radv: add VK_NV_compute_shader_derivates support
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "nir/nir.h"
35 #include "nir/nir_builder.h"
36 #include "spirv/nir_spirv.h"
37
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 #include <llvm-c/Support.h>
41
42 #include "sid.h"
43 #include "gfx9d.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "vk_format.h"
48 #include "util/debug.h"
49 #include "ac_exp_param.h"
50
51 #include "util/string_buffer.h"
52
53 static const struct nir_shader_compiler_options nir_options = {
54 .vertex_id_zero_based = true,
55 .lower_scmp = true,
56 .lower_flrp16 = true,
57 .lower_flrp32 = true,
58 .lower_flrp64 = true,
59 .lower_device_index_to_zero = true,
60 .lower_fsat = true,
61 .lower_fdiv = true,
62 .lower_sub = true,
63 .lower_pack_snorm_2x16 = true,
64 .lower_pack_snorm_4x8 = true,
65 .lower_pack_unorm_2x16 = true,
66 .lower_pack_unorm_4x8 = true,
67 .lower_unpack_snorm_2x16 = true,
68 .lower_unpack_snorm_4x8 = true,
69 .lower_unpack_unorm_2x16 = true,
70 .lower_unpack_unorm_4x8 = true,
71 .lower_extract_byte = true,
72 .lower_extract_word = true,
73 .lower_ffma = true,
74 .lower_fpow = true,
75 .lower_mul_2x32_64 = true,
76 .max_unroll_iterations = 32
77 };
78
79 VkResult radv_CreateShaderModule(
80 VkDevice _device,
81 const VkShaderModuleCreateInfo* pCreateInfo,
82 const VkAllocationCallbacks* pAllocator,
83 VkShaderModule* pShaderModule)
84 {
85 RADV_FROM_HANDLE(radv_device, device, _device);
86 struct radv_shader_module *module;
87
88 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
89 assert(pCreateInfo->flags == 0);
90
91 module = vk_alloc2(&device->alloc, pAllocator,
92 sizeof(*module) + pCreateInfo->codeSize, 8,
93 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
94 if (module == NULL)
95 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
96
97 module->nir = NULL;
98 module->size = pCreateInfo->codeSize;
99 memcpy(module->data, pCreateInfo->pCode, module->size);
100
101 _mesa_sha1_compute(module->data, module->size, module->sha1);
102
103 *pShaderModule = radv_shader_module_to_handle(module);
104
105 return VK_SUCCESS;
106 }
107
108 void radv_DestroyShaderModule(
109 VkDevice _device,
110 VkShaderModule _module,
111 const VkAllocationCallbacks* pAllocator)
112 {
113 RADV_FROM_HANDLE(radv_device, device, _device);
114 RADV_FROM_HANDLE(radv_shader_module, module, _module);
115
116 if (!module)
117 return;
118
119 vk_free2(&device->alloc, pAllocator, module);
120 }
121
122 void
123 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
124 bool allow_copies)
125 {
126 bool progress;
127
128 do {
129 progress = false;
130
131 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
132 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
133
134 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
135 NIR_PASS_V(shader, nir_lower_pack);
136
137 if (allow_copies) {
138 /* Only run this pass in the first call to
139 * radv_optimize_nir. Later calls assume that we've
140 * lowered away any copy_deref instructions and we
141 * don't want to introduce any more.
142 */
143 NIR_PASS(progress, shader, nir_opt_find_array_copies);
144 }
145
146 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
147 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
148
149 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
150 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
151
152 NIR_PASS(progress, shader, nir_copy_prop);
153 NIR_PASS(progress, shader, nir_opt_remove_phis);
154 NIR_PASS(progress, shader, nir_opt_dce);
155 if (nir_opt_trivial_continues(shader)) {
156 progress = true;
157 NIR_PASS(progress, shader, nir_copy_prop);
158 NIR_PASS(progress, shader, nir_opt_remove_phis);
159 NIR_PASS(progress, shader, nir_opt_dce);
160 }
161 NIR_PASS(progress, shader, nir_opt_if, true);
162 NIR_PASS(progress, shader, nir_opt_dead_cf);
163 NIR_PASS(progress, shader, nir_opt_cse);
164 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
165 NIR_PASS(progress, shader, nir_opt_algebraic);
166 NIR_PASS(progress, shader, nir_opt_constant_folding);
167 NIR_PASS(progress, shader, nir_opt_undef);
168 NIR_PASS(progress, shader, nir_opt_conditional_discard);
169 if (shader->options->max_unroll_iterations) {
170 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
171 }
172 } while (progress && !optimize_conservatively);
173
174 NIR_PASS(progress, shader, nir_opt_shrink_load);
175 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
176 }
177
178 nir_shader *
179 radv_shader_compile_to_nir(struct radv_device *device,
180 struct radv_shader_module *module,
181 const char *entrypoint_name,
182 gl_shader_stage stage,
183 const VkSpecializationInfo *spec_info,
184 const VkPipelineCreateFlags flags)
185 {
186 nir_shader *nir;
187 nir_function *entry_point;
188 if (module->nir) {
189 /* Some things such as our meta clear/blit code will give us a NIR
190 * shader directly. In that case, we just ignore the SPIR-V entirely
191 * and just use the NIR shader */
192 nir = module->nir;
193 nir->options = &nir_options;
194 nir_validate_shader(nir, "in internal shader");
195
196 assert(exec_list_length(&nir->functions) == 1);
197 struct exec_node *node = exec_list_get_head(&nir->functions);
198 entry_point = exec_node_data(nir_function, node, node);
199 } else {
200 uint32_t *spirv = (uint32_t *) module->data;
201 assert(module->size % 4 == 0);
202
203 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
204 radv_print_spirv(spirv, module->size, stderr);
205
206 uint32_t num_spec_entries = 0;
207 struct nir_spirv_specialization *spec_entries = NULL;
208 if (spec_info && spec_info->mapEntryCount > 0) {
209 num_spec_entries = spec_info->mapEntryCount;
210 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
211 for (uint32_t i = 0; i < num_spec_entries; i++) {
212 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
213 const void *data = spec_info->pData + entry.offset;
214 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
215
216 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
217 if (spec_info->dataSize == 8)
218 spec_entries[i].data64 = *(const uint64_t *)data;
219 else
220 spec_entries[i].data32 = *(const uint32_t *)data;
221 }
222 }
223 const struct spirv_to_nir_options spirv_options = {
224 .lower_ubo_ssbo_access_to_offsets = true,
225 .caps = {
226 .derivative_group = true,
227 .descriptor_array_dynamic_indexing = true,
228 .device_group = true,
229 .draw_parameters = true,
230 .float16 = true,
231 .float64 = true,
232 .gcn_shader = true,
233 .geometry_streams = true,
234 .image_read_without_format = true,
235 .image_write_without_format = true,
236 .int8 = true,
237 .int16 = true,
238 .int64 = true,
239 .int64_atomics = true,
240 .multiview = true,
241 .physical_storage_buffer_address = true,
242 .runtime_descriptor_array = true,
243 .shader_viewport_index_layer = true,
244 .stencil_export = true,
245 .storage_8bit = true,
246 .storage_16bit = true,
247 .storage_image_ms = true,
248 .subgroup_arithmetic = true,
249 .subgroup_ballot = true,
250 .subgroup_basic = true,
251 .subgroup_quad = true,
252 .subgroup_shuffle = true,
253 .subgroup_vote = true,
254 .tessellation = true,
255 .transform_feedback = true,
256 .trinary_minmax = true,
257 .variable_pointers = true,
258 },
259 .ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
260 .ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
261 .phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1),
262 .push_const_ptr_type = glsl_uint_type(),
263 .shared_ptr_type = glsl_uint_type(),
264 };
265 entry_point = spirv_to_nir(spirv, module->size / 4,
266 spec_entries, num_spec_entries,
267 stage, entrypoint_name,
268 &spirv_options, &nir_options);
269 nir = entry_point->shader;
270 assert(nir->info.stage == stage);
271 nir_validate_shader(nir, "after spirv_to_nir");
272
273 free(spec_entries);
274
275 /* We have to lower away local constant initializers right before we
276 * inline functions. That way they get properly initialized at the top
277 * of the function and not at the top of its caller.
278 */
279 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
280 NIR_PASS_V(nir, nir_lower_returns);
281 NIR_PASS_V(nir, nir_inline_functions);
282 NIR_PASS_V(nir, nir_opt_deref);
283
284 /* Pick off the single entrypoint that we want */
285 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
286 if (func != entry_point)
287 exec_node_remove(&func->node);
288 }
289 assert(exec_list_length(&nir->functions) == 1);
290 entry_point->name = ralloc_strdup(entry_point, "main");
291
292 /* Make sure we lower constant initializers on output variables so that
293 * nir_remove_dead_variables below sees the corresponding stores
294 */
295 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
296
297 /* Now that we've deleted all but the main function, we can go ahead and
298 * lower the rest of the constant initializers.
299 */
300 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
301
302 /* Split member structs. We do this before lower_io_to_temporaries so that
303 * it doesn't lower system values to temporaries by accident.
304 */
305 NIR_PASS_V(nir, nir_split_var_copies);
306 NIR_PASS_V(nir, nir_split_per_member_structs);
307
308 NIR_PASS_V(nir, nir_remove_dead_variables,
309 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
310
311 NIR_PASS_V(nir, nir_lower_system_values);
312 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
313 }
314
315 /* Vulkan uses the separate-shader linking model */
316 nir->info.separate_shader = true;
317
318 nir_shader_gather_info(nir, entry_point->impl);
319
320 static const nir_lower_tex_options tex_options = {
321 .lower_txp = ~0,
322 .lower_tg4_offsets = true,
323 };
324
325 nir_lower_tex(nir, &tex_options);
326
327 nir_lower_vars_to_ssa(nir);
328
329 if (nir->info.stage == MESA_SHADER_VERTEX ||
330 nir->info.stage == MESA_SHADER_GEOMETRY) {
331 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
332 nir_shader_get_entrypoint(nir), true, true);
333 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
334 nir->info.stage == MESA_SHADER_FRAGMENT) {
335 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
336 nir_shader_get_entrypoint(nir), true, false);
337 }
338
339 nir_split_var_copies(nir);
340
341 nir_lower_global_vars_to_local(nir);
342 nir_remove_dead_variables(nir, nir_var_function_temp);
343 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
344 .subgroup_size = 64,
345 .ballot_bit_size = 64,
346 .lower_to_scalar = 1,
347 .lower_subgroup_masks = 1,
348 .lower_shuffle = 1,
349 .lower_shuffle_to_32bit = 1,
350 .lower_vote_eq_to_ballot = 1,
351 });
352
353 nir_lower_load_const_to_scalar(nir);
354
355 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
356 radv_optimize_nir(nir, false, true);
357
358 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
359 * to remove any copies introduced by nir_opt_find_array_copies().
360 */
361 nir_lower_var_copies(nir);
362
363 /* Indirect lowering must be called after the radv_optimize_nir() loop
364 * has been called at least once. Otherwise indirect lowering can
365 * bloat the instruction count of the loop and cause it to be
366 * considered too large for unrolling.
367 */
368 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
369 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
370
371 return nir;
372 }
373
374 void *
375 radv_alloc_shader_memory(struct radv_device *device,
376 struct radv_shader_variant *shader)
377 {
378 mtx_lock(&device->shader_slab_mutex);
379 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
380 uint64_t offset = 0;
381 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
382 if (s->bo_offset - offset >= shader->code_size) {
383 shader->bo = slab->bo;
384 shader->bo_offset = offset;
385 list_addtail(&shader->slab_list, &s->slab_list);
386 mtx_unlock(&device->shader_slab_mutex);
387 return slab->ptr + offset;
388 }
389 offset = align_u64(s->bo_offset + s->code_size, 256);
390 }
391 if (slab->size - offset >= shader->code_size) {
392 shader->bo = slab->bo;
393 shader->bo_offset = offset;
394 list_addtail(&shader->slab_list, &slab->shaders);
395 mtx_unlock(&device->shader_slab_mutex);
396 return slab->ptr + offset;
397 }
398 }
399
400 mtx_unlock(&device->shader_slab_mutex);
401 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
402
403 slab->size = 256 * 1024;
404 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
405 RADEON_DOMAIN_VRAM,
406 RADEON_FLAG_NO_INTERPROCESS_SHARING |
407 (device->physical_device->cpdma_prefetch_writes_memory ?
408 0 : RADEON_FLAG_READ_ONLY),
409 RADV_BO_PRIORITY_SHADER);
410 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
411 list_inithead(&slab->shaders);
412
413 mtx_lock(&device->shader_slab_mutex);
414 list_add(&slab->slabs, &device->shader_slabs);
415
416 shader->bo = slab->bo;
417 shader->bo_offset = 0;
418 list_add(&shader->slab_list, &slab->shaders);
419 mtx_unlock(&device->shader_slab_mutex);
420 return slab->ptr;
421 }
422
423 void
424 radv_destroy_shader_slabs(struct radv_device *device)
425 {
426 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
427 device->ws->buffer_destroy(slab->bo);
428 free(slab);
429 }
430 mtx_destroy(&device->shader_slab_mutex);
431 }
432
433 /* For the UMR disassembler. */
434 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
435 #define DEBUGGER_NUM_MARKERS 5
436
437 static unsigned
438 radv_get_shader_binary_size(struct ac_shader_binary *binary)
439 {
440 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
441 }
442
443 static void
444 radv_fill_shader_variant(struct radv_device *device,
445 struct radv_shader_variant *variant,
446 struct ac_shader_binary *binary,
447 gl_shader_stage stage)
448 {
449 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
450 struct radv_shader_info *info = &variant->info.info;
451 unsigned vgpr_comp_cnt = 0;
452
453 variant->code_size = radv_get_shader_binary_size(binary);
454 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
455 S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) |
456 S_00B12C_SCRATCH_EN(scratch_enabled) |
457 S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
458 S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
459 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
460 S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
461 S_00B12C_SO_EN(!!info->so.num_outputs);
462
463 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
464 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
465 S_00B848_DX10_CLAMP(1) |
466 S_00B848_FLOAT_MODE(variant->config.float_mode);
467
468 switch (stage) {
469 case MESA_SHADER_TESS_EVAL:
470 vgpr_comp_cnt = 3;
471 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
472 break;
473 case MESA_SHADER_TESS_CTRL:
474 if (device->physical_device->rad_info.chip_class >= GFX9) {
475 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
476 } else {
477 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
478 }
479 break;
480 case MESA_SHADER_VERTEX:
481 case MESA_SHADER_GEOMETRY:
482 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
483 break;
484 case MESA_SHADER_FRAGMENT:
485 break;
486 case MESA_SHADER_COMPUTE:
487 variant->rsrc2 |=
488 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
489 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
490 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
491 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
492 info->cs.uses_thread_id[1] ? 1 : 0) |
493 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
494 S_00B84C_LDS_SIZE(variant->config.lds_size);
495 break;
496 default:
497 unreachable("unsupported shader type");
498 break;
499 }
500
501 if (device->physical_device->rad_info.chip_class >= GFX9 &&
502 stage == MESA_SHADER_GEOMETRY) {
503 unsigned es_type = variant->info.gs.es_type;
504 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
505
506 if (es_type == MESA_SHADER_VERTEX) {
507 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
508 } else if (es_type == MESA_SHADER_TESS_EVAL) {
509 es_vgpr_comp_cnt = 3;
510 } else {
511 unreachable("invalid shader ES type");
512 }
513
514 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
515 * VGPR[0:4] are always loaded.
516 */
517 if (info->uses_invocation_id) {
518 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
519 } else if (info->uses_prim_id) {
520 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
521 } else if (variant->info.gs.vertices_in >= 3) {
522 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
523 } else {
524 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
525 }
526
527 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
528 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
529 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
530 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
531 stage == MESA_SHADER_TESS_CTRL) {
532 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
533 } else {
534 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
535 }
536
537 void *ptr = radv_alloc_shader_memory(device, variant);
538 memcpy(ptr, binary->code, binary->code_size);
539
540 /* Add end-of-code markers for the UMR disassembler. */
541 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
542 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
543 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
544
545 }
546
547 static void radv_init_llvm_target()
548 {
549 LLVMInitializeAMDGPUTargetInfo();
550 LLVMInitializeAMDGPUTarget();
551 LLVMInitializeAMDGPUTargetMC();
552 LLVMInitializeAMDGPUAsmPrinter();
553
554 /* For inline assembly. */
555 LLVMInitializeAMDGPUAsmParser();
556
557 /* Workaround for bug in llvm 4.0 that causes image intrinsics
558 * to disappear.
559 * https://reviews.llvm.org/D26348
560 *
561 * Workaround for bug in llvm that causes the GPU to hang in presence
562 * of nested loops because there is an exec mask issue. The proper
563 * solution is to fix LLVM but this might require a bunch of work.
564 * https://bugs.llvm.org/show_bug.cgi?id=37744
565 *
566 * "mesa" is the prefix for error messages.
567 */
568 if (HAVE_LLVM >= 0x0800) {
569 const char *argv[2] = { "mesa", "-simplifycfg-sink-common=false" };
570 LLVMParseCommandLineOptions(2, argv, NULL);
571
572 } else {
573 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
574 "-amdgpu-skip-threshold=1" };
575 LLVMParseCommandLineOptions(3, argv, NULL);
576 }
577 }
578
579 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
580
581 static void radv_init_llvm_once(void)
582 {
583 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
584 }
585
586 static struct radv_shader_variant *
587 shader_variant_create(struct radv_device *device,
588 struct radv_shader_module *module,
589 struct nir_shader * const *shaders,
590 int shader_count,
591 gl_shader_stage stage,
592 struct radv_nir_compiler_options *options,
593 bool gs_copy_shader,
594 void **code_out,
595 unsigned *code_size_out)
596 {
597 enum radeon_family chip_family = device->physical_device->rad_info.family;
598 enum ac_target_machine_options tm_options = 0;
599 struct radv_shader_variant *variant;
600 struct ac_shader_binary binary;
601 struct ac_llvm_compiler ac_llvm;
602 bool thread_compiler;
603 variant = calloc(1, sizeof(struct radv_shader_variant));
604 if (!variant)
605 return NULL;
606
607 options->family = chip_family;
608 options->chip_class = device->physical_device->rad_info.chip_class;
609 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
610 options->dump_preoptir = options->dump_shader &&
611 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
612 options->record_llvm_ir = device->keep_shader_info;
613 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
614 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
615 options->address32_hi = device->physical_device->rad_info.address32_hi;
616
617 if (options->supports_spill)
618 tm_options |= AC_TM_SUPPORTS_SPILL;
619 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
620 tm_options |= AC_TM_SISCHED;
621 if (options->check_ir)
622 tm_options |= AC_TM_CHECK_IR;
623
624 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
625 radv_init_llvm_once();
626 radv_init_llvm_compiler(&ac_llvm,
627 thread_compiler,
628 chip_family, tm_options);
629 if (gs_copy_shader) {
630 assert(shader_count == 1);
631 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
632 &variant->config, &variant->info,
633 options);
634 } else {
635 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
636 &variant->info, shaders, shader_count,
637 options);
638 }
639
640 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
641
642 radv_fill_shader_variant(device, variant, &binary, stage);
643
644 if (code_out) {
645 *code_out = binary.code;
646 *code_size_out = binary.code_size;
647 } else
648 free(binary.code);
649 free(binary.config);
650 free(binary.rodata);
651 free(binary.global_symbol_offsets);
652 free(binary.relocs);
653 variant->ref_count = 1;
654
655 if (device->keep_shader_info) {
656 variant->disasm_string = binary.disasm_string;
657 variant->llvm_ir_string = binary.llvm_ir_string;
658 if (!gs_copy_shader && !module->nir) {
659 variant->nir = *shaders;
660 variant->spirv = (uint32_t *)module->data;
661 variant->spirv_size = module->size;
662 }
663 } else {
664 free(binary.disasm_string);
665 }
666
667 return variant;
668 }
669
670 struct radv_shader_variant *
671 radv_shader_variant_create(struct radv_device *device,
672 struct radv_shader_module *module,
673 struct nir_shader *const *shaders,
674 int shader_count,
675 struct radv_pipeline_layout *layout,
676 const struct radv_shader_variant_key *key,
677 void **code_out,
678 unsigned *code_size_out)
679 {
680 struct radv_nir_compiler_options options = {0};
681
682 options.layout = layout;
683 if (key)
684 options.key = *key;
685
686 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
687 options.supports_spill = true;
688
689 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
690 &options, false, code_out, code_size_out);
691 }
692
693 struct radv_shader_variant *
694 radv_create_gs_copy_shader(struct radv_device *device,
695 struct nir_shader *shader,
696 void **code_out,
697 unsigned *code_size_out,
698 bool multiview)
699 {
700 struct radv_nir_compiler_options options = {0};
701
702 options.key.has_multiview_view_index = multiview;
703
704 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
705 &options, true, code_out, code_size_out);
706 }
707
708 void
709 radv_shader_variant_destroy(struct radv_device *device,
710 struct radv_shader_variant *variant)
711 {
712 if (!p_atomic_dec_zero(&variant->ref_count))
713 return;
714
715 mtx_lock(&device->shader_slab_mutex);
716 list_del(&variant->slab_list);
717 mtx_unlock(&device->shader_slab_mutex);
718
719 ralloc_free(variant->nir);
720 free(variant->disasm_string);
721 free(variant->llvm_ir_string);
722 free(variant);
723 }
724
725 const char *
726 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
727 {
728 switch (stage) {
729 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
730 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
731 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
732 case MESA_SHADER_COMPUTE: return "Compute Shader";
733 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
734 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
735 default:
736 return "Unknown shader";
737 };
738 }
739
740 static void
741 generate_shader_stats(struct radv_device *device,
742 struct radv_shader_variant *variant,
743 gl_shader_stage stage,
744 struct _mesa_string_buffer *buf)
745 {
746 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
747 unsigned lds_increment = chip_class >= CIK ? 512 : 256;
748 struct ac_shader_config *conf;
749 unsigned max_simd_waves;
750 unsigned lds_per_wave = 0;
751
752 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
753
754 conf = &variant->config;
755
756 if (stage == MESA_SHADER_FRAGMENT) {
757 lds_per_wave = conf->lds_size * lds_increment +
758 align(variant->info.fs.num_interp * 48,
759 lds_increment);
760 } else if (stage == MESA_SHADER_COMPUTE) {
761 unsigned max_workgroup_size =
762 radv_nir_get_max_workgroup_size(chip_class, variant->nir);
763 lds_per_wave = (conf->lds_size * lds_increment) /
764 DIV_ROUND_UP(max_workgroup_size, 64);
765 }
766
767 if (conf->num_sgprs)
768 max_simd_waves =
769 MIN2(max_simd_waves,
770 ac_get_num_physical_sgprs(chip_class) / conf->num_sgprs);
771
772 if (conf->num_vgprs)
773 max_simd_waves =
774 MIN2(max_simd_waves,
775 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
776
777 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
778 * that PS can use.
779 */
780 if (lds_per_wave)
781 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
782
783 if (stage == MESA_SHADER_FRAGMENT) {
784 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
785 "SPI_PS_INPUT_ADDR = 0x%04x\n"
786 "SPI_PS_INPUT_ENA = 0x%04x\n",
787 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
788 }
789
790 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
791 "SGPRS: %d\n"
792 "VGPRS: %d\n"
793 "Spilled SGPRs: %d\n"
794 "Spilled VGPRs: %d\n"
795 "PrivMem VGPRS: %d\n"
796 "Code Size: %d bytes\n"
797 "LDS: %d blocks\n"
798 "Scratch: %d bytes per wave\n"
799 "Max Waves: %d\n"
800 "********************\n\n\n",
801 conf->num_sgprs, conf->num_vgprs,
802 conf->spilled_sgprs, conf->spilled_vgprs,
803 variant->info.private_mem_vgprs, variant->code_size,
804 conf->lds_size, conf->scratch_bytes_per_wave,
805 max_simd_waves);
806 }
807
808 void
809 radv_shader_dump_stats(struct radv_device *device,
810 struct radv_shader_variant *variant,
811 gl_shader_stage stage,
812 FILE *file)
813 {
814 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
815
816 generate_shader_stats(device, variant, stage, buf);
817
818 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
819 fprintf(file, "%s", buf->buf);
820
821 _mesa_string_buffer_destroy(buf);
822 }
823
824 VkResult
825 radv_GetShaderInfoAMD(VkDevice _device,
826 VkPipeline _pipeline,
827 VkShaderStageFlagBits shaderStage,
828 VkShaderInfoTypeAMD infoType,
829 size_t* pInfoSize,
830 void* pInfo)
831 {
832 RADV_FROM_HANDLE(radv_device, device, _device);
833 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
834 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
835 struct radv_shader_variant *variant = pipeline->shaders[stage];
836 struct _mesa_string_buffer *buf;
837 VkResult result = VK_SUCCESS;
838
839 /* Spec doesn't indicate what to do if the stage is invalid, so just
840 * return no info for this. */
841 if (!variant)
842 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
843
844 switch (infoType) {
845 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
846 if (!pInfo) {
847 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
848 } else {
849 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
850 struct ac_shader_config *conf = &variant->config;
851
852 VkShaderStatisticsInfoAMD statistics = {};
853 statistics.shaderStageMask = shaderStage;
854 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
855 statistics.numPhysicalSgprs = ac_get_num_physical_sgprs(device->physical_device->rad_info.chip_class);
856 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
857
858 if (stage == MESA_SHADER_COMPUTE) {
859 unsigned *local_size = variant->nir->info.cs.local_size;
860 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
861
862 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
863 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
864
865 statistics.computeWorkGroupSize[0] = local_size[0];
866 statistics.computeWorkGroupSize[1] = local_size[1];
867 statistics.computeWorkGroupSize[2] = local_size[2];
868 } else {
869 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
870 }
871
872 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
873 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
874 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
875 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
876 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
877
878 size_t size = *pInfoSize;
879 *pInfoSize = sizeof(statistics);
880
881 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
882
883 if (size < *pInfoSize)
884 result = VK_INCOMPLETE;
885 }
886
887 break;
888 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
889 buf = _mesa_string_buffer_create(NULL, 1024);
890
891 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
892 _mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string);
893 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
894 generate_shader_stats(device, variant, stage, buf);
895
896 /* Need to include the null terminator. */
897 size_t length = buf->length + 1;
898
899 if (!pInfo) {
900 *pInfoSize = length;
901 } else {
902 size_t size = *pInfoSize;
903 *pInfoSize = length;
904
905 memcpy(pInfo, buf->buf, MIN2(size, length));
906
907 if (size < length)
908 result = VK_INCOMPLETE;
909 }
910
911 _mesa_string_buffer_destroy(buf);
912 break;
913 default:
914 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
915 result = VK_ERROR_FEATURE_NOT_PRESENT;
916 break;
917 }
918
919 return result;
920 }