8af0d831c3ab0d13621072755a141d7bfca43605
[mesa.git] / src / amd / vulkan / si_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 /* command buffer handling for AMD GCN */
29
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "radv_util.h"
35
36 static void
37 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
38 struct radeon_cmdbuf *cs,
39 unsigned raster_config,
40 unsigned raster_config_1)
41 {
42 unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
43 unsigned raster_config_se[4];
44 unsigned se;
45
46 ac_get_harvested_configs(&physical_device->rad_info,
47 raster_config,
48 &raster_config_1,
49 raster_config_se);
50
51 for (se = 0; se < num_se; se++) {
52 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
53 if (physical_device->rad_info.chip_class < GFX7)
54 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
55 S_00802C_SE_INDEX(se) |
56 S_00802C_SH_BROADCAST_WRITES(1) |
57 S_00802C_INSTANCE_BROADCAST_WRITES(1));
58 else
59 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
60 S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
61 S_030800_INSTANCE_BROADCAST_WRITES(1));
62 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
63 }
64
65 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
66 if (physical_device->rad_info.chip_class < GFX7)
67 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
68 S_00802C_SE_BROADCAST_WRITES(1) |
69 S_00802C_SH_BROADCAST_WRITES(1) |
70 S_00802C_INSTANCE_BROADCAST_WRITES(1));
71 else
72 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
73 S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
74 S_030800_INSTANCE_BROADCAST_WRITES(1));
75
76 if (physical_device->rad_info.chip_class >= GFX7)
77 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
78 }
79
80 void
81 si_emit_compute(struct radv_device *device,
82 struct radeon_cmdbuf *cs)
83 {
84 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
85 radeon_emit(cs, 0);
86 radeon_emit(cs, 0);
87 radeon_emit(cs, 0);
88
89 radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
90 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1,
91 * renamed COMPUTE_DESTINATION_EN_SEn on gfx10. */
92 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
93 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
94
95 if (device->physical_device->rad_info.chip_class >= GFX7) {
96 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
97 radeon_set_sh_reg_seq(cs,
98 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
99 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
100 S_00B858_SH1_CU_EN(0xffff));
101 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
102 S_00B858_SH1_CU_EN(0xffff));
103
104 if (device->border_color_data.bo) {
105 uint64_t bc_va = radv_buffer_get_va(device->border_color_data.bo);
106
107 radeon_set_uconfig_reg_seq(cs, R_030E00_TA_CS_BC_BASE_ADDR, 2);
108 radeon_emit(cs, bc_va >> 8);
109 radeon_emit(cs, S_030E04_ADDRESS(bc_va >> 40));
110 }
111 }
112
113 if (device->physical_device->rad_info.chip_class >= GFX9) {
114 radeon_set_uconfig_reg(cs, R_0301EC_CP_COHER_START_DELAY,
115 device->physical_device->rad_info.chip_class >= GFX10 ? 0x20 : 0);
116 }
117
118 if (device->physical_device->rad_info.chip_class >= GFX10) {
119 radeon_set_sh_reg(cs, R_00B890_COMPUTE_USER_ACCUM_0, 0);
120 radeon_set_sh_reg(cs, R_00B894_COMPUTE_USER_ACCUM_1, 0);
121 radeon_set_sh_reg(cs, R_00B898_COMPUTE_USER_ACCUM_2, 0);
122 radeon_set_sh_reg(cs, R_00B89C_COMPUTE_USER_ACCUM_3, 0);
123 radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, 0);
124 radeon_set_sh_reg(cs, R_00B9F4_COMPUTE_DISPATCH_TUNNEL, 0);
125 }
126
127 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
128 * and is now per pipe, so it should be handled in the
129 * kernel if we want to use something other than the default value,
130 * which is now 0x22f.
131 */
132 if (device->physical_device->rad_info.chip_class <= GFX6) {
133 /* XXX: This should be:
134 * (number of compute units) * 4 * (waves per simd) - 1 */
135
136 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
137 0x190 /* Default value */);
138
139 if (device->border_color_data.bo) {
140 uint64_t bc_va = radv_buffer_get_va(device->border_color_data.bo);
141 radeon_set_config_reg(cs, R_00950C_TA_CS_BC_BASE_ADDR, bc_va >> 8);
142 }
143 }
144 }
145
146 /* 12.4 fixed-point */
147 static unsigned radv_pack_float_12p4(float x)
148 {
149 return x <= 0 ? 0 :
150 x >= 4096 ? 0xffff : x * 16;
151 }
152
153 static void
154 si_set_raster_config(struct radv_physical_device *physical_device,
155 struct radeon_cmdbuf *cs)
156 {
157 unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
158 unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
159 unsigned raster_config, raster_config_1;
160
161 ac_get_raster_config(&physical_device->rad_info,
162 &raster_config,
163 &raster_config_1, NULL);
164
165 /* Always use the default config when all backends are enabled
166 * (or when we failed to determine the enabled backends).
167 */
168 if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
169 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
170 raster_config);
171 if (physical_device->rad_info.chip_class >= GFX7)
172 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
173 raster_config_1);
174 } else {
175 si_write_harvested_raster_configs(physical_device, cs,
176 raster_config,
177 raster_config_1);
178 }
179 }
180
181 void
182 si_emit_graphics(struct radv_device *device,
183 struct radeon_cmdbuf *cs)
184 {
185 struct radv_physical_device *physical_device = device->physical_device;
186
187 bool has_clear_state = physical_device->rad_info.has_clear_state;
188 int i;
189
190 radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
191 radeon_emit(cs, CC0_UPDATE_LOAD_ENABLES(1));
192 radeon_emit(cs, CC1_UPDATE_SHADOW_ENABLES(1));
193
194 if (has_clear_state) {
195 radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
196 radeon_emit(cs, 0);
197 }
198
199 if (physical_device->rad_info.chip_class <= GFX8)
200 si_set_raster_config(physical_device, cs);
201
202 radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
203 if (!has_clear_state)
204 radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
205
206 /* FIXME calculate these values somehow ??? */
207 if (physical_device->rad_info.chip_class <= GFX8) {
208 radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
209 radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
210 }
211
212 if (!has_clear_state) {
213 radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
214 radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
215 radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
216 }
217
218 if (physical_device->rad_info.chip_class <= GFX9)
219 radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
220 if (!has_clear_state)
221 radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
222 if (physical_device->rad_info.chip_class < GFX7)
223 radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
224 S_008A14_CLIP_VTX_REORDER_ENA(1));
225
226 if (!has_clear_state)
227 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
228
229 /* CLEAR_STATE doesn't clear these correctly on certain generations.
230 * I don't know why. Deduced by trial and error.
231 */
232 if (physical_device->rad_info.chip_class <= GFX7 || !has_clear_state) {
233 radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
234 radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
235 S_028204_WINDOW_OFFSET_DISABLE(1));
236 radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
237 S_028240_WINDOW_OFFSET_DISABLE(1));
238 radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
239 S_028244_BR_X(16384) | S_028244_BR_Y(16384));
240 radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
241 radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
242 S_028034_BR_X(16384) | S_028034_BR_Y(16384));
243 }
244
245 if (!has_clear_state) {
246 for (i = 0; i < 16; i++) {
247 radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
248 radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
249 }
250 }
251
252 if (!has_clear_state) {
253 radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
254 radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
255 /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */
256 radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
257 radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
258 radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
259 radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
260 radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
261 }
262
263 radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
264 S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
265 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
266
267 if (physical_device->rad_info.chip_class >= GFX10) {
268 radeon_set_context_reg(cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0);
269 radeon_set_uconfig_reg(cs, R_030964_GE_MAX_VTX_INDX, ~0);
270 radeon_set_uconfig_reg(cs, R_030924_GE_MIN_VTX_INDX, 0);
271 radeon_set_uconfig_reg(cs, R_030928_GE_INDX_OFFSET, 0);
272 radeon_set_uconfig_reg(cs, R_03097C_GE_STEREO_CNTL, 0);
273 radeon_set_uconfig_reg(cs, R_030988_GE_USER_VGPR_EN, 0);
274 } else if (physical_device->rad_info.chip_class == GFX9) {
275 radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
276 radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
277 radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
278 } else {
279 /* These registers, when written, also overwrite the
280 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
281 * them. It would be an issue if there was another UMD
282 * changing them.
283 */
284 radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
285 radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
286 radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
287 }
288
289 if (physical_device->rad_info.chip_class >= GFX7) {
290 if (physical_device->rad_info.chip_class >= GFX10) {
291 /* Logical CUs 16 - 31 */
292 radeon_set_sh_reg_idx(physical_device, cs, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
293 3, S_00B404_CU_EN(0xffff));
294 radeon_set_sh_reg_idx(physical_device, cs, R_00B104_SPI_SHADER_PGM_RSRC4_VS,
295 3, S_00B104_CU_EN(0xffff));
296 radeon_set_sh_reg_idx(physical_device, cs, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
297 3, S_00B004_CU_EN(0xffff));
298 }
299
300 if (physical_device->rad_info.chip_class >= GFX9) {
301 radeon_set_sh_reg_idx(physical_device, cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
302 3, S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
303 } else {
304 radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
305 S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
306 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
307 S_00B41C_WAVE_LIMIT(0x3F));
308 radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
309 S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
310 /* If this is 0, Bonaire can hang even if GS isn't being used.
311 * Other chips are unaffected. These are suboptimal values,
312 * but we don't use on-chip GS.
313 */
314 radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
315 S_028A44_ES_VERTS_PER_SUBGRP(64) |
316 S_028A44_GS_PRIMS_PER_SUBGRP(4));
317 }
318
319 /* Compute LATE_ALLOC_VS.LIMIT. */
320 unsigned num_cu_per_sh = physical_device->rad_info.min_good_cu_per_sa;
321 unsigned late_alloc_wave64 = 0; /* The limit is per SA. */
322 unsigned late_alloc_wave64_gs = 0;
323 unsigned cu_mask_vs = 0xffff;
324 unsigned cu_mask_gs = 0xffff;
325
326 if (physical_device->rad_info.chip_class >= GFX10) {
327 /* For Wave32, the hw will launch twice the number of late
328 * alloc waves, so 1 == 2x wave32.
329 */
330 if (!physical_device->rad_info.use_late_alloc) {
331 late_alloc_wave64 = 0;
332 } else if (num_cu_per_sh <= 6) {
333 late_alloc_wave64 = num_cu_per_sh - 2;
334 } else {
335 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
336
337 /* CU2 & CU3 disabled because of the dual CU design */
338 cu_mask_vs = 0xfff3;
339 cu_mask_gs = 0xfff3; /* NGG only */
340 }
341
342 late_alloc_wave64_gs = late_alloc_wave64;
343
344 /* Don't use late alloc for NGG on Navi14 due to a hw
345 * bug. If NGG is never used, enable all CUs.
346 */
347 if (!physical_device->use_ngg ||
348 physical_device->rad_info.family == CHIP_NAVI14) {
349 late_alloc_wave64_gs = 0;
350 cu_mask_gs = 0xffff;
351 }
352
353 /* Limit LATE_ALLOC_GS for prevent a hang (hw bug). */
354 if (physical_device->rad_info.chip_class == GFX10)
355 late_alloc_wave64_gs = MIN2(late_alloc_wave64_gs, 64);
356 } else {
357 if (!physical_device->rad_info.use_late_alloc) {
358 late_alloc_wave64 = 0;
359 } else if (num_cu_per_sh <= 4) {
360 /* Too few available compute units per SA.
361 * Disallowing VS to run on one CU could hurt
362 * us more than late VS allocation would help.
363 *
364 * 2 is the highest safe number that allows us
365 * to keep all CUs enabled.
366 */
367 late_alloc_wave64 = 2;
368 } else {
369 /* This is a good initial value, allowing 1
370 * late_alloc wave per SIMD on num_cu - 2.
371 */
372 late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
373 }
374
375 if (late_alloc_wave64 > 2)
376 cu_mask_vs = 0xfffe; /* 1 CU disabled */
377 }
378
379 radeon_set_sh_reg_idx(physical_device, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
380 3, S_00B118_CU_EN(cu_mask_vs) |
381 S_00B118_WAVE_LIMIT(0x3F));
382 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
383 S_00B11C_LIMIT(late_alloc_wave64));
384
385 radeon_set_sh_reg_idx(physical_device, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
386 3, S_00B21C_CU_EN(cu_mask_gs) | S_00B21C_WAVE_LIMIT(0x3F));
387
388 if (physical_device->rad_info.chip_class >= GFX10) {
389 radeon_set_sh_reg_idx(physical_device, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
390 3, S_00B204_CU_EN(0xffff) |
391 S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64_gs));
392 }
393
394 radeon_set_sh_reg_idx(physical_device, cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
395 3, S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
396 }
397
398 if (physical_device->rad_info.chip_class >= GFX10) {
399 /* Break up a pixel wave if it contains deallocs for more than
400 * half the parameter cache.
401 *
402 * To avoid a deadlock where pixel waves aren't launched
403 * because they're waiting for more pixels while the frontend
404 * is stuck waiting for PC space, the maximum allowed value is
405 * the size of the PC minus the largest possible allocation for
406 * a single primitive shader subgroup.
407 */
408 radeon_set_context_reg(cs, R_028C50_PA_SC_NGG_MODE_CNTL,
409 S_028C50_MAX_DEALLOCS_IN_WAVE(512));
410 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
411
412 /* Enable CMASK/FMASK/HTILE/DCC caching in L2 for small chips. */
413 unsigned meta_write_policy, meta_read_policy;
414
415 /* TODO: investigate whether LRU improves performance on other chips too */
416 if (physical_device->rad_info.num_render_backends <= 4) {
417 meta_write_policy = V_02807C_CACHE_LRU_WR; /* cache writes */
418 meta_read_policy = V_02807C_CACHE_LRU_RD; /* cache reads */
419 } else {
420 meta_write_policy = V_02807C_CACHE_STREAM_WR; /* write combine */
421 meta_read_policy = V_02807C_CACHE_NOA_RD; /* don't cache reads */
422 }
423
424 radeon_set_context_reg(cs, R_02807C_DB_RMI_L2_CACHE_CONTROL,
425 S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
426 S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
427 S_02807C_HTILE_WR_POLICY(meta_write_policy) |
428 S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
429 S_02807C_Z_RD_POLICY(V_02807C_CACHE_NOA_RD) |
430 S_02807C_S_RD_POLICY(V_02807C_CACHE_NOA_RD) |
431 S_02807C_HTILE_RD_POLICY(meta_read_policy));
432
433 radeon_set_context_reg(cs, R_028410_CB_RMI_GL2_CACHE_CONTROL,
434 S_028410_CMASK_WR_POLICY(meta_write_policy) |
435 S_028410_FMASK_WR_POLICY(meta_write_policy) |
436 S_028410_DCC_WR_POLICY(meta_write_policy) |
437 S_028410_COLOR_WR_POLICY(V_028410_CACHE_STREAM_WR) |
438 S_028410_CMASK_RD_POLICY(meta_read_policy) |
439 S_028410_FMASK_RD_POLICY(meta_read_policy) |
440 S_028410_DCC_RD_POLICY(meta_read_policy) |
441 S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_RD));
442 radeon_set_context_reg(cs, R_028428_CB_COVERAGE_OUT_CONTROL, 0);
443
444 radeon_set_sh_reg(cs, R_00B0C8_SPI_SHADER_USER_ACCUM_PS_0, 0);
445 radeon_set_sh_reg(cs, R_00B0CC_SPI_SHADER_USER_ACCUM_PS_1, 0);
446 radeon_set_sh_reg(cs, R_00B0D0_SPI_SHADER_USER_ACCUM_PS_2, 0);
447 radeon_set_sh_reg(cs, R_00B0D4_SPI_SHADER_USER_ACCUM_PS_3, 0);
448 radeon_set_sh_reg(cs, R_00B1C8_SPI_SHADER_USER_ACCUM_VS_0, 0);
449 radeon_set_sh_reg(cs, R_00B1CC_SPI_SHADER_USER_ACCUM_VS_1, 0);
450 radeon_set_sh_reg(cs, R_00B1D0_SPI_SHADER_USER_ACCUM_VS_2, 0);
451 radeon_set_sh_reg(cs, R_00B1D4_SPI_SHADER_USER_ACCUM_VS_3, 0);
452 radeon_set_sh_reg(cs, R_00B2C8_SPI_SHADER_USER_ACCUM_ESGS_0, 0);
453 radeon_set_sh_reg(cs, R_00B2CC_SPI_SHADER_USER_ACCUM_ESGS_1, 0);
454 radeon_set_sh_reg(cs, R_00B2D0_SPI_SHADER_USER_ACCUM_ESGS_2, 0);
455 radeon_set_sh_reg(cs, R_00B2D4_SPI_SHADER_USER_ACCUM_ESGS_3, 0);
456 radeon_set_sh_reg(cs, R_00B4C8_SPI_SHADER_USER_ACCUM_LSHS_0, 0);
457 radeon_set_sh_reg(cs, R_00B4CC_SPI_SHADER_USER_ACCUM_LSHS_1, 0);
458 radeon_set_sh_reg(cs, R_00B4D0_SPI_SHADER_USER_ACCUM_LSHS_2, 0);
459 radeon_set_sh_reg(cs, R_00B4D4_SPI_SHADER_USER_ACCUM_LSHS_3, 0);
460
461 radeon_set_sh_reg(cs, R_00B0C0_SPI_SHADER_REQ_CTRL_PS,
462 S_00B0C0_SOFT_GROUPING_EN(1) |
463 S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1));
464 radeon_set_sh_reg(cs, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0);
465
466 if (physical_device->rad_info.chip_class >= GFX10_3) {
467 radeon_set_context_reg(cs, R_028750_SX_PS_DOWNCONVERT_CONTROL_GFX103, 0xff);
468 radeon_set_context_reg(cs, 0x28848, 1 << 9); /* This fixes sample shading. */
469 }
470
471 if (physical_device->rad_info.chip_class == GFX10) {
472 /* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
473 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
474 radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
475 }
476
477 /* TODO: For culling, replace 128 with 256. */
478 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
479 S_030980_OVERSUB_EN(physical_device->rad_info.use_late_alloc) |
480 S_030980_NUM_PC_LINES(128 * physical_device->rad_info.max_se - 1));
481 }
482
483 if (physical_device->rad_info.chip_class >= GFX9) {
484 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
485 S_028B50_ACCUM_ISOLINE(40) |
486 S_028B50_ACCUM_TRI(30) |
487 S_028B50_ACCUM_QUAD(24) |
488 S_028B50_DONUT_SPLIT(24) |
489 S_028B50_TRAP_SPLIT(6));
490 } else if (physical_device->rad_info.chip_class >= GFX8) {
491 uint32_t vgt_tess_distribution;
492
493 vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
494 S_028B50_ACCUM_TRI(11) |
495 S_028B50_ACCUM_QUAD(11) |
496 S_028B50_DONUT_SPLIT(16);
497
498 if (physical_device->rad_info.family == CHIP_FIJI ||
499 physical_device->rad_info.family >= CHIP_POLARIS10)
500 vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
501
502 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
503 vgt_tess_distribution);
504 } else if (!has_clear_state) {
505 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
506 radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
507 }
508
509 if (device->border_color_data.bo) {
510 uint64_t border_color_va = radv_buffer_get_va(device->border_color_data.bo);
511
512 radeon_set_context_reg(cs, R_028080_TA_BC_BASE_ADDR, border_color_va >> 8);
513 if (physical_device->rad_info.chip_class >= GFX7) {
514 radeon_set_context_reg(cs, R_028084_TA_BC_BASE_ADDR_HI,
515 S_028084_ADDRESS(border_color_va >> 40));
516 }
517 }
518
519 if (physical_device->rad_info.chip_class >= GFX9) {
520 radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
521 S_028C48_MAX_ALLOC_COUNT(physical_device->rad_info.pbb_max_alloc_count - 1) |
522 S_028C48_MAX_PRIM_PER_BATCH(1023));
523 radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
524 S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
525 radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
526 }
527
528 unsigned tmp = (unsigned)(1.0 * 8.0);
529 radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
530 radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
531 radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
532 radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
533 S_028A04_MAX_SIZE(radv_pack_float_12p4(8191.875/2)));
534
535 if (!has_clear_state) {
536 radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
537 S_028004_ZPASS_INCREMENT_DISABLE(1));
538 }
539
540 /* Enable the Polaris small primitive filter control.
541 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
542 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
543 * and AMDVLK doesn't have a workaround as well.
544 */
545 if (physical_device->rad_info.family >= CHIP_POLARIS10) {
546 unsigned small_prim_filter_cntl =
547 S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
548 /* Workaround for a hw line bug. */
549 S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
550
551 radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
552 small_prim_filter_cntl);
553 }
554
555 radeon_set_context_reg(cs, R_0286D4_SPI_INTERP_CONTROL_0,
556 S_0286D4_FLAT_SHADE_ENA(1) |
557 S_0286D4_PNT_SPRITE_ENA(1) |
558 S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
559 S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
560 S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
561 S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
562 S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
563
564 radeon_set_context_reg(cs, R_028BE4_PA_SU_VTX_CNTL,
565 S_028BE4_PIX_CENTER(1) |
566 S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
567 S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
568
569 radeon_set_context_reg(cs, R_028818_PA_CL_VTE_CNTL,
570 S_028818_VTX_W0_FMT(1) |
571 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
572 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
573 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
574
575 si_emit_compute(device, cs);
576 }
577
578 void
579 cik_create_gfx_config(struct radv_device *device)
580 {
581 struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
582 if (!cs)
583 return;
584
585 si_emit_graphics(device, cs);
586
587 while (cs->cdw & 7) {
588 if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
589 radeon_emit(cs, PKT2_NOP_PAD);
590 else
591 radeon_emit(cs, PKT3_NOP_PAD);
592 }
593
594 device->gfx_init = device->ws->buffer_create(device->ws,
595 cs->cdw * 4, 4096,
596 RADEON_DOMAIN_GTT,
597 RADEON_FLAG_CPU_ACCESS|
598 RADEON_FLAG_NO_INTERPROCESS_SHARING |
599 RADEON_FLAG_READ_ONLY |
600 RADEON_FLAG_GTT_WC,
601 RADV_BO_PRIORITY_CS);
602 if (!device->gfx_init)
603 goto fail;
604
605 void *map = device->ws->buffer_map(device->gfx_init);
606 if (!map) {
607 device->ws->buffer_destroy(device->gfx_init);
608 device->gfx_init = NULL;
609 goto fail;
610 }
611 memcpy(map, cs->buf, cs->cdw * 4);
612
613 device->ws->buffer_unmap(device->gfx_init);
614 device->gfx_init_size_dw = cs->cdw;
615 fail:
616 device->ws->cs_destroy(cs);
617 }
618
619 static void
620 get_viewport_xform(const VkViewport *viewport,
621 float scale[3], float translate[3])
622 {
623 float x = viewport->x;
624 float y = viewport->y;
625 float half_width = 0.5f * viewport->width;
626 float half_height = 0.5f * viewport->height;
627 double n = viewport->minDepth;
628 double f = viewport->maxDepth;
629
630 scale[0] = half_width;
631 translate[0] = half_width + x;
632 scale[1] = half_height;
633 translate[1] = half_height + y;
634
635 scale[2] = (f - n);
636 translate[2] = n;
637 }
638
639 void
640 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
641 int count, const VkViewport *viewports)
642 {
643 int i;
644
645 assert(count);
646 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
647 first_vp * 4 * 6, count * 6);
648
649 for (i = 0; i < count; i++) {
650 float scale[3], translate[3];
651
652
653 get_viewport_xform(&viewports[i], scale, translate);
654 radeon_emit(cs, fui(scale[0]));
655 radeon_emit(cs, fui(translate[0]));
656 radeon_emit(cs, fui(scale[1]));
657 radeon_emit(cs, fui(translate[1]));
658 radeon_emit(cs, fui(scale[2]));
659 radeon_emit(cs, fui(translate[2]));
660 }
661
662 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
663 first_vp * 4 * 2, count * 2);
664 for (i = 0; i < count; i++) {
665 float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
666 float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
667 radeon_emit(cs, fui(zmin));
668 radeon_emit(cs, fui(zmax));
669 }
670 }
671
672 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
673 {
674 float scale[3], translate[3];
675 VkRect2D rect;
676
677 get_viewport_xform(viewport, scale, translate);
678
679 rect.offset.x = translate[0] - fabsf(scale[0]);
680 rect.offset.y = translate[1] - fabsf(scale[1]);
681 rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x;
682 rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y;
683
684 return rect;
685 }
686
687 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
688 VkRect2D ret;
689 ret.offset.x = MAX2(a->offset.x, b->offset.x);
690 ret.offset.y = MAX2(a->offset.y, b->offset.y);
691 ret.extent.width = MIN2(a->offset.x + a->extent.width,
692 b->offset.x + b->extent.width) - ret.offset.x;
693 ret.extent.height = MIN2(a->offset.y + a->extent.height,
694 b->offset.y + b->extent.height) - ret.offset.y;
695 return ret;
696 }
697
698 void
699 si_write_scissors(struct radeon_cmdbuf *cs, int first,
700 int count, const VkRect2D *scissors,
701 const VkViewport *viewports, bool can_use_guardband)
702 {
703 int i;
704 float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
705 const float max_range = 32767.0f;
706 if (!count)
707 return;
708
709 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
710 for (i = 0; i < count; i++) {
711 VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
712 VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
713
714 get_viewport_xform(viewports + i, scale, translate);
715 scale[0] = fabsf(scale[0]);
716 scale[1] = fabsf(scale[1]);
717
718 if (scale[0] < 0.5)
719 scale[0] = 0.5;
720 if (scale[1] < 0.5)
721 scale[1] = 0.5;
722
723 guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]);
724 guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]);
725
726 radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
727 S_028250_TL_Y(scissor.offset.y) |
728 S_028250_WINDOW_OFFSET_DISABLE(1));
729 radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
730 S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
731 }
732 if (!can_use_guardband) {
733 guardband_x = 1.0;
734 guardband_y = 1.0;
735 }
736
737 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
738 radeon_emit(cs, fui(guardband_y));
739 radeon_emit(cs, fui(1.0));
740 radeon_emit(cs, fui(guardband_x));
741 radeon_emit(cs, fui(1.0));
742 }
743
744 static inline unsigned
745 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
746 {
747 if (num == 0)
748 return 0;
749
750 if (info->incr == 0)
751 return 0;
752
753 if (num < info->min)
754 return 0;
755
756 return 1 + ((num - info->min) / info->incr);
757 }
758
759 static const struct radv_prim_vertex_count prim_size_table[] = {
760 [V_008958_DI_PT_NONE] = {0, 0},
761 [V_008958_DI_PT_POINTLIST] = {1, 1},
762 [V_008958_DI_PT_LINELIST] = {2, 2},
763 [V_008958_DI_PT_LINESTRIP] = {2, 1},
764 [V_008958_DI_PT_TRILIST] = {3, 3},
765 [V_008958_DI_PT_TRIFAN] = {3, 1},
766 [V_008958_DI_PT_TRISTRIP] = {3, 1},
767 [V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
768 [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
769 [V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
770 [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
771 [V_008958_DI_PT_RECTLIST] = {3, 3},
772 [V_008958_DI_PT_LINELOOP] = {2, 1},
773 [V_008958_DI_PT_POLYGON] = {3, 1},
774 [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
775 };
776
777 uint32_t
778 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
779 bool instanced_draw, bool indirect_draw,
780 bool count_from_stream_output,
781 uint32_t draw_vertex_count,
782 unsigned topology)
783 {
784 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
785 enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
786 struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
787 const unsigned max_primgroup_in_wave = 2;
788 /* SWITCH_ON_EOP(0) is always preferable. */
789 bool wd_switch_on_eop = false;
790 bool ia_switch_on_eop = false;
791 bool ia_switch_on_eoi = false;
792 bool partial_vs_wave = false;
793 bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
794 bool multi_instances_smaller_than_primgroup;
795 struct radv_prim_vertex_count prim_vertex_count = prim_size_table[topology];
796
797 if (radv_pipeline_has_tess(cmd_buffer->state.pipeline)) {
798 if (topology == V_008958_DI_PT_PATCH) {
799 prim_vertex_count.min = cmd_buffer->state.pipeline->graphics.tess_patch_control_points;
800 prim_vertex_count.incr = 1;
801 }
802 }
803
804 multi_instances_smaller_than_primgroup = indirect_draw;
805 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
806 uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
807 if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
808 multi_instances_smaller_than_primgroup = true;
809 }
810
811 ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
812 partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
813
814 if (chip_class >= GFX7) {
815 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
816 * 4 shader engines. Set 1 to pass the assertion below.
817 * The other cases are hardware requirements. */
818 if (cmd_buffer->device->physical_device->rad_info.max_se < 4 ||
819 topology == V_008958_DI_PT_POLYGON ||
820 topology == V_008958_DI_PT_LINELOOP ||
821 topology == V_008958_DI_PT_TRIFAN ||
822 topology == V_008958_DI_PT_TRISTRIP_ADJ ||
823 (cmd_buffer->state.pipeline->graphics.prim_restart_enable &&
824 (cmd_buffer->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
825 (topology != V_008958_DI_PT_POINTLIST &&
826 topology != V_008958_DI_PT_LINESTRIP))))
827 wd_switch_on_eop = true;
828
829 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
830 * We don't know that for indirect drawing, so treat it as
831 * always problematic. */
832 if (family == CHIP_HAWAII &&
833 (instanced_draw || indirect_draw))
834 wd_switch_on_eop = true;
835
836 /* Performance recommendation for 4 SE Gfx7-8 parts if
837 * instances are smaller than a primgroup.
838 * Assume indirect draws always use small instances.
839 * This is needed for good VS wave utilization.
840 */
841 if (chip_class <= GFX8 &&
842 info->max_se == 4 &&
843 multi_instances_smaller_than_primgroup)
844 wd_switch_on_eop = true;
845
846 /* Required on GFX7 and later. */
847 if (info->max_se > 2 && !wd_switch_on_eop)
848 ia_switch_on_eoi = true;
849
850 /* Required by Hawaii and, for some special cases, by GFX8. */
851 if (ia_switch_on_eoi &&
852 (family == CHIP_HAWAII ||
853 (chip_class == GFX8 &&
854 /* max primgroup in wave is always 2 - leave this for documentation */
855 (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
856 partial_vs_wave = true;
857
858 /* Instancing bug on Bonaire. */
859 if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
860 (instanced_draw || indirect_draw))
861 partial_vs_wave = true;
862
863 /* Hardware requirement when drawing primitives from a stream
864 * output buffer.
865 */
866 if (count_from_stream_output)
867 wd_switch_on_eop = true;
868
869 /* If the WD switch is false, the IA switch must be false too. */
870 assert(wd_switch_on_eop || !ia_switch_on_eop);
871 }
872 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
873 if (chip_class <= GFX8 && ia_switch_on_eoi)
874 partial_es_wave = true;
875
876 if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
877 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
878 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
879 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
880 */
881 if (family == CHIP_HAWAII && ia_switch_on_eoi) {
882 bool set_vgt_flush = indirect_draw;
883 if (!set_vgt_flush && instanced_draw) {
884 uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
885 if (num_prims <= 1)
886 set_vgt_flush = true;
887 }
888 if (set_vgt_flush)
889 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
890 }
891 }
892
893 /* Workaround for a VGT hang when strip primitive types are used with
894 * primitive restart.
895 */
896 if (cmd_buffer->state.pipeline->graphics.prim_restart_enable &&
897 (topology == V_008958_DI_PT_LINESTRIP ||
898 topology == V_008958_DI_PT_TRISTRIP ||
899 topology == V_008958_DI_PT_LINESTRIP_ADJ ||
900 topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
901 partial_vs_wave = true;
902 }
903
904 return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
905 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
906 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
907 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
908 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
909 S_028AA8_WD_SWITCH_ON_EOP(chip_class >= GFX7 ? wd_switch_on_eop : 0);
910
911 }
912
913 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
914 enum chip_class chip_class,
915 bool is_mec,
916 unsigned event, unsigned event_flags,
917 unsigned dst_sel, unsigned data_sel,
918 uint64_t va,
919 uint32_t new_fence,
920 uint64_t gfx9_eop_bug_va)
921 {
922 unsigned op = EVENT_TYPE(event) |
923 EVENT_INDEX(event == V_028A90_CS_DONE ||
924 event == V_028A90_PS_DONE ? 6 : 5) |
925 event_flags;
926 unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
927 unsigned sel = EOP_DST_SEL(dst_sel) |
928 EOP_DATA_SEL(data_sel);
929
930 /* Wait for write confirmation before writing data, but don't send
931 * an interrupt. */
932 if (data_sel != EOP_DATA_SEL_DISCARD)
933 sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
934
935 if (chip_class >= GFX9 || is_gfx8_mec) {
936 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
937 * counters) must immediately precede every timestamp event to
938 * prevent a GPU hang on GFX9.
939 */
940 if (chip_class == GFX9 && !is_mec) {
941 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
942 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
943 radeon_emit(cs, gfx9_eop_bug_va);
944 radeon_emit(cs, gfx9_eop_bug_va >> 32);
945 }
946
947 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
948 radeon_emit(cs, op);
949 radeon_emit(cs, sel);
950 radeon_emit(cs, va); /* address lo */
951 radeon_emit(cs, va >> 32); /* address hi */
952 radeon_emit(cs, new_fence); /* immediate data lo */
953 radeon_emit(cs, 0); /* immediate data hi */
954 if (!is_gfx8_mec)
955 radeon_emit(cs, 0); /* unused */
956 } else {
957 if (chip_class == GFX7 ||
958 chip_class == GFX8) {
959 /* Two EOP events are required to make all engines go idle
960 * (and optional cache flushes executed) before the timestamp
961 * is written.
962 */
963 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
964 radeon_emit(cs, op);
965 radeon_emit(cs, va);
966 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
967 radeon_emit(cs, 0); /* immediate data */
968 radeon_emit(cs, 0); /* unused */
969 }
970
971 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
972 radeon_emit(cs, op);
973 radeon_emit(cs, va);
974 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
975 radeon_emit(cs, new_fence); /* immediate data */
976 radeon_emit(cs, 0); /* unused */
977 }
978 }
979
980 void
981 radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va,
982 uint32_t ref, uint32_t mask)
983 {
984 assert(op == WAIT_REG_MEM_EQUAL ||
985 op == WAIT_REG_MEM_NOT_EQUAL ||
986 op == WAIT_REG_MEM_GREATER_OR_EQUAL);
987
988 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
989 radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1));
990 radeon_emit(cs, va);
991 radeon_emit(cs, va >> 32);
992 radeon_emit(cs, ref); /* reference value */
993 radeon_emit(cs, mask); /* mask */
994 radeon_emit(cs, 4); /* poll interval */
995 }
996
997 static void
998 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
999 bool is_mec,
1000 bool is_gfx9,
1001 unsigned cp_coher_cntl)
1002 {
1003 if (is_mec || is_gfx9) {
1004 uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
1005 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
1006 PKT3_SHADER_TYPE_S(is_mec));
1007 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
1008 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
1009 radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
1010 radeon_emit(cs, 0); /* CP_COHER_BASE */
1011 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
1012 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
1013 } else {
1014 /* ACQUIRE_MEM is only required on a compute ring. */
1015 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
1016 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
1017 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
1018 radeon_emit(cs, 0); /* CP_COHER_BASE */
1019 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
1020 }
1021 }
1022
1023 static void
1024 gfx10_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
1025 enum chip_class chip_class,
1026 uint32_t *flush_cnt,
1027 uint64_t flush_va,
1028 bool is_mec,
1029 enum radv_cmd_flush_bits flush_bits,
1030 uint64_t gfx9_eop_bug_va)
1031 {
1032 uint32_t gcr_cntl = 0;
1033 unsigned cb_db_event = 0;
1034
1035 /* We don't need these. */
1036 assert(!(flush_bits & (RADV_CMD_FLAG_VGT_STREAMOUT_SYNC)));
1037
1038 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
1039 gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
1040 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) {
1041 /* TODO: When writing to the SMEM L1 cache, we need to set SEQ
1042 * to FORWARD when both L1 and L2 are written out (WB or INV).
1043 */
1044 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
1045 }
1046 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE)
1047 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
1048 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
1049 /* Writeback and invalidate everything in L2. */
1050 gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) |
1051 S_586_GLM_INV(1) | S_586_GLM_WB(1);
1052 } else if (flush_bits & RADV_CMD_FLAG_WB_L2) {
1053 /* Writeback but do not invalidate.
1054 * GLM doesn't support WB alone. If WB is set, INV must be set too.
1055 */
1056 gcr_cntl |= S_586_GL2_WB(1) |
1057 S_586_GLM_WB(1) | S_586_GLM_INV(1);
1058 }
1059
1060 /* TODO: Implement this new flag for GFX9+.
1061 else if (flush_bits & RADV_CMD_FLAG_INV_L2_METADATA)
1062 gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1);
1063 */
1064
1065 if (flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
1066 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_CB_META */
1067 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1068 /* Flush CMASK/FMASK/DCC. Will wait for idle later. */
1069 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1070 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) |
1071 EVENT_INDEX(0));
1072 }
1073
1074 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_DB_META ? */
1075 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1076 /* Flush HTILE. Will wait for idle later. */
1077 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1078 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) |
1079 EVENT_INDEX(0));
1080 }
1081
1082 /* First flush CB/DB, then L1/L2. */
1083 gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);
1084
1085 if ((flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) ==
1086 (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
1087 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1088 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1089 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
1090 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1091 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
1092 } else {
1093 assert(0);
1094 }
1095 } else {
1096 /* Wait for graphics shaders to go idle if requested. */
1097 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
1098 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1099 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1100 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
1101 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1102 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1103 }
1104 }
1105
1106 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1107 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1108 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
1109 }
1110
1111 if (cb_db_event) {
1112 /* CB/DB flush and invalidate (or possibly just a wait for a
1113 * meta flush) via RELEASE_MEM.
1114 *
1115 * Combine this with other cache flushes when possible; this
1116 * requires affected shaders to be idle, so do it after the
1117 * CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
1118 * implied).
1119 */
1120 /* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
1121 unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
1122 unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
1123 unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
1124 unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
1125 assert(G_586_GL2_US(gcr_cntl) == 0);
1126 assert(G_586_GL2_RANGE(gcr_cntl) == 0);
1127 assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
1128 unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
1129 unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
1130 unsigned gcr_seq = G_586_SEQ(gcr_cntl);
1131
1132 gcr_cntl &= C_586_GLM_WB &
1133 C_586_GLM_INV &
1134 C_586_GLV_INV &
1135 C_586_GL1_INV &
1136 C_586_GL2_INV &
1137 C_586_GL2_WB; /* keep SEQ */
1138
1139 assert(flush_cnt);
1140 (*flush_cnt)++;
1141
1142 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event,
1143 S_490_GLM_WB(glm_wb) |
1144 S_490_GLM_INV(glm_inv) |
1145 S_490_GLV_INV(glv_inv) |
1146 S_490_GL1_INV(gl1_inv) |
1147 S_490_GL2_INV(gl2_inv) |
1148 S_490_GL2_WB(gl2_wb) |
1149 S_490_SEQ(gcr_seq),
1150 EOP_DST_SEL_MEM,
1151 EOP_DATA_SEL_VALUE_32BIT,
1152 flush_va, *flush_cnt,
1153 gfx9_eop_bug_va);
1154
1155 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1156 *flush_cnt, 0xffffffff);
1157 }
1158
1159 /* VGT state sync */
1160 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1161 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1162 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1163 }
1164
1165 /* Ignore fields that only modify the behavior of other fields. */
1166 if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
1167 /* Flush caches and wait for the caches to assert idle.
1168 * The cache flush is executed in the ME, but the PFP waits
1169 * for completion.
1170 */
1171 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
1172 radeon_emit(cs, 0); /* CP_COHER_CNTL */
1173 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
1174 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
1175 radeon_emit(cs, 0); /* CP_COHER_BASE */
1176 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
1177 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
1178 radeon_emit(cs, gcr_cntl); /* GCR_CNTL */
1179 } else if ((cb_db_event ||
1180 (flush_bits & (RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1181 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1182 RADV_CMD_FLAG_CS_PARTIAL_FLUSH)))
1183 && !is_mec) {
1184 /* We need to ensure that PFP waits as well. */
1185 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1186 radeon_emit(cs, 0);
1187 }
1188
1189 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1190 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1191 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1192 EVENT_INDEX(0));
1193 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1194 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1195 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1196 EVENT_INDEX(0));
1197 }
1198 }
1199
1200 void
1201 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
1202 enum chip_class chip_class,
1203 uint32_t *flush_cnt,
1204 uint64_t flush_va,
1205 bool is_mec,
1206 enum radv_cmd_flush_bits flush_bits,
1207 uint64_t gfx9_eop_bug_va)
1208 {
1209 unsigned cp_coher_cntl = 0;
1210 uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1211 RADV_CMD_FLAG_FLUSH_AND_INV_DB);
1212
1213 if (chip_class >= GFX10) {
1214 /* GFX10 cache flush handling is quite different. */
1215 gfx10_cs_emit_cache_flush(cs, chip_class, flush_cnt, flush_va,
1216 is_mec, flush_bits, gfx9_eop_bug_va);
1217 return;
1218 }
1219
1220 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
1221 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
1222 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE)
1223 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
1224
1225 if (chip_class <= GFX8) {
1226 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1227 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
1228 S_0085F0_CB0_DEST_BASE_ENA(1) |
1229 S_0085F0_CB1_DEST_BASE_ENA(1) |
1230 S_0085F0_CB2_DEST_BASE_ENA(1) |
1231 S_0085F0_CB3_DEST_BASE_ENA(1) |
1232 S_0085F0_CB4_DEST_BASE_ENA(1) |
1233 S_0085F0_CB5_DEST_BASE_ENA(1) |
1234 S_0085F0_CB6_DEST_BASE_ENA(1) |
1235 S_0085F0_CB7_DEST_BASE_ENA(1);
1236
1237 /* Necessary for DCC */
1238 if (chip_class >= GFX8) {
1239 si_cs_emit_write_event_eop(cs,
1240 chip_class,
1241 is_mec,
1242 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
1243 0,
1244 EOP_DST_SEL_MEM,
1245 EOP_DATA_SEL_DISCARD,
1246 0, 0,
1247 gfx9_eop_bug_va);
1248 }
1249 }
1250 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1251 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
1252 S_0085F0_DB_DEST_BASE_ENA(1);
1253 }
1254 }
1255
1256 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
1257 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1258 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
1259 }
1260
1261 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
1262 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1263 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
1264 }
1265
1266 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
1267 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1268 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1269 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
1270 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1271 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1272 }
1273
1274 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1275 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1276 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1277 }
1278
1279 if (chip_class == GFX9 && flush_cb_db) {
1280 unsigned cb_db_event, tc_flags;
1281
1282 /* Set the CB/DB flush event. */
1283 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1284
1285 /* These are the only allowed combinations. If you need to
1286 * do multiple operations at once, do them separately.
1287 * All operations that invalidate L2 also seem to invalidate
1288 * metadata. Volatile (VOL) and WC flushes are not listed here.
1289 *
1290 * TC | TC_WB = writeback & invalidate L2 & L1
1291 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
1292 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
1293 * TC | TC_NC = invalidate L2 for MTYPE == NC
1294 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
1295 * TCL1 = invalidate L1
1296 */
1297 tc_flags = EVENT_TC_ACTION_ENA |
1298 EVENT_TC_MD_ACTION_ENA;
1299
1300 /* Ideally flush TC together with CB/DB. */
1301 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
1302 /* Writeback and invalidate everything in L2 & L1. */
1303 tc_flags = EVENT_TC_ACTION_ENA |
1304 EVENT_TC_WB_ACTION_ENA;
1305
1306
1307 /* Clear the flags. */
1308 flush_bits &= ~(RADV_CMD_FLAG_INV_L2 |
1309 RADV_CMD_FLAG_WB_L2 |
1310 RADV_CMD_FLAG_INV_VCACHE);
1311 }
1312 assert(flush_cnt);
1313 (*flush_cnt)++;
1314
1315 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
1316 EOP_DST_SEL_MEM,
1317 EOP_DATA_SEL_VALUE_32BIT,
1318 flush_va, *flush_cnt,
1319 gfx9_eop_bug_va);
1320 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1321 *flush_cnt, 0xffffffff);
1322 }
1323
1324 /* VGT state sync */
1325 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1326 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1327 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1328 }
1329
1330 /* VGT streamout state sync */
1331 if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) {
1332 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1333 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
1334 }
1335
1336 /* Make sure ME is idle (it executes most packets) before continuing.
1337 * This prevents read-after-write hazards between PFP and ME.
1338 */
1339 if ((cp_coher_cntl ||
1340 (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
1341 RADV_CMD_FLAG_INV_VCACHE |
1342 RADV_CMD_FLAG_INV_L2 |
1343 RADV_CMD_FLAG_WB_L2))) &&
1344 !is_mec) {
1345 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1346 radeon_emit(cs, 0);
1347 }
1348
1349 if ((flush_bits & RADV_CMD_FLAG_INV_L2) ||
1350 (chip_class <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) {
1351 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9,
1352 cp_coher_cntl |
1353 S_0085F0_TC_ACTION_ENA(1) |
1354 S_0085F0_TCL1_ACTION_ENA(1) |
1355 S_0301F0_TC_WB_ACTION_ENA(chip_class >= GFX8));
1356 cp_coher_cntl = 0;
1357 } else {
1358 if(flush_bits & RADV_CMD_FLAG_WB_L2) {
1359 /* WB = write-back
1360 * NC = apply to non-coherent MTYPEs
1361 * (i.e. MTYPE <= 1, which is what we use everywhere)
1362 *
1363 * WB doesn't work without NC.
1364 */
1365 si_emit_acquire_mem(cs, is_mec,
1366 chip_class == GFX9,
1367 cp_coher_cntl |
1368 S_0301F0_TC_WB_ACTION_ENA(1) |
1369 S_0301F0_TC_NC_ACTION_ENA(1));
1370 cp_coher_cntl = 0;
1371 }
1372 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) {
1373 si_emit_acquire_mem(cs, is_mec,
1374 chip_class == GFX9,
1375 cp_coher_cntl |
1376 S_0085F0_TCL1_ACTION_ENA(1));
1377 cp_coher_cntl = 0;
1378 }
1379 }
1380
1381 /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
1382 * Therefore, it should be last. Done in PFP.
1383 */
1384 if (cp_coher_cntl)
1385 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9, cp_coher_cntl);
1386
1387 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1388 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1389 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1390 EVENT_INDEX(0));
1391 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1392 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1393 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1394 EVENT_INDEX(0));
1395 }
1396 }
1397
1398 void
1399 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
1400 {
1401 bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
1402
1403 if (is_compute)
1404 cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1405 RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
1406 RADV_CMD_FLAG_FLUSH_AND_INV_DB |
1407 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
1408 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1409 RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1410 RADV_CMD_FLAG_VGT_FLUSH |
1411 RADV_CMD_FLAG_START_PIPELINE_STATS |
1412 RADV_CMD_FLAG_STOP_PIPELINE_STATS);
1413
1414 if (!cmd_buffer->state.flush_bits)
1415 return;
1416
1417 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
1418
1419 si_cs_emit_cache_flush(cmd_buffer->cs,
1420 cmd_buffer->device->physical_device->rad_info.chip_class,
1421 &cmd_buffer->gfx9_fence_idx,
1422 cmd_buffer->gfx9_fence_va,
1423 radv_cmd_buffer_uses_mec(cmd_buffer),
1424 cmd_buffer->state.flush_bits,
1425 cmd_buffer->gfx9_eop_bug_va);
1426
1427
1428 if (unlikely(cmd_buffer->device->trace_bo))
1429 radv_cmd_buffer_trace_emit(cmd_buffer);
1430
1431 /* Clear the caches that have been flushed to avoid syncing too much
1432 * when there is some pending active queries.
1433 */
1434 cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
1435
1436 cmd_buffer->state.flush_bits = 0;
1437
1438 /* If the driver used a compute shader for resetting a query pool, it
1439 * should be finished at this point.
1440 */
1441 cmd_buffer->pending_reset_query = false;
1442 }
1443
1444 /* sets the CP predication state using a boolean stored at va */
1445 void
1446 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer,
1447 bool draw_visible, uint64_t va)
1448 {
1449 uint32_t op = 0;
1450
1451 if (va) {
1452 op = PRED_OP(PREDICATION_OP_BOOL64);
1453
1454 /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
1455 * zero, all rendering commands are discarded. Otherwise, they
1456 * are discarded if the value is non zero.
1457 */
1458 op |= draw_visible ? PREDICATION_DRAW_VISIBLE :
1459 PREDICATION_DRAW_NOT_VISIBLE;
1460 }
1461 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1462 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
1463 radeon_emit(cmd_buffer->cs, op);
1464 radeon_emit(cmd_buffer->cs, va);
1465 radeon_emit(cmd_buffer->cs, va >> 32);
1466 } else {
1467 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
1468 radeon_emit(cmd_buffer->cs, va);
1469 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
1470 }
1471 }
1472
1473 /* Set this if you want the 3D engine to wait until CP DMA is done.
1474 * It should be set on the last CP DMA packet. */
1475 #define CP_DMA_SYNC (1 << 0)
1476
1477 /* Set this if the source data was used as a destination in a previous CP DMA
1478 * packet. It's for preventing a read-after-write (RAW) hazard between two
1479 * CP DMA packets. */
1480 #define CP_DMA_RAW_WAIT (1 << 1)
1481 #define CP_DMA_USE_L2 (1 << 2)
1482 #define CP_DMA_CLEAR (1 << 3)
1483
1484 /* Alignment for optimal performance. */
1485 #define SI_CPDMA_ALIGNMENT 32
1486
1487 /* The max number of bytes that can be copied per packet. */
1488 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1489 {
1490 unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1491 S_414_BYTE_COUNT_GFX9(~0u) :
1492 S_414_BYTE_COUNT_GFX6(~0u);
1493
1494 /* make it aligned for optimal performance */
1495 return max & ~(SI_CPDMA_ALIGNMENT - 1);
1496 }
1497
1498 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1499 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1500 * clear value.
1501 */
1502 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1503 uint64_t dst_va, uint64_t src_va,
1504 unsigned size, unsigned flags)
1505 {
1506 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1507 uint32_t header = 0, command = 0;
1508
1509 assert(size <= cp_dma_max_byte_count(cmd_buffer));
1510
1511 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1512 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1513 command |= S_414_BYTE_COUNT_GFX9(size);
1514 else
1515 command |= S_414_BYTE_COUNT_GFX6(size);
1516
1517 /* Sync flags. */
1518 if (flags & CP_DMA_SYNC)
1519 header |= S_411_CP_SYNC(1);
1520 else {
1521 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1522 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1523 else
1524 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1525 }
1526
1527 if (flags & CP_DMA_RAW_WAIT)
1528 command |= S_414_RAW_WAIT(1);
1529
1530 /* Src and dst flags. */
1531 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1532 !(flags & CP_DMA_CLEAR) &&
1533 src_va == dst_va)
1534 header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
1535 else if (flags & CP_DMA_USE_L2)
1536 header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
1537
1538 if (flags & CP_DMA_CLEAR)
1539 header |= S_411_SRC_SEL(V_411_DATA);
1540 else if (flags & CP_DMA_USE_L2)
1541 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1542
1543 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
1544 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1545 radeon_emit(cs, header);
1546 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1547 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
1548 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1549 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
1550 radeon_emit(cs, command);
1551 } else {
1552 assert(!(flags & CP_DMA_USE_L2));
1553 header |= S_411_SRC_ADDR_HI(src_va >> 32);
1554 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1555 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1556 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
1557 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1558 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
1559 radeon_emit(cs, command);
1560 }
1561
1562 /* CP DMA is executed in ME, but index buffers are read by PFP.
1563 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1564 * indices. If we wanted to execute CP DMA in PFP, this packet
1565 * should precede it.
1566 */
1567 if (flags & CP_DMA_SYNC) {
1568 if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1569 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1570 radeon_emit(cs, 0);
1571 }
1572
1573 /* CP will see the sync flag and wait for all DMAs to complete. */
1574 cmd_buffer->state.dma_is_busy = false;
1575 }
1576
1577 if (unlikely(cmd_buffer->device->trace_bo))
1578 radv_cmd_buffer_trace_emit(cmd_buffer);
1579 }
1580
1581 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1582 unsigned size)
1583 {
1584 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1585 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1586
1587 si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1588 aligned_size, CP_DMA_USE_L2);
1589 }
1590
1591 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1592 uint64_t remaining_size, unsigned *flags)
1593 {
1594
1595 /* Flush the caches for the first copy only.
1596 * Also wait for the previous CP DMA operations.
1597 */
1598 if (cmd_buffer->state.flush_bits) {
1599 si_emit_cache_flush(cmd_buffer);
1600 *flags |= CP_DMA_RAW_WAIT;
1601 }
1602
1603 /* Do the synchronization after the last dma, so that all data
1604 * is written to memory.
1605 */
1606 if (byte_count == remaining_size)
1607 *flags |= CP_DMA_SYNC;
1608 }
1609
1610 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1611 {
1612 uint64_t va;
1613 uint32_t offset;
1614 unsigned dma_flags = 0;
1615 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1616 void *ptr;
1617
1618 assert(size < SI_CPDMA_ALIGNMENT);
1619
1620 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
1621
1622 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1623 va += offset;
1624
1625 si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1626
1627 si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1628 dma_flags);
1629 }
1630
1631 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1632 uint64_t src_va, uint64_t dest_va,
1633 uint64_t size)
1634 {
1635 uint64_t main_src_va, main_dest_va;
1636 uint64_t skipped_size = 0, realign_size = 0;
1637
1638 /* Assume that we are not going to sync after the last DMA operation. */
1639 cmd_buffer->state.dma_is_busy = true;
1640
1641 if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1642 cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1643 /* If the size is not aligned, we must add a dummy copy at the end
1644 * just to align the internal counter. Otherwise, the DMA engine
1645 * would slow down by an order of magnitude for following copies.
1646 */
1647 if (size % SI_CPDMA_ALIGNMENT)
1648 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1649
1650 /* If the copy begins unaligned, we must start copying from the next
1651 * aligned block and the skipped part should be copied after everything
1652 * else has been copied. Only the src alignment matters, not dst.
1653 */
1654 if (src_va % SI_CPDMA_ALIGNMENT) {
1655 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1656 /* The main part will be skipped if the size is too small. */
1657 skipped_size = MIN2(skipped_size, size);
1658 size -= skipped_size;
1659 }
1660 }
1661 main_src_va = src_va + skipped_size;
1662 main_dest_va = dest_va + skipped_size;
1663
1664 while (size) {
1665 unsigned dma_flags = 0;
1666 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1667
1668 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1669 /* DMA operations via L2 are coherent and faster.
1670 * TODO: GFX7-GFX9 should also support this but it
1671 * requires tests/benchmarks.
1672 */
1673 dma_flags |= CP_DMA_USE_L2;
1674 }
1675
1676 si_cp_dma_prepare(cmd_buffer, byte_count,
1677 size + skipped_size + realign_size,
1678 &dma_flags);
1679
1680 dma_flags &= ~CP_DMA_SYNC;
1681
1682 si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1683 byte_count, dma_flags);
1684
1685 size -= byte_count;
1686 main_src_va += byte_count;
1687 main_dest_va += byte_count;
1688 }
1689
1690 if (skipped_size) {
1691 unsigned dma_flags = 0;
1692
1693 si_cp_dma_prepare(cmd_buffer, skipped_size,
1694 size + skipped_size + realign_size,
1695 &dma_flags);
1696
1697 si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1698 skipped_size, dma_flags);
1699 }
1700 if (realign_size)
1701 si_cp_dma_realign_engine(cmd_buffer, realign_size);
1702 }
1703
1704 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1705 uint64_t size, unsigned value)
1706 {
1707
1708 if (!size)
1709 return;
1710
1711 assert(va % 4 == 0 && size % 4 == 0);
1712
1713 /* Assume that we are not going to sync after the last DMA operation. */
1714 cmd_buffer->state.dma_is_busy = true;
1715
1716 while (size) {
1717 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1718 unsigned dma_flags = CP_DMA_CLEAR;
1719
1720 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1721 /* DMA operations via L2 are coherent and faster.
1722 * TODO: GFX7-GFX9 should also support this but it
1723 * requires tests/benchmarks.
1724 */
1725 dma_flags |= CP_DMA_USE_L2;
1726 }
1727
1728 si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1729
1730 /* Emit the clear packet. */
1731 si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1732 dma_flags);
1733
1734 size -= byte_count;
1735 va += byte_count;
1736 }
1737 }
1738
1739 void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
1740 {
1741 if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX7)
1742 return;
1743
1744 if (!cmd_buffer->state.dma_is_busy)
1745 return;
1746
1747 /* Issue a dummy DMA that copies zero bytes.
1748 *
1749 * The DMA engine will see that there's no work to do and skip this
1750 * DMA request, however, the CP will see the sync flag and still wait
1751 * for all DMAs to complete.
1752 */
1753 si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
1754
1755 cmd_buffer->state.dma_is_busy = false;
1756 }
1757
1758 /* For MSAA sample positions. */
1759 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
1760 ((((unsigned)(s0x) & 0xf) << 0) | (((unsigned)(s0y) & 0xf) << 4) | \
1761 (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
1762 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1763 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1764
1765 /* For obtaining location coordinates from registers */
1766 #define SEXT4(x) ((int)((x) | ((x) & 0x8 ? 0xfffffff0 : 0)))
1767 #define GET_SFIELD(reg, index) SEXT4(((reg) >> ((index) * 4)) & 0xf)
1768 #define GET_SX(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2)
1769 #define GET_SY(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1)
1770
1771 /* 1x MSAA */
1772 static const uint32_t sample_locs_1x =
1773 FILL_SREG(0, 0, 0, 0, 0, 0, 0, 0);
1774 static const unsigned max_dist_1x = 0;
1775 static const uint64_t centroid_priority_1x = 0x0000000000000000ull;
1776
1777 /* 2xMSAA */
1778 static const uint32_t sample_locs_2x =
1779 FILL_SREG(4,4, -4, -4, 0, 0, 0, 0);
1780 static const unsigned max_dist_2x = 4;
1781 static const uint64_t centroid_priority_2x = 0x1010101010101010ull;
1782
1783 /* 4xMSAA */
1784 static const uint32_t sample_locs_4x =
1785 FILL_SREG(-2,-6, 6, -2, -6, 2, 2, 6);
1786 static const unsigned max_dist_4x = 6;
1787 static const uint64_t centroid_priority_4x = 0x3210321032103210ull;
1788
1789 /* 8xMSAA */
1790 static const uint32_t sample_locs_8x[] = {
1791 FILL_SREG( 1,-3, -1, 3, 5, 1, -3,-5),
1792 FILL_SREG(-5, 5, -7,-1, 3, 7, 7,-7),
1793 /* The following are unused by hardware, but we emit them to IBs
1794 * instead of multiple SET_CONTEXT_REG packets. */
1795 0,
1796 0,
1797 };
1798 static const unsigned max_dist_8x = 7;
1799 static const uint64_t centroid_priority_8x = 0x7654321076543210ull;
1800
1801 unsigned radv_get_default_max_sample_dist(int log_samples)
1802 {
1803 unsigned max_dist[] = {
1804 max_dist_1x,
1805 max_dist_2x,
1806 max_dist_4x,
1807 max_dist_8x,
1808 };
1809 return max_dist[log_samples];
1810 }
1811
1812 void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples)
1813 {
1814 switch (nr_samples) {
1815 default:
1816 case 1:
1817 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1818 radeon_emit(cs, (uint32_t)centroid_priority_1x);
1819 radeon_emit(cs, centroid_priority_1x >> 32);
1820 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x);
1821 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x);
1822 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x);
1823 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x);
1824 break;
1825 case 2:
1826 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1827 radeon_emit(cs, (uint32_t)centroid_priority_2x);
1828 radeon_emit(cs, centroid_priority_2x >> 32);
1829 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x);
1830 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x);
1831 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x);
1832 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x);
1833 break;
1834 case 4:
1835 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1836 radeon_emit(cs, (uint32_t)centroid_priority_4x);
1837 radeon_emit(cs, centroid_priority_4x >> 32);
1838 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x);
1839 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x);
1840 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x);
1841 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x);
1842 break;
1843 case 8:
1844 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1845 radeon_emit(cs, (uint32_t)centroid_priority_8x);
1846 radeon_emit(cs, centroid_priority_8x >> 32);
1847 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1848 radeon_emit_array(cs, sample_locs_8x, 4);
1849 radeon_emit_array(cs, sample_locs_8x, 4);
1850 radeon_emit_array(cs, sample_locs_8x, 4);
1851 radeon_emit_array(cs, sample_locs_8x, 2);
1852 break;
1853 }
1854 }
1855
1856 static void radv_get_sample_position(struct radv_device *device,
1857 unsigned sample_count,
1858 unsigned sample_index, float *out_value)
1859 {
1860 const uint32_t *sample_locs;
1861
1862 switch (sample_count) {
1863 case 1:
1864 default:
1865 sample_locs = &sample_locs_1x;
1866 break;
1867 case 2:
1868 sample_locs = &sample_locs_2x;
1869 break;
1870 case 4:
1871 sample_locs = &sample_locs_4x;
1872 break;
1873 case 8:
1874 sample_locs = sample_locs_8x;
1875 break;
1876 }
1877
1878 out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f;
1879 out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f;
1880 }
1881
1882 void radv_device_init_msaa(struct radv_device *device)
1883 {
1884 int i;
1885
1886 radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1887
1888 for (i = 0; i < 2; i++)
1889 radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1890 for (i = 0; i < 4; i++)
1891 radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1892 for (i = 0; i < 8; i++)
1893 radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1894 }