radv: add RADV_DEBUG=checkir
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39 #include <llvm-c/Support.h>
40
41 #include "sid.h"
42 #include "gfx9d.h"
43 #include "ac_binary.h"
44 #include "ac_llvm_util.h"
45 #include "ac_nir_to_llvm.h"
46 #include "vk_format.h"
47 #include "util/debug.h"
48 #include "ac_exp_param.h"
49
50 #include "util/string_buffer.h"
51
52 static const struct nir_shader_compiler_options nir_options = {
53 .vertex_id_zero_based = true,
54 .lower_scmp = true,
55 .lower_flrp32 = true,
56 .lower_flrp64 = true,
57 .lower_device_index_to_zero = true,
58 .lower_fsat = true,
59 .lower_fdiv = true,
60 .lower_sub = true,
61 .lower_pack_snorm_2x16 = true,
62 .lower_pack_snorm_4x8 = true,
63 .lower_pack_unorm_2x16 = true,
64 .lower_pack_unorm_4x8 = true,
65 .lower_unpack_snorm_2x16 = true,
66 .lower_unpack_snorm_4x8 = true,
67 .lower_unpack_unorm_2x16 = true,
68 .lower_unpack_unorm_4x8 = true,
69 .lower_extract_byte = true,
70 .lower_extract_word = true,
71 .lower_ffma = true,
72 .lower_fpow = true,
73 .vs_inputs_dual_locations = true,
74 .max_unroll_iterations = 32
75 };
76
77 VkResult radv_CreateShaderModule(
78 VkDevice _device,
79 const VkShaderModuleCreateInfo* pCreateInfo,
80 const VkAllocationCallbacks* pAllocator,
81 VkShaderModule* pShaderModule)
82 {
83 RADV_FROM_HANDLE(radv_device, device, _device);
84 struct radv_shader_module *module;
85
86 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
87 assert(pCreateInfo->flags == 0);
88
89 module = vk_alloc2(&device->alloc, pAllocator,
90 sizeof(*module) + pCreateInfo->codeSize, 8,
91 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
92 if (module == NULL)
93 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
94
95 module->nir = NULL;
96 module->size = pCreateInfo->codeSize;
97 memcpy(module->data, pCreateInfo->pCode, module->size);
98
99 _mesa_sha1_compute(module->data, module->size, module->sha1);
100
101 *pShaderModule = radv_shader_module_to_handle(module);
102
103 return VK_SUCCESS;
104 }
105
106 void radv_DestroyShaderModule(
107 VkDevice _device,
108 VkShaderModule _module,
109 const VkAllocationCallbacks* pAllocator)
110 {
111 RADV_FROM_HANDLE(radv_device, device, _device);
112 RADV_FROM_HANDLE(radv_shader_module, module, _module);
113
114 if (!module)
115 return;
116
117 vk_free2(&device->alloc, pAllocator, module);
118 }
119
120 void
121 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
122 {
123 bool progress;
124
125 do {
126 progress = false;
127
128 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
129 NIR_PASS_V(shader, nir_lower_pack);
130 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
131 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
132
133 NIR_PASS(progress, shader, nir_copy_prop);
134 NIR_PASS(progress, shader, nir_opt_remove_phis);
135 NIR_PASS(progress, shader, nir_opt_dce);
136 if (nir_opt_trivial_continues(shader)) {
137 progress = true;
138 NIR_PASS(progress, shader, nir_copy_prop);
139 NIR_PASS(progress, shader, nir_opt_remove_phis);
140 NIR_PASS(progress, shader, nir_opt_dce);
141 }
142 NIR_PASS(progress, shader, nir_opt_if);
143 NIR_PASS(progress, shader, nir_opt_dead_cf);
144 NIR_PASS(progress, shader, nir_opt_cse);
145 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
146 NIR_PASS(progress, shader, nir_opt_algebraic);
147 NIR_PASS(progress, shader, nir_opt_constant_folding);
148 NIR_PASS(progress, shader, nir_opt_undef);
149 NIR_PASS(progress, shader, nir_opt_conditional_discard);
150 if (shader->options->max_unroll_iterations) {
151 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
152 }
153 } while (progress && !optimize_conservatively);
154
155 NIR_PASS(progress, shader, nir_opt_shrink_load);
156 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
157 }
158
159 nir_shader *
160 radv_shader_compile_to_nir(struct radv_device *device,
161 struct radv_shader_module *module,
162 const char *entrypoint_name,
163 gl_shader_stage stage,
164 const VkSpecializationInfo *spec_info,
165 const VkPipelineCreateFlags flags)
166 {
167 nir_shader *nir;
168 nir_function *entry_point;
169 if (module->nir) {
170 /* Some things such as our meta clear/blit code will give us a NIR
171 * shader directly. In that case, we just ignore the SPIR-V entirely
172 * and just use the NIR shader */
173 nir = module->nir;
174 nir->options = &nir_options;
175 nir_validate_shader(nir);
176
177 assert(exec_list_length(&nir->functions) == 1);
178 struct exec_node *node = exec_list_get_head(&nir->functions);
179 entry_point = exec_node_data(nir_function, node, node);
180 } else {
181 uint32_t *spirv = (uint32_t *) module->data;
182 assert(module->size % 4 == 0);
183
184 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
185 radv_print_spirv(spirv, module->size, stderr);
186
187 uint32_t num_spec_entries = 0;
188 struct nir_spirv_specialization *spec_entries = NULL;
189 if (spec_info && spec_info->mapEntryCount > 0) {
190 num_spec_entries = spec_info->mapEntryCount;
191 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
192 for (uint32_t i = 0; i < num_spec_entries; i++) {
193 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
194 const void *data = spec_info->pData + entry.offset;
195 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
196
197 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
198 if (spec_info->dataSize == 8)
199 spec_entries[i].data64 = *(const uint64_t *)data;
200 else
201 spec_entries[i].data32 = *(const uint32_t *)data;
202 }
203 }
204 const struct spirv_to_nir_options spirv_options = {
205 .caps = {
206 .device_group = true,
207 .draw_parameters = true,
208 .float64 = true,
209 .image_read_without_format = true,
210 .image_write_without_format = true,
211 .tessellation = true,
212 .int64 = true,
213 .multiview = true,
214 .subgroup_ballot = true,
215 .subgroup_basic = true,
216 .subgroup_quad = true,
217 .subgroup_shuffle = true,
218 .subgroup_vote = true,
219 .variable_pointers = true,
220 .gcn_shader = true,
221 .trinary_minmax = true,
222 .shader_viewport_index_layer = true,
223 .descriptor_array_dynamic_indexing = true,
224 .runtime_descriptor_array = true,
225 },
226 };
227 entry_point = spirv_to_nir(spirv, module->size / 4,
228 spec_entries, num_spec_entries,
229 stage, entrypoint_name,
230 &spirv_options, &nir_options);
231 nir = entry_point->shader;
232 assert(nir->info.stage == stage);
233 nir_validate_shader(nir);
234
235 free(spec_entries);
236
237 /* We have to lower away local constant initializers right before we
238 * inline functions. That way they get properly initialized at the top
239 * of the function and not at the top of its caller.
240 */
241 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
242 NIR_PASS_V(nir, nir_lower_returns);
243 NIR_PASS_V(nir, nir_inline_functions);
244
245 /* Pick off the single entrypoint that we want */
246 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
247 if (func != entry_point)
248 exec_node_remove(&func->node);
249 }
250 assert(exec_list_length(&nir->functions) == 1);
251 entry_point->name = ralloc_strdup(entry_point, "main");
252
253 /* Make sure we lower constant initializers on output variables so that
254 * nir_remove_dead_variables below sees the corresponding stores
255 */
256 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
257
258 NIR_PASS_V(nir, nir_remove_dead_variables,
259 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
260
261 /* Now that we've deleted all but the main function, we can go ahead and
262 * lower the rest of the constant initializers.
263 */
264 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
265 NIR_PASS_V(nir, nir_lower_system_values);
266 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
267 }
268
269 /* Vulkan uses the separate-shader linking model */
270 nir->info.separate_shader = true;
271
272 nir_shader_gather_info(nir, entry_point->impl);
273
274 static const nir_lower_tex_options tex_options = {
275 .lower_txp = ~0,
276 };
277
278 nir_lower_tex(nir, &tex_options);
279
280 nir_lower_vars_to_ssa(nir);
281
282 if (nir->info.stage == MESA_SHADER_VERTEX ||
283 nir->info.stage == MESA_SHADER_GEOMETRY) {
284 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
285 nir_shader_get_entrypoint(nir), true, true);
286 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
287 nir->info.stage == MESA_SHADER_FRAGMENT) {
288 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
289 nir_shader_get_entrypoint(nir), true, false);
290 }
291
292 nir_split_var_copies(nir);
293 nir_lower_var_copies(nir);
294
295 nir_lower_global_vars_to_local(nir);
296 nir_remove_dead_variables(nir, nir_var_local);
297 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
298 .subgroup_size = 64,
299 .ballot_bit_size = 64,
300 .lower_to_scalar = 1,
301 .lower_subgroup_masks = 1,
302 .lower_shuffle = 1,
303 .lower_shuffle_to_32bit = 1,
304 .lower_vote_eq_to_ballot = 1,
305 });
306
307 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
308 radv_optimize_nir(nir, false);
309
310 /* Indirect lowering must be called after the radv_optimize_nir() loop
311 * has been called at least once. Otherwise indirect lowering can
312 * bloat the instruction count of the loop and cause it to be
313 * considered too large for unrolling.
314 */
315 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
316 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT);
317
318 return nir;
319 }
320
321 void *
322 radv_alloc_shader_memory(struct radv_device *device,
323 struct radv_shader_variant *shader)
324 {
325 mtx_lock(&device->shader_slab_mutex);
326 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
327 uint64_t offset = 0;
328 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
329 if (s->bo_offset - offset >= shader->code_size) {
330 shader->bo = slab->bo;
331 shader->bo_offset = offset;
332 list_addtail(&shader->slab_list, &s->slab_list);
333 mtx_unlock(&device->shader_slab_mutex);
334 return slab->ptr + offset;
335 }
336 offset = align_u64(s->bo_offset + s->code_size, 256);
337 }
338 if (slab->size - offset >= shader->code_size) {
339 shader->bo = slab->bo;
340 shader->bo_offset = offset;
341 list_addtail(&shader->slab_list, &slab->shaders);
342 mtx_unlock(&device->shader_slab_mutex);
343 return slab->ptr + offset;
344 }
345 }
346
347 mtx_unlock(&device->shader_slab_mutex);
348 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
349
350 slab->size = 256 * 1024;
351 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
352 RADEON_DOMAIN_VRAM,
353 RADEON_FLAG_NO_INTERPROCESS_SHARING |
354 device->physical_device->cpdma_prefetch_writes_memory ?
355 0 : RADEON_FLAG_READ_ONLY);
356 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
357 list_inithead(&slab->shaders);
358
359 mtx_lock(&device->shader_slab_mutex);
360 list_add(&slab->slabs, &device->shader_slabs);
361
362 shader->bo = slab->bo;
363 shader->bo_offset = 0;
364 list_add(&shader->slab_list, &slab->shaders);
365 mtx_unlock(&device->shader_slab_mutex);
366 return slab->ptr;
367 }
368
369 void
370 radv_destroy_shader_slabs(struct radv_device *device)
371 {
372 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
373 device->ws->buffer_destroy(slab->bo);
374 free(slab);
375 }
376 mtx_destroy(&device->shader_slab_mutex);
377 }
378
379 static void
380 radv_fill_shader_variant(struct radv_device *device,
381 struct radv_shader_variant *variant,
382 struct ac_shader_binary *binary,
383 gl_shader_stage stage)
384 {
385 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
386 struct radv_shader_info *info = &variant->info.info;
387 unsigned vgpr_comp_cnt = 0;
388
389 variant->code_size = binary->code_size;
390 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
391 S_00B12C_SCRATCH_EN(scratch_enabled);
392
393 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
394 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
395 S_00B848_DX10_CLAMP(1) |
396 S_00B848_FLOAT_MODE(variant->config.float_mode);
397
398 switch (stage) {
399 case MESA_SHADER_TESS_EVAL:
400 vgpr_comp_cnt = 3;
401 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
402 break;
403 case MESA_SHADER_TESS_CTRL:
404 if (device->physical_device->rad_info.chip_class >= GFX9) {
405 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
406 } else {
407 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
408 }
409 break;
410 case MESA_SHADER_VERTEX:
411 case MESA_SHADER_GEOMETRY:
412 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
413 break;
414 case MESA_SHADER_FRAGMENT:
415 break;
416 case MESA_SHADER_COMPUTE:
417 variant->rsrc2 |=
418 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
419 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
420 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
421 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
422 info->cs.uses_thread_id[1] ? 1 : 0) |
423 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
424 S_00B84C_LDS_SIZE(variant->config.lds_size);
425 break;
426 default:
427 unreachable("unsupported shader type");
428 break;
429 }
430
431 if (device->physical_device->rad_info.chip_class >= GFX9 &&
432 stage == MESA_SHADER_GEOMETRY) {
433 unsigned es_type = variant->info.gs.es_type;
434 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
435
436 if (es_type == MESA_SHADER_VERTEX) {
437 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
438 } else if (es_type == MESA_SHADER_TESS_EVAL) {
439 es_vgpr_comp_cnt = 3;
440 } else {
441 unreachable("invalid shader ES type");
442 }
443
444 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
445 * VGPR[0:4] are always loaded.
446 */
447 if (info->uses_invocation_id) {
448 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
449 } else if (info->uses_prim_id) {
450 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
451 } else if (variant->info.gs.vertices_in >= 3) {
452 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
453 } else {
454 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
455 }
456
457 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
458 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
459 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
460 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
461 stage == MESA_SHADER_TESS_CTRL) {
462 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
463 } else {
464 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
465 }
466
467 void *ptr = radv_alloc_shader_memory(device, variant);
468 memcpy(ptr, binary->code, binary->code_size);
469 }
470
471 static void radv_init_llvm_target()
472 {
473 LLVMInitializeAMDGPUTargetInfo();
474 LLVMInitializeAMDGPUTarget();
475 LLVMInitializeAMDGPUTargetMC();
476 LLVMInitializeAMDGPUAsmPrinter();
477
478 /* For inline assembly. */
479 LLVMInitializeAMDGPUAsmParser();
480
481 /* Workaround for bug in llvm 4.0 that causes image intrinsics
482 * to disappear.
483 * https://reviews.llvm.org/D26348
484 *
485 * Workaround for bug in llvm that causes the GPU to hang in presence
486 * of nested loops because there is an exec mask issue. The proper
487 * solution is to fix LLVM but this might require a bunch of work.
488 * https://bugs.llvm.org/show_bug.cgi?id=37744
489 *
490 * "mesa" is the prefix for error messages.
491 */
492 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
493 "-amdgpu-skip-threshold=1" };
494 LLVMParseCommandLineOptions(3, argv, NULL);
495 }
496
497 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
498
499 static LLVMTargetRef radv_get_llvm_target(const char *triple)
500 {
501 LLVMTargetRef target = NULL;
502 char *err_message = NULL;
503
504 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
505
506 if (LLVMGetTargetFromTriple(triple, &target, &err_message)) {
507 fprintf(stderr, "Cannot find target for triple %s ", triple);
508 if (err_message) {
509 fprintf(stderr, "%s\n", err_message);
510 }
511 LLVMDisposeMessage(err_message);
512 return NULL;
513 }
514 return target;
515 }
516
517 static LLVMTargetMachineRef radv_create_target_machine(enum radeon_family family,
518 enum ac_target_machine_options tm_options,
519 const char **out_triple)
520 {
521 assert(family >= CHIP_TAHITI);
522 char features[256];
523 const char *triple = (tm_options & AC_TM_SUPPORTS_SPILL) ? "amdgcn-mesa-mesa3d" : "amdgcn--";
524 LLVMTargetRef target = radv_get_llvm_target(triple);
525
526 snprintf(features, sizeof(features),
527 "+DumpCode,+vgpr-spilling,-fp32-denormals,+fp64-denormals%s%s%s%s",
528 tm_options & AC_TM_SISCHED ? ",+si-scheduler" : "",
529 tm_options & AC_TM_FORCE_ENABLE_XNACK ? ",+xnack" : "",
530 tm_options & AC_TM_FORCE_DISABLE_XNACK ? ",-xnack" : "",
531 tm_options & AC_TM_PROMOTE_ALLOCA_TO_SCRATCH ? ",-promote-alloca" : "");
532
533 LLVMTargetMachineRef tm = LLVMCreateTargetMachine(
534 target,
535 triple,
536 ac_get_llvm_processor_name(family),
537 features,
538 LLVMCodeGenLevelDefault,
539 LLVMRelocDefault,
540 LLVMCodeModelDefault);
541
542 if (out_triple)
543 *out_triple = triple;
544 return tm;
545 }
546
547 static struct radv_shader_variant *
548 shader_variant_create(struct radv_device *device,
549 struct radv_shader_module *module,
550 struct nir_shader * const *shaders,
551 int shader_count,
552 gl_shader_stage stage,
553 struct radv_nir_compiler_options *options,
554 bool gs_copy_shader,
555 void **code_out,
556 unsigned *code_size_out)
557 {
558 enum radeon_family chip_family = device->physical_device->rad_info.family;
559 enum ac_target_machine_options tm_options = 0;
560 struct radv_shader_variant *variant;
561 struct ac_shader_binary binary;
562 LLVMTargetMachineRef tm;
563
564 variant = calloc(1, sizeof(struct radv_shader_variant));
565 if (!variant)
566 return NULL;
567
568 options->family = chip_family;
569 options->chip_class = device->physical_device->rad_info.chip_class;
570 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
571 options->dump_preoptir = options->dump_shader &&
572 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
573 options->record_llvm_ir = device->keep_shader_info;
574 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
575 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
576 options->address32_hi = device->physical_device->rad_info.address32_hi;
577
578 if (options->supports_spill)
579 tm_options |= AC_TM_SUPPORTS_SPILL;
580 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
581 tm_options |= AC_TM_SISCHED;
582 tm = radv_create_target_machine(chip_family, tm_options, NULL);
583
584 if (gs_copy_shader) {
585 assert(shader_count == 1);
586 radv_compile_gs_copy_shader(tm, *shaders, &binary,
587 &variant->config, &variant->info,
588 options);
589 } else {
590 radv_compile_nir_shader(tm, &binary, &variant->config,
591 &variant->info, shaders, shader_count,
592 options);
593 }
594
595 LLVMDisposeTargetMachine(tm);
596
597 radv_fill_shader_variant(device, variant, &binary, stage);
598
599 if (code_out) {
600 *code_out = binary.code;
601 *code_size_out = binary.code_size;
602 } else
603 free(binary.code);
604 free(binary.config);
605 free(binary.rodata);
606 free(binary.global_symbol_offsets);
607 free(binary.relocs);
608 variant->ref_count = 1;
609
610 if (device->keep_shader_info) {
611 variant->disasm_string = binary.disasm_string;
612 variant->llvm_ir_string = binary.llvm_ir_string;
613 if (!gs_copy_shader && !module->nir) {
614 variant->nir = *shaders;
615 variant->spirv = (uint32_t *)module->data;
616 variant->spirv_size = module->size;
617 }
618 } else {
619 free(binary.disasm_string);
620 }
621
622 return variant;
623 }
624
625 struct radv_shader_variant *
626 radv_shader_variant_create(struct radv_device *device,
627 struct radv_shader_module *module,
628 struct nir_shader *const *shaders,
629 int shader_count,
630 struct radv_pipeline_layout *layout,
631 const struct radv_shader_variant_key *key,
632 void **code_out,
633 unsigned *code_size_out)
634 {
635 struct radv_nir_compiler_options options = {0};
636
637 options.layout = layout;
638 if (key)
639 options.key = *key;
640
641 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
642 options.supports_spill = true;
643
644 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
645 &options, false, code_out, code_size_out);
646 }
647
648 struct radv_shader_variant *
649 radv_create_gs_copy_shader(struct radv_device *device,
650 struct nir_shader *shader,
651 void **code_out,
652 unsigned *code_size_out,
653 bool multiview)
654 {
655 struct radv_nir_compiler_options options = {0};
656
657 options.key.has_multiview_view_index = multiview;
658
659 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
660 &options, true, code_out, code_size_out);
661 }
662
663 void
664 radv_shader_variant_destroy(struct radv_device *device,
665 struct radv_shader_variant *variant)
666 {
667 if (!p_atomic_dec_zero(&variant->ref_count))
668 return;
669
670 mtx_lock(&device->shader_slab_mutex);
671 list_del(&variant->slab_list);
672 mtx_unlock(&device->shader_slab_mutex);
673
674 ralloc_free(variant->nir);
675 free(variant->disasm_string);
676 free(variant->llvm_ir_string);
677 free(variant);
678 }
679
680 const char *
681 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
682 {
683 switch (stage) {
684 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
685 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
686 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
687 case MESA_SHADER_COMPUTE: return "Compute Shader";
688 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
689 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
690 default:
691 return "Unknown shader";
692 };
693 }
694
695 static void
696 generate_shader_stats(struct radv_device *device,
697 struct radv_shader_variant *variant,
698 gl_shader_stage stage,
699 struct _mesa_string_buffer *buf)
700 {
701 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
702 struct ac_shader_config *conf;
703 unsigned max_simd_waves;
704 unsigned lds_per_wave = 0;
705
706 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
707
708 conf = &variant->config;
709
710 if (stage == MESA_SHADER_FRAGMENT) {
711 lds_per_wave = conf->lds_size * lds_increment +
712 align(variant->info.fs.num_interp * 48,
713 lds_increment);
714 }
715
716 if (conf->num_sgprs)
717 max_simd_waves =
718 MIN2(max_simd_waves,
719 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
720
721 if (conf->num_vgprs)
722 max_simd_waves =
723 MIN2(max_simd_waves,
724 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
725
726 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
727 * that PS can use.
728 */
729 if (lds_per_wave)
730 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
731
732 if (stage == MESA_SHADER_FRAGMENT) {
733 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
734 "SPI_PS_INPUT_ADDR = 0x%04x\n"
735 "SPI_PS_INPUT_ENA = 0x%04x\n",
736 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
737 }
738
739 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
740 "SGPRS: %d\n"
741 "VGPRS: %d\n"
742 "Spilled SGPRs: %d\n"
743 "Spilled VGPRs: %d\n"
744 "PrivMem VGPRS: %d\n"
745 "Code Size: %d bytes\n"
746 "LDS: %d blocks\n"
747 "Scratch: %d bytes per wave\n"
748 "Max Waves: %d\n"
749 "********************\n\n\n",
750 conf->num_sgprs, conf->num_vgprs,
751 conf->spilled_sgprs, conf->spilled_vgprs,
752 variant->info.private_mem_vgprs, variant->code_size,
753 conf->lds_size, conf->scratch_bytes_per_wave,
754 max_simd_waves);
755 }
756
757 void
758 radv_shader_dump_stats(struct radv_device *device,
759 struct radv_shader_variant *variant,
760 gl_shader_stage stage,
761 FILE *file)
762 {
763 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
764
765 generate_shader_stats(device, variant, stage, buf);
766
767 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
768 fprintf(file, "%s", buf->buf);
769
770 _mesa_string_buffer_destroy(buf);
771 }
772
773 VkResult
774 radv_GetShaderInfoAMD(VkDevice _device,
775 VkPipeline _pipeline,
776 VkShaderStageFlagBits shaderStage,
777 VkShaderInfoTypeAMD infoType,
778 size_t* pInfoSize,
779 void* pInfo)
780 {
781 RADV_FROM_HANDLE(radv_device, device, _device);
782 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
783 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
784 struct radv_shader_variant *variant = pipeline->shaders[stage];
785 struct _mesa_string_buffer *buf;
786 VkResult result = VK_SUCCESS;
787
788 /* Spec doesn't indicate what to do if the stage is invalid, so just
789 * return no info for this. */
790 if (!variant)
791 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
792
793 switch (infoType) {
794 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
795 if (!pInfo) {
796 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
797 } else {
798 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
799 struct ac_shader_config *conf = &variant->config;
800
801 VkShaderStatisticsInfoAMD statistics = {};
802 statistics.shaderStageMask = shaderStage;
803 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
804 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
805 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
806
807 if (stage == MESA_SHADER_COMPUTE) {
808 unsigned *local_size = variant->nir->info.cs.local_size;
809 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
810
811 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
812 ceil(workgroup_size / statistics.numPhysicalVgprs);
813
814 statistics.computeWorkGroupSize[0] = local_size[0];
815 statistics.computeWorkGroupSize[1] = local_size[1];
816 statistics.computeWorkGroupSize[2] = local_size[2];
817 } else {
818 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
819 }
820
821 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
822 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
823 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
824 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
825 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
826
827 size_t size = *pInfoSize;
828 *pInfoSize = sizeof(statistics);
829
830 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
831
832 if (size < *pInfoSize)
833 result = VK_INCOMPLETE;
834 }
835
836 break;
837 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
838 buf = _mesa_string_buffer_create(NULL, 1024);
839
840 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
841 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
842 generate_shader_stats(device, variant, stage, buf);
843
844 /* Need to include the null terminator. */
845 size_t length = buf->length + 1;
846
847 if (!pInfo) {
848 *pInfoSize = length;
849 } else {
850 size_t size = *pInfoSize;
851 *pInfoSize = length;
852
853 memcpy(pInfo, buf->buf, MIN2(size, length));
854
855 if (size < length)
856 result = VK_INCOMPLETE;
857 }
858
859 _mesa_string_buffer_destroy(buf);
860 break;
861 default:
862 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
863 result = VK_ERROR_FEATURE_NOT_PRESENT;
864 break;
865 }
866
867 return result;
868 }