radv: set amdgpu-32bit-address-high-bits LLVM attribute
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48
49 #include "util/string_buffer.h"
50
51 static const struct nir_shader_compiler_options nir_options = {
52 .vertex_id_zero_based = true,
53 .lower_scmp = true,
54 .lower_flrp32 = true,
55 .lower_flrp64 = true,
56 .lower_device_index_to_zero = true,
57 .lower_fsat = true,
58 .lower_fdiv = true,
59 .lower_sub = true,
60 .lower_pack_snorm_2x16 = true,
61 .lower_pack_snorm_4x8 = true,
62 .lower_pack_unorm_2x16 = true,
63 .lower_pack_unorm_4x8 = true,
64 .lower_unpack_snorm_2x16 = true,
65 .lower_unpack_snorm_4x8 = true,
66 .lower_unpack_unorm_2x16 = true,
67 .lower_unpack_unorm_4x8 = true,
68 .lower_extract_byte = true,
69 .lower_extract_word = true,
70 .lower_ffma = true,
71 .lower_fpow = true,
72 .vs_inputs_dual_locations = true,
73 .max_unroll_iterations = 32
74 };
75
76 VkResult radv_CreateShaderModule(
77 VkDevice _device,
78 const VkShaderModuleCreateInfo* pCreateInfo,
79 const VkAllocationCallbacks* pAllocator,
80 VkShaderModule* pShaderModule)
81 {
82 RADV_FROM_HANDLE(radv_device, device, _device);
83 struct radv_shader_module *module;
84
85 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
86 assert(pCreateInfo->flags == 0);
87
88 module = vk_alloc2(&device->alloc, pAllocator,
89 sizeof(*module) + pCreateInfo->codeSize, 8,
90 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
91 if (module == NULL)
92 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
93
94 module->nir = NULL;
95 module->size = pCreateInfo->codeSize;
96 memcpy(module->data, pCreateInfo->pCode, module->size);
97
98 _mesa_sha1_compute(module->data, module->size, module->sha1);
99
100 *pShaderModule = radv_shader_module_to_handle(module);
101
102 return VK_SUCCESS;
103 }
104
105 void radv_DestroyShaderModule(
106 VkDevice _device,
107 VkShaderModule _module,
108 const VkAllocationCallbacks* pAllocator)
109 {
110 RADV_FROM_HANDLE(radv_device, device, _device);
111 RADV_FROM_HANDLE(radv_shader_module, module, _module);
112
113 if (!module)
114 return;
115
116 vk_free2(&device->alloc, pAllocator, module);
117 }
118
119 void
120 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
121 {
122 bool progress;
123
124 do {
125 progress = false;
126
127 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
128 NIR_PASS_V(shader, nir_lower_pack);
129 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
130 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
131
132 NIR_PASS(progress, shader, nir_copy_prop);
133 NIR_PASS(progress, shader, nir_opt_remove_phis);
134 NIR_PASS(progress, shader, nir_opt_dce);
135 if (nir_opt_trivial_continues(shader)) {
136 progress = true;
137 NIR_PASS(progress, shader, nir_copy_prop);
138 NIR_PASS(progress, shader, nir_opt_remove_phis);
139 NIR_PASS(progress, shader, nir_opt_dce);
140 }
141 NIR_PASS(progress, shader, nir_opt_if);
142 NIR_PASS(progress, shader, nir_opt_dead_cf);
143 NIR_PASS(progress, shader, nir_opt_cse);
144 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
145 NIR_PASS(progress, shader, nir_opt_algebraic);
146 NIR_PASS(progress, shader, nir_opt_constant_folding);
147 NIR_PASS(progress, shader, nir_opt_undef);
148 NIR_PASS(progress, shader, nir_opt_conditional_discard);
149 if (shader->options->max_unroll_iterations) {
150 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
151 }
152 } while (progress && !optimize_conservatively);
153
154 NIR_PASS(progress, shader, nir_opt_shrink_load);
155 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
156 }
157
158 nir_shader *
159 radv_shader_compile_to_nir(struct radv_device *device,
160 struct radv_shader_module *module,
161 const char *entrypoint_name,
162 gl_shader_stage stage,
163 const VkSpecializationInfo *spec_info,
164 const VkPipelineCreateFlags flags)
165 {
166 nir_shader *nir;
167 nir_function *entry_point;
168 if (module->nir) {
169 /* Some things such as our meta clear/blit code will give us a NIR
170 * shader directly. In that case, we just ignore the SPIR-V entirely
171 * and just use the NIR shader */
172 nir = module->nir;
173 nir->options = &nir_options;
174 nir_validate_shader(nir);
175
176 assert(exec_list_length(&nir->functions) == 1);
177 struct exec_node *node = exec_list_get_head(&nir->functions);
178 entry_point = exec_node_data(nir_function, node, node);
179 } else {
180 uint32_t *spirv = (uint32_t *) module->data;
181 assert(module->size % 4 == 0);
182
183 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
184 radv_print_spirv(spirv, module->size, stderr);
185
186 uint32_t num_spec_entries = 0;
187 struct nir_spirv_specialization *spec_entries = NULL;
188 if (spec_info && spec_info->mapEntryCount > 0) {
189 num_spec_entries = spec_info->mapEntryCount;
190 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
191 for (uint32_t i = 0; i < num_spec_entries; i++) {
192 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
193 const void *data = spec_info->pData + entry.offset;
194 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
195
196 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
197 if (spec_info->dataSize == 8)
198 spec_entries[i].data64 = *(const uint64_t *)data;
199 else
200 spec_entries[i].data32 = *(const uint32_t *)data;
201 }
202 }
203 const struct spirv_to_nir_options spirv_options = {
204 .caps = {
205 .device_group = true,
206 .draw_parameters = true,
207 .float64 = true,
208 .image_read_without_format = true,
209 .image_write_without_format = true,
210 .tessellation = true,
211 .int64 = true,
212 .multiview = true,
213 .subgroup_ballot = true,
214 .subgroup_basic = true,
215 .subgroup_quad = true,
216 .subgroup_shuffle = true,
217 .subgroup_vote = true,
218 .variable_pointers = true,
219 .gcn_shader = true,
220 .trinary_minmax = true,
221 .shader_viewport_index_layer = true,
222 .descriptor_array_dynamic_indexing = true,
223 .runtime_descriptor_array = true,
224 },
225 };
226 entry_point = spirv_to_nir(spirv, module->size / 4,
227 spec_entries, num_spec_entries,
228 stage, entrypoint_name,
229 &spirv_options, &nir_options);
230 nir = entry_point->shader;
231 assert(nir->info.stage == stage);
232 nir_validate_shader(nir);
233
234 free(spec_entries);
235
236 /* We have to lower away local constant initializers right before we
237 * inline functions. That way they get properly initialized at the top
238 * of the function and not at the top of its caller.
239 */
240 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
241 NIR_PASS_V(nir, nir_lower_returns);
242 NIR_PASS_V(nir, nir_inline_functions);
243
244 /* Pick off the single entrypoint that we want */
245 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
246 if (func != entry_point)
247 exec_node_remove(&func->node);
248 }
249 assert(exec_list_length(&nir->functions) == 1);
250 entry_point->name = ralloc_strdup(entry_point, "main");
251
252 /* Make sure we lower constant initializers on output variables so that
253 * nir_remove_dead_variables below sees the corresponding stores
254 */
255 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
256
257 NIR_PASS_V(nir, nir_remove_dead_variables,
258 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
259
260 /* Now that we've deleted all but the main function, we can go ahead and
261 * lower the rest of the constant initializers.
262 */
263 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
264 NIR_PASS_V(nir, nir_lower_system_values);
265 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
266 }
267
268 /* Vulkan uses the separate-shader linking model */
269 nir->info.separate_shader = true;
270
271 nir_shader_gather_info(nir, entry_point->impl);
272
273 static const nir_lower_tex_options tex_options = {
274 .lower_txp = ~0,
275 };
276
277 nir_lower_tex(nir, &tex_options);
278
279 nir_lower_vars_to_ssa(nir);
280 nir_lower_var_copies(nir);
281 nir_lower_global_vars_to_local(nir);
282 nir_remove_dead_variables(nir, nir_var_local);
283 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
284 .subgroup_size = 64,
285 .ballot_bit_size = 64,
286 .lower_to_scalar = 1,
287 .lower_subgroup_masks = 1,
288 .lower_shuffle = 1,
289 .lower_shuffle_to_32bit = 1,
290 .lower_vote_eq_to_ballot = 1,
291 });
292
293 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
294 radv_optimize_nir(nir, false);
295
296 /* Indirect lowering must be called after the radv_optimize_nir() loop
297 * has been called at least once. Otherwise indirect lowering can
298 * bloat the instruction count of the loop and cause it to be
299 * considered too large for unrolling.
300 */
301 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
302 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT);
303
304 return nir;
305 }
306
307 void *
308 radv_alloc_shader_memory(struct radv_device *device,
309 struct radv_shader_variant *shader)
310 {
311 mtx_lock(&device->shader_slab_mutex);
312 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
313 uint64_t offset = 0;
314 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
315 if (s->bo_offset - offset >= shader->code_size) {
316 shader->bo = slab->bo;
317 shader->bo_offset = offset;
318 list_addtail(&shader->slab_list, &s->slab_list);
319 mtx_unlock(&device->shader_slab_mutex);
320 return slab->ptr + offset;
321 }
322 offset = align_u64(s->bo_offset + s->code_size, 256);
323 }
324 if (slab->size - offset >= shader->code_size) {
325 shader->bo = slab->bo;
326 shader->bo_offset = offset;
327 list_addtail(&shader->slab_list, &slab->shaders);
328 mtx_unlock(&device->shader_slab_mutex);
329 return slab->ptr + offset;
330 }
331 }
332
333 mtx_unlock(&device->shader_slab_mutex);
334 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
335
336 slab->size = 256 * 1024;
337 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
338 RADEON_DOMAIN_VRAM,
339 RADEON_FLAG_NO_INTERPROCESS_SHARING |
340 device->physical_device->cpdma_prefetch_writes_memory ?
341 0 : RADEON_FLAG_READ_ONLY);
342 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
343 list_inithead(&slab->shaders);
344
345 mtx_lock(&device->shader_slab_mutex);
346 list_add(&slab->slabs, &device->shader_slabs);
347
348 shader->bo = slab->bo;
349 shader->bo_offset = 0;
350 list_add(&shader->slab_list, &slab->shaders);
351 mtx_unlock(&device->shader_slab_mutex);
352 return slab->ptr;
353 }
354
355 void
356 radv_destroy_shader_slabs(struct radv_device *device)
357 {
358 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
359 device->ws->buffer_destroy(slab->bo);
360 free(slab);
361 }
362 mtx_destroy(&device->shader_slab_mutex);
363 }
364
365 static void
366 radv_fill_shader_variant(struct radv_device *device,
367 struct radv_shader_variant *variant,
368 struct ac_shader_binary *binary,
369 gl_shader_stage stage)
370 {
371 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
372 struct radv_shader_info *info = &variant->info.info;
373 unsigned vgpr_comp_cnt = 0;
374
375 variant->code_size = binary->code_size;
376 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
377 S_00B12C_SCRATCH_EN(scratch_enabled);
378
379 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
380 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
381 S_00B848_DX10_CLAMP(1) |
382 S_00B848_FLOAT_MODE(variant->config.float_mode);
383
384 switch (stage) {
385 case MESA_SHADER_TESS_EVAL:
386 vgpr_comp_cnt = 3;
387 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
388 break;
389 case MESA_SHADER_TESS_CTRL:
390 if (device->physical_device->rad_info.chip_class >= GFX9) {
391 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
392 } else {
393 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
394 }
395 break;
396 case MESA_SHADER_VERTEX:
397 case MESA_SHADER_GEOMETRY:
398 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
399 break;
400 case MESA_SHADER_FRAGMENT:
401 break;
402 case MESA_SHADER_COMPUTE:
403 variant->rsrc2 |=
404 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
405 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
406 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
407 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
408 info->cs.uses_thread_id[1] ? 1 : 0) |
409 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
410 S_00B84C_LDS_SIZE(variant->config.lds_size);
411 break;
412 default:
413 unreachable("unsupported shader type");
414 break;
415 }
416
417 if (device->physical_device->rad_info.chip_class >= GFX9 &&
418 stage == MESA_SHADER_GEOMETRY) {
419 unsigned es_type = variant->info.gs.es_type;
420 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
421
422 if (es_type == MESA_SHADER_VERTEX) {
423 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
424 } else if (es_type == MESA_SHADER_TESS_EVAL) {
425 es_vgpr_comp_cnt = 3;
426 } else {
427 unreachable("invalid shader ES type");
428 }
429
430 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
431 * VGPR[0:4] are always loaded.
432 */
433 if (info->uses_invocation_id) {
434 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
435 } else if (info->uses_prim_id) {
436 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
437 } else if (variant->info.gs.vertices_in >= 3) {
438 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
439 } else {
440 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
441 }
442
443 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
444 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
445 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
446 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
447 stage == MESA_SHADER_TESS_CTRL) {
448 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
449 } else {
450 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
451 }
452
453 void *ptr = radv_alloc_shader_memory(device, variant);
454 memcpy(ptr, binary->code, binary->code_size);
455 }
456
457 static struct radv_shader_variant *
458 shader_variant_create(struct radv_device *device,
459 struct radv_shader_module *module,
460 struct nir_shader * const *shaders,
461 int shader_count,
462 gl_shader_stage stage,
463 struct radv_nir_compiler_options *options,
464 bool gs_copy_shader,
465 void **code_out,
466 unsigned *code_size_out)
467 {
468 enum radeon_family chip_family = device->physical_device->rad_info.family;
469 enum ac_target_machine_options tm_options = 0;
470 struct radv_shader_variant *variant;
471 struct ac_shader_binary binary;
472 LLVMTargetMachineRef tm;
473
474 variant = calloc(1, sizeof(struct radv_shader_variant));
475 if (!variant)
476 return NULL;
477
478 options->family = chip_family;
479 options->chip_class = device->physical_device->rad_info.chip_class;
480 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
481 options->dump_preoptir = options->dump_shader &&
482 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
483 options->record_llvm_ir = device->keep_shader_info;
484 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
485 options->address32_hi = device->physical_device->rad_info.address32_hi;
486
487 if (options->supports_spill)
488 tm_options |= AC_TM_SUPPORTS_SPILL;
489 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
490 tm_options |= AC_TM_SISCHED;
491 tm = ac_create_target_machine(chip_family, tm_options, NULL);
492
493 if (gs_copy_shader) {
494 assert(shader_count == 1);
495 radv_compile_gs_copy_shader(tm, *shaders, &binary,
496 &variant->config, &variant->info,
497 options);
498 } else {
499 radv_compile_nir_shader(tm, &binary, &variant->config,
500 &variant->info, shaders, shader_count,
501 options);
502 }
503
504 LLVMDisposeTargetMachine(tm);
505
506 radv_fill_shader_variant(device, variant, &binary, stage);
507
508 if (code_out) {
509 *code_out = binary.code;
510 *code_size_out = binary.code_size;
511 } else
512 free(binary.code);
513 free(binary.config);
514 free(binary.rodata);
515 free(binary.global_symbol_offsets);
516 free(binary.relocs);
517 variant->ref_count = 1;
518
519 if (device->keep_shader_info) {
520 variant->disasm_string = binary.disasm_string;
521 variant->llvm_ir_string = binary.llvm_ir_string;
522 if (!gs_copy_shader && !module->nir) {
523 variant->nir = *shaders;
524 variant->spirv = (uint32_t *)module->data;
525 variant->spirv_size = module->size;
526 }
527 } else {
528 free(binary.disasm_string);
529 }
530
531 return variant;
532 }
533
534 struct radv_shader_variant *
535 radv_shader_variant_create(struct radv_device *device,
536 struct radv_shader_module *module,
537 struct nir_shader *const *shaders,
538 int shader_count,
539 struct radv_pipeline_layout *layout,
540 const struct radv_shader_variant_key *key,
541 void **code_out,
542 unsigned *code_size_out)
543 {
544 struct radv_nir_compiler_options options = {0};
545
546 options.layout = layout;
547 if (key)
548 options.key = *key;
549
550 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
551 options.supports_spill = true;
552
553 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
554 &options, false, code_out, code_size_out);
555 }
556
557 struct radv_shader_variant *
558 radv_create_gs_copy_shader(struct radv_device *device,
559 struct nir_shader *shader,
560 void **code_out,
561 unsigned *code_size_out,
562 bool multiview)
563 {
564 struct radv_nir_compiler_options options = {0};
565
566 options.key.has_multiview_view_index = multiview;
567
568 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
569 &options, true, code_out, code_size_out);
570 }
571
572 void
573 radv_shader_variant_destroy(struct radv_device *device,
574 struct radv_shader_variant *variant)
575 {
576 if (!p_atomic_dec_zero(&variant->ref_count))
577 return;
578
579 mtx_lock(&device->shader_slab_mutex);
580 list_del(&variant->slab_list);
581 mtx_unlock(&device->shader_slab_mutex);
582
583 ralloc_free(variant->nir);
584 free(variant->disasm_string);
585 free(variant->llvm_ir_string);
586 free(variant);
587 }
588
589 const char *
590 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
591 {
592 switch (stage) {
593 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
594 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
595 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
596 case MESA_SHADER_COMPUTE: return "Compute Shader";
597 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
598 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
599 default:
600 return "Unknown shader";
601 };
602 }
603
604 static void
605 generate_shader_stats(struct radv_device *device,
606 struct radv_shader_variant *variant,
607 gl_shader_stage stage,
608 struct _mesa_string_buffer *buf)
609 {
610 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
611 struct ac_shader_config *conf;
612 unsigned max_simd_waves;
613 unsigned lds_per_wave = 0;
614
615 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
616
617 conf = &variant->config;
618
619 if (stage == MESA_SHADER_FRAGMENT) {
620 lds_per_wave = conf->lds_size * lds_increment +
621 align(variant->info.fs.num_interp * 48,
622 lds_increment);
623 }
624
625 if (conf->num_sgprs)
626 max_simd_waves =
627 MIN2(max_simd_waves,
628 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
629
630 if (conf->num_vgprs)
631 max_simd_waves =
632 MIN2(max_simd_waves,
633 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
634
635 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
636 * that PS can use.
637 */
638 if (lds_per_wave)
639 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
640
641 if (stage == MESA_SHADER_FRAGMENT) {
642 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
643 "SPI_PS_INPUT_ADDR = 0x%04x\n"
644 "SPI_PS_INPUT_ENA = 0x%04x\n",
645 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
646 }
647
648 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
649 "SGPRS: %d\n"
650 "VGPRS: %d\n"
651 "Spilled SGPRs: %d\n"
652 "Spilled VGPRs: %d\n"
653 "PrivMem VGPRS: %d\n"
654 "Code Size: %d bytes\n"
655 "LDS: %d blocks\n"
656 "Scratch: %d bytes per wave\n"
657 "Max Waves: %d\n"
658 "********************\n\n\n",
659 conf->num_sgprs, conf->num_vgprs,
660 conf->spilled_sgprs, conf->spilled_vgprs,
661 variant->info.private_mem_vgprs, variant->code_size,
662 conf->lds_size, conf->scratch_bytes_per_wave,
663 max_simd_waves);
664 }
665
666 void
667 radv_shader_dump_stats(struct radv_device *device,
668 struct radv_shader_variant *variant,
669 gl_shader_stage stage,
670 FILE *file)
671 {
672 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
673
674 generate_shader_stats(device, variant, stage, buf);
675
676 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
677 fprintf(file, "%s", buf->buf);
678
679 _mesa_string_buffer_destroy(buf);
680 }
681
682 VkResult
683 radv_GetShaderInfoAMD(VkDevice _device,
684 VkPipeline _pipeline,
685 VkShaderStageFlagBits shaderStage,
686 VkShaderInfoTypeAMD infoType,
687 size_t* pInfoSize,
688 void* pInfo)
689 {
690 RADV_FROM_HANDLE(radv_device, device, _device);
691 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
692 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
693 struct radv_shader_variant *variant = pipeline->shaders[stage];
694 struct _mesa_string_buffer *buf;
695 VkResult result = VK_SUCCESS;
696
697 /* Spec doesn't indicate what to do if the stage is invalid, so just
698 * return no info for this. */
699 if (!variant)
700 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
701
702 switch (infoType) {
703 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
704 if (!pInfo) {
705 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
706 } else {
707 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
708 struct ac_shader_config *conf = &variant->config;
709
710 VkShaderStatisticsInfoAMD statistics = {};
711 statistics.shaderStageMask = shaderStage;
712 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
713 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
714 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
715
716 if (stage == MESA_SHADER_COMPUTE) {
717 unsigned *local_size = variant->nir->info.cs.local_size;
718 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
719
720 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
721 ceil(workgroup_size / statistics.numPhysicalVgprs);
722
723 statistics.computeWorkGroupSize[0] = local_size[0];
724 statistics.computeWorkGroupSize[1] = local_size[1];
725 statistics.computeWorkGroupSize[2] = local_size[2];
726 } else {
727 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
728 }
729
730 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
731 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
732 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
733 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
734 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
735
736 size_t size = *pInfoSize;
737 *pInfoSize = sizeof(statistics);
738
739 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
740
741 if (size < *pInfoSize)
742 result = VK_INCOMPLETE;
743 }
744
745 break;
746 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
747 buf = _mesa_string_buffer_create(NULL, 1024);
748
749 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
750 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
751 generate_shader_stats(device, variant, stage, buf);
752
753 /* Need to include the null terminator. */
754 size_t length = buf->length + 1;
755
756 if (!pInfo) {
757 *pInfoSize = length;
758 } else {
759 size_t size = *pInfoSize;
760 *pInfoSize = length;
761
762 memcpy(pInfo, buf->buf, MIN2(size, length));
763
764 if (size < length)
765 result = VK_INCOMPLETE;
766 }
767
768 _mesa_string_buffer_destroy(buf);
769 break;
770 default:
771 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
772 result = VK_ERROR_FEATURE_NOT_PRESENT;
773 break;
774 }
775
776 return result;
777 }