ac: rename SI-CIK-VI to GFX6-GFX7-GFX8
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "nir/nir.h"
35 #include "nir/nir_builder.h"
36 #include "spirv/nir_spirv.h"
37
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 #include <llvm-c/Support.h>
41
42 #include "sid.h"
43 #include "gfx9d.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "vk_format.h"
48 #include "util/debug.h"
49 #include "ac_exp_param.h"
50
51 #include "util/string_buffer.h"
52
53 static const struct nir_shader_compiler_options nir_options = {
54 .vertex_id_zero_based = true,
55 .lower_scmp = true,
56 .lower_flrp16 = true,
57 .lower_flrp32 = true,
58 .lower_flrp64 = true,
59 .lower_device_index_to_zero = true,
60 .lower_fsat = true,
61 .lower_fdiv = true,
62 .lower_sub = true,
63 .lower_pack_snorm_2x16 = true,
64 .lower_pack_snorm_4x8 = true,
65 .lower_pack_unorm_2x16 = true,
66 .lower_pack_unorm_4x8 = true,
67 .lower_unpack_snorm_2x16 = true,
68 .lower_unpack_snorm_4x8 = true,
69 .lower_unpack_unorm_2x16 = true,
70 .lower_unpack_unorm_4x8 = true,
71 .lower_extract_byte = true,
72 .lower_extract_word = true,
73 .lower_ffma = true,
74 .lower_fpow = true,
75 .lower_mul_2x32_64 = true,
76 .max_unroll_iterations = 32
77 };
78
79 VkResult radv_CreateShaderModule(
80 VkDevice _device,
81 const VkShaderModuleCreateInfo* pCreateInfo,
82 const VkAllocationCallbacks* pAllocator,
83 VkShaderModule* pShaderModule)
84 {
85 RADV_FROM_HANDLE(radv_device, device, _device);
86 struct radv_shader_module *module;
87
88 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
89 assert(pCreateInfo->flags == 0);
90
91 module = vk_alloc2(&device->alloc, pAllocator,
92 sizeof(*module) + pCreateInfo->codeSize, 8,
93 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
94 if (module == NULL)
95 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
96
97 module->nir = NULL;
98 module->size = pCreateInfo->codeSize;
99 memcpy(module->data, pCreateInfo->pCode, module->size);
100
101 _mesa_sha1_compute(module->data, module->size, module->sha1);
102
103 *pShaderModule = radv_shader_module_to_handle(module);
104
105 return VK_SUCCESS;
106 }
107
108 void radv_DestroyShaderModule(
109 VkDevice _device,
110 VkShaderModule _module,
111 const VkAllocationCallbacks* pAllocator)
112 {
113 RADV_FROM_HANDLE(radv_device, device, _device);
114 RADV_FROM_HANDLE(radv_shader_module, module, _module);
115
116 if (!module)
117 return;
118
119 vk_free2(&device->alloc, pAllocator, module);
120 }
121
122 void
123 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
124 bool allow_copies)
125 {
126 bool progress;
127 unsigned lower_flrp =
128 (shader->options->lower_flrp16 ? 16 : 0) |
129 (shader->options->lower_flrp32 ? 32 : 0) |
130 (shader->options->lower_flrp64 ? 64 : 0);
131
132 do {
133 progress = false;
134
135 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
136 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
137
138 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
139 NIR_PASS_V(shader, nir_lower_pack);
140
141 if (allow_copies) {
142 /* Only run this pass in the first call to
143 * radv_optimize_nir. Later calls assume that we've
144 * lowered away any copy_deref instructions and we
145 * don't want to introduce any more.
146 */
147 NIR_PASS(progress, shader, nir_opt_find_array_copies);
148 }
149
150 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
151 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
152
153 NIR_PASS_V(shader, nir_lower_alu_to_scalar, NULL);
154 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
155
156 NIR_PASS(progress, shader, nir_copy_prop);
157 NIR_PASS(progress, shader, nir_opt_remove_phis);
158 NIR_PASS(progress, shader, nir_opt_dce);
159 if (nir_opt_trivial_continues(shader)) {
160 progress = true;
161 NIR_PASS(progress, shader, nir_copy_prop);
162 NIR_PASS(progress, shader, nir_opt_remove_phis);
163 NIR_PASS(progress, shader, nir_opt_dce);
164 }
165 NIR_PASS(progress, shader, nir_opt_if, true);
166 NIR_PASS(progress, shader, nir_opt_dead_cf);
167 NIR_PASS(progress, shader, nir_opt_cse);
168 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
169 NIR_PASS(progress, shader, nir_opt_constant_folding);
170 NIR_PASS(progress, shader, nir_opt_algebraic);
171
172 if (lower_flrp != 0) {
173 bool lower_flrp_progress = false;
174 NIR_PASS(lower_flrp_progress,
175 shader,
176 nir_lower_flrp,
177 lower_flrp,
178 false /* always_precise */,
179 shader->options->lower_ffma);
180 if (lower_flrp_progress) {
181 NIR_PASS(progress, shader,
182 nir_opt_constant_folding);
183 progress = true;
184 }
185
186 /* Nothing should rematerialize any flrps, so we only
187 * need to do this lowering once.
188 */
189 lower_flrp = 0;
190 }
191
192 NIR_PASS(progress, shader, nir_opt_undef);
193 NIR_PASS(progress, shader, nir_opt_conditional_discard);
194 if (shader->options->max_unroll_iterations) {
195 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
196 }
197 } while (progress && !optimize_conservatively);
198
199 NIR_PASS(progress, shader, nir_opt_shrink_load);
200 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
201 }
202
203 nir_shader *
204 radv_shader_compile_to_nir(struct radv_device *device,
205 struct radv_shader_module *module,
206 const char *entrypoint_name,
207 gl_shader_stage stage,
208 const VkSpecializationInfo *spec_info,
209 const VkPipelineCreateFlags flags,
210 const struct radv_pipeline_layout *layout)
211 {
212 nir_shader *nir;
213 nir_function *entry_point;
214 if (module->nir) {
215 /* Some things such as our meta clear/blit code will give us a NIR
216 * shader directly. In that case, we just ignore the SPIR-V entirely
217 * and just use the NIR shader */
218 nir = module->nir;
219 nir->options = &nir_options;
220 nir_validate_shader(nir, "in internal shader");
221
222 assert(exec_list_length(&nir->functions) == 1);
223 struct exec_node *node = exec_list_get_head(&nir->functions);
224 entry_point = exec_node_data(nir_function, node, node);
225 } else {
226 uint32_t *spirv = (uint32_t *) module->data;
227 assert(module->size % 4 == 0);
228
229 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
230 radv_print_spirv(spirv, module->size, stderr);
231
232 uint32_t num_spec_entries = 0;
233 struct nir_spirv_specialization *spec_entries = NULL;
234 if (spec_info && spec_info->mapEntryCount > 0) {
235 num_spec_entries = spec_info->mapEntryCount;
236 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
237 for (uint32_t i = 0; i < num_spec_entries; i++) {
238 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
239 const void *data = spec_info->pData + entry.offset;
240 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
241
242 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
243 if (spec_info->dataSize == 8)
244 spec_entries[i].data64 = *(const uint64_t *)data;
245 else
246 spec_entries[i].data32 = *(const uint32_t *)data;
247 }
248 }
249 const struct spirv_to_nir_options spirv_options = {
250 .lower_ubo_ssbo_access_to_offsets = true,
251 .caps = {
252 .derivative_group = true,
253 .descriptor_array_dynamic_indexing = true,
254 .descriptor_array_non_uniform_indexing = true,
255 .descriptor_indexing = true,
256 .device_group = true,
257 .draw_parameters = true,
258 .float16 = true,
259 .float64 = true,
260 .gcn_shader = true,
261 .geometry_streams = true,
262 .image_read_without_format = true,
263 .image_write_without_format = true,
264 .int8 = true,
265 .int16 = true,
266 .int64 = true,
267 .int64_atomics = true,
268 .multiview = true,
269 .physical_storage_buffer_address = true,
270 .runtime_descriptor_array = true,
271 .shader_viewport_index_layer = true,
272 .stencil_export = true,
273 .storage_8bit = true,
274 .storage_16bit = true,
275 .storage_image_ms = true,
276 .subgroup_arithmetic = true,
277 .subgroup_ballot = true,
278 .subgroup_basic = true,
279 .subgroup_quad = true,
280 .subgroup_shuffle = true,
281 .subgroup_vote = true,
282 .tessellation = true,
283 .transform_feedback = true,
284 .trinary_minmax = true,
285 .variable_pointers = true,
286 },
287 .ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
288 .ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
289 .phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1),
290 .push_const_ptr_type = glsl_uint_type(),
291 .shared_ptr_type = glsl_uint_type(),
292 };
293 entry_point = spirv_to_nir(spirv, module->size / 4,
294 spec_entries, num_spec_entries,
295 stage, entrypoint_name,
296 &spirv_options, &nir_options);
297 nir = entry_point->shader;
298 assert(nir->info.stage == stage);
299 nir_validate_shader(nir, "after spirv_to_nir");
300
301 free(spec_entries);
302
303 /* We have to lower away local constant initializers right before we
304 * inline functions. That way they get properly initialized at the top
305 * of the function and not at the top of its caller.
306 */
307 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
308 NIR_PASS_V(nir, nir_lower_returns);
309 NIR_PASS_V(nir, nir_inline_functions);
310 NIR_PASS_V(nir, nir_opt_deref);
311
312 /* Pick off the single entrypoint that we want */
313 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
314 if (func != entry_point)
315 exec_node_remove(&func->node);
316 }
317 assert(exec_list_length(&nir->functions) == 1);
318 entry_point->name = ralloc_strdup(entry_point, "main");
319
320 /* Make sure we lower constant initializers on output variables so that
321 * nir_remove_dead_variables below sees the corresponding stores
322 */
323 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
324
325 /* Now that we've deleted all but the main function, we can go ahead and
326 * lower the rest of the constant initializers.
327 */
328 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
329
330 /* Split member structs. We do this before lower_io_to_temporaries so that
331 * it doesn't lower system values to temporaries by accident.
332 */
333 NIR_PASS_V(nir, nir_split_var_copies);
334 NIR_PASS_V(nir, nir_split_per_member_structs);
335
336 NIR_PASS_V(nir, nir_remove_dead_variables,
337 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
338
339 NIR_PASS_V(nir, nir_lower_system_values);
340 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
341 NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout);
342 }
343
344 /* Vulkan uses the separate-shader linking model */
345 nir->info.separate_shader = true;
346
347 nir_shader_gather_info(nir, entry_point->impl);
348
349 static const nir_lower_tex_options tex_options = {
350 .lower_txp = ~0,
351 .lower_tg4_offsets = true,
352 };
353
354 nir_lower_tex(nir, &tex_options);
355
356 nir_lower_vars_to_ssa(nir);
357
358 if (nir->info.stage == MESA_SHADER_VERTEX ||
359 nir->info.stage == MESA_SHADER_GEOMETRY) {
360 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
361 nir_shader_get_entrypoint(nir), true, true);
362 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
363 nir->info.stage == MESA_SHADER_FRAGMENT) {
364 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
365 nir_shader_get_entrypoint(nir), true, false);
366 }
367
368 nir_split_var_copies(nir);
369
370 nir_lower_global_vars_to_local(nir);
371 nir_remove_dead_variables(nir, nir_var_function_temp);
372 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
373 .subgroup_size = 64,
374 .ballot_bit_size = 64,
375 .lower_to_scalar = 1,
376 .lower_subgroup_masks = 1,
377 .lower_shuffle = 1,
378 .lower_shuffle_to_32bit = 1,
379 .lower_vote_eq_to_ballot = 1,
380 });
381
382 nir_lower_load_const_to_scalar(nir);
383
384 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
385 radv_optimize_nir(nir, false, true);
386
387 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
388 * to remove any copies introduced by nir_opt_find_array_copies().
389 */
390 nir_lower_var_copies(nir);
391
392 /* Indirect lowering must be called after the radv_optimize_nir() loop
393 * has been called at least once. Otherwise indirect lowering can
394 * bloat the instruction count of the loop and cause it to be
395 * considered too large for unrolling.
396 */
397 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
398 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
399
400 return nir;
401 }
402
403 void *
404 radv_alloc_shader_memory(struct radv_device *device,
405 struct radv_shader_variant *shader)
406 {
407 mtx_lock(&device->shader_slab_mutex);
408 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
409 uint64_t offset = 0;
410 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
411 if (s->bo_offset - offset >= shader->code_size) {
412 shader->bo = slab->bo;
413 shader->bo_offset = offset;
414 list_addtail(&shader->slab_list, &s->slab_list);
415 mtx_unlock(&device->shader_slab_mutex);
416 return slab->ptr + offset;
417 }
418 offset = align_u64(s->bo_offset + s->code_size, 256);
419 }
420 if (slab->size - offset >= shader->code_size) {
421 shader->bo = slab->bo;
422 shader->bo_offset = offset;
423 list_addtail(&shader->slab_list, &slab->shaders);
424 mtx_unlock(&device->shader_slab_mutex);
425 return slab->ptr + offset;
426 }
427 }
428
429 mtx_unlock(&device->shader_slab_mutex);
430 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
431
432 slab->size = 256 * 1024;
433 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
434 RADEON_DOMAIN_VRAM,
435 RADEON_FLAG_NO_INTERPROCESS_SHARING |
436 (device->physical_device->cpdma_prefetch_writes_memory ?
437 0 : RADEON_FLAG_READ_ONLY),
438 RADV_BO_PRIORITY_SHADER);
439 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
440 list_inithead(&slab->shaders);
441
442 mtx_lock(&device->shader_slab_mutex);
443 list_add(&slab->slabs, &device->shader_slabs);
444
445 shader->bo = slab->bo;
446 shader->bo_offset = 0;
447 list_add(&shader->slab_list, &slab->shaders);
448 mtx_unlock(&device->shader_slab_mutex);
449 return slab->ptr;
450 }
451
452 void
453 radv_destroy_shader_slabs(struct radv_device *device)
454 {
455 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
456 device->ws->buffer_destroy(slab->bo);
457 free(slab);
458 }
459 mtx_destroy(&device->shader_slab_mutex);
460 }
461
462 /* For the UMR disassembler. */
463 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
464 #define DEBUGGER_NUM_MARKERS 5
465
466 static unsigned
467 radv_get_shader_binary_size(struct ac_shader_binary *binary)
468 {
469 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
470 }
471
472 static void
473 radv_fill_shader_variant(struct radv_device *device,
474 struct radv_shader_variant *variant,
475 struct ac_shader_binary *binary,
476 gl_shader_stage stage)
477 {
478 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
479 struct radv_shader_info *info = &variant->info.info;
480 unsigned vgpr_comp_cnt = 0;
481
482 variant->code_size = radv_get_shader_binary_size(binary);
483 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
484 S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) |
485 S_00B12C_SCRATCH_EN(scratch_enabled) |
486 S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
487 S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
488 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
489 S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
490 S_00B12C_SO_EN(!!info->so.num_outputs);
491
492 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
493 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
494 S_00B848_DX10_CLAMP(1) |
495 S_00B848_FLOAT_MODE(variant->config.float_mode);
496
497 switch (stage) {
498 case MESA_SHADER_TESS_EVAL:
499 vgpr_comp_cnt = 3;
500 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
501 break;
502 case MESA_SHADER_TESS_CTRL:
503 if (device->physical_device->rad_info.chip_class >= GFX9) {
504 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
505 } else {
506 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
507 }
508 break;
509 case MESA_SHADER_VERTEX:
510 case MESA_SHADER_GEOMETRY:
511 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
512 break;
513 case MESA_SHADER_FRAGMENT:
514 break;
515 case MESA_SHADER_COMPUTE:
516 variant->rsrc2 |=
517 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
518 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
519 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
520 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
521 info->cs.uses_thread_id[1] ? 1 : 0) |
522 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
523 S_00B84C_LDS_SIZE(variant->config.lds_size);
524 break;
525 default:
526 unreachable("unsupported shader type");
527 break;
528 }
529
530 if (device->physical_device->rad_info.chip_class >= GFX9 &&
531 stage == MESA_SHADER_GEOMETRY) {
532 unsigned es_type = variant->info.gs.es_type;
533 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
534
535 if (es_type == MESA_SHADER_VERTEX) {
536 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
537 } else if (es_type == MESA_SHADER_TESS_EVAL) {
538 es_vgpr_comp_cnt = 3;
539 } else {
540 unreachable("invalid shader ES type");
541 }
542
543 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
544 * VGPR[0:4] are always loaded.
545 */
546 if (info->uses_invocation_id) {
547 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
548 } else if (info->uses_prim_id) {
549 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
550 } else if (variant->info.gs.vertices_in >= 3) {
551 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
552 } else {
553 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
554 }
555
556 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
557 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
558 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
559 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
560 stage == MESA_SHADER_TESS_CTRL) {
561 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
562 } else {
563 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
564 }
565
566 void *ptr = radv_alloc_shader_memory(device, variant);
567 memcpy(ptr, binary->code, binary->code_size);
568
569 /* Add end-of-code markers for the UMR disassembler. */
570 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
571 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
572 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
573
574 }
575
576 static void radv_init_llvm_target()
577 {
578 LLVMInitializeAMDGPUTargetInfo();
579 LLVMInitializeAMDGPUTarget();
580 LLVMInitializeAMDGPUTargetMC();
581 LLVMInitializeAMDGPUAsmPrinter();
582
583 /* For inline assembly. */
584 LLVMInitializeAMDGPUAsmParser();
585
586 /* Workaround for bug in llvm 4.0 that causes image intrinsics
587 * to disappear.
588 * https://reviews.llvm.org/D26348
589 *
590 * Workaround for bug in llvm that causes the GPU to hang in presence
591 * of nested loops because there is an exec mask issue. The proper
592 * solution is to fix LLVM but this might require a bunch of work.
593 * https://bugs.llvm.org/show_bug.cgi?id=37744
594 *
595 * "mesa" is the prefix for error messages.
596 */
597 if (HAVE_LLVM >= 0x0800) {
598 const char *argv[2] = { "mesa", "-simplifycfg-sink-common=false" };
599 LLVMParseCommandLineOptions(2, argv, NULL);
600
601 } else {
602 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
603 "-amdgpu-skip-threshold=1" };
604 LLVMParseCommandLineOptions(3, argv, NULL);
605 }
606 }
607
608 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
609
610 static void radv_init_llvm_once(void)
611 {
612 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
613 }
614
615 static struct radv_shader_variant *
616 shader_variant_create(struct radv_device *device,
617 struct radv_shader_module *module,
618 struct nir_shader * const *shaders,
619 int shader_count,
620 gl_shader_stage stage,
621 struct radv_nir_compiler_options *options,
622 bool gs_copy_shader,
623 void **code_out,
624 unsigned *code_size_out)
625 {
626 enum radeon_family chip_family = device->physical_device->rad_info.family;
627 enum ac_target_machine_options tm_options = 0;
628 struct radv_shader_variant *variant;
629 struct ac_shader_binary binary;
630 struct ac_llvm_compiler ac_llvm;
631 bool thread_compiler;
632 variant = calloc(1, sizeof(struct radv_shader_variant));
633 if (!variant)
634 return NULL;
635
636 options->family = chip_family;
637 options->chip_class = device->physical_device->rad_info.chip_class;
638 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
639 options->dump_preoptir = options->dump_shader &&
640 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
641 options->record_llvm_ir = device->keep_shader_info;
642 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
643 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
644 options->address32_hi = device->physical_device->rad_info.address32_hi;
645
646 if (options->supports_spill)
647 tm_options |= AC_TM_SUPPORTS_SPILL;
648 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
649 tm_options |= AC_TM_SISCHED;
650 if (options->check_ir)
651 tm_options |= AC_TM_CHECK_IR;
652
653 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
654 radv_init_llvm_once();
655 radv_init_llvm_compiler(&ac_llvm,
656 thread_compiler,
657 chip_family, tm_options);
658 if (gs_copy_shader) {
659 assert(shader_count == 1);
660 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
661 &variant->config, &variant->info,
662 options);
663 } else {
664 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
665 &variant->info, shaders, shader_count,
666 options);
667 }
668
669 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
670
671 radv_fill_shader_variant(device, variant, &binary, stage);
672
673 if (code_out) {
674 *code_out = binary.code;
675 *code_size_out = binary.code_size;
676 } else
677 free(binary.code);
678 free(binary.config);
679 free(binary.rodata);
680 free(binary.global_symbol_offsets);
681 free(binary.relocs);
682 variant->ref_count = 1;
683
684 if (device->keep_shader_info) {
685 variant->disasm_string = binary.disasm_string;
686 variant->llvm_ir_string = binary.llvm_ir_string;
687 if (!gs_copy_shader && !module->nir) {
688 variant->nir = *shaders;
689 variant->spirv = (uint32_t *)module->data;
690 variant->spirv_size = module->size;
691 }
692 } else {
693 free(binary.disasm_string);
694 }
695
696 return variant;
697 }
698
699 struct radv_shader_variant *
700 radv_shader_variant_create(struct radv_device *device,
701 struct radv_shader_module *module,
702 struct nir_shader *const *shaders,
703 int shader_count,
704 struct radv_pipeline_layout *layout,
705 const struct radv_shader_variant_key *key,
706 void **code_out,
707 unsigned *code_size_out)
708 {
709 struct radv_nir_compiler_options options = {0};
710
711 options.layout = layout;
712 if (key)
713 options.key = *key;
714
715 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
716 options.supports_spill = true;
717
718 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
719 &options, false, code_out, code_size_out);
720 }
721
722 struct radv_shader_variant *
723 radv_create_gs_copy_shader(struct radv_device *device,
724 struct nir_shader *shader,
725 void **code_out,
726 unsigned *code_size_out,
727 bool multiview)
728 {
729 struct radv_nir_compiler_options options = {0};
730
731 options.key.has_multiview_view_index = multiview;
732
733 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
734 &options, true, code_out, code_size_out);
735 }
736
737 void
738 radv_shader_variant_destroy(struct radv_device *device,
739 struct radv_shader_variant *variant)
740 {
741 if (!p_atomic_dec_zero(&variant->ref_count))
742 return;
743
744 mtx_lock(&device->shader_slab_mutex);
745 list_del(&variant->slab_list);
746 mtx_unlock(&device->shader_slab_mutex);
747
748 ralloc_free(variant->nir);
749 free(variant->disasm_string);
750 free(variant->llvm_ir_string);
751 free(variant);
752 }
753
754 const char *
755 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
756 {
757 switch (stage) {
758 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
759 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
760 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
761 case MESA_SHADER_COMPUTE: return "Compute Shader";
762 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
763 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
764 default:
765 return "Unknown shader";
766 };
767 }
768
769 static void
770 generate_shader_stats(struct radv_device *device,
771 struct radv_shader_variant *variant,
772 gl_shader_stage stage,
773 struct _mesa_string_buffer *buf)
774 {
775 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
776 unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
777 struct ac_shader_config *conf;
778 unsigned max_simd_waves;
779 unsigned lds_per_wave = 0;
780
781 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
782
783 conf = &variant->config;
784
785 if (stage == MESA_SHADER_FRAGMENT) {
786 lds_per_wave = conf->lds_size * lds_increment +
787 align(variant->info.fs.num_interp * 48,
788 lds_increment);
789 } else if (stage == MESA_SHADER_COMPUTE) {
790 unsigned max_workgroup_size =
791 radv_nir_get_max_workgroup_size(chip_class, variant->nir);
792 lds_per_wave = (conf->lds_size * lds_increment) /
793 DIV_ROUND_UP(max_workgroup_size, 64);
794 }
795
796 if (conf->num_sgprs)
797 max_simd_waves =
798 MIN2(max_simd_waves,
799 ac_get_num_physical_sgprs(chip_class) / conf->num_sgprs);
800
801 if (conf->num_vgprs)
802 max_simd_waves =
803 MIN2(max_simd_waves,
804 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
805
806 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
807 * that PS can use.
808 */
809 if (lds_per_wave)
810 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
811
812 if (stage == MESA_SHADER_FRAGMENT) {
813 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
814 "SPI_PS_INPUT_ADDR = 0x%04x\n"
815 "SPI_PS_INPUT_ENA = 0x%04x\n",
816 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
817 }
818
819 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
820 "SGPRS: %d\n"
821 "VGPRS: %d\n"
822 "Spilled SGPRs: %d\n"
823 "Spilled VGPRs: %d\n"
824 "PrivMem VGPRS: %d\n"
825 "Code Size: %d bytes\n"
826 "LDS: %d blocks\n"
827 "Scratch: %d bytes per wave\n"
828 "Max Waves: %d\n"
829 "********************\n\n\n",
830 conf->num_sgprs, conf->num_vgprs,
831 conf->spilled_sgprs, conf->spilled_vgprs,
832 variant->info.private_mem_vgprs, variant->code_size,
833 conf->lds_size, conf->scratch_bytes_per_wave,
834 max_simd_waves);
835 }
836
837 void
838 radv_shader_dump_stats(struct radv_device *device,
839 struct radv_shader_variant *variant,
840 gl_shader_stage stage,
841 FILE *file)
842 {
843 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
844
845 generate_shader_stats(device, variant, stage, buf);
846
847 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
848 fprintf(file, "%s", buf->buf);
849
850 _mesa_string_buffer_destroy(buf);
851 }
852
853 VkResult
854 radv_GetShaderInfoAMD(VkDevice _device,
855 VkPipeline _pipeline,
856 VkShaderStageFlagBits shaderStage,
857 VkShaderInfoTypeAMD infoType,
858 size_t* pInfoSize,
859 void* pInfo)
860 {
861 RADV_FROM_HANDLE(radv_device, device, _device);
862 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
863 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
864 struct radv_shader_variant *variant = pipeline->shaders[stage];
865 struct _mesa_string_buffer *buf;
866 VkResult result = VK_SUCCESS;
867
868 /* Spec doesn't indicate what to do if the stage is invalid, so just
869 * return no info for this. */
870 if (!variant)
871 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
872
873 switch (infoType) {
874 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
875 if (!pInfo) {
876 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
877 } else {
878 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256;
879 struct ac_shader_config *conf = &variant->config;
880
881 VkShaderStatisticsInfoAMD statistics = {};
882 statistics.shaderStageMask = shaderStage;
883 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
884 statistics.numPhysicalSgprs = ac_get_num_physical_sgprs(device->physical_device->rad_info.chip_class);
885 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
886
887 if (stage == MESA_SHADER_COMPUTE) {
888 unsigned *local_size = variant->nir->info.cs.local_size;
889 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
890
891 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
892 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
893
894 statistics.computeWorkGroupSize[0] = local_size[0];
895 statistics.computeWorkGroupSize[1] = local_size[1];
896 statistics.computeWorkGroupSize[2] = local_size[2];
897 } else {
898 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
899 }
900
901 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
902 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
903 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
904 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
905 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
906
907 size_t size = *pInfoSize;
908 *pInfoSize = sizeof(statistics);
909
910 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
911
912 if (size < *pInfoSize)
913 result = VK_INCOMPLETE;
914 }
915
916 break;
917 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
918 buf = _mesa_string_buffer_create(NULL, 1024);
919
920 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
921 _mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string);
922 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
923 generate_shader_stats(device, variant, stage, buf);
924
925 /* Need to include the null terminator. */
926 size_t length = buf->length + 1;
927
928 if (!pInfo) {
929 *pInfoSize = length;
930 } else {
931 size_t size = *pInfoSize;
932 *pInfoSize = length;
933
934 memcpy(pInfo, buf->buf, MIN2(size, length));
935
936 if (size < length)
937 result = VK_INCOMPLETE;
938 }
939
940 _mesa_string_buffer_destroy(buf);
941 break;
942 default:
943 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
944 result = VK_ERROR_FEATURE_NOT_PRESENT;
945 break;
946 }
947
948 return result;
949 }