variant *variant)
664 {
665 if (!p_atomic_dec_zero(&variant->ref_count))
666 return;
667
668 mtx_lock(&device->shader_slab_mutex);
669 list_del(&variant->slab_list);
670 mtx_unlock(&device->shader_slab_mutex);
671
672 ralloc_free(variant->nir);
673 free(variant->disasm_string);
674 free(variant->llvm_ir_string);
675 free(variant);
676 }
677
678 const char *
679 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
680 {
681 switch (stage) {
682 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
683 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
684 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
685 case MESA_SHADER_COMPUTE: return "Compute Shader";
686 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
687 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
688 default:
689 return "Unknown shader";
690 };
691 }
692
693 static void
694 generate_shader_stats(struct radv_device *device,
695 struct radv_shader_variant *variant,
696 gl_shader_stage stage,
697 struct _mesa_string_buffer *buf)
698 {
699 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
700 struct ac_shader_config *conf;
701 unsigned max_simd_waves;
702 unsigned lds_per_wave = 0;
703
704 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
705
706 conf = &variant->config;
707
708 if (stage == MESA_SHADER_FRAGMENT) {
709 lds_per_wave = conf->lds_size * lds_increment +
710 align(variant->info.fs.num_interp * 48,
711 lds_increment);
712 }
713
714 if (conf->num_sgprs)
715 max_simd_waves =
716 MIN2(max_simd_waves,
717 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
718
719 if (conf->num_vgprs)
720 max_simd_waves =
721 MIN2(max_simd_waves,
722 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
723
724 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
725 * that PS can use.
726 */
727 if (lds_per_wave)
728 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
729
730 if (stage == MESA_SHADER_FRAGMENT) {
731 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
732 "SPI_PS_INPUT_ADDR = 0x%04x\n"
733 "SPI_PS_INPUT_ENA = 0x%04x\n",
734 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
735 }
736
737 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
738 "SGPRS: %d\n"
739 "VGPRS: %d\n"
740 "Spilled SGPRs: %d\n"
741 "Spilled VGPRs: %d\n"
742 "PrivMem VGPRS: %d\n"
743 "Code Size: %d bytes\n"
744 "LDS: %d blocks\n"
745 "Scratch: %d bytes per wave\n"
746 "Max Waves: %d\n"
747 "********************\n\n\n",
748 conf->num_sgprs, conf->num_vgprs,
749 conf->spilled_sgprs, conf->spilled_vgprs,
750 variant->info.private_mem_vgprs, variant->code_size,
751 conf->lds_size, conf->scratch_bytes_per_wave,
752 max_simd_waves);
753 }
754
755 void
756 radv_shader_dump_stats(struct radv_device *device,
757 struct radv_shader_variant *variant,
758 gl_shader_stage stage,
759 FILE *file)
760 {
761 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
762
763 generate_shader_stats(device, variant, stage, buf);
764
765 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
766 fprintf(file, "%s", buf->buf);
767
768 _mesa_string_buffer_destroy(buf);
769 }
770
771 VkResult
772 radv_GetShaderInfoAMD(VkDevice _device,
773 VkPipeline _pipeline,
774 VkShaderStageFlagBits shaderStage,
775 VkShaderInfoTypeAMD infoType,
776 size_t* pInfoSize,
777 void* pInfo)
778 {
779 RADV_FROM_HANDLE(radv_device, device, _device);
780 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
781 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
782 struct radv_shader_variant *variant = pipeline->shaders[stage];
783 struct _mesa_string_buffer *buf;
784 VkResult result = VK_SUCCESS;
785
786 /* Spec doesn't indicate what to do if the stage is invalid, so just
787 * return no info for this. */
788 if (!variant)
789 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
790
791 switch (infoType) {
792 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
793 if (!pInfo) {
794 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
795 } else {
796 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
797 struct ac_shader_config *conf = &variant->config;
798
799 VkShaderStatisticsInfoAMD statistics = {};
800 statistics.shaderStageMask = shaderStage;
801 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
802 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
803 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
804
805 if (stage == MESA_SHADER_COMPUTE) {
806 unsigned *local_size = variant->nir->info.cs.local_size;
807 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
808
809 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
810 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
811
812 statistics.computeWorkGroupSize[0] = local_size[0];
813 statistics.computeWorkGroupSize[1] = local_size[1];
814 statistics.computeWorkGroupSize[2] = local_size[2];
815 } else {
816 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
817 }
818
819 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
820 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
821 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
822 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
823 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
824
825 size_t size = *pInfoSize;
826 *pInfoSize = sizeof(statistics);
827
828 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
829
830 if (size < *pInfoSize)
831 result = VK_INCOMPLETE;
832 }
833
834 break;
835 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
836 buf = _mesa_string_buffer_create(NULL, 1024);
837
838 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
839 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
840 generate_shader_stats(device, variant, stage, buf);
841
842 /* Need to include the null terminator. */
843 size_t length = buf->length + 1;
844
845 if (!pInfo) {
846 *pInfoSize = length;
847 } else {
848 size_t size = *pInfoSize;
849 *pInfoSize = length;
850
851 memcpy(pInfo, buf->buf, MIN2(size, length));
852
853 if (size < length)
854 result = VK_INCOMPLETE;
855 }
856
857 _mesa_string_buffer_destroy(buf);
858 break;
859 default:
860 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
861 result = VK_ERROR_FEATURE_NOT_PRESENT;
862 break;
863 }
864
865 return result;
866 }