radv: enable subgroup capabilities
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48
49 #include "util/string_buffer.h"
50
51 static const struct nir_shader_compiler_options nir_options = {
52 .vertex_id_zero_based = true,
53 .lower_scmp = true,
54 .lower_flrp32 = true,
55 .lower_flrp64 = true,
56 .lower_device_index_to_zero = true,
57 .lower_fsat = true,
58 .lower_fdiv = true,
59 .lower_sub = true,
60 .lower_pack_snorm_2x16 = true,
61 .lower_pack_snorm_4x8 = true,
62 .lower_pack_unorm_2x16 = true,
63 .lower_pack_unorm_4x8 = true,
64 .lower_unpack_snorm_2x16 = true,
65 .lower_unpack_snorm_4x8 = true,
66 .lower_unpack_unorm_2x16 = true,
67 .lower_unpack_unorm_4x8 = true,
68 .lower_extract_byte = true,
69 .lower_extract_word = true,
70 .lower_ffma = true,
71 .lower_fpow = true,
72 .vs_inputs_dual_locations = true,
73 .max_unroll_iterations = 32
74 };
75
76 VkResult radv_CreateShaderModule(
77 VkDevice _device,
78 const VkShaderModuleCreateInfo* pCreateInfo,
79 const VkAllocationCallbacks* pAllocator,
80 VkShaderModule* pShaderModule)
81 {
82 RADV_FROM_HANDLE(radv_device, device, _device);
83 struct radv_shader_module *module;
84
85 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
86 assert(pCreateInfo->flags == 0);
87
88 module = vk_alloc2(&device->alloc, pAllocator,
89 sizeof(*module) + pCreateInfo->codeSize, 8,
90 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
91 if (module == NULL)
92 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
93
94 module->nir = NULL;
95 module->size = pCreateInfo->codeSize;
96 memcpy(module->data, pCreateInfo->pCode, module->size);
97
98 _mesa_sha1_compute(module->data, module->size, module->sha1);
99
100 *pShaderModule = radv_shader_module_to_handle(module);
101
102 return VK_SUCCESS;
103 }
104
105 void radv_DestroyShaderModule(
106 VkDevice _device,
107 VkShaderModule _module,
108 const VkAllocationCallbacks* pAllocator)
109 {
110 RADV_FROM_HANDLE(radv_device, device, _device);
111 RADV_FROM_HANDLE(radv_shader_module, module, _module);
112
113 if (!module)
114 return;
115
116 vk_free2(&device->alloc, pAllocator, module);
117 }
118
119 void
120 radv_optimize_nir(struct nir_shader *shader)
121 {
122 bool progress;
123
124 do {
125 progress = false;
126
127 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
128 NIR_PASS_V(shader, nir_lower_64bit_pack);
129 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
130 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
131
132 NIR_PASS(progress, shader, nir_copy_prop);
133 NIR_PASS(progress, shader, nir_opt_remove_phis);
134 NIR_PASS(progress, shader, nir_opt_dce);
135 if (nir_opt_trivial_continues(shader)) {
136 progress = true;
137 NIR_PASS(progress, shader, nir_copy_prop);
138 NIR_PASS(progress, shader, nir_opt_remove_phis);
139 NIR_PASS(progress, shader, nir_opt_dce);
140 }
141 NIR_PASS(progress, shader, nir_opt_if);
142 NIR_PASS(progress, shader, nir_opt_dead_cf);
143 NIR_PASS(progress, shader, nir_opt_cse);
144 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
145 NIR_PASS(progress, shader, nir_opt_algebraic);
146 NIR_PASS(progress, shader, nir_opt_constant_folding);
147 NIR_PASS(progress, shader, nir_opt_undef);
148 NIR_PASS(progress, shader, nir_opt_conditional_discard);
149 if (shader->options->max_unroll_iterations) {
150 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
151 }
152 } while (progress);
153
154 NIR_PASS(progress, shader, nir_opt_shrink_load);
155 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
156 }
157
158 nir_shader *
159 radv_shader_compile_to_nir(struct radv_device *device,
160 struct radv_shader_module *module,
161 const char *entrypoint_name,
162 gl_shader_stage stage,
163 const VkSpecializationInfo *spec_info)
164 {
165 if (strcmp(entrypoint_name, "main") != 0) {
166 radv_finishme("Multiple shaders per module not really supported");
167 }
168
169 nir_shader *nir;
170 nir_function *entry_point;
171 if (module->nir) {
172 /* Some things such as our meta clear/blit code will give us a NIR
173 * shader directly. In that case, we just ignore the SPIR-V entirely
174 * and just use the NIR shader */
175 nir = module->nir;
176 nir->options = &nir_options;
177 nir_validate_shader(nir);
178
179 assert(exec_list_length(&nir->functions) == 1);
180 struct exec_node *node = exec_list_get_head(&nir->functions);
181 entry_point = exec_node_data(nir_function, node, node);
182 } else {
183 uint32_t *spirv = (uint32_t *) module->data;
184 assert(module->size % 4 == 0);
185
186 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
187 radv_print_spirv(spirv, module->size, stderr);
188
189 uint32_t num_spec_entries = 0;
190 struct nir_spirv_specialization *spec_entries = NULL;
191 if (spec_info && spec_info->mapEntryCount > 0) {
192 num_spec_entries = spec_info->mapEntryCount;
193 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
194 for (uint32_t i = 0; i < num_spec_entries; i++) {
195 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
196 const void *data = spec_info->pData + entry.offset;
197 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
198
199 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
200 if (spec_info->dataSize == 8)
201 spec_entries[i].data64 = *(const uint64_t *)data;
202 else
203 spec_entries[i].data32 = *(const uint32_t *)data;
204 }
205 }
206 const struct spirv_to_nir_options spirv_options = {
207 .caps = {
208 .device_group = true,
209 .draw_parameters = true,
210 .float64 = true,
211 .image_read_without_format = true,
212 .image_write_without_format = true,
213 .tessellation = true,
214 .int64 = true,
215 .multiview = true,
216 .subgroup_ballot = true,
217 .subgroup_basic = true,
218 .subgroup_quad = true,
219 .subgroup_shuffle = true,
220 .subgroup_vote = true,
221 .variable_pointers = true,
222 .gcn_shader = true,
223 .trinary_minmax = true,
224 .shader_viewport_index_layer = true,
225 },
226 };
227 entry_point = spirv_to_nir(spirv, module->size / 4,
228 spec_entries, num_spec_entries,
229 stage, entrypoint_name,
230 &spirv_options, &nir_options);
231 nir = entry_point->shader;
232 assert(nir->info.stage == stage);
233 nir_validate_shader(nir);
234
235 free(spec_entries);
236
237 /* We have to lower away local constant initializers right before we
238 * inline functions. That way they get properly initialized at the top
239 * of the function and not at the top of its caller.
240 */
241 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
242 NIR_PASS_V(nir, nir_lower_returns);
243 NIR_PASS_V(nir, nir_inline_functions);
244
245 /* Pick off the single entrypoint that we want */
246 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
247 if (func != entry_point)
248 exec_node_remove(&func->node);
249 }
250 assert(exec_list_length(&nir->functions) == 1);
251 entry_point->name = ralloc_strdup(entry_point, "main");
252
253 /* Make sure we lower constant initializers on output variables so that
254 * nir_remove_dead_variables below sees the corresponding stores
255 */
256 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
257
258 NIR_PASS_V(nir, nir_remove_dead_variables,
259 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
260
261 /* Now that we've deleted all but the main function, we can go ahead and
262 * lower the rest of the constant initializers.
263 */
264 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
265 NIR_PASS_V(nir, nir_lower_system_values);
266 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
267 }
268
269 /* Vulkan uses the separate-shader linking model */
270 nir->info.separate_shader = true;
271
272 nir_shader_gather_info(nir, entry_point->impl);
273
274 static const nir_lower_tex_options tex_options = {
275 .lower_txp = ~0,
276 };
277
278 nir_lower_tex(nir, &tex_options);
279
280 nir_lower_vars_to_ssa(nir);
281 nir_lower_var_copies(nir);
282 nir_lower_global_vars_to_local(nir);
283 nir_remove_dead_variables(nir, nir_var_local);
284 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
285 .subgroup_size = 64,
286 .ballot_bit_size = 64,
287 .lower_to_scalar = 1,
288 .lower_subgroup_masks = 1,
289 .lower_shuffle = 1,
290 .lower_shuffle_to_32bit = 1,
291 .lower_vote_eq_to_ballot = 1,
292 });
293
294 radv_optimize_nir(nir);
295
296 /* Indirect lowering must be called after the radv_optimize_nir() loop
297 * has been called at least once. Otherwise indirect lowering can
298 * bloat the instruction count of the loop and cause it to be
299 * considered too large for unrolling.
300 */
301 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
302 radv_optimize_nir(nir);
303
304 return nir;
305 }
306
307 void *
308 radv_alloc_shader_memory(struct radv_device *device,
309 struct radv_shader_variant *shader)
310 {
311 mtx_lock(&device->shader_slab_mutex);
312 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
313 uint64_t offset = 0;
314 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
315 if (s->bo_offset - offset >= shader->code_size) {
316 shader->bo = slab->bo;
317 shader->bo_offset = offset;
318 list_addtail(&shader->slab_list, &s->slab_list);
319 mtx_unlock(&device->shader_slab_mutex);
320 return slab->ptr + offset;
321 }
322 offset = align_u64(s->bo_offset + s->code_size, 256);
323 }
324 if (slab->size - offset >= shader->code_size) {
325 shader->bo = slab->bo;
326 shader->bo_offset = offset;
327 list_addtail(&shader->slab_list, &slab->shaders);
328 mtx_unlock(&device->shader_slab_mutex);
329 return slab->ptr + offset;
330 }
331 }
332
333 mtx_unlock(&device->shader_slab_mutex);
334 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
335
336 slab->size = 256 * 1024;
337 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
338 RADEON_DOMAIN_VRAM,
339 RADEON_FLAG_NO_INTERPROCESS_SHARING |
340 device->physical_device->cpdma_prefetch_writes_memory ?
341 0 : RADEON_FLAG_READ_ONLY);
342 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
343 list_inithead(&slab->shaders);
344
345 mtx_lock(&device->shader_slab_mutex);
346 list_add(&slab->slabs, &device->shader_slabs);
347
348 shader->bo = slab->bo;
349 shader->bo_offset = 0;
350 list_add(&shader->slab_list, &slab->shaders);
351 mtx_unlock(&device->shader_slab_mutex);
352 return slab->ptr;
353 }
354
355 void
356 radv_destroy_shader_slabs(struct radv_device *device)
357 {
358 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
359 device->ws->buffer_destroy(slab->bo);
360 free(slab);
361 }
362 mtx_destroy(&device->shader_slab_mutex);
363 }
364
365 static void
366 radv_fill_shader_variant(struct radv_device *device,
367 struct radv_shader_variant *variant,
368 struct ac_shader_binary *binary,
369 gl_shader_stage stage)
370 {
371 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
372 unsigned vgpr_comp_cnt = 0;
373
374 if (scratch_enabled && !device->llvm_supports_spill)
375 radv_finishme("shader scratch support only available with LLVM 4.0");
376
377 variant->code_size = binary->code_size;
378 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
379 S_00B12C_SCRATCH_EN(scratch_enabled);
380
381 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
382 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
383 S_00B848_DX10_CLAMP(1) |
384 S_00B848_FLOAT_MODE(variant->config.float_mode);
385
386 switch (stage) {
387 case MESA_SHADER_TESS_EVAL:
388 vgpr_comp_cnt = 3;
389 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
390 break;
391 case MESA_SHADER_TESS_CTRL:
392 if (device->physical_device->rad_info.chip_class >= GFX9)
393 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
394 else
395 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
396 break;
397 case MESA_SHADER_VERTEX:
398 case MESA_SHADER_GEOMETRY:
399 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
400 break;
401 case MESA_SHADER_FRAGMENT:
402 break;
403 case MESA_SHADER_COMPUTE: {
404 struct radv_shader_info *info = &variant->info.info;
405 variant->rsrc2 |=
406 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
407 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
408 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
409 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
410 info->cs.uses_thread_id[1] ? 1 : 0) |
411 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
412 S_00B84C_LDS_SIZE(variant->config.lds_size);
413 break;
414 }
415 default:
416 unreachable("unsupported shader type");
417 break;
418 }
419
420 if (device->physical_device->rad_info.chip_class >= GFX9 &&
421 stage == MESA_SHADER_GEOMETRY) {
422 struct radv_shader_info *info = &variant->info.info;
423 unsigned es_type = variant->info.gs.es_type;
424 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
425
426 if (es_type == MESA_SHADER_VERTEX) {
427 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
428 } else if (es_type == MESA_SHADER_TESS_EVAL) {
429 es_vgpr_comp_cnt = 3;
430 } else {
431 unreachable("invalid shader ES type");
432 }
433
434 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
435 * VGPR[0:4] are always loaded.
436 */
437 if (info->uses_invocation_id)
438 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
439 else if (info->uses_prim_id)
440 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
441 else if (variant->info.gs.vertices_in >= 3)
442 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
443 else
444 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
445
446 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
447 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
448 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
449 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
450 stage == MESA_SHADER_TESS_CTRL)
451 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
452 else
453 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
454
455 void *ptr = radv_alloc_shader_memory(device, variant);
456 memcpy(ptr, binary->code, binary->code_size);
457 }
458
459 static struct radv_shader_variant *
460 shader_variant_create(struct radv_device *device,
461 struct radv_shader_module *module,
462 struct nir_shader * const *shaders,
463 int shader_count,
464 gl_shader_stage stage,
465 struct radv_nir_compiler_options *options,
466 bool gs_copy_shader,
467 void **code_out,
468 unsigned *code_size_out)
469 {
470 enum radeon_family chip_family = device->physical_device->rad_info.family;
471 enum ac_target_machine_options tm_options = 0;
472 struct radv_shader_variant *variant;
473 struct ac_shader_binary binary;
474 LLVMTargetMachineRef tm;
475
476 variant = calloc(1, sizeof(struct radv_shader_variant));
477 if (!variant)
478 return NULL;
479
480 options->family = chip_family;
481 options->chip_class = device->physical_device->rad_info.chip_class;
482 options->dump_shader = radv_can_dump_shader(device, module);
483 options->dump_preoptir = options->dump_shader &&
484 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
485 options->record_llvm_ir = device->keep_shader_info;
486 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
487
488 if (options->supports_spill)
489 tm_options |= AC_TM_SUPPORTS_SPILL;
490 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
491 tm_options |= AC_TM_SISCHED;
492 tm = ac_create_target_machine(chip_family, tm_options);
493
494 if (gs_copy_shader) {
495 assert(shader_count == 1);
496 radv_compile_gs_copy_shader(tm, *shaders, &binary,
497 &variant->config, &variant->info,
498 options);
499 } else {
500 radv_compile_nir_shader(tm, &binary, &variant->config,
501 &variant->info, shaders, shader_count,
502 options);
503 }
504
505 LLVMDisposeTargetMachine(tm);
506
507 radv_fill_shader_variant(device, variant, &binary, stage);
508
509 if (code_out) {
510 *code_out = binary.code;
511 *code_size_out = binary.code_size;
512 } else
513 free(binary.code);
514 free(binary.config);
515 free(binary.rodata);
516 free(binary.global_symbol_offsets);
517 free(binary.relocs);
518 variant->ref_count = 1;
519
520 if (device->keep_shader_info) {
521 variant->disasm_string = binary.disasm_string;
522 variant->llvm_ir_string = binary.llvm_ir_string;
523 if (!gs_copy_shader && !module->nir) {
524 variant->nir = *shaders;
525 variant->spirv = (uint32_t *)module->data;
526 variant->spirv_size = module->size;
527 }
528 } else {
529 free(binary.disasm_string);
530 }
531
532 return variant;
533 }
534
535 struct radv_shader_variant *
536 radv_shader_variant_create(struct radv_device *device,
537 struct radv_shader_module *module,
538 struct nir_shader *const *shaders,
539 int shader_count,
540 struct radv_pipeline_layout *layout,
541 const struct radv_shader_variant_key *key,
542 void **code_out,
543 unsigned *code_size_out)
544 {
545 struct radv_nir_compiler_options options = {0};
546
547 options.layout = layout;
548 if (key)
549 options.key = *key;
550
551 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
552 options.supports_spill = device->llvm_supports_spill;
553
554 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
555 &options, false, code_out, code_size_out);
556 }
557
558 struct radv_shader_variant *
559 radv_create_gs_copy_shader(struct radv_device *device,
560 struct nir_shader *shader,
561 void **code_out,
562 unsigned *code_size_out,
563 bool multiview)
564 {
565 struct radv_nir_compiler_options options = {0};
566
567 options.key.has_multiview_view_index = multiview;
568
569 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
570 &options, true, code_out, code_size_out);
571 }
572
573 void
574 radv_shader_variant_destroy(struct radv_device *device,
575 struct radv_shader_variant *variant)
576 {
577 if (!p_atomic_dec_zero(&variant->ref_count))
578 return;
579
580 mtx_lock(&device->shader_slab_mutex);
581 list_del(&variant->slab_list);
582 mtx_unlock(&device->shader_slab_mutex);
583
584 ralloc_free(variant->nir);
585 free(variant->disasm_string);
586 free(variant->llvm_ir_string);
587 free(variant);
588 }
589
590 const char *
591 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
592 {
593 switch (stage) {
594 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
595 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
596 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
597 case MESA_SHADER_COMPUTE: return "Compute Shader";
598 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
599 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
600 default:
601 return "Unknown shader";
602 };
603 }
604
605 static void
606 generate_shader_stats(struct radv_device *device,
607 struct radv_shader_variant *variant,
608 gl_shader_stage stage,
609 struct _mesa_string_buffer *buf)
610 {
611 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
612 struct ac_shader_config *conf;
613 unsigned max_simd_waves;
614 unsigned lds_per_wave = 0;
615
616 switch (device->physical_device->rad_info.family) {
617 /* These always have 8 waves: */
618 case CHIP_POLARIS10:
619 case CHIP_POLARIS11:
620 case CHIP_POLARIS12:
621 max_simd_waves = 8;
622 break;
623 default:
624 max_simd_waves = 10;
625 }
626
627 conf = &variant->config;
628
629 if (stage == MESA_SHADER_FRAGMENT) {
630 lds_per_wave = conf->lds_size * lds_increment +
631 align(variant->info.fs.num_interp * 48,
632 lds_increment);
633 }
634
635 if (conf->num_sgprs)
636 max_simd_waves =
637 MIN2(max_simd_waves,
638 radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
639
640 if (conf->num_vgprs)
641 max_simd_waves =
642 MIN2(max_simd_waves,
643 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
644
645 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
646 * that PS can use.
647 */
648 if (lds_per_wave)
649 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
650
651 if (stage == MESA_SHADER_FRAGMENT) {
652 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
653 "SPI_PS_INPUT_ADDR = 0x%04x\n"
654 "SPI_PS_INPUT_ENA = 0x%04x\n",
655 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
656 }
657
658 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
659 "SGPRS: %d\n"
660 "VGPRS: %d\n"
661 "Spilled SGPRs: %d\n"
662 "Spilled VGPRs: %d\n"
663 "PrivMem VGPRS: %d\n"
664 "Code Size: %d bytes\n"
665 "LDS: %d blocks\n"
666 "Scratch: %d bytes per wave\n"
667 "Max Waves: %d\n"
668 "********************\n\n\n",
669 conf->num_sgprs, conf->num_vgprs,
670 conf->spilled_sgprs, conf->spilled_vgprs,
671 variant->info.private_mem_vgprs, variant->code_size,
672 conf->lds_size, conf->scratch_bytes_per_wave,
673 max_simd_waves);
674 }
675
676 void
677 radv_shader_dump_stats(struct radv_device *device,
678 struct radv_shader_variant *variant,
679 gl_shader_stage stage,
680 FILE *file)
681 {
682 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
683
684 generate_shader_stats(device, variant, stage, buf);
685
686 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
687 fprintf(file, "%s", buf->buf);
688
689 _mesa_string_buffer_destroy(buf);
690 }
691
692 VkResult
693 radv_GetShaderInfoAMD(VkDevice _device,
694 VkPipeline _pipeline,
695 VkShaderStageFlagBits shaderStage,
696 VkShaderInfoTypeAMD infoType,
697 size_t* pInfoSize,
698 void* pInfo)
699 {
700 RADV_FROM_HANDLE(radv_device, device, _device);
701 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
702 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
703 struct radv_shader_variant *variant = pipeline->shaders[stage];
704 struct _mesa_string_buffer *buf;
705 VkResult result = VK_SUCCESS;
706
707 /* Spec doesn't indicate what to do if the stage is invalid, so just
708 * return no info for this. */
709 if (!variant)
710 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
711
712 switch (infoType) {
713 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
714 if (!pInfo) {
715 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
716 } else {
717 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
718 struct ac_shader_config *conf = &variant->config;
719
720 VkShaderStatisticsInfoAMD statistics = {};
721 statistics.shaderStageMask = shaderStage;
722 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
723 statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
724 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
725
726 if (stage == MESA_SHADER_COMPUTE) {
727 unsigned *local_size = variant->nir->info.cs.local_size;
728 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
729
730 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
731 ceil(workgroup_size / statistics.numPhysicalVgprs);
732
733 statistics.computeWorkGroupSize[0] = local_size[0];
734 statistics.computeWorkGroupSize[1] = local_size[1];
735 statistics.computeWorkGroupSize[2] = local_size[2];
736 } else {
737 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
738 }
739
740 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
741 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
742 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
743 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
744 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
745
746 size_t size = *pInfoSize;
747 *pInfoSize = sizeof(statistics);
748
749 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
750
751 if (size < *pInfoSize)
752 result = VK_INCOMPLETE;
753 }
754
755 break;
756 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
757 buf = _mesa_string_buffer_create(NULL, 1024);
758
759 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
760 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
761 generate_shader_stats(device, variant, stage, buf);
762
763 /* Need to include the null terminator. */
764 size_t length = buf->length + 1;
765
766 if (!pInfo) {
767 *pInfoSize = length;
768 } else {
769 size_t size = *pInfoSize;
770 *pInfoSize = length;
771
772 memcpy(pInfo, buf->buf, MIN2(size, length));
773
774 if (size < length)
775 result = VK_INCOMPLETE;
776 }
777
778 _mesa_string_buffer_destroy(buf);
779 break;
780 default:
781 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
782 result = VK_ERROR_FEATURE_NOT_PRESENT;
783 break;
784 }
785
786 return result;
787 }