radv: set WD_SWITCH_ON_EOP=1 when drawing primitives from a stream output buffer
[mesa.git] / src / amd / vulkan / si_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 /* command buffer handling for SI */
29
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "gfx9d.h"
35 #include "radv_util.h"
36 #include "main/macros.h"
37
38 static void
39 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
40 struct radeon_cmdbuf *cs,
41 unsigned raster_config,
42 unsigned raster_config_1)
43 {
44 unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
45 unsigned raster_config_se[4];
46 unsigned se;
47
48 ac_get_harvested_configs(&physical_device->rad_info,
49 raster_config,
50 &raster_config_1,
51 raster_config_se);
52
53 for (se = 0; se < num_se; se++) {
54 /* GRBM_GFX_INDEX has a different offset on SI and CI+ */
55 if (physical_device->rad_info.chip_class < CIK)
56 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
57 S_00802C_SE_INDEX(se) |
58 S_00802C_SH_BROADCAST_WRITES(1) |
59 S_00802C_INSTANCE_BROADCAST_WRITES(1));
60 else
61 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
62 S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
63 S_030800_INSTANCE_BROADCAST_WRITES(1));
64 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
65 }
66
67 /* GRBM_GFX_INDEX has a different offset on SI and CI+ */
68 if (physical_device->rad_info.chip_class < CIK)
69 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
70 S_00802C_SE_BROADCAST_WRITES(1) |
71 S_00802C_SH_BROADCAST_WRITES(1) |
72 S_00802C_INSTANCE_BROADCAST_WRITES(1));
73 else
74 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
75 S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
76 S_030800_INSTANCE_BROADCAST_WRITES(1));
77
78 if (physical_device->rad_info.chip_class >= CIK)
79 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
80 }
81
82 void
83 si_emit_compute(struct radv_physical_device *physical_device,
84 struct radeon_cmdbuf *cs)
85 {
86 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
87 radeon_emit(cs, 0);
88 radeon_emit(cs, 0);
89 radeon_emit(cs, 0);
90
91 radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
92 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
93 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
94 radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
95
96 if (physical_device->rad_info.chip_class >= CIK) {
97 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
98 radeon_set_sh_reg_seq(cs,
99 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
100 radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
101 S_00B864_SH1_CU_EN(0xffff));
102 radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
103 S_00B868_SH1_CU_EN(0xffff));
104 }
105
106 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
107 * and is now per pipe, so it should be handled in the
108 * kernel if we want to use something other than the default value,
109 * which is now 0x22f.
110 */
111 if (physical_device->rad_info.chip_class <= SI) {
112 /* XXX: This should be:
113 * (number of compute units) * 4 * (waves per simd) - 1 */
114
115 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
116 0x190 /* Default value */);
117 }
118 }
119
120 /* 12.4 fixed-point */
121 static unsigned radv_pack_float_12p4(float x)
122 {
123 return x <= 0 ? 0 :
124 x >= 4096 ? 0xffff : x * 16;
125 }
126
127 static void
128 si_set_raster_config(struct radv_physical_device *physical_device,
129 struct radeon_cmdbuf *cs)
130 {
131 unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
132 unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
133 unsigned raster_config, raster_config_1;
134
135 ac_get_raster_config(&physical_device->rad_info,
136 &raster_config,
137 &raster_config_1, NULL);
138
139 /* Always use the default config when all backends are enabled
140 * (or when we failed to determine the enabled backends).
141 */
142 if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
143 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
144 raster_config);
145 if (physical_device->rad_info.chip_class >= CIK)
146 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
147 raster_config_1);
148 } else {
149 si_write_harvested_raster_configs(physical_device, cs,
150 raster_config,
151 raster_config_1);
152 }
153 }
154
155 void
156 si_emit_graphics(struct radv_physical_device *physical_device,
157 struct radeon_cmdbuf *cs)
158 {
159 int i;
160
161 /* Only SI can disable CLEAR_STATE for now. */
162 assert(physical_device->has_clear_state ||
163 physical_device->rad_info.chip_class == SI);
164
165 radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
166 radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
167 radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
168
169 if (physical_device->has_clear_state) {
170 radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
171 radeon_emit(cs, 0);
172 }
173
174 if (physical_device->rad_info.chip_class <= VI)
175 si_set_raster_config(physical_device, cs);
176
177 radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
178 if (!physical_device->has_clear_state)
179 radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
180
181 /* FIXME calculate these values somehow ??? */
182 if (physical_device->rad_info.chip_class <= VI) {
183 radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
184 radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
185 }
186
187 if (!physical_device->has_clear_state) {
188 radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
189 radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
190 radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
191 }
192
193 radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
194 if (!physical_device->has_clear_state)
195 radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
196 if (physical_device->rad_info.chip_class < CIK)
197 radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
198 S_008A14_CLIP_VTX_REORDER_ENA(1));
199
200 radeon_set_context_reg(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 0x76543210);
201 radeon_set_context_reg(cs, R_028BD8_PA_SC_CENTROID_PRIORITY_1, 0xfedcba98);
202
203 if (!physical_device->has_clear_state)
204 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
205
206 /* CLEAR_STATE doesn't clear these correctly on certain generations.
207 * I don't know why. Deduced by trial and error.
208 */
209 if (physical_device->rad_info.chip_class <= CIK) {
210 radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
211 radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
212 S_028204_WINDOW_OFFSET_DISABLE(1));
213 radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
214 S_028240_WINDOW_OFFSET_DISABLE(1));
215 radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
216 S_028244_BR_X(16384) | S_028244_BR_Y(16384));
217 radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
218 radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
219 S_028034_BR_X(16384) | S_028034_BR_Y(16384));
220 }
221
222 if (!physical_device->has_clear_state) {
223 for (i = 0; i < 16; i++) {
224 radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
225 radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
226 }
227 }
228
229 if (!physical_device->has_clear_state) {
230 radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
231 radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
232 /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on SI */
233 radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
234 radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
235 radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
236 radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
237 radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
238 }
239
240 radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
241 S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
242 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
243
244 if (physical_device->rad_info.chip_class >= GFX9) {
245 radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
246 radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
247 radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
248 } else {
249 /* These registers, when written, also overwrite the
250 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
251 * them. It would be an issue if there was another UMD
252 * changing them.
253 */
254 radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
255 radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
256 radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
257 }
258
259 if (physical_device->rad_info.chip_class >= CIK) {
260 if (physical_device->rad_info.chip_class >= GFX9) {
261 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
262 S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
263 } else {
264 radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
265 S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
266 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
267 S_00B41C_WAVE_LIMIT(0x3F));
268 radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
269 S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
270 /* If this is 0, Bonaire can hang even if GS isn't being used.
271 * Other chips are unaffected. These are suboptimal values,
272 * but we don't use on-chip GS.
273 */
274 radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
275 S_028A44_ES_VERTS_PER_SUBGRP(64) |
276 S_028A44_GS_PRIMS_PER_SUBGRP(4));
277 }
278 radeon_set_sh_reg(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
279 S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F));
280
281 if (physical_device->rad_info.num_good_cu_per_sh <= 4) {
282 /* Too few available compute units per SH. Disallowing
283 * VS to run on CU0 could hurt us more than late VS
284 * allocation would help.
285 *
286 * LATE_ALLOC_VS = 2 is the highest safe number.
287 */
288 radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
289 S_00B118_CU_EN(0xffff) | S_00B118_WAVE_LIMIT(0x3F) );
290 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(2));
291 } else {
292 /* Set LATE_ALLOC_VS == 31. It should be less than
293 * the number of scratch waves. Limitations:
294 * - VS can't execute on CU0.
295 * - If HS writes outputs to LDS, LS can't execute on CU0.
296 */
297 radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
298 S_00B118_CU_EN(0xfffe) | S_00B118_WAVE_LIMIT(0x3F));
299 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(31));
300 }
301
302 radeon_set_sh_reg(cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
303 S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
304 }
305
306 if (physical_device->rad_info.chip_class >= VI) {
307 uint32_t vgt_tess_distribution;
308
309 vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
310 S_028B50_ACCUM_TRI(11) |
311 S_028B50_ACCUM_QUAD(11) |
312 S_028B50_DONUT_SPLIT(16);
313
314 if (physical_device->rad_info.family == CHIP_FIJI ||
315 physical_device->rad_info.family >= CHIP_POLARIS10)
316 vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
317
318 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
319 vgt_tess_distribution);
320 } else if (!physical_device->has_clear_state) {
321 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
322 radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
323 }
324
325 if (physical_device->rad_info.chip_class >= GFX9) {
326 unsigned num_se = physical_device->rad_info.max_se;
327 unsigned pc_lines = 0;
328
329 switch (physical_device->rad_info.family) {
330 case CHIP_VEGA10:
331 case CHIP_VEGA12:
332 case CHIP_VEGA20:
333 pc_lines = 4096;
334 break;
335 case CHIP_RAVEN:
336 case CHIP_RAVEN2:
337 pc_lines = 1024;
338 break;
339 default:
340 assert(0);
341 }
342
343 radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
344 S_028C48_MAX_ALLOC_COUNT(MIN2(128, pc_lines / (4 * num_se))) |
345 S_028C48_MAX_PRIM_PER_BATCH(1023));
346 radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
347 S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
348 radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
349 }
350
351 unsigned tmp = (unsigned)(1.0 * 8.0);
352 radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
353 radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
354 radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
355 radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
356 S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2)));
357
358 if (!physical_device->has_clear_state) {
359 radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
360 S_028004_ZPASS_INCREMENT_DISABLE(1));
361 }
362
363 /* Enable the Polaris small primitive filter control.
364 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
365 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
366 * and AMDVLK doesn't have a workaround as well.
367 */
368 if (physical_device->rad_info.family >= CHIP_POLARIS10) {
369 unsigned small_prim_filter_cntl =
370 S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
371 /* Workaround for a hw line bug. */
372 S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
373
374 radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
375 small_prim_filter_cntl);
376 }
377
378 si_emit_compute(physical_device, cs);
379 }
380
381 void
382 cik_create_gfx_config(struct radv_device *device)
383 {
384 struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
385 if (!cs)
386 return;
387
388 si_emit_graphics(device->physical_device, cs);
389
390 while (cs->cdw & 7) {
391 if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
392 radeon_emit(cs, 0x80000000);
393 else
394 radeon_emit(cs, 0xffff1000);
395 }
396
397 device->gfx_init = device->ws->buffer_create(device->ws,
398 cs->cdw * 4, 4096,
399 RADEON_DOMAIN_GTT,
400 RADEON_FLAG_CPU_ACCESS|
401 RADEON_FLAG_NO_INTERPROCESS_SHARING |
402 RADEON_FLAG_READ_ONLY,
403 RADV_BO_PRIORITY_CS);
404 if (!device->gfx_init)
405 goto fail;
406
407 void *map = device->ws->buffer_map(device->gfx_init);
408 if (!map) {
409 device->ws->buffer_destroy(device->gfx_init);
410 device->gfx_init = NULL;
411 goto fail;
412 }
413 memcpy(map, cs->buf, cs->cdw * 4);
414
415 device->ws->buffer_unmap(device->gfx_init);
416 device->gfx_init_size_dw = cs->cdw;
417 fail:
418 device->ws->cs_destroy(cs);
419 }
420
421 static void
422 get_viewport_xform(const VkViewport *viewport,
423 float scale[3], float translate[3])
424 {
425 float x = viewport->x;
426 float y = viewport->y;
427 float half_width = 0.5f * viewport->width;
428 float half_height = 0.5f * viewport->height;
429 double n = viewport->minDepth;
430 double f = viewport->maxDepth;
431
432 scale[0] = half_width;
433 translate[0] = half_width + x;
434 scale[1] = half_height;
435 translate[1] = half_height + y;
436
437 scale[2] = (f - n);
438 translate[2] = n;
439 }
440
441 void
442 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
443 int count, const VkViewport *viewports)
444 {
445 int i;
446
447 assert(count);
448 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
449 first_vp * 4 * 6, count * 6);
450
451 for (i = 0; i < count; i++) {
452 float scale[3], translate[3];
453
454
455 get_viewport_xform(&viewports[i], scale, translate);
456 radeon_emit(cs, fui(scale[0]));
457 radeon_emit(cs, fui(translate[0]));
458 radeon_emit(cs, fui(scale[1]));
459 radeon_emit(cs, fui(translate[1]));
460 radeon_emit(cs, fui(scale[2]));
461 radeon_emit(cs, fui(translate[2]));
462 }
463
464 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
465 first_vp * 4 * 2, count * 2);
466 for (i = 0; i < count; i++) {
467 float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
468 float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
469 radeon_emit(cs, fui(zmin));
470 radeon_emit(cs, fui(zmax));
471 }
472 }
473
474 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
475 {
476 float scale[3], translate[3];
477 VkRect2D rect;
478
479 get_viewport_xform(viewport, scale, translate);
480
481 rect.offset.x = translate[0] - fabs(scale[0]);
482 rect.offset.y = translate[1] - fabs(scale[1]);
483 rect.extent.width = ceilf(translate[0] + fabs(scale[0])) - rect.offset.x;
484 rect.extent.height = ceilf(translate[1] + fabs(scale[1])) - rect.offset.y;
485
486 return rect;
487 }
488
489 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
490 VkRect2D ret;
491 ret.offset.x = MAX2(a->offset.x, b->offset.x);
492 ret.offset.y = MAX2(a->offset.y, b->offset.y);
493 ret.extent.width = MIN2(a->offset.x + a->extent.width,
494 b->offset.x + b->extent.width) - ret.offset.x;
495 ret.extent.height = MIN2(a->offset.y + a->extent.height,
496 b->offset.y + b->extent.height) - ret.offset.y;
497 return ret;
498 }
499
500 void
501 si_write_scissors(struct radeon_cmdbuf *cs, int first,
502 int count, const VkRect2D *scissors,
503 const VkViewport *viewports, bool can_use_guardband)
504 {
505 int i;
506 float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
507 const float max_range = 32767.0f;
508 if (!count)
509 return;
510
511 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
512 for (i = 0; i < count; i++) {
513 VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
514 VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
515
516 get_viewport_xform(viewports + i, scale, translate);
517 scale[0] = fabsf(scale[0]);
518 scale[1] = fabsf(scale[1]);
519
520 if (scale[0] < 0.5)
521 scale[0] = 0.5;
522 if (scale[1] < 0.5)
523 scale[1] = 0.5;
524
525 guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]);
526 guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]);
527
528 radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
529 S_028250_TL_Y(scissor.offset.y) |
530 S_028250_WINDOW_OFFSET_DISABLE(1));
531 radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
532 S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
533 }
534 if (!can_use_guardband) {
535 guardband_x = 1.0;
536 guardband_y = 1.0;
537 }
538
539 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
540 radeon_emit(cs, fui(guardband_y));
541 radeon_emit(cs, fui(1.0));
542 radeon_emit(cs, fui(guardband_x));
543 radeon_emit(cs, fui(1.0));
544 }
545
546 static inline unsigned
547 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
548 {
549 if (num == 0)
550 return 0;
551
552 if (info->incr == 0)
553 return 0;
554
555 if (num < info->min)
556 return 0;
557
558 return 1 + ((num - info->min) / info->incr);
559 }
560
561 uint32_t
562 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
563 bool instanced_draw, bool indirect_draw,
564 bool count_from_stream_output,
565 uint32_t draw_vertex_count)
566 {
567 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
568 enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
569 struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
570 const unsigned max_primgroup_in_wave = 2;
571 /* SWITCH_ON_EOP(0) is always preferable. */
572 bool wd_switch_on_eop = false;
573 bool ia_switch_on_eop = false;
574 bool ia_switch_on_eoi = false;
575 bool partial_vs_wave = false;
576 bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
577 bool multi_instances_smaller_than_primgroup;
578
579 multi_instances_smaller_than_primgroup = indirect_draw;
580 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
581 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
582 if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
583 multi_instances_smaller_than_primgroup = true;
584 }
585
586 ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
587 partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
588
589 if (chip_class >= CIK) {
590 wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.wd_switch_on_eop;
591
592 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
593 * We don't know that for indirect drawing, so treat it as
594 * always problematic. */
595 if (family == CHIP_HAWAII &&
596 (instanced_draw || indirect_draw))
597 wd_switch_on_eop = true;
598
599 /* Performance recommendation for 4 SE Gfx7-8 parts if
600 * instances are smaller than a primgroup.
601 * Assume indirect draws always use small instances.
602 * This is needed for good VS wave utilization.
603 */
604 if (chip_class <= VI &&
605 info->max_se == 4 &&
606 multi_instances_smaller_than_primgroup)
607 wd_switch_on_eop = true;
608
609 /* Required on CIK and later. */
610 if (info->max_se > 2 && !wd_switch_on_eop)
611 ia_switch_on_eoi = true;
612
613 /* Required by Hawaii and, for some special cases, by VI. */
614 if (ia_switch_on_eoi &&
615 (family == CHIP_HAWAII ||
616 (chip_class == VI &&
617 /* max primgroup in wave is always 2 - leave this for documentation */
618 (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
619 partial_vs_wave = true;
620
621 /* Instancing bug on Bonaire. */
622 if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
623 (instanced_draw || indirect_draw))
624 partial_vs_wave = true;
625
626 /* Hardware requirement when drawing primitives from a stream
627 * output buffer.
628 */
629 if (count_from_stream_output)
630 wd_switch_on_eop = true;
631
632 /* If the WD switch is false, the IA switch must be false too. */
633 assert(wd_switch_on_eop || !ia_switch_on_eop);
634 }
635 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
636 if (chip_class <= VI && ia_switch_on_eoi)
637 partial_es_wave = true;
638
639 if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
640 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
641 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
642 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
643 */
644 if (family == CHIP_HAWAII && ia_switch_on_eoi) {
645 bool set_vgt_flush = indirect_draw;
646 if (!set_vgt_flush && instanced_draw) {
647 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
648 if (num_prims <= 1)
649 set_vgt_flush = true;
650 }
651 if (set_vgt_flush)
652 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
653 }
654 }
655
656 return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
657 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
658 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
659 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
660 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
661 S_028AA8_WD_SWITCH_ON_EOP(chip_class >= CIK ? wd_switch_on_eop : 0);
662
663 }
664
665 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
666 enum chip_class chip_class,
667 bool is_mec,
668 unsigned event, unsigned event_flags,
669 unsigned data_sel,
670 uint64_t va,
671 uint32_t new_fence,
672 uint64_t gfx9_eop_bug_va)
673 {
674 unsigned op = EVENT_TYPE(event) |
675 EVENT_INDEX(5) |
676 event_flags;
677 unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
678 unsigned sel = EOP_DATA_SEL(data_sel);
679
680 /* Wait for write confirmation before writing data, but don't send
681 * an interrupt. */
682 if (data_sel != EOP_DATA_SEL_DISCARD)
683 sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
684
685 if (chip_class >= GFX9 || is_gfx8_mec) {
686 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
687 * counters) must immediately precede every timestamp event to
688 * prevent a GPU hang on GFX9.
689 */
690 if (chip_class == GFX9 && !is_mec) {
691 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
692 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
693 radeon_emit(cs, gfx9_eop_bug_va);
694 radeon_emit(cs, gfx9_eop_bug_va >> 32);
695 }
696
697 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
698 radeon_emit(cs, op);
699 radeon_emit(cs, sel);
700 radeon_emit(cs, va); /* address lo */
701 radeon_emit(cs, va >> 32); /* address hi */
702 radeon_emit(cs, new_fence); /* immediate data lo */
703 radeon_emit(cs, 0); /* immediate data hi */
704 if (!is_gfx8_mec)
705 radeon_emit(cs, 0); /* unused */
706 } else {
707 if (chip_class == CIK ||
708 chip_class == VI) {
709 /* Two EOP events are required to make all engines go idle
710 * (and optional cache flushes executed) before the timestamp
711 * is written.
712 */
713 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
714 radeon_emit(cs, op);
715 radeon_emit(cs, va);
716 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
717 radeon_emit(cs, 0); /* immediate data */
718 radeon_emit(cs, 0); /* unused */
719 }
720
721 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
722 radeon_emit(cs, op);
723 radeon_emit(cs, va);
724 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
725 radeon_emit(cs, new_fence); /* immediate data */
726 radeon_emit(cs, 0); /* unused */
727 }
728 }
729
730 void
731 radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va,
732 uint32_t ref, uint32_t mask)
733 {
734 assert(op == WAIT_REG_MEM_EQUAL ||
735 op == WAIT_REG_MEM_NOT_EQUAL ||
736 op == WAIT_REG_MEM_GREATER_OR_EQUAL);
737
738 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
739 radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1));
740 radeon_emit(cs, va);
741 radeon_emit(cs, va >> 32);
742 radeon_emit(cs, ref); /* reference value */
743 radeon_emit(cs, mask); /* mask */
744 radeon_emit(cs, 4); /* poll interval */
745 }
746
747 static void
748 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
749 bool is_mec,
750 bool is_gfx9,
751 unsigned cp_coher_cntl)
752 {
753 if (is_mec || is_gfx9) {
754 uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
755 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
756 PKT3_SHADER_TYPE_S(is_mec));
757 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
758 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
759 radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
760 radeon_emit(cs, 0); /* CP_COHER_BASE */
761 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
762 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
763 } else {
764 /* ACQUIRE_MEM is only required on a compute ring. */
765 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
766 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
767 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
768 radeon_emit(cs, 0); /* CP_COHER_BASE */
769 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
770 }
771 }
772
773 void
774 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
775 enum chip_class chip_class,
776 uint32_t *flush_cnt,
777 uint64_t flush_va,
778 bool is_mec,
779 enum radv_cmd_flush_bits flush_bits,
780 uint64_t gfx9_eop_bug_va)
781 {
782 unsigned cp_coher_cntl = 0;
783 uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
784 RADV_CMD_FLAG_FLUSH_AND_INV_DB);
785
786 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
787 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
788 if (flush_bits & RADV_CMD_FLAG_INV_SMEM_L1)
789 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
790
791 if (chip_class <= VI) {
792 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
793 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
794 S_0085F0_CB0_DEST_BASE_ENA(1) |
795 S_0085F0_CB1_DEST_BASE_ENA(1) |
796 S_0085F0_CB2_DEST_BASE_ENA(1) |
797 S_0085F0_CB3_DEST_BASE_ENA(1) |
798 S_0085F0_CB4_DEST_BASE_ENA(1) |
799 S_0085F0_CB5_DEST_BASE_ENA(1) |
800 S_0085F0_CB6_DEST_BASE_ENA(1) |
801 S_0085F0_CB7_DEST_BASE_ENA(1);
802
803 /* Necessary for DCC */
804 if (chip_class >= VI) {
805 si_cs_emit_write_event_eop(cs,
806 chip_class,
807 is_mec,
808 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
809 0,
810 EOP_DATA_SEL_DISCARD,
811 0, 0,
812 gfx9_eop_bug_va);
813 }
814 }
815 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
816 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
817 S_0085F0_DB_DEST_BASE_ENA(1);
818 }
819 }
820
821 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
822 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
823 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
824 }
825
826 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
827 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
828 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
829 }
830
831 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
832 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
833 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
834 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
835 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
836 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
837 }
838
839 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
840 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
841 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
842 }
843
844 if (chip_class >= GFX9 && flush_cb_db) {
845 unsigned cb_db_event, tc_flags;
846
847 /* Set the CB/DB flush event. */
848 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
849
850 /* These are the only allowed combinations. If you need to
851 * do multiple operations at once, do them separately.
852 * All operations that invalidate L2 also seem to invalidate
853 * metadata. Volatile (VOL) and WC flushes are not listed here.
854 *
855 * TC | TC_WB = writeback & invalidate L2 & L1
856 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
857 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
858 * TC | TC_NC = invalidate L2 for MTYPE == NC
859 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
860 * TCL1 = invalidate L1
861 */
862 tc_flags = EVENT_TC_ACTION_ENA |
863 EVENT_TC_MD_ACTION_ENA;
864
865 /* Ideally flush TC together with CB/DB. */
866 if (flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) {
867 /* Writeback and invalidate everything in L2 & L1. */
868 tc_flags = EVENT_TC_ACTION_ENA |
869 EVENT_TC_WB_ACTION_ENA;
870
871
872 /* Clear the flags. */
873 flush_bits &= ~(RADV_CMD_FLAG_INV_GLOBAL_L2 |
874 RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2 |
875 RADV_CMD_FLAG_INV_VMEM_L1);
876 }
877 assert(flush_cnt);
878 (*flush_cnt)++;
879
880 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
881 EOP_DATA_SEL_VALUE_32BIT,
882 flush_va, *flush_cnt,
883 gfx9_eop_bug_va);
884 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
885 *flush_cnt, 0xffffffff);
886 }
887
888 /* VGT state sync */
889 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
890 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
891 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
892 }
893
894 /* VGT streamout state sync */
895 if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) {
896 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
897 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
898 }
899
900 /* Make sure ME is idle (it executes most packets) before continuing.
901 * This prevents read-after-write hazards between PFP and ME.
902 */
903 if ((cp_coher_cntl ||
904 (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
905 RADV_CMD_FLAG_INV_VMEM_L1 |
906 RADV_CMD_FLAG_INV_GLOBAL_L2 |
907 RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) &&
908 !is_mec) {
909 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
910 radeon_emit(cs, 0);
911 }
912
913 if ((flush_bits & RADV_CMD_FLAG_INV_GLOBAL_L2) ||
914 (chip_class <= CIK && (flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2))) {
915 si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9,
916 cp_coher_cntl |
917 S_0085F0_TC_ACTION_ENA(1) |
918 S_0085F0_TCL1_ACTION_ENA(1) |
919 S_0301F0_TC_WB_ACTION_ENA(chip_class >= VI));
920 cp_coher_cntl = 0;
921 } else {
922 if(flush_bits & RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2) {
923 /* WB = write-back
924 * NC = apply to non-coherent MTYPEs
925 * (i.e. MTYPE <= 1, which is what we use everywhere)
926 *
927 * WB doesn't work without NC.
928 */
929 si_emit_acquire_mem(cs, is_mec,
930 chip_class >= GFX9,
931 cp_coher_cntl |
932 S_0301F0_TC_WB_ACTION_ENA(1) |
933 S_0301F0_TC_NC_ACTION_ENA(1));
934 cp_coher_cntl = 0;
935 }
936 if (flush_bits & RADV_CMD_FLAG_INV_VMEM_L1) {
937 si_emit_acquire_mem(cs, is_mec,
938 chip_class >= GFX9,
939 cp_coher_cntl |
940 S_0085F0_TCL1_ACTION_ENA(1));
941 cp_coher_cntl = 0;
942 }
943 }
944
945 /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
946 * Therefore, it should be last. Done in PFP.
947 */
948 if (cp_coher_cntl)
949 si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9, cp_coher_cntl);
950
951 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
952 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
953 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
954 EVENT_INDEX(0));
955 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
956 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
957 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
958 EVENT_INDEX(0));
959 }
960 }
961
962 void
963 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
964 {
965 bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
966
967 if (is_compute)
968 cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
969 RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
970 RADV_CMD_FLAG_FLUSH_AND_INV_DB |
971 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
972 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
973 RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
974 RADV_CMD_FLAG_VGT_FLUSH |
975 RADV_CMD_FLAG_START_PIPELINE_STATS |
976 RADV_CMD_FLAG_STOP_PIPELINE_STATS);
977
978 if (!cmd_buffer->state.flush_bits)
979 return;
980
981 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
982
983 si_cs_emit_cache_flush(cmd_buffer->cs,
984 cmd_buffer->device->physical_device->rad_info.chip_class,
985 &cmd_buffer->gfx9_fence_idx,
986 cmd_buffer->gfx9_fence_va,
987 radv_cmd_buffer_uses_mec(cmd_buffer),
988 cmd_buffer->state.flush_bits,
989 cmd_buffer->gfx9_eop_bug_va);
990
991
992 if (unlikely(cmd_buffer->device->trace_bo))
993 radv_cmd_buffer_trace_emit(cmd_buffer);
994
995 cmd_buffer->state.flush_bits = 0;
996
997 /* If the driver used a compute shader for resetting a query pool, it
998 * should be finished at this point.
999 */
1000 cmd_buffer->pending_reset_query = false;
1001 }
1002
1003 /* sets the CP predication state using a boolean stored at va */
1004 void
1005 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer,
1006 bool draw_visible, uint64_t va)
1007 {
1008 uint32_t op = 0;
1009
1010 if (va) {
1011 op = PRED_OP(PREDICATION_OP_BOOL64);
1012
1013 /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
1014 * zero, all rendering commands are discarded. Otherwise, they
1015 * are discarded if the value is non zero.
1016 */
1017 op |= draw_visible ? PREDICATION_DRAW_VISIBLE :
1018 PREDICATION_DRAW_NOT_VISIBLE;
1019 }
1020 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1021 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
1022 radeon_emit(cmd_buffer->cs, op);
1023 radeon_emit(cmd_buffer->cs, va);
1024 radeon_emit(cmd_buffer->cs, va >> 32);
1025 } else {
1026 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
1027 radeon_emit(cmd_buffer->cs, va);
1028 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
1029 }
1030 }
1031
1032 /* Set this if you want the 3D engine to wait until CP DMA is done.
1033 * It should be set on the last CP DMA packet. */
1034 #define CP_DMA_SYNC (1 << 0)
1035
1036 /* Set this if the source data was used as a destination in a previous CP DMA
1037 * packet. It's for preventing a read-after-write (RAW) hazard between two
1038 * CP DMA packets. */
1039 #define CP_DMA_RAW_WAIT (1 << 1)
1040 #define CP_DMA_USE_L2 (1 << 2)
1041 #define CP_DMA_CLEAR (1 << 3)
1042
1043 /* Alignment for optimal performance. */
1044 #define SI_CPDMA_ALIGNMENT 32
1045
1046 /* The max number of bytes that can be copied per packet. */
1047 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1048 {
1049 unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1050 S_414_BYTE_COUNT_GFX9(~0u) :
1051 S_414_BYTE_COUNT_GFX6(~0u);
1052
1053 /* make it aligned for optimal performance */
1054 return max & ~(SI_CPDMA_ALIGNMENT - 1);
1055 }
1056
1057 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1058 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1059 * clear value.
1060 */
1061 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1062 uint64_t dst_va, uint64_t src_va,
1063 unsigned size, unsigned flags)
1064 {
1065 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1066 uint32_t header = 0, command = 0;
1067
1068 assert(size <= cp_dma_max_byte_count(cmd_buffer));
1069
1070 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1071 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1072 command |= S_414_BYTE_COUNT_GFX9(size);
1073 else
1074 command |= S_414_BYTE_COUNT_GFX6(size);
1075
1076 /* Sync flags. */
1077 if (flags & CP_DMA_SYNC)
1078 header |= S_411_CP_SYNC(1);
1079 else {
1080 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1081 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1082 else
1083 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1084 }
1085
1086 if (flags & CP_DMA_RAW_WAIT)
1087 command |= S_414_RAW_WAIT(1);
1088
1089 /* Src and dst flags. */
1090 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1091 !(flags & CP_DMA_CLEAR) &&
1092 src_va == dst_va)
1093 header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
1094 else if (flags & CP_DMA_USE_L2)
1095 header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
1096
1097 if (flags & CP_DMA_CLEAR)
1098 header |= S_411_SRC_SEL(V_411_DATA);
1099 else if (flags & CP_DMA_USE_L2)
1100 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1101
1102 if (cmd_buffer->device->physical_device->rad_info.chip_class >= CIK) {
1103 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1104 radeon_emit(cs, header);
1105 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1106 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
1107 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1108 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
1109 radeon_emit(cs, command);
1110 } else {
1111 assert(!(flags & CP_DMA_USE_L2));
1112 header |= S_411_SRC_ADDR_HI(src_va >> 32);
1113 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1114 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1115 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
1116 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1117 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
1118 radeon_emit(cs, command);
1119 }
1120
1121 /* CP DMA is executed in ME, but index buffers are read by PFP.
1122 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1123 * indices. If we wanted to execute CP DMA in PFP, this packet
1124 * should precede it.
1125 */
1126 if (flags & CP_DMA_SYNC) {
1127 if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1128 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1129 radeon_emit(cs, 0);
1130 }
1131
1132 /* CP will see the sync flag and wait for all DMAs to complete. */
1133 cmd_buffer->state.dma_is_busy = false;
1134 }
1135
1136 if (unlikely(cmd_buffer->device->trace_bo))
1137 radv_cmd_buffer_trace_emit(cmd_buffer);
1138 }
1139
1140 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1141 unsigned size)
1142 {
1143 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1144 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1145
1146 si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1147 aligned_size, CP_DMA_USE_L2);
1148 }
1149
1150 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1151 uint64_t remaining_size, unsigned *flags)
1152 {
1153
1154 /* Flush the caches for the first copy only.
1155 * Also wait for the previous CP DMA operations.
1156 */
1157 if (cmd_buffer->state.flush_bits) {
1158 si_emit_cache_flush(cmd_buffer);
1159 *flags |= CP_DMA_RAW_WAIT;
1160 }
1161
1162 /* Do the synchronization after the last dma, so that all data
1163 * is written to memory.
1164 */
1165 if (byte_count == remaining_size)
1166 *flags |= CP_DMA_SYNC;
1167 }
1168
1169 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1170 {
1171 uint64_t va;
1172 uint32_t offset;
1173 unsigned dma_flags = 0;
1174 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1175 void *ptr;
1176
1177 assert(size < SI_CPDMA_ALIGNMENT);
1178
1179 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
1180
1181 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1182 va += offset;
1183
1184 si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1185
1186 si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1187 dma_flags);
1188 }
1189
1190 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1191 uint64_t src_va, uint64_t dest_va,
1192 uint64_t size)
1193 {
1194 uint64_t main_src_va, main_dest_va;
1195 uint64_t skipped_size = 0, realign_size = 0;
1196
1197 /* Assume that we are not going to sync after the last DMA operation. */
1198 cmd_buffer->state.dma_is_busy = true;
1199
1200 if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1201 cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1202 /* If the size is not aligned, we must add a dummy copy at the end
1203 * just to align the internal counter. Otherwise, the DMA engine
1204 * would slow down by an order of magnitude for following copies.
1205 */
1206 if (size % SI_CPDMA_ALIGNMENT)
1207 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1208
1209 /* If the copy begins unaligned, we must start copying from the next
1210 * aligned block and the skipped part should be copied after everything
1211 * else has been copied. Only the src alignment matters, not dst.
1212 */
1213 if (src_va % SI_CPDMA_ALIGNMENT) {
1214 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1215 /* The main part will be skipped if the size is too small. */
1216 skipped_size = MIN2(skipped_size, size);
1217 size -= skipped_size;
1218 }
1219 }
1220 main_src_va = src_va + skipped_size;
1221 main_dest_va = dest_va + skipped_size;
1222
1223 while (size) {
1224 unsigned dma_flags = 0;
1225 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1226
1227 si_cp_dma_prepare(cmd_buffer, byte_count,
1228 size + skipped_size + realign_size,
1229 &dma_flags);
1230
1231 dma_flags &= ~CP_DMA_SYNC;
1232
1233 si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1234 byte_count, dma_flags);
1235
1236 size -= byte_count;
1237 main_src_va += byte_count;
1238 main_dest_va += byte_count;
1239 }
1240
1241 if (skipped_size) {
1242 unsigned dma_flags = 0;
1243
1244 si_cp_dma_prepare(cmd_buffer, skipped_size,
1245 size + skipped_size + realign_size,
1246 &dma_flags);
1247
1248 si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1249 skipped_size, dma_flags);
1250 }
1251 if (realign_size)
1252 si_cp_dma_realign_engine(cmd_buffer, realign_size);
1253 }
1254
1255 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1256 uint64_t size, unsigned value)
1257 {
1258
1259 if (!size)
1260 return;
1261
1262 assert(va % 4 == 0 && size % 4 == 0);
1263
1264 /* Assume that we are not going to sync after the last DMA operation. */
1265 cmd_buffer->state.dma_is_busy = true;
1266
1267 while (size) {
1268 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1269 unsigned dma_flags = CP_DMA_CLEAR;
1270
1271 si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1272
1273 /* Emit the clear packet. */
1274 si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1275 dma_flags);
1276
1277 size -= byte_count;
1278 va += byte_count;
1279 }
1280 }
1281
1282 void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
1283 {
1284 if (cmd_buffer->device->physical_device->rad_info.chip_class < CIK)
1285 return;
1286
1287 if (!cmd_buffer->state.dma_is_busy)
1288 return;
1289
1290 /* Issue a dummy DMA that copies zero bytes.
1291 *
1292 * The DMA engine will see that there's no work to do and skip this
1293 * DMA request, however, the CP will see the sync flag and still wait
1294 * for all DMAs to complete.
1295 */
1296 si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
1297
1298 cmd_buffer->state.dma_is_busy = false;
1299 }
1300
1301 /* For MSAA sample positions. */
1302 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
1303 (((s0x) & 0xf) | (((unsigned)(s0y) & 0xf) << 4) | \
1304 (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
1305 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1306 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1307
1308
1309 /* 2xMSAA
1310 * There are two locations (4, 4), (-4, -4). */
1311 const uint32_t eg_sample_locs_2x[4] = {
1312 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1313 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1314 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1315 FILL_SREG(4, 4, -4, -4, 4, 4, -4, -4),
1316 };
1317 const unsigned eg_max_dist_2x = 4;
1318 /* 4xMSAA
1319 * There are 4 locations: (-2, 6), (6, -2), (-6, 2), (2, 6). */
1320 const uint32_t eg_sample_locs_4x[4] = {
1321 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1322 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1323 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1324 FILL_SREG(-2, -6, 6, -2, -6, 2, 2, 6),
1325 };
1326 const unsigned eg_max_dist_4x = 6;
1327
1328 /* Cayman 8xMSAA */
1329 static const uint32_t cm_sample_locs_8x[] = {
1330 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1331 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1332 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1333 FILL_SREG( 1, -3, -1, 3, 5, 1, -3, -5),
1334 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1335 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1336 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1337 FILL_SREG(-5, 5, -7, -1, 3, 7, 7, -7),
1338 };
1339 static const unsigned cm_max_dist_8x = 8;
1340 /* Cayman 16xMSAA */
1341 static const uint32_t cm_sample_locs_16x[] = {
1342 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1343 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1344 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1345 FILL_SREG( 1, 1, -1, -3, -3, 2, 4, -1),
1346 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1347 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1348 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1349 FILL_SREG(-5, -2, 2, 5, 5, 3, 3, -5),
1350 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1351 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1352 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1353 FILL_SREG(-2, 6, 0, -7, -4, -6, -6, 4),
1354 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1355 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1356 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1357 FILL_SREG(-8, 0, 7, -4, 6, 7, -7, -8),
1358 };
1359 static const unsigned cm_max_dist_16x = 8;
1360
1361 unsigned radv_cayman_get_maxdist(int log_samples)
1362 {
1363 unsigned max_dist[] = {
1364 0,
1365 eg_max_dist_2x,
1366 eg_max_dist_4x,
1367 cm_max_dist_8x,
1368 cm_max_dist_16x
1369 };
1370 return max_dist[log_samples];
1371 }
1372
1373 void radv_cayman_emit_msaa_sample_locs(struct radeon_cmdbuf *cs, int nr_samples)
1374 {
1375 switch (nr_samples) {
1376 default:
1377 case 1:
1378 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 0);
1379 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, 0);
1380 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, 0);
1381 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, 0);
1382 break;
1383 case 2:
1384 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_2x[0]);
1385 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_2x[1]);
1386 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_2x[2]);
1387 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_2x[3]);
1388 break;
1389 case 4:
1390 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, eg_sample_locs_4x[0]);
1391 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, eg_sample_locs_4x[1]);
1392 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, eg_sample_locs_4x[2]);
1393 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, eg_sample_locs_4x[3]);
1394 break;
1395 case 8:
1396 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1397 radeon_emit(cs, cm_sample_locs_8x[0]);
1398 radeon_emit(cs, cm_sample_locs_8x[4]);
1399 radeon_emit(cs, 0);
1400 radeon_emit(cs, 0);
1401 radeon_emit(cs, cm_sample_locs_8x[1]);
1402 radeon_emit(cs, cm_sample_locs_8x[5]);
1403 radeon_emit(cs, 0);
1404 radeon_emit(cs, 0);
1405 radeon_emit(cs, cm_sample_locs_8x[2]);
1406 radeon_emit(cs, cm_sample_locs_8x[6]);
1407 radeon_emit(cs, 0);
1408 radeon_emit(cs, 0);
1409 radeon_emit(cs, cm_sample_locs_8x[3]);
1410 radeon_emit(cs, cm_sample_locs_8x[7]);
1411 break;
1412 case 16:
1413 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 16);
1414 radeon_emit(cs, cm_sample_locs_16x[0]);
1415 radeon_emit(cs, cm_sample_locs_16x[4]);
1416 radeon_emit(cs, cm_sample_locs_16x[8]);
1417 radeon_emit(cs, cm_sample_locs_16x[12]);
1418 radeon_emit(cs, cm_sample_locs_16x[1]);
1419 radeon_emit(cs, cm_sample_locs_16x[5]);
1420 radeon_emit(cs, cm_sample_locs_16x[9]);
1421 radeon_emit(cs, cm_sample_locs_16x[13]);
1422 radeon_emit(cs, cm_sample_locs_16x[2]);
1423 radeon_emit(cs, cm_sample_locs_16x[6]);
1424 radeon_emit(cs, cm_sample_locs_16x[10]);
1425 radeon_emit(cs, cm_sample_locs_16x[14]);
1426 radeon_emit(cs, cm_sample_locs_16x[3]);
1427 radeon_emit(cs, cm_sample_locs_16x[7]);
1428 radeon_emit(cs, cm_sample_locs_16x[11]);
1429 radeon_emit(cs, cm_sample_locs_16x[15]);
1430 break;
1431 }
1432 }
1433
1434 static void radv_cayman_get_sample_position(struct radv_device *device,
1435 unsigned sample_count,
1436 unsigned sample_index, float *out_value)
1437 {
1438 int offset, index;
1439 struct {
1440 int idx:4;
1441 } val;
1442 switch (sample_count) {
1443 case 1:
1444 default:
1445 out_value[0] = out_value[1] = 0.5;
1446 break;
1447 case 2:
1448 offset = 4 * (sample_index * 2);
1449 val.idx = (eg_sample_locs_2x[0] >> offset) & 0xf;
1450 out_value[0] = (float)(val.idx + 8) / 16.0f;
1451 val.idx = (eg_sample_locs_2x[0] >> (offset + 4)) & 0xf;
1452 out_value[1] = (float)(val.idx + 8) / 16.0f;
1453 break;
1454 case 4:
1455 offset = 4 * (sample_index * 2);
1456 val.idx = (eg_sample_locs_4x[0] >> offset) & 0xf;
1457 out_value[0] = (float)(val.idx + 8) / 16.0f;
1458 val.idx = (eg_sample_locs_4x[0] >> (offset + 4)) & 0xf;
1459 out_value[1] = (float)(val.idx + 8) / 16.0f;
1460 break;
1461 case 8:
1462 offset = 4 * (sample_index % 4 * 2);
1463 index = (sample_index / 4) * 4;
1464 val.idx = (cm_sample_locs_8x[index] >> offset) & 0xf;
1465 out_value[0] = (float)(val.idx + 8) / 16.0f;
1466 val.idx = (cm_sample_locs_8x[index] >> (offset + 4)) & 0xf;
1467 out_value[1] = (float)(val.idx + 8) / 16.0f;
1468 break;
1469 case 16:
1470 offset = 4 * (sample_index % 4 * 2);
1471 index = (sample_index / 4) * 4;
1472 val.idx = (cm_sample_locs_16x[index] >> offset) & 0xf;
1473 out_value[0] = (float)(val.idx + 8) / 16.0f;
1474 val.idx = (cm_sample_locs_16x[index] >> (offset + 4)) & 0xf;
1475 out_value[1] = (float)(val.idx + 8) / 16.0f;
1476 break;
1477 }
1478 }
1479
1480 void radv_device_init_msaa(struct radv_device *device)
1481 {
1482 int i;
1483 radv_cayman_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1484
1485 for (i = 0; i < 2; i++)
1486 radv_cayman_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1487 for (i = 0; i < 4; i++)
1488 radv_cayman_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1489 for (i = 0; i < 8; i++)
1490 radv_cayman_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1491 for (i = 0; i < 16; i++)
1492 radv_cayman_get_sample_position(device, 16, i, device->sample_locations_16x[i]);
1493 }