radv: use better tessellation tunables on GFX9+
[mesa.git] / src / amd / vulkan / si_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based on si_state.c
6 * Copyright © 2015 Advanced Micro Devices, Inc.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 /* command buffer handling for AMD GCN */
29
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "radv_util.h"
35 #include "main/macros.h"
36
37 static void
38 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
39 struct radeon_cmdbuf *cs,
40 unsigned raster_config,
41 unsigned raster_config_1)
42 {
43 unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
44 unsigned raster_config_se[4];
45 unsigned se;
46
47 ac_get_harvested_configs(&physical_device->rad_info,
48 raster_config,
49 &raster_config_1,
50 raster_config_se);
51
52 for (se = 0; se < num_se; se++) {
53 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
54 if (physical_device->rad_info.chip_class < GFX7)
55 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
56 S_00802C_SE_INDEX(se) |
57 S_00802C_SH_BROADCAST_WRITES(1) |
58 S_00802C_INSTANCE_BROADCAST_WRITES(1));
59 else
60 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
61 S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
62 S_030800_INSTANCE_BROADCAST_WRITES(1));
63 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
64 }
65
66 /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
67 if (physical_device->rad_info.chip_class < GFX7)
68 radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
69 S_00802C_SE_BROADCAST_WRITES(1) |
70 S_00802C_SH_BROADCAST_WRITES(1) |
71 S_00802C_INSTANCE_BROADCAST_WRITES(1));
72 else
73 radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
74 S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
75 S_030800_INSTANCE_BROADCAST_WRITES(1));
76
77 if (physical_device->rad_info.chip_class >= GFX7)
78 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
79 }
80
81 void
82 si_emit_compute(struct radv_physical_device *physical_device,
83 struct radeon_cmdbuf *cs)
84 {
85 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
86 radeon_emit(cs, 0);
87 radeon_emit(cs, 0);
88 radeon_emit(cs, 0);
89
90 radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
91 /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1,
92 * renamed COMPUTE_DESTINATION_EN_SEn on gfx10. */
93 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
94 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
95
96 if (physical_device->rad_info.chip_class >= GFX7) {
97 /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
98 radeon_set_sh_reg_seq(cs,
99 R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
100 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
101 S_00B858_SH1_CU_EN(0xffff));
102 radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
103 S_00B858_SH1_CU_EN(0xffff));
104 }
105
106 if (physical_device->rad_info.chip_class >= GFX10)
107 radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, 0);
108
109 /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
110 * and is now per pipe, so it should be handled in the
111 * kernel if we want to use something other than the default value,
112 * which is now 0x22f.
113 */
114 if (physical_device->rad_info.chip_class <= GFX6) {
115 /* XXX: This should be:
116 * (number of compute units) * 4 * (waves per simd) - 1 */
117
118 radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
119 0x190 /* Default value */);
120 }
121 }
122
123 /* 12.4 fixed-point */
124 static unsigned radv_pack_float_12p4(float x)
125 {
126 return x <= 0 ? 0 :
127 x >= 4096 ? 0xffff : x * 16;
128 }
129
130 static void
131 si_set_raster_config(struct radv_physical_device *physical_device,
132 struct radeon_cmdbuf *cs)
133 {
134 unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
135 unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
136 unsigned raster_config, raster_config_1;
137
138 ac_get_raster_config(&physical_device->rad_info,
139 &raster_config,
140 &raster_config_1, NULL);
141
142 /* Always use the default config when all backends are enabled
143 * (or when we failed to determine the enabled backends).
144 */
145 if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
146 radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
147 raster_config);
148 if (physical_device->rad_info.chip_class >= GFX7)
149 radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
150 raster_config_1);
151 } else {
152 si_write_harvested_raster_configs(physical_device, cs,
153 raster_config,
154 raster_config_1);
155 }
156 }
157
158 void
159 si_emit_graphics(struct radv_physical_device *physical_device,
160 struct radeon_cmdbuf *cs)
161 {
162 bool has_clear_state = physical_device->rad_info.has_clear_state;
163 int i;
164
165 radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
166 radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
167 radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
168
169 if (has_clear_state) {
170 radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
171 radeon_emit(cs, 0);
172 }
173
174 if (physical_device->rad_info.chip_class <= GFX8)
175 si_set_raster_config(physical_device, cs);
176
177 radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
178 if (!has_clear_state)
179 radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
180
181 /* FIXME calculate these values somehow ??? */
182 if (physical_device->rad_info.chip_class <= GFX8) {
183 radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
184 radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
185 }
186
187 if (!has_clear_state) {
188 radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
189 radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
190 radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
191 }
192
193 if (physical_device->rad_info.chip_class <= GFX9)
194 radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
195 if (!has_clear_state)
196 radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
197 if (physical_device->rad_info.chip_class < GFX7)
198 radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
199 S_008A14_CLIP_VTX_REORDER_ENA(1));
200
201 if (!has_clear_state)
202 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
203
204 /* CLEAR_STATE doesn't clear these correctly on certain generations.
205 * I don't know why. Deduced by trial and error.
206 */
207 if (physical_device->rad_info.chip_class <= GFX7 || !has_clear_state) {
208 radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
209 radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
210 S_028204_WINDOW_OFFSET_DISABLE(1));
211 radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
212 S_028240_WINDOW_OFFSET_DISABLE(1));
213 radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
214 S_028244_BR_X(16384) | S_028244_BR_Y(16384));
215 radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
216 radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
217 S_028034_BR_X(16384) | S_028034_BR_Y(16384));
218 }
219
220 if (!has_clear_state) {
221 for (i = 0; i < 16; i++) {
222 radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
223 radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
224 }
225 }
226
227 if (!has_clear_state) {
228 radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
229 radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
230 /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */
231 radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
232 radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
233 radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
234 radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
235 radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
236 }
237
238 radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
239 S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
240 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
241
242 if (physical_device->rad_info.chip_class >= GFX10) {
243 radeon_set_context_reg(cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0);
244 radeon_set_uconfig_reg(cs, R_030964_GE_MAX_VTX_INDX, ~0);
245 radeon_set_uconfig_reg(cs, R_030924_GE_MIN_VTX_INDX, 0);
246 radeon_set_uconfig_reg(cs, R_030928_GE_INDX_OFFSET, 0);
247 radeon_set_uconfig_reg(cs, R_03097C_GE_STEREO_CNTL, 0);
248 radeon_set_uconfig_reg(cs, R_030988_GE_USER_VGPR_EN, 0);
249 } else if (physical_device->rad_info.chip_class == GFX9) {
250 radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
251 radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
252 radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
253 } else {
254 /* These registers, when written, also overwrite the
255 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
256 * them. It would be an issue if there was another UMD
257 * changing them.
258 */
259 radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
260 radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
261 radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
262 }
263
264 if (physical_device->rad_info.chip_class >= GFX7) {
265 if (physical_device->rad_info.chip_class >= GFX10) {
266 /* Logical CUs 16 - 31 */
267 radeon_set_sh_reg_idx(physical_device, cs, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
268 3, S_00B404_CU_EN(0xffff));
269 radeon_set_sh_reg_idx(physical_device, cs, R_00B104_SPI_SHADER_PGM_RSRC4_VS,
270 3, S_00B104_CU_EN(0xffff));
271 radeon_set_sh_reg_idx(physical_device, cs, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
272 3, S_00B004_CU_EN(0xffff));
273 }
274
275 if (physical_device->rad_info.chip_class >= GFX9) {
276 radeon_set_sh_reg_idx(physical_device, cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
277 3, S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
278 } else {
279 radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
280 S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
281 radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
282 S_00B41C_WAVE_LIMIT(0x3F));
283 radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
284 S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
285 /* If this is 0, Bonaire can hang even if GS isn't being used.
286 * Other chips are unaffected. These are suboptimal values,
287 * but we don't use on-chip GS.
288 */
289 radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
290 S_028A44_ES_VERTS_PER_SUBGRP(64) |
291 S_028A44_GS_PRIMS_PER_SUBGRP(4));
292 }
293
294 /* Compute LATE_ALLOC_VS.LIMIT. */
295 unsigned num_cu_per_sh = physical_device->rad_info.num_good_cu_per_sh;
296 unsigned late_alloc_limit; /* The limit is per SH. */
297
298 if (physical_device->rad_info.family == CHIP_KABINI) {
299 late_alloc_limit = 0; /* Potential hang on Kabini. */
300 } else if (num_cu_per_sh <= 4) {
301 /* Too few available compute units per SH. Disallowing
302 * VS to run on one CU could hurt us more than late VS
303 * allocation would help.
304 *
305 * 2 is the highest safe number that allows us to keep
306 * all CUs enabled.
307 */
308 late_alloc_limit = 2;
309 } else {
310 /* This is a good initial value, allowing 1 late_alloc
311 * wave per SIMD on num_cu - 2.
312 */
313 late_alloc_limit = (num_cu_per_sh - 2) * 4;
314 }
315
316 unsigned late_alloc_limit_gs = late_alloc_limit;
317 unsigned cu_mask_vs = 0xffff;
318 unsigned cu_mask_gs = 0xffff;
319
320 if (late_alloc_limit > 2) {
321 if (physical_device->rad_info.chip_class >= GFX10) {
322 /* CU2 & CU3 disabled because of the dual CU design */
323 cu_mask_vs = 0xfff3;
324 cu_mask_gs = 0xfff3; /* NGG only */
325 } else {
326 cu_mask_vs = 0xfffe; /* 1 CU disabled */
327 }
328 }
329
330 /* Don't use late alloc for NGG on Navi14 due to a hw bug.
331 * If NGG is never used, enable all CUs.
332 */
333 if (!physical_device->use_ngg ||
334 physical_device->rad_info.family == CHIP_NAVI14) {
335 late_alloc_limit_gs = 0;
336 cu_mask_gs = 0xffff;
337 }
338
339 radeon_set_sh_reg_idx(physical_device, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
340 3, S_00B118_CU_EN(cu_mask_vs) |
341 S_00B118_WAVE_LIMIT(0x3F));
342 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
343 S_00B11C_LIMIT(late_alloc_limit));
344
345 radeon_set_sh_reg_idx(physical_device, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
346 3, S_00B21C_CU_EN(cu_mask_gs) | S_00B21C_WAVE_LIMIT(0x3F));
347
348 if (physical_device->rad_info.chip_class >= GFX10) {
349 radeon_set_sh_reg_idx(physical_device, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
350 3, S_00B204_CU_EN(0xffff) |
351 S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_limit_gs));
352 }
353
354 radeon_set_sh_reg_idx(physical_device, cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
355 3, S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
356 }
357
358 if (physical_device->rad_info.chip_class >= GFX10) {
359 /* Break up a pixel wave if it contains deallocs for more than
360 * half the parameter cache.
361 *
362 * To avoid a deadlock where pixel waves aren't launched
363 * because they're waiting for more pixels while the frontend
364 * is stuck waiting for PC space, the maximum allowed value is
365 * the size of the PC minus the largest possible allocation for
366 * a single primitive shader subgroup.
367 */
368 radeon_set_context_reg(cs, R_028C50_PA_SC_NGG_MODE_CNTL,
369 S_028C50_MAX_DEALLOCS_IN_WAVE(512));
370 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
371
372 /* Enable CMASK/FMASK/HTILE/DCC caching in L2 for small chips. */
373 unsigned meta_write_policy, meta_read_policy;
374
375 /* TODO: investigate whether LRU improves performance on other chips too */
376 if (physical_device->rad_info.num_render_backends <= 4) {
377 meta_write_policy = V_02807C_CACHE_LRU_WR; /* cache writes */
378 meta_read_policy = V_02807C_CACHE_LRU_RD; /* cache reads */
379 } else {
380 meta_write_policy = V_02807C_CACHE_STREAM_WR; /* write combine */
381 meta_read_policy = V_02807C_CACHE_NOA_RD; /* don't cache reads */
382 }
383
384 radeon_set_context_reg(cs, R_02807C_DB_RMI_L2_CACHE_CONTROL,
385 S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
386 S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
387 S_02807C_HTILE_WR_POLICY(meta_write_policy) |
388 S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
389 S_02807C_Z_RD_POLICY(V_02807C_CACHE_NOA_RD) |
390 S_02807C_S_RD_POLICY(V_02807C_CACHE_NOA_RD) |
391 S_02807C_HTILE_RD_POLICY(meta_read_policy));
392
393 radeon_set_context_reg(cs, R_028410_CB_RMI_GL2_CACHE_CONTROL,
394 S_028410_CMASK_WR_POLICY(meta_write_policy) |
395 S_028410_FMASK_WR_POLICY(meta_write_policy) |
396 S_028410_DCC_WR_POLICY(meta_write_policy) |
397 S_028410_COLOR_WR_POLICY(V_028410_CACHE_STREAM_WR) |
398 S_028410_CMASK_RD_POLICY(meta_read_policy) |
399 S_028410_FMASK_RD_POLICY(meta_read_policy) |
400 S_028410_DCC_RD_POLICY(meta_read_policy) |
401 S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_RD));
402 radeon_set_context_reg(cs, R_028428_CB_COVERAGE_OUT_CONTROL, 0);
403
404 radeon_set_sh_reg(cs, R_00B0C0_SPI_SHADER_REQ_CTRL_PS,
405 S_00B0C0_SOFT_GROUPING_EN(1) |
406 S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1));
407 radeon_set_sh_reg(cs, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0);
408
409 if (physical_device->rad_info.family == CHIP_NAVI10 ||
410 physical_device->rad_info.family == CHIP_NAVI12 ||
411 physical_device->rad_info.family == CHIP_NAVI14) {
412 /* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
413 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
414 radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
415 }
416
417 /* TODO: For culling, replace 128 with 256. */
418 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
419 S_030980_OVERSUB_EN(1) |
420 S_030980_NUM_PC_LINES(128 * physical_device->rad_info.max_se - 1));
421 }
422
423 if (physical_device->rad_info.chip_class >= GFX9) {
424 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
425 S_028B50_ACCUM_ISOLINE(40) |
426 S_028B50_ACCUM_TRI(30) |
427 S_028B50_ACCUM_QUAD(24) |
428 S_028B50_DONUT_SPLIT(24) |
429 S_028B50_TRAP_SPLIT(6));
430 } else if (physical_device->rad_info.chip_class >= GFX8) {
431 uint32_t vgt_tess_distribution;
432
433 vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
434 S_028B50_ACCUM_TRI(11) |
435 S_028B50_ACCUM_QUAD(11) |
436 S_028B50_DONUT_SPLIT(16);
437
438 if (physical_device->rad_info.family == CHIP_FIJI ||
439 physical_device->rad_info.family >= CHIP_POLARIS10)
440 vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
441
442 radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
443 vgt_tess_distribution);
444 } else if (!has_clear_state) {
445 radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
446 radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
447 }
448
449 if (physical_device->rad_info.chip_class >= GFX9) {
450 radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
451 S_028C48_MAX_ALLOC_COUNT(physical_device->rad_info.pbb_max_alloc_count - 1) |
452 S_028C48_MAX_PRIM_PER_BATCH(1023));
453 radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
454 S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
455 radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
456 }
457
458 unsigned tmp = (unsigned)(1.0 * 8.0);
459 radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
460 radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
461 radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
462 radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
463 S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2)));
464
465 if (!has_clear_state) {
466 radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
467 S_028004_ZPASS_INCREMENT_DISABLE(1));
468 }
469
470 /* Enable the Polaris small primitive filter control.
471 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
472 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
473 * and AMDVLK doesn't have a workaround as well.
474 */
475 if (physical_device->rad_info.family >= CHIP_POLARIS10) {
476 unsigned small_prim_filter_cntl =
477 S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
478 /* Workaround for a hw line bug. */
479 S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
480
481 radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
482 small_prim_filter_cntl);
483 }
484
485 si_emit_compute(physical_device, cs);
486 }
487
488 void
489 cik_create_gfx_config(struct radv_device *device)
490 {
491 struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
492 if (!cs)
493 return;
494
495 si_emit_graphics(device->physical_device, cs);
496
497 while (cs->cdw & 7) {
498 if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
499 radeon_emit(cs, 0x80000000);
500 else
501 radeon_emit(cs, 0xffff1000);
502 }
503
504 device->gfx_init = device->ws->buffer_create(device->ws,
505 cs->cdw * 4, 4096,
506 RADEON_DOMAIN_GTT,
507 RADEON_FLAG_CPU_ACCESS|
508 RADEON_FLAG_NO_INTERPROCESS_SHARING |
509 RADEON_FLAG_READ_ONLY,
510 RADV_BO_PRIORITY_CS);
511 if (!device->gfx_init)
512 goto fail;
513
514 void *map = device->ws->buffer_map(device->gfx_init);
515 if (!map) {
516 device->ws->buffer_destroy(device->gfx_init);
517 device->gfx_init = NULL;
518 goto fail;
519 }
520 memcpy(map, cs->buf, cs->cdw * 4);
521
522 device->ws->buffer_unmap(device->gfx_init);
523 device->gfx_init_size_dw = cs->cdw;
524 fail:
525 device->ws->cs_destroy(cs);
526 }
527
528 static void
529 get_viewport_xform(const VkViewport *viewport,
530 float scale[3], float translate[3])
531 {
532 float x = viewport->x;
533 float y = viewport->y;
534 float half_width = 0.5f * viewport->width;
535 float half_height = 0.5f * viewport->height;
536 double n = viewport->minDepth;
537 double f = viewport->maxDepth;
538
539 scale[0] = half_width;
540 translate[0] = half_width + x;
541 scale[1] = half_height;
542 translate[1] = half_height + y;
543
544 scale[2] = (f - n);
545 translate[2] = n;
546 }
547
548 void
549 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
550 int count, const VkViewport *viewports)
551 {
552 int i;
553
554 assert(count);
555 radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
556 first_vp * 4 * 6, count * 6);
557
558 for (i = 0; i < count; i++) {
559 float scale[3], translate[3];
560
561
562 get_viewport_xform(&viewports[i], scale, translate);
563 radeon_emit(cs, fui(scale[0]));
564 radeon_emit(cs, fui(translate[0]));
565 radeon_emit(cs, fui(scale[1]));
566 radeon_emit(cs, fui(translate[1]));
567 radeon_emit(cs, fui(scale[2]));
568 radeon_emit(cs, fui(translate[2]));
569 }
570
571 radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
572 first_vp * 4 * 2, count * 2);
573 for (i = 0; i < count; i++) {
574 float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
575 float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
576 radeon_emit(cs, fui(zmin));
577 radeon_emit(cs, fui(zmax));
578 }
579 }
580
581 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
582 {
583 float scale[3], translate[3];
584 VkRect2D rect;
585
586 get_viewport_xform(viewport, scale, translate);
587
588 rect.offset.x = translate[0] - fabs(scale[0]);
589 rect.offset.y = translate[1] - fabs(scale[1]);
590 rect.extent.width = ceilf(translate[0] + fabs(scale[0])) - rect.offset.x;
591 rect.extent.height = ceilf(translate[1] + fabs(scale[1])) - rect.offset.y;
592
593 return rect;
594 }
595
596 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
597 VkRect2D ret;
598 ret.offset.x = MAX2(a->offset.x, b->offset.x);
599 ret.offset.y = MAX2(a->offset.y, b->offset.y);
600 ret.extent.width = MIN2(a->offset.x + a->extent.width,
601 b->offset.x + b->extent.width) - ret.offset.x;
602 ret.extent.height = MIN2(a->offset.y + a->extent.height,
603 b->offset.y + b->extent.height) - ret.offset.y;
604 return ret;
605 }
606
607 void
608 si_write_scissors(struct radeon_cmdbuf *cs, int first,
609 int count, const VkRect2D *scissors,
610 const VkViewport *viewports, bool can_use_guardband)
611 {
612 int i;
613 float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
614 const float max_range = 32767.0f;
615 if (!count)
616 return;
617
618 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
619 for (i = 0; i < count; i++) {
620 VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
621 VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
622
623 get_viewport_xform(viewports + i, scale, translate);
624 scale[0] = fabsf(scale[0]);
625 scale[1] = fabsf(scale[1]);
626
627 if (scale[0] < 0.5)
628 scale[0] = 0.5;
629 if (scale[1] < 0.5)
630 scale[1] = 0.5;
631
632 guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]);
633 guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]);
634
635 radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
636 S_028250_TL_Y(scissor.offset.y) |
637 S_028250_WINDOW_OFFSET_DISABLE(1));
638 radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
639 S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
640 }
641 if (!can_use_guardband) {
642 guardband_x = 1.0;
643 guardband_y = 1.0;
644 }
645
646 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
647 radeon_emit(cs, fui(guardband_y));
648 radeon_emit(cs, fui(1.0));
649 radeon_emit(cs, fui(guardband_x));
650 radeon_emit(cs, fui(1.0));
651 }
652
653 static inline unsigned
654 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
655 {
656 if (num == 0)
657 return 0;
658
659 if (info->incr == 0)
660 return 0;
661
662 if (num < info->min)
663 return 0;
664
665 return 1 + ((num - info->min) / info->incr);
666 }
667
668 uint32_t
669 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
670 bool instanced_draw, bool indirect_draw,
671 bool count_from_stream_output,
672 uint32_t draw_vertex_count)
673 {
674 enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
675 enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
676 struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
677 const unsigned max_primgroup_in_wave = 2;
678 /* SWITCH_ON_EOP(0) is always preferable. */
679 bool wd_switch_on_eop = false;
680 bool ia_switch_on_eop = false;
681 bool ia_switch_on_eoi = false;
682 bool partial_vs_wave = false;
683 bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
684 bool multi_instances_smaller_than_primgroup;
685
686 multi_instances_smaller_than_primgroup = indirect_draw;
687 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
688 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
689 if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
690 multi_instances_smaller_than_primgroup = true;
691 }
692
693 ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
694 partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
695
696 if (chip_class >= GFX7) {
697 wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.wd_switch_on_eop;
698
699 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
700 * We don't know that for indirect drawing, so treat it as
701 * always problematic. */
702 if (family == CHIP_HAWAII &&
703 (instanced_draw || indirect_draw))
704 wd_switch_on_eop = true;
705
706 /* Performance recommendation for 4 SE Gfx7-8 parts if
707 * instances are smaller than a primgroup.
708 * Assume indirect draws always use small instances.
709 * This is needed for good VS wave utilization.
710 */
711 if (chip_class <= GFX8 &&
712 info->max_se == 4 &&
713 multi_instances_smaller_than_primgroup)
714 wd_switch_on_eop = true;
715
716 /* Required on GFX7 and later. */
717 if (info->max_se > 2 && !wd_switch_on_eop)
718 ia_switch_on_eoi = true;
719
720 /* Required by Hawaii and, for some special cases, by GFX8. */
721 if (ia_switch_on_eoi &&
722 (family == CHIP_HAWAII ||
723 (chip_class == GFX8 &&
724 /* max primgroup in wave is always 2 - leave this for documentation */
725 (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
726 partial_vs_wave = true;
727
728 /* Instancing bug on Bonaire. */
729 if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
730 (instanced_draw || indirect_draw))
731 partial_vs_wave = true;
732
733 /* Hardware requirement when drawing primitives from a stream
734 * output buffer.
735 */
736 if (count_from_stream_output)
737 wd_switch_on_eop = true;
738
739 /* If the WD switch is false, the IA switch must be false too. */
740 assert(wd_switch_on_eop || !ia_switch_on_eop);
741 }
742 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
743 if (chip_class <= GFX8 && ia_switch_on_eoi)
744 partial_es_wave = true;
745
746 if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
747 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
748 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
749 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
750 */
751 if (family == CHIP_HAWAII && ia_switch_on_eoi) {
752 bool set_vgt_flush = indirect_draw;
753 if (!set_vgt_flush && instanced_draw) {
754 uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
755 if (num_prims <= 1)
756 set_vgt_flush = true;
757 }
758 if (set_vgt_flush)
759 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
760 }
761 }
762
763 return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
764 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
765 S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
766 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
767 S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
768 S_028AA8_WD_SWITCH_ON_EOP(chip_class >= GFX7 ? wd_switch_on_eop : 0);
769
770 }
771
772 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
773 enum chip_class chip_class,
774 bool is_mec,
775 unsigned event, unsigned event_flags,
776 unsigned dst_sel, unsigned data_sel,
777 uint64_t va,
778 uint32_t new_fence,
779 uint64_t gfx9_eop_bug_va)
780 {
781 unsigned op = EVENT_TYPE(event) |
782 EVENT_INDEX(event == V_028A90_CS_DONE ||
783 event == V_028A90_PS_DONE ? 6 : 5) |
784 event_flags;
785 unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
786 unsigned sel = EOP_DST_SEL(dst_sel) |
787 EOP_DATA_SEL(data_sel);
788
789 /* Wait for write confirmation before writing data, but don't send
790 * an interrupt. */
791 if (data_sel != EOP_DATA_SEL_DISCARD)
792 sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
793
794 if (chip_class >= GFX9 || is_gfx8_mec) {
795 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
796 * counters) must immediately precede every timestamp event to
797 * prevent a GPU hang on GFX9.
798 */
799 if (chip_class == GFX9 && !is_mec) {
800 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
801 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
802 radeon_emit(cs, gfx9_eop_bug_va);
803 radeon_emit(cs, gfx9_eop_bug_va >> 32);
804 }
805
806 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
807 radeon_emit(cs, op);
808 radeon_emit(cs, sel);
809 radeon_emit(cs, va); /* address lo */
810 radeon_emit(cs, va >> 32); /* address hi */
811 radeon_emit(cs, new_fence); /* immediate data lo */
812 radeon_emit(cs, 0); /* immediate data hi */
813 if (!is_gfx8_mec)
814 radeon_emit(cs, 0); /* unused */
815 } else {
816 if (chip_class == GFX7 ||
817 chip_class == GFX8) {
818 /* Two EOP events are required to make all engines go idle
819 * (and optional cache flushes executed) before the timestamp
820 * is written.
821 */
822 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
823 radeon_emit(cs, op);
824 radeon_emit(cs, va);
825 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
826 radeon_emit(cs, 0); /* immediate data */
827 radeon_emit(cs, 0); /* unused */
828 }
829
830 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
831 radeon_emit(cs, op);
832 radeon_emit(cs, va);
833 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
834 radeon_emit(cs, new_fence); /* immediate data */
835 radeon_emit(cs, 0); /* unused */
836 }
837 }
838
839 void
840 radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va,
841 uint32_t ref, uint32_t mask)
842 {
843 assert(op == WAIT_REG_MEM_EQUAL ||
844 op == WAIT_REG_MEM_NOT_EQUAL ||
845 op == WAIT_REG_MEM_GREATER_OR_EQUAL);
846
847 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
848 radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1));
849 radeon_emit(cs, va);
850 radeon_emit(cs, va >> 32);
851 radeon_emit(cs, ref); /* reference value */
852 radeon_emit(cs, mask); /* mask */
853 radeon_emit(cs, 4); /* poll interval */
854 }
855
856 static void
857 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
858 bool is_mec,
859 bool is_gfx9,
860 unsigned cp_coher_cntl)
861 {
862 if (is_mec || is_gfx9) {
863 uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
864 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
865 PKT3_SHADER_TYPE_S(is_mec));
866 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
867 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
868 radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */
869 radeon_emit(cs, 0); /* CP_COHER_BASE */
870 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
871 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
872 } else {
873 /* ACQUIRE_MEM is only required on a compute ring. */
874 radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
875 radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
876 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
877 radeon_emit(cs, 0); /* CP_COHER_BASE */
878 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
879 }
880 }
881
882 static void
883 gfx10_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
884 enum chip_class chip_class,
885 uint32_t *flush_cnt,
886 uint64_t flush_va,
887 bool is_mec,
888 enum radv_cmd_flush_bits flush_bits,
889 uint64_t gfx9_eop_bug_va)
890 {
891 uint32_t gcr_cntl = 0;
892 unsigned cb_db_event = 0;
893
894 /* We don't need these. */
895 assert(!(flush_bits & (RADV_CMD_FLAG_VGT_STREAMOUT_SYNC)));
896
897 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
898 gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
899 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) {
900 /* TODO: When writing to the SMEM L1 cache, we need to set SEQ
901 * to FORWARD when both L1 and L2 are written out (WB or INV).
902 */
903 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
904 }
905 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE)
906 gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
907 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
908 /* Writeback and invalidate everything in L2. */
909 gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) |
910 S_586_GLM_INV(1) | S_586_GLM_WB(1);
911 } else if (flush_bits & RADV_CMD_FLAG_WB_L2) {
912 /* Writeback but do not invalidate.
913 * GLM doesn't support WB alone. If WB is set, INV must be set too.
914 */
915 gcr_cntl |= S_586_GL2_WB(1) |
916 S_586_GLM_WB(1) | S_586_GLM_INV(1);
917 }
918
919 /* TODO: Implement this new flag for GFX9+.
920 else if (flush_bits & RADV_CMD_FLAG_INV_L2_METADATA)
921 gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1);
922 */
923
924 if (flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
925 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_CB_META */
926 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
927 /* Flush CMASK/FMASK/DCC. Will wait for idle later. */
928 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
929 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) |
930 EVENT_INDEX(0));
931 }
932
933 /* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_DB_META ? */
934 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
935 /* Flush HTILE. Will wait for idle later. */
936 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
937 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) |
938 EVENT_INDEX(0));
939 }
940
941 /* First flush CB/DB, then L1/L2. */
942 gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);
943
944 if ((flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) ==
945 (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
946 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
947 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
948 cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
949 } else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
950 cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
951 } else {
952 assert(0);
953 }
954 } else {
955 /* Wait for graphics shaders to go idle if requested. */
956 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
957 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
958 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
959 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
960 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
961 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
962 }
963 }
964
965 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
966 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
967 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
968 }
969
970 if (cb_db_event) {
971 /* CB/DB flush and invalidate (or possibly just a wait for a
972 * meta flush) via RELEASE_MEM.
973 *
974 * Combine this with other cache flushes when possible; this
975 * requires affected shaders to be idle, so do it after the
976 * CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
977 * implied).
978 */
979 /* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
980 unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
981 unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
982 unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
983 unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
984 assert(G_586_GL2_US(gcr_cntl) == 0);
985 assert(G_586_GL2_RANGE(gcr_cntl) == 0);
986 assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
987 unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
988 unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
989 unsigned gcr_seq = G_586_SEQ(gcr_cntl);
990
991 gcr_cntl &= C_586_GLM_WB &
992 C_586_GLM_INV &
993 C_586_GLV_INV &
994 C_586_GL1_INV &
995 C_586_GL2_INV &
996 C_586_GL2_WB; /* keep SEQ */
997
998 assert(flush_cnt);
999 (*flush_cnt)++;
1000
1001 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event,
1002 S_490_GLM_WB(glm_wb) |
1003 S_490_GLM_INV(glm_inv) |
1004 S_490_GLV_INV(glv_inv) |
1005 S_490_GL1_INV(gl1_inv) |
1006 S_490_GL2_INV(gl2_inv) |
1007 S_490_GL2_WB(gl2_wb) |
1008 S_490_SEQ(gcr_seq),
1009 EOP_DST_SEL_MEM,
1010 EOP_DATA_SEL_VALUE_32BIT,
1011 flush_va, *flush_cnt,
1012 gfx9_eop_bug_va);
1013
1014 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1015 *flush_cnt, 0xffffffff);
1016 }
1017
1018 /* VGT state sync */
1019 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1020 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1021 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1022 }
1023
1024 /* Ignore fields that only modify the behavior of other fields. */
1025 if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
1026 /* Flush caches and wait for the caches to assert idle.
1027 * The cache flush is executed in the ME, but the PFP waits
1028 * for completion.
1029 */
1030 radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
1031 radeon_emit(cs, 0); /* CP_COHER_CNTL */
1032 radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
1033 radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
1034 radeon_emit(cs, 0); /* CP_COHER_BASE */
1035 radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
1036 radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
1037 radeon_emit(cs, gcr_cntl); /* GCR_CNTL */
1038 } else if ((cb_db_event ||
1039 (flush_bits & (RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1040 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1041 RADV_CMD_FLAG_CS_PARTIAL_FLUSH)))
1042 && !is_mec) {
1043 /* We need to ensure that PFP waits as well. */
1044 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1045 radeon_emit(cs, 0);
1046 }
1047
1048 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1049 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1050 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1051 EVENT_INDEX(0));
1052 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1053 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1054 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1055 EVENT_INDEX(0));
1056 }
1057 }
1058
1059 void
1060 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
1061 enum chip_class chip_class,
1062 uint32_t *flush_cnt,
1063 uint64_t flush_va,
1064 bool is_mec,
1065 enum radv_cmd_flush_bits flush_bits,
1066 uint64_t gfx9_eop_bug_va)
1067 {
1068 unsigned cp_coher_cntl = 0;
1069 uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1070 RADV_CMD_FLAG_FLUSH_AND_INV_DB);
1071
1072 if (chip_class >= GFX10) {
1073 /* GFX10 cache flush handling is quite different. */
1074 gfx10_cs_emit_cache_flush(cs, chip_class, flush_cnt, flush_va,
1075 is_mec, flush_bits, gfx9_eop_bug_va);
1076 return;
1077 }
1078
1079 if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
1080 cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
1081 if (flush_bits & RADV_CMD_FLAG_INV_SCACHE)
1082 cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
1083
1084 if (chip_class <= GFX8) {
1085 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1086 cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
1087 S_0085F0_CB0_DEST_BASE_ENA(1) |
1088 S_0085F0_CB1_DEST_BASE_ENA(1) |
1089 S_0085F0_CB2_DEST_BASE_ENA(1) |
1090 S_0085F0_CB3_DEST_BASE_ENA(1) |
1091 S_0085F0_CB4_DEST_BASE_ENA(1) |
1092 S_0085F0_CB5_DEST_BASE_ENA(1) |
1093 S_0085F0_CB6_DEST_BASE_ENA(1) |
1094 S_0085F0_CB7_DEST_BASE_ENA(1);
1095
1096 /* Necessary for DCC */
1097 if (chip_class >= GFX8) {
1098 si_cs_emit_write_event_eop(cs,
1099 chip_class,
1100 is_mec,
1101 V_028A90_FLUSH_AND_INV_CB_DATA_TS,
1102 0,
1103 EOP_DST_SEL_MEM,
1104 EOP_DATA_SEL_DISCARD,
1105 0, 0,
1106 gfx9_eop_bug_va);
1107 }
1108 }
1109 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1110 cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
1111 S_0085F0_DB_DEST_BASE_ENA(1);
1112 }
1113 }
1114
1115 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
1116 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1117 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
1118 }
1119
1120 if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
1121 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1122 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
1123 }
1124
1125 if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
1126 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1127 radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1128 } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
1129 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1130 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1131 }
1132
1133 if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1134 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1135 radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1136 }
1137
1138 if (chip_class == GFX9 && flush_cb_db) {
1139 unsigned cb_db_event, tc_flags;
1140
1141 /* Set the CB/DB flush event. */
1142 cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1143
1144 /* These are the only allowed combinations. If you need to
1145 * do multiple operations at once, do them separately.
1146 * All operations that invalidate L2 also seem to invalidate
1147 * metadata. Volatile (VOL) and WC flushes are not listed here.
1148 *
1149 * TC | TC_WB = writeback & invalidate L2 & L1
1150 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
1151 * TC_WB | TC_NC = writeback L2 for MTYPE == NC
1152 * TC | TC_NC = invalidate L2 for MTYPE == NC
1153 * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
1154 * TCL1 = invalidate L1
1155 */
1156 tc_flags = EVENT_TC_ACTION_ENA |
1157 EVENT_TC_MD_ACTION_ENA;
1158
1159 /* Ideally flush TC together with CB/DB. */
1160 if (flush_bits & RADV_CMD_FLAG_INV_L2) {
1161 /* Writeback and invalidate everything in L2 & L1. */
1162 tc_flags = EVENT_TC_ACTION_ENA |
1163 EVENT_TC_WB_ACTION_ENA;
1164
1165
1166 /* Clear the flags. */
1167 flush_bits &= ~(RADV_CMD_FLAG_INV_L2 |
1168 RADV_CMD_FLAG_WB_L2 |
1169 RADV_CMD_FLAG_INV_VCACHE);
1170 }
1171 assert(flush_cnt);
1172 (*flush_cnt)++;
1173
1174 si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
1175 EOP_DST_SEL_MEM,
1176 EOP_DATA_SEL_VALUE_32BIT,
1177 flush_va, *flush_cnt,
1178 gfx9_eop_bug_va);
1179 radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1180 *flush_cnt, 0xffffffff);
1181 }
1182
1183 /* VGT state sync */
1184 if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1185 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1186 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1187 }
1188
1189 /* VGT streamout state sync */
1190 if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) {
1191 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1192 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
1193 }
1194
1195 /* Make sure ME is idle (it executes most packets) before continuing.
1196 * This prevents read-after-write hazards between PFP and ME.
1197 */
1198 if ((cp_coher_cntl ||
1199 (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
1200 RADV_CMD_FLAG_INV_VCACHE |
1201 RADV_CMD_FLAG_INV_L2 |
1202 RADV_CMD_FLAG_WB_L2))) &&
1203 !is_mec) {
1204 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1205 radeon_emit(cs, 0);
1206 }
1207
1208 if ((flush_bits & RADV_CMD_FLAG_INV_L2) ||
1209 (chip_class <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) {
1210 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9,
1211 cp_coher_cntl |
1212 S_0085F0_TC_ACTION_ENA(1) |
1213 S_0085F0_TCL1_ACTION_ENA(1) |
1214 S_0301F0_TC_WB_ACTION_ENA(chip_class >= GFX8));
1215 cp_coher_cntl = 0;
1216 } else {
1217 if(flush_bits & RADV_CMD_FLAG_WB_L2) {
1218 /* WB = write-back
1219 * NC = apply to non-coherent MTYPEs
1220 * (i.e. MTYPE <= 1, which is what we use everywhere)
1221 *
1222 * WB doesn't work without NC.
1223 */
1224 si_emit_acquire_mem(cs, is_mec,
1225 chip_class == GFX9,
1226 cp_coher_cntl |
1227 S_0301F0_TC_WB_ACTION_ENA(1) |
1228 S_0301F0_TC_NC_ACTION_ENA(1));
1229 cp_coher_cntl = 0;
1230 }
1231 if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) {
1232 si_emit_acquire_mem(cs, is_mec,
1233 chip_class == GFX9,
1234 cp_coher_cntl |
1235 S_0085F0_TCL1_ACTION_ENA(1));
1236 cp_coher_cntl = 0;
1237 }
1238 }
1239
1240 /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
1241 * Therefore, it should be last. Done in PFP.
1242 */
1243 if (cp_coher_cntl)
1244 si_emit_acquire_mem(cs, is_mec, chip_class == GFX9, cp_coher_cntl);
1245
1246 if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1247 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1248 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1249 EVENT_INDEX(0));
1250 } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1251 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1252 radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1253 EVENT_INDEX(0));
1254 }
1255 }
1256
1257 void
1258 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
1259 {
1260 bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
1261
1262 if (is_compute)
1263 cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1264 RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
1265 RADV_CMD_FLAG_FLUSH_AND_INV_DB |
1266 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
1267 RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1268 RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1269 RADV_CMD_FLAG_VGT_FLUSH |
1270 RADV_CMD_FLAG_START_PIPELINE_STATS |
1271 RADV_CMD_FLAG_STOP_PIPELINE_STATS);
1272
1273 if (!cmd_buffer->state.flush_bits)
1274 return;
1275
1276 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
1277
1278 si_cs_emit_cache_flush(cmd_buffer->cs,
1279 cmd_buffer->device->physical_device->rad_info.chip_class,
1280 &cmd_buffer->gfx9_fence_idx,
1281 cmd_buffer->gfx9_fence_va,
1282 radv_cmd_buffer_uses_mec(cmd_buffer),
1283 cmd_buffer->state.flush_bits,
1284 cmd_buffer->gfx9_eop_bug_va);
1285
1286
1287 if (unlikely(cmd_buffer->device->trace_bo))
1288 radv_cmd_buffer_trace_emit(cmd_buffer);
1289
1290 /* Clear the caches that have been flushed to avoid syncing too much
1291 * when there is some pending active queries.
1292 */
1293 cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
1294
1295 cmd_buffer->state.flush_bits = 0;
1296
1297 /* If the driver used a compute shader for resetting a query pool, it
1298 * should be finished at this point.
1299 */
1300 cmd_buffer->pending_reset_query = false;
1301 }
1302
1303 /* sets the CP predication state using a boolean stored at va */
1304 void
1305 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer,
1306 bool draw_visible, uint64_t va)
1307 {
1308 uint32_t op = 0;
1309
1310 if (va) {
1311 op = PRED_OP(PREDICATION_OP_BOOL64);
1312
1313 /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
1314 * zero, all rendering commands are discarded. Otherwise, they
1315 * are discarded if the value is non zero.
1316 */
1317 op |= draw_visible ? PREDICATION_DRAW_VISIBLE :
1318 PREDICATION_DRAW_NOT_VISIBLE;
1319 }
1320 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1321 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
1322 radeon_emit(cmd_buffer->cs, op);
1323 radeon_emit(cmd_buffer->cs, va);
1324 radeon_emit(cmd_buffer->cs, va >> 32);
1325 } else {
1326 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
1327 radeon_emit(cmd_buffer->cs, va);
1328 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
1329 }
1330 }
1331
1332 /* Set this if you want the 3D engine to wait until CP DMA is done.
1333 * It should be set on the last CP DMA packet. */
1334 #define CP_DMA_SYNC (1 << 0)
1335
1336 /* Set this if the source data was used as a destination in a previous CP DMA
1337 * packet. It's for preventing a read-after-write (RAW) hazard between two
1338 * CP DMA packets. */
1339 #define CP_DMA_RAW_WAIT (1 << 1)
1340 #define CP_DMA_USE_L2 (1 << 2)
1341 #define CP_DMA_CLEAR (1 << 3)
1342
1343 /* Alignment for optimal performance. */
1344 #define SI_CPDMA_ALIGNMENT 32
1345
1346 /* The max number of bytes that can be copied per packet. */
1347 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1348 {
1349 unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1350 S_414_BYTE_COUNT_GFX9(~0u) :
1351 S_414_BYTE_COUNT_GFX6(~0u);
1352
1353 /* make it aligned for optimal performance */
1354 return max & ~(SI_CPDMA_ALIGNMENT - 1);
1355 }
1356
1357 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1358 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1359 * clear value.
1360 */
1361 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1362 uint64_t dst_va, uint64_t src_va,
1363 unsigned size, unsigned flags)
1364 {
1365 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1366 uint32_t header = 0, command = 0;
1367
1368 assert(size <= cp_dma_max_byte_count(cmd_buffer));
1369
1370 radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1371 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1372 command |= S_414_BYTE_COUNT_GFX9(size);
1373 else
1374 command |= S_414_BYTE_COUNT_GFX6(size);
1375
1376 /* Sync flags. */
1377 if (flags & CP_DMA_SYNC)
1378 header |= S_411_CP_SYNC(1);
1379 else {
1380 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1381 command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1382 else
1383 command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1384 }
1385
1386 if (flags & CP_DMA_RAW_WAIT)
1387 command |= S_414_RAW_WAIT(1);
1388
1389 /* Src and dst flags. */
1390 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1391 !(flags & CP_DMA_CLEAR) &&
1392 src_va == dst_va)
1393 header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
1394 else if (flags & CP_DMA_USE_L2)
1395 header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
1396
1397 if (flags & CP_DMA_CLEAR)
1398 header |= S_411_SRC_SEL(V_411_DATA);
1399 else if (flags & CP_DMA_USE_L2)
1400 header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1401
1402 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
1403 radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1404 radeon_emit(cs, header);
1405 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1406 radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
1407 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1408 radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
1409 radeon_emit(cs, command);
1410 } else {
1411 assert(!(flags & CP_DMA_USE_L2));
1412 header |= S_411_SRC_ADDR_HI(src_va >> 32);
1413 radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1414 radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
1415 radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
1416 radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
1417 radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
1418 radeon_emit(cs, command);
1419 }
1420
1421 /* CP DMA is executed in ME, but index buffers are read by PFP.
1422 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1423 * indices. If we wanted to execute CP DMA in PFP, this packet
1424 * should precede it.
1425 */
1426 if (flags & CP_DMA_SYNC) {
1427 if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1428 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1429 radeon_emit(cs, 0);
1430 }
1431
1432 /* CP will see the sync flag and wait for all DMAs to complete. */
1433 cmd_buffer->state.dma_is_busy = false;
1434 }
1435
1436 if (unlikely(cmd_buffer->device->trace_bo))
1437 radv_cmd_buffer_trace_emit(cmd_buffer);
1438 }
1439
1440 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1441 unsigned size)
1442 {
1443 uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1444 uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1445
1446 si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1447 aligned_size, CP_DMA_USE_L2);
1448 }
1449
1450 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1451 uint64_t remaining_size, unsigned *flags)
1452 {
1453
1454 /* Flush the caches for the first copy only.
1455 * Also wait for the previous CP DMA operations.
1456 */
1457 if (cmd_buffer->state.flush_bits) {
1458 si_emit_cache_flush(cmd_buffer);
1459 *flags |= CP_DMA_RAW_WAIT;
1460 }
1461
1462 /* Do the synchronization after the last dma, so that all data
1463 * is written to memory.
1464 */
1465 if (byte_count == remaining_size)
1466 *flags |= CP_DMA_SYNC;
1467 }
1468
1469 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1470 {
1471 uint64_t va;
1472 uint32_t offset;
1473 unsigned dma_flags = 0;
1474 unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1475 void *ptr;
1476
1477 assert(size < SI_CPDMA_ALIGNMENT);
1478
1479 radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr);
1480
1481 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1482 va += offset;
1483
1484 si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1485
1486 si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1487 dma_flags);
1488 }
1489
1490 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1491 uint64_t src_va, uint64_t dest_va,
1492 uint64_t size)
1493 {
1494 uint64_t main_src_va, main_dest_va;
1495 uint64_t skipped_size = 0, realign_size = 0;
1496
1497 /* Assume that we are not going to sync after the last DMA operation. */
1498 cmd_buffer->state.dma_is_busy = true;
1499
1500 if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1501 cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1502 /* If the size is not aligned, we must add a dummy copy at the end
1503 * just to align the internal counter. Otherwise, the DMA engine
1504 * would slow down by an order of magnitude for following copies.
1505 */
1506 if (size % SI_CPDMA_ALIGNMENT)
1507 realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1508
1509 /* If the copy begins unaligned, we must start copying from the next
1510 * aligned block and the skipped part should be copied after everything
1511 * else has been copied. Only the src alignment matters, not dst.
1512 */
1513 if (src_va % SI_CPDMA_ALIGNMENT) {
1514 skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1515 /* The main part will be skipped if the size is too small. */
1516 skipped_size = MIN2(skipped_size, size);
1517 size -= skipped_size;
1518 }
1519 }
1520 main_src_va = src_va + skipped_size;
1521 main_dest_va = dest_va + skipped_size;
1522
1523 while (size) {
1524 unsigned dma_flags = 0;
1525 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1526
1527 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1528 /* DMA operations via L2 are coherent and faster.
1529 * TODO: GFX7-GFX9 should also support this but it
1530 * requires tests/benchmarks.
1531 */
1532 dma_flags |= CP_DMA_USE_L2;
1533 }
1534
1535 si_cp_dma_prepare(cmd_buffer, byte_count,
1536 size + skipped_size + realign_size,
1537 &dma_flags);
1538
1539 dma_flags &= ~CP_DMA_SYNC;
1540
1541 si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1542 byte_count, dma_flags);
1543
1544 size -= byte_count;
1545 main_src_va += byte_count;
1546 main_dest_va += byte_count;
1547 }
1548
1549 if (skipped_size) {
1550 unsigned dma_flags = 0;
1551
1552 si_cp_dma_prepare(cmd_buffer, skipped_size,
1553 size + skipped_size + realign_size,
1554 &dma_flags);
1555
1556 si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1557 skipped_size, dma_flags);
1558 }
1559 if (realign_size)
1560 si_cp_dma_realign_engine(cmd_buffer, realign_size);
1561 }
1562
1563 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1564 uint64_t size, unsigned value)
1565 {
1566
1567 if (!size)
1568 return;
1569
1570 assert(va % 4 == 0 && size % 4 == 0);
1571
1572 /* Assume that we are not going to sync after the last DMA operation. */
1573 cmd_buffer->state.dma_is_busy = true;
1574
1575 while (size) {
1576 unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1577 unsigned dma_flags = CP_DMA_CLEAR;
1578
1579 if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1580 /* DMA operations via L2 are coherent and faster.
1581 * TODO: GFX7-GFX9 should also support this but it
1582 * requires tests/benchmarks.
1583 */
1584 dma_flags |= CP_DMA_USE_L2;
1585 }
1586
1587 si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1588
1589 /* Emit the clear packet. */
1590 si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1591 dma_flags);
1592
1593 size -= byte_count;
1594 va += byte_count;
1595 }
1596 }
1597
1598 void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
1599 {
1600 if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX7)
1601 return;
1602
1603 if (!cmd_buffer->state.dma_is_busy)
1604 return;
1605
1606 /* Issue a dummy DMA that copies zero bytes.
1607 *
1608 * The DMA engine will see that there's no work to do and skip this
1609 * DMA request, however, the CP will see the sync flag and still wait
1610 * for all DMAs to complete.
1611 */
1612 si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
1613
1614 cmd_buffer->state.dma_is_busy = false;
1615 }
1616
1617 /* For MSAA sample positions. */
1618 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \
1619 ((((unsigned)(s0x) & 0xf) << 0) | (((unsigned)(s0y) & 0xf) << 4) | \
1620 (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \
1621 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1622 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1623
1624 /* For obtaining location coordinates from registers */
1625 #define SEXT4(x) ((int)((x) | ((x) & 0x8 ? 0xfffffff0 : 0)))
1626 #define GET_SFIELD(reg, index) SEXT4(((reg) >> ((index) * 4)) & 0xf)
1627 #define GET_SX(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2)
1628 #define GET_SY(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1)
1629
1630 /* 1x MSAA */
1631 static const uint32_t sample_locs_1x =
1632 FILL_SREG(0, 0, 0, 0, 0, 0, 0, 0);
1633 static const unsigned max_dist_1x = 0;
1634 static const uint64_t centroid_priority_1x = 0x0000000000000000ull;
1635
1636 /* 2xMSAA */
1637 static const uint32_t sample_locs_2x =
1638 FILL_SREG(4,4, -4, -4, 0, 0, 0, 0);
1639 static const unsigned max_dist_2x = 4;
1640 static const uint64_t centroid_priority_2x = 0x1010101010101010ull;
1641
1642 /* 4xMSAA */
1643 static const uint32_t sample_locs_4x =
1644 FILL_SREG(-2,-6, 6, -2, -6, 2, 2, 6);
1645 static const unsigned max_dist_4x = 6;
1646 static const uint64_t centroid_priority_4x = 0x3210321032103210ull;
1647
1648 /* 8xMSAA */
1649 static const uint32_t sample_locs_8x[] = {
1650 FILL_SREG( 1,-3, -1, 3, 5, 1, -3,-5),
1651 FILL_SREG(-5, 5, -7,-1, 3, 7, 7,-7),
1652 /* The following are unused by hardware, but we emit them to IBs
1653 * instead of multiple SET_CONTEXT_REG packets. */
1654 0,
1655 0,
1656 };
1657 static const unsigned max_dist_8x = 7;
1658 static const uint64_t centroid_priority_8x = 0x7654321076543210ull;
1659
1660 unsigned radv_get_default_max_sample_dist(int log_samples)
1661 {
1662 unsigned max_dist[] = {
1663 max_dist_1x,
1664 max_dist_2x,
1665 max_dist_4x,
1666 max_dist_8x,
1667 };
1668 return max_dist[log_samples];
1669 }
1670
1671 void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples)
1672 {
1673 switch (nr_samples) {
1674 default:
1675 case 1:
1676 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1677 radeon_emit(cs, (uint32_t)centroid_priority_1x);
1678 radeon_emit(cs, centroid_priority_1x >> 32);
1679 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x);
1680 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x);
1681 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x);
1682 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x);
1683 break;
1684 case 2:
1685 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1686 radeon_emit(cs, (uint32_t)centroid_priority_2x);
1687 radeon_emit(cs, centroid_priority_2x >> 32);
1688 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x);
1689 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x);
1690 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x);
1691 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x);
1692 break;
1693 case 4:
1694 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1695 radeon_emit(cs, (uint32_t)centroid_priority_4x);
1696 radeon_emit(cs, centroid_priority_4x >> 32);
1697 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x);
1698 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x);
1699 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x);
1700 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x);
1701 break;
1702 case 8:
1703 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1704 radeon_emit(cs, (uint32_t)centroid_priority_8x);
1705 radeon_emit(cs, centroid_priority_8x >> 32);
1706 radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1707 radeon_emit_array(cs, sample_locs_8x, 4);
1708 radeon_emit_array(cs, sample_locs_8x, 4);
1709 radeon_emit_array(cs, sample_locs_8x, 4);
1710 radeon_emit_array(cs, sample_locs_8x, 2);
1711 break;
1712 }
1713 }
1714
1715 static void radv_get_sample_position(struct radv_device *device,
1716 unsigned sample_count,
1717 unsigned sample_index, float *out_value)
1718 {
1719 const uint32_t *sample_locs;
1720
1721 switch (sample_count) {
1722 case 1:
1723 default:
1724 sample_locs = &sample_locs_1x;
1725 break;
1726 case 2:
1727 sample_locs = &sample_locs_2x;
1728 break;
1729 case 4:
1730 sample_locs = &sample_locs_4x;
1731 break;
1732 case 8:
1733 sample_locs = sample_locs_8x;
1734 break;
1735 }
1736
1737 out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f;
1738 out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f;
1739 }
1740
1741 void radv_device_init_msaa(struct radv_device *device)
1742 {
1743 int i;
1744
1745 radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1746
1747 for (i = 0; i < 2; i++)
1748 radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1749 for (i = 0; i < 4; i++)
1750 radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1751 for (i = 0; i < 8; i++)
1752 radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1753 }