nir: get ffma support from NIR options for nir_lower_flrp
[mesa.git] / src / broadcom / compiler / nir_to_vir.c
1 /*
2 * Copyright © 2016 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <inttypes.h>
25 #include "util/format/u_format.h"
26 #include "util/u_helpers.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "util/ralloc.h"
30 #include "util/hash_table.h"
31 #include "compiler/nir/nir.h"
32 #include "compiler/nir/nir_builder.h"
33 #include "common/v3d_device_info.h"
34 #include "v3d_compiler.h"
35
36 /* We don't do any address packing. */
37 #define __gen_user_data void
38 #define __gen_address_type uint32_t
39 #define __gen_address_offset(reloc) (*reloc)
40 #define __gen_emit_reloc(cl, reloc)
41 #include "cle/v3d_packet_v41_pack.h"
42
43 #define GENERAL_TMU_LOOKUP_PER_QUAD (0 << 7)
44 #define GENERAL_TMU_LOOKUP_PER_PIXEL (1 << 7)
45 #define GENERAL_TMU_LOOKUP_TYPE_8BIT_I (0 << 0)
46 #define GENERAL_TMU_LOOKUP_TYPE_16BIT_I (1 << 0)
47 #define GENERAL_TMU_LOOKUP_TYPE_VEC2 (2 << 0)
48 #define GENERAL_TMU_LOOKUP_TYPE_VEC3 (3 << 0)
49 #define GENERAL_TMU_LOOKUP_TYPE_VEC4 (4 << 0)
50 #define GENERAL_TMU_LOOKUP_TYPE_8BIT_UI (5 << 0)
51 #define GENERAL_TMU_LOOKUP_TYPE_16BIT_UI (6 << 0)
52 #define GENERAL_TMU_LOOKUP_TYPE_32BIT_UI (7 << 0)
53
54 #define V3D_TSY_SET_QUORUM 0
55 #define V3D_TSY_INC_WAITERS 1
56 #define V3D_TSY_DEC_WAITERS 2
57 #define V3D_TSY_INC_QUORUM 3
58 #define V3D_TSY_DEC_QUORUM 4
59 #define V3D_TSY_FREE_ALL 5
60 #define V3D_TSY_RELEASE 6
61 #define V3D_TSY_ACQUIRE 7
62 #define V3D_TSY_WAIT 8
63 #define V3D_TSY_WAIT_INC 9
64 #define V3D_TSY_WAIT_CHECK 10
65 #define V3D_TSY_WAIT_INC_CHECK 11
66 #define V3D_TSY_WAIT_CV 12
67 #define V3D_TSY_INC_SEMAPHORE 13
68 #define V3D_TSY_DEC_SEMAPHORE 14
69 #define V3D_TSY_SET_QUORUM_FREE_ALL 15
70
71 static void
72 ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
73
74 static void
75 resize_qreg_array(struct v3d_compile *c,
76 struct qreg **regs,
77 uint32_t *size,
78 uint32_t decl_size)
79 {
80 if (*size >= decl_size)
81 return;
82
83 uint32_t old_size = *size;
84 *size = MAX2(*size * 2, decl_size);
85 *regs = reralloc(c, *regs, struct qreg, *size);
86 if (!*regs) {
87 fprintf(stderr, "Malloc failure\n");
88 abort();
89 }
90
91 for (uint32_t i = old_size; i < *size; i++)
92 (*regs)[i] = c->undef;
93 }
94
95 void
96 vir_emit_thrsw(struct v3d_compile *c)
97 {
98 if (c->threads == 1)
99 return;
100
101 /* Always thread switch after each texture operation for now.
102 *
103 * We could do better by batching a bunch of texture fetches up and
104 * then doing one thread switch and collecting all their results
105 * afterward.
106 */
107 c->last_thrsw = vir_NOP(c);
108 c->last_thrsw->qpu.sig.thrsw = true;
109 c->last_thrsw_at_top_level = !c->in_control_flow;
110
111 /* We need to lock the scoreboard before any tlb acess happens. If this
112 * thread switch comes after we have emitted a tlb load, then it means
113 * that we can't lock on the last thread switch any more.
114 */
115 if (c->emitted_tlb_load)
116 c->lock_scoreboard_on_first_thrsw = true;
117 }
118
119 uint32_t
120 v3d_get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
121 {
122 if (nir_src_is_const(instr->src[src])) {
123 int64_t add_val = nir_src_as_int(instr->src[src]);
124 if (add_val == 1)
125 return V3D_TMU_OP_WRITE_AND_READ_INC;
126 else if (add_val == -1)
127 return V3D_TMU_OP_WRITE_OR_READ_DEC;
128 }
129
130 return V3D_TMU_OP_WRITE_ADD_READ_PREFETCH;
131 }
132
133 static uint32_t
134 v3d_general_tmu_op(nir_intrinsic_instr *instr)
135 {
136 switch (instr->intrinsic) {
137 case nir_intrinsic_load_ssbo:
138 case nir_intrinsic_load_ubo:
139 case nir_intrinsic_load_uniform:
140 case nir_intrinsic_load_shared:
141 case nir_intrinsic_load_scratch:
142 case nir_intrinsic_store_ssbo:
143 case nir_intrinsic_store_shared:
144 case nir_intrinsic_store_scratch:
145 return V3D_TMU_OP_REGULAR;
146 case nir_intrinsic_ssbo_atomic_add:
147 return v3d_get_op_for_atomic_add(instr, 2);
148 case nir_intrinsic_shared_atomic_add:
149 return v3d_get_op_for_atomic_add(instr, 1);
150 case nir_intrinsic_ssbo_atomic_imin:
151 case nir_intrinsic_shared_atomic_imin:
152 return V3D_TMU_OP_WRITE_SMIN;
153 case nir_intrinsic_ssbo_atomic_umin:
154 case nir_intrinsic_shared_atomic_umin:
155 return V3D_TMU_OP_WRITE_UMIN_FULL_L1_CLEAR;
156 case nir_intrinsic_ssbo_atomic_imax:
157 case nir_intrinsic_shared_atomic_imax:
158 return V3D_TMU_OP_WRITE_SMAX;
159 case nir_intrinsic_ssbo_atomic_umax:
160 case nir_intrinsic_shared_atomic_umax:
161 return V3D_TMU_OP_WRITE_UMAX;
162 case nir_intrinsic_ssbo_atomic_and:
163 case nir_intrinsic_shared_atomic_and:
164 return V3D_TMU_OP_WRITE_AND_READ_INC;
165 case nir_intrinsic_ssbo_atomic_or:
166 case nir_intrinsic_shared_atomic_or:
167 return V3D_TMU_OP_WRITE_OR_READ_DEC;
168 case nir_intrinsic_ssbo_atomic_xor:
169 case nir_intrinsic_shared_atomic_xor:
170 return V3D_TMU_OP_WRITE_XOR_READ_NOT;
171 case nir_intrinsic_ssbo_atomic_exchange:
172 case nir_intrinsic_shared_atomic_exchange:
173 return V3D_TMU_OP_WRITE_XCHG_READ_FLUSH;
174 case nir_intrinsic_ssbo_atomic_comp_swap:
175 case nir_intrinsic_shared_atomic_comp_swap:
176 return V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH;
177 default:
178 unreachable("unknown intrinsic op");
179 }
180 }
181
182 /**
183 * Implements indirect uniform loads and SSBO accesses through the TMU general
184 * memory access interface.
185 */
186 static void
187 ntq_emit_tmu_general(struct v3d_compile *c, nir_intrinsic_instr *instr,
188 bool is_shared_or_scratch)
189 {
190 uint32_t tmu_op = v3d_general_tmu_op(instr);
191
192 /* If we were able to replace atomic_add for an inc/dec, then we
193 * need/can to do things slightly different, like not loading the
194 * amount to add/sub, as that is implicit.
195 */
196 bool atomic_add_replaced =
197 ((instr->intrinsic == nir_intrinsic_ssbo_atomic_add ||
198 instr->intrinsic == nir_intrinsic_shared_atomic_add) &&
199 (tmu_op == V3D_TMU_OP_WRITE_AND_READ_INC ||
200 tmu_op == V3D_TMU_OP_WRITE_OR_READ_DEC));
201
202 bool is_store = (instr->intrinsic == nir_intrinsic_store_ssbo ||
203 instr->intrinsic == nir_intrinsic_store_scratch ||
204 instr->intrinsic == nir_intrinsic_store_shared);
205
206 bool is_load = (instr->intrinsic == nir_intrinsic_load_uniform ||
207 instr->intrinsic == nir_intrinsic_load_ubo ||
208 instr->intrinsic == nir_intrinsic_load_ssbo ||
209 instr->intrinsic == nir_intrinsic_load_scratch ||
210 instr->intrinsic == nir_intrinsic_load_shared);
211
212 if (!is_load)
213 c->tmu_dirty_rcl = true;
214
215 bool has_index = !is_shared_or_scratch;
216
217 int offset_src;
218 if (instr->intrinsic == nir_intrinsic_load_uniform) {
219 offset_src = 0;
220 } else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
221 instr->intrinsic == nir_intrinsic_load_ubo ||
222 instr->intrinsic == nir_intrinsic_load_scratch ||
223 instr->intrinsic == nir_intrinsic_load_shared ||
224 atomic_add_replaced) {
225 offset_src = 0 + has_index;
226 } else if (is_store) {
227 offset_src = 1 + has_index;
228 } else {
229 offset_src = 0 + has_index;
230 }
231
232 bool dynamic_src = !nir_src_is_const(instr->src[offset_src]);
233 uint32_t const_offset = 0;
234 if (!dynamic_src)
235 const_offset = nir_src_as_uint(instr->src[offset_src]);
236
237 struct qreg base_offset;
238 if (instr->intrinsic == nir_intrinsic_load_uniform) {
239 const_offset += nir_intrinsic_base(instr);
240 base_offset = vir_uniform(c, QUNIFORM_UBO_ADDR,
241 v3d_unit_data_create(0, const_offset));
242 const_offset = 0;
243 } else if (instr->intrinsic == nir_intrinsic_load_ubo) {
244 uint32_t index = nir_src_as_uint(instr->src[0]) + 1;
245 /* Note that QUNIFORM_UBO_ADDR takes a UBO index shifted up by
246 * 1 (0 is gallium's constant buffer 0).
247 */
248 base_offset =
249 vir_uniform(c, QUNIFORM_UBO_ADDR,
250 v3d_unit_data_create(index, const_offset));
251 const_offset = 0;
252 } else if (is_shared_or_scratch) {
253 /* Shared and scratch variables have no buffer index, and all
254 * start from a common base that we set up at the start of
255 * dispatch.
256 */
257 if (instr->intrinsic == nir_intrinsic_load_scratch ||
258 instr->intrinsic == nir_intrinsic_store_scratch) {
259 base_offset = c->spill_base;
260 } else {
261 base_offset = c->cs_shared_offset;
262 const_offset += nir_intrinsic_base(instr);
263 }
264 } else {
265 base_offset = vir_uniform(c, QUNIFORM_SSBO_OFFSET,
266 nir_src_as_uint(instr->src[is_store ?
267 1 : 0]));
268 }
269
270 struct qreg tmud = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD);
271 unsigned writemask = is_store ? nir_intrinsic_write_mask(instr) : 0;
272 uint32_t base_const_offset = const_offset;
273 int first_component = -1;
274 int last_component = -1;
275 do {
276 int tmu_writes = 1; /* address */
277
278 if (is_store) {
279 /* Find the first set of consecutive components that
280 * are enabled in the writemask and emit the TMUD
281 * instructions for them.
282 */
283 first_component = ffs(writemask) - 1;
284 last_component = first_component;
285 while (writemask & BITFIELD_BIT(last_component + 1))
286 last_component++;
287
288 assert(first_component >= 0 &&
289 first_component <= last_component &&
290 last_component < instr->num_components);
291
292 struct qreg tmud = vir_reg(QFILE_MAGIC,
293 V3D_QPU_WADDR_TMUD);
294 for (int i = first_component; i <= last_component; i++) {
295 struct qreg data =
296 ntq_get_src(c, instr->src[0], i);
297 vir_MOV_dest(c, tmud, data);
298 tmu_writes++;
299 }
300
301 /* Update the offset for the TMU write based on the
302 * the first component we are writing.
303 */
304 const_offset = base_const_offset + first_component * 4;
305
306 /* Clear these components from the writemask */
307 uint32_t written_mask =
308 BITFIELD_RANGE(first_component, tmu_writes - 1);
309 writemask &= ~written_mask;
310 } else if (!is_load && !atomic_add_replaced) {
311 struct qreg data =
312 ntq_get_src(c, instr->src[1 + has_index], 0);
313 vir_MOV_dest(c, tmud, data);
314 tmu_writes++;
315 if (tmu_op == V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH) {
316 data = ntq_get_src(c, instr->src[2 + has_index],
317 0);
318 vir_MOV_dest(c, tmud, data);
319 tmu_writes++;
320 }
321 }
322
323 /* Make sure we won't exceed the 16-entry TMU fifo if each
324 * thread is storing at the same time.
325 */
326 while (tmu_writes > 16 / c->threads)
327 c->threads /= 2;
328
329 /* The spec says that for atomics, the TYPE field is ignored,
330 * but that doesn't seem to be the case for CMPXCHG. Just use
331 * the number of tmud writes we did to decide the type (or
332 * choose "32bit" for atomic reads, which has been fine).
333 */
334 uint32_t num_components;
335 if (is_load || atomic_add_replaced) {
336 num_components = instr->num_components;
337 } else {
338 assert(tmu_writes > 1);
339 num_components = tmu_writes - 1;
340 }
341
342 uint32_t perquad = is_load
343 ? GENERAL_TMU_LOOKUP_PER_QUAD
344 : GENERAL_TMU_LOOKUP_PER_PIXEL;
345 uint32_t config = (0xffffff00 |
346 tmu_op << 3|
347 perquad);
348 if (num_components == 1) {
349 config |= GENERAL_TMU_LOOKUP_TYPE_32BIT_UI;
350 } else {
351 config |= GENERAL_TMU_LOOKUP_TYPE_VEC2 +
352 num_components - 2;
353 }
354
355 if (vir_in_nonuniform_control_flow(c)) {
356 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
357 V3D_QPU_PF_PUSHZ);
358 }
359
360 struct qreg tmua;
361 if (config == ~0)
362 tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA);
363 else
364 tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUAU);
365
366 struct qinst *tmu;
367 if (dynamic_src) {
368 struct qreg offset = base_offset;
369 if (const_offset != 0) {
370 offset = vir_ADD(c, offset,
371 vir_uniform_ui(c, const_offset));
372 }
373 struct qreg data =
374 ntq_get_src(c, instr->src[offset_src], 0);
375 tmu = vir_ADD_dest(c, tmua, offset, data);
376 } else {
377 if (const_offset != 0) {
378 tmu = vir_ADD_dest(c, tmua, base_offset,
379 vir_uniform_ui(c, const_offset));
380 } else {
381 tmu = vir_MOV_dest(c, tmua, base_offset);
382 }
383 }
384
385 if (config != ~0) {
386 tmu->uniform =
387 vir_get_uniform_index(c, QUNIFORM_CONSTANT,
388 config);
389 }
390
391 if (vir_in_nonuniform_control_flow(c))
392 vir_set_cond(tmu, V3D_QPU_COND_IFA);
393
394 vir_emit_thrsw(c);
395
396 /* Read the result, or wait for the TMU op to complete. */
397 for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
398 ntq_store_dest(c, &instr->dest, i,
399 vir_MOV(c, vir_LDTMU(c)));
400 }
401
402 if (nir_intrinsic_dest_components(instr) == 0)
403 vir_TMUWT(c);
404 } while (is_store && writemask != 0);
405 }
406
407 static struct qreg *
408 ntq_init_ssa_def(struct v3d_compile *c, nir_ssa_def *def)
409 {
410 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
411 def->num_components);
412 _mesa_hash_table_insert(c->def_ht, def, qregs);
413 return qregs;
414 }
415
416 static bool
417 is_ld_signal(const struct v3d_qpu_sig *sig)
418 {
419 return (sig->ldunif ||
420 sig->ldunifa ||
421 sig->ldunifrf ||
422 sig->ldunifarf ||
423 sig->ldtmu ||
424 sig->ldvary ||
425 sig->ldvpm ||
426 sig->ldtlb ||
427 sig->ldtlbu);
428 }
429
430 /**
431 * This function is responsible for getting VIR results into the associated
432 * storage for a NIR instruction.
433 *
434 * If it's a NIR SSA def, then we just set the associated hash table entry to
435 * the new result.
436 *
437 * If it's a NIR reg, then we need to update the existing qreg assigned to the
438 * NIR destination with the incoming value. To do that without introducing
439 * new MOVs, we require that the incoming qreg either be a uniform, or be
440 * SSA-defined by the previous VIR instruction in the block and rewritable by
441 * this function. That lets us sneak ahead and insert the SF flag beforehand
442 * (knowing that the previous instruction doesn't depend on flags) and rewrite
443 * its destination to be the NIR reg's destination
444 */
445 void
446 ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
447 struct qreg result)
448 {
449 struct qinst *last_inst = NULL;
450 if (!list_is_empty(&c->cur_block->instructions))
451 last_inst = (struct qinst *)c->cur_block->instructions.prev;
452
453 assert((result.file == QFILE_TEMP &&
454 last_inst && last_inst == c->defs[result.index]));
455
456 if (dest->is_ssa) {
457 assert(chan < dest->ssa.num_components);
458
459 struct qreg *qregs;
460 struct hash_entry *entry =
461 _mesa_hash_table_search(c->def_ht, &dest->ssa);
462
463 if (entry)
464 qregs = entry->data;
465 else
466 qregs = ntq_init_ssa_def(c, &dest->ssa);
467
468 qregs[chan] = result;
469 } else {
470 nir_register *reg = dest->reg.reg;
471 assert(dest->reg.base_offset == 0);
472 assert(reg->num_array_elems == 0);
473 struct hash_entry *entry =
474 _mesa_hash_table_search(c->def_ht, reg);
475 struct qreg *qregs = entry->data;
476
477 /* If the previous instruction can't be predicated for
478 * the store into the nir_register, then emit a MOV
479 * that can be.
480 */
481 if (vir_in_nonuniform_control_flow(c) &&
482 is_ld_signal(&c->defs[last_inst->dst.index]->qpu.sig)) {
483 result = vir_MOV(c, result);
484 last_inst = c->defs[result.index];
485 }
486
487 /* We know they're both temps, so just rewrite index. */
488 c->defs[last_inst->dst.index] = NULL;
489 last_inst->dst.index = qregs[chan].index;
490
491 /* If we're in control flow, then make this update of the reg
492 * conditional on the execution mask.
493 */
494 if (vir_in_nonuniform_control_flow(c)) {
495 last_inst->dst.index = qregs[chan].index;
496
497 /* Set the flags to the current exec mask.
498 */
499 c->cursor = vir_before_inst(last_inst);
500 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
501 V3D_QPU_PF_PUSHZ);
502 c->cursor = vir_after_inst(last_inst);
503
504 vir_set_cond(last_inst, V3D_QPU_COND_IFA);
505 }
506 }
507 }
508
509 struct qreg
510 ntq_get_src(struct v3d_compile *c, nir_src src, int i)
511 {
512 struct hash_entry *entry;
513 if (src.is_ssa) {
514 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
515 assert(i < src.ssa->num_components);
516 } else {
517 nir_register *reg = src.reg.reg;
518 entry = _mesa_hash_table_search(c->def_ht, reg);
519 assert(reg->num_array_elems == 0);
520 assert(src.reg.base_offset == 0);
521 assert(i < reg->num_components);
522 }
523
524 struct qreg *qregs = entry->data;
525 return qregs[i];
526 }
527
528 static struct qreg
529 ntq_get_alu_src(struct v3d_compile *c, nir_alu_instr *instr,
530 unsigned src)
531 {
532 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
533 unsigned chan = ffs(instr->dest.write_mask) - 1;
534 struct qreg r = ntq_get_src(c, instr->src[src].src,
535 instr->src[src].swizzle[chan]);
536
537 assert(!instr->src[src].abs);
538 assert(!instr->src[src].negate);
539
540 return r;
541 };
542
543 static struct qreg
544 ntq_minify(struct v3d_compile *c, struct qreg size, struct qreg level)
545 {
546 return vir_MAX(c, vir_SHR(c, size, level), vir_uniform_ui(c, 1));
547 }
548
549 static void
550 ntq_emit_txs(struct v3d_compile *c, nir_tex_instr *instr)
551 {
552 unsigned unit = instr->texture_index;
553 int lod_index = nir_tex_instr_src_index(instr, nir_tex_src_lod);
554 int dest_size = nir_tex_instr_dest_size(instr);
555
556 struct qreg lod = c->undef;
557 if (lod_index != -1)
558 lod = ntq_get_src(c, instr->src[lod_index].src, 0);
559
560 for (int i = 0; i < dest_size; i++) {
561 assert(i < 3);
562 enum quniform_contents contents;
563
564 if (instr->is_array && i == dest_size - 1)
565 contents = QUNIFORM_TEXTURE_ARRAY_SIZE;
566 else
567 contents = QUNIFORM_TEXTURE_WIDTH + i;
568
569 struct qreg size = vir_uniform(c, contents, unit);
570
571 switch (instr->sampler_dim) {
572 case GLSL_SAMPLER_DIM_1D:
573 case GLSL_SAMPLER_DIM_2D:
574 case GLSL_SAMPLER_DIM_MS:
575 case GLSL_SAMPLER_DIM_3D:
576 case GLSL_SAMPLER_DIM_CUBE:
577 /* Don't minify the array size. */
578 if (!(instr->is_array && i == dest_size - 1)) {
579 size = ntq_minify(c, size, lod);
580 }
581 break;
582
583 case GLSL_SAMPLER_DIM_RECT:
584 /* There's no LOD field for rects */
585 break;
586
587 default:
588 unreachable("Bad sampler type");
589 }
590
591 ntq_store_dest(c, &instr->dest, i, size);
592 }
593 }
594
595 static void
596 ntq_emit_tex(struct v3d_compile *c, nir_tex_instr *instr)
597 {
598 unsigned unit = instr->texture_index;
599
600 /* Since each texture sampling op requires uploading uniforms to
601 * reference the texture, there's no HW support for texture size and
602 * you just upload uniforms containing the size.
603 */
604 switch (instr->op) {
605 case nir_texop_query_levels:
606 ntq_store_dest(c, &instr->dest, 0,
607 vir_uniform(c, QUNIFORM_TEXTURE_LEVELS, unit));
608 return;
609 case nir_texop_txs:
610 ntq_emit_txs(c, instr);
611 return;
612 default:
613 break;
614 }
615
616 if (c->devinfo->ver >= 40)
617 v3d40_vir_emit_tex(c, instr);
618 else
619 v3d33_vir_emit_tex(c, instr);
620 }
621
622 static struct qreg
623 ntq_fsincos(struct v3d_compile *c, struct qreg src, bool is_cos)
624 {
625 struct qreg input = vir_FMUL(c, src, vir_uniform_f(c, 1.0f / M_PI));
626 if (is_cos)
627 input = vir_FADD(c, input, vir_uniform_f(c, 0.5));
628
629 struct qreg periods = vir_FROUND(c, input);
630 struct qreg sin_output = vir_SIN(c, vir_FSUB(c, input, periods));
631 return vir_XOR(c, sin_output, vir_SHL(c,
632 vir_FTOIN(c, periods),
633 vir_uniform_ui(c, -1)));
634 }
635
636 static struct qreg
637 ntq_fsign(struct v3d_compile *c, struct qreg src)
638 {
639 struct qreg t = vir_get_temp(c);
640
641 vir_MOV_dest(c, t, vir_uniform_f(c, 0.0));
642 vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHZ);
643 vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_f(c, 1.0));
644 vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHN);
645 vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_f(c, -1.0));
646 return vir_MOV(c, t);
647 }
648
649 static void
650 emit_fragcoord_input(struct v3d_compile *c, int attr)
651 {
652 c->inputs[attr * 4 + 0] = vir_FXCD(c);
653 c->inputs[attr * 4 + 1] = vir_FYCD(c);
654 c->inputs[attr * 4 + 2] = c->payload_z;
655 c->inputs[attr * 4 + 3] = vir_RECIP(c, c->payload_w);
656 }
657
658 static struct qreg
659 emit_fragment_varying(struct v3d_compile *c, nir_variable *var,
660 uint8_t swizzle, int array_index)
661 {
662 struct qreg r3 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R3);
663 struct qreg r5 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R5);
664
665 struct qreg vary;
666 if (c->devinfo->ver >= 41) {
667 struct qinst *ldvary = vir_add_inst(V3D_QPU_A_NOP, c->undef,
668 c->undef, c->undef);
669 ldvary->qpu.sig.ldvary = true;
670 vary = vir_emit_def(c, ldvary);
671 } else {
672 vir_NOP(c)->qpu.sig.ldvary = true;
673 vary = r3;
674 }
675
676 /* For gl_PointCoord input or distance along a line, we'll be called
677 * with no nir_variable, and we don't count toward VPM size so we
678 * don't track an input slot.
679 */
680 if (!var) {
681 return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
682 }
683
684 int i = c->num_inputs++;
685 c->input_slots[i] =
686 v3d_slot_from_slot_and_component(var->data.location +
687 array_index, swizzle);
688
689 switch (var->data.interpolation) {
690 case INTERP_MODE_NONE:
691 /* If a gl_FrontColor or gl_BackColor input has no interp
692 * qualifier, then if we're using glShadeModel(GL_FLAT) it
693 * needs to be flat shaded.
694 */
695 switch (var->data.location + array_index) {
696 case VARYING_SLOT_COL0:
697 case VARYING_SLOT_COL1:
698 case VARYING_SLOT_BFC0:
699 case VARYING_SLOT_BFC1:
700 if (c->fs_key->shade_model_flat) {
701 BITSET_SET(c->flat_shade_flags, i);
702 vir_MOV_dest(c, c->undef, vary);
703 return vir_MOV(c, r5);
704 } else {
705 return vir_FADD(c, vir_FMUL(c, vary,
706 c->payload_w), r5);
707 }
708 default:
709 break;
710 }
711 /* FALLTHROUGH */
712 case INTERP_MODE_SMOOTH:
713 if (var->data.centroid) {
714 BITSET_SET(c->centroid_flags, i);
715 return vir_FADD(c, vir_FMUL(c, vary,
716 c->payload_w_centroid), r5);
717 } else {
718 return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
719 }
720 case INTERP_MODE_NOPERSPECTIVE:
721 BITSET_SET(c->noperspective_flags, i);
722 return vir_FADD(c, vir_MOV(c, vary), r5);
723 case INTERP_MODE_FLAT:
724 BITSET_SET(c->flat_shade_flags, i);
725 vir_MOV_dest(c, c->undef, vary);
726 return vir_MOV(c, r5);
727 default:
728 unreachable("Bad interp mode");
729 }
730 }
731
732 static void
733 emit_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
734 int array_index)
735 {
736 for (int i = 0; i < glsl_get_vector_elements(var->type); i++) {
737 int chan = var->data.location_frac + i;
738 c->inputs[attr * 4 + chan] =
739 emit_fragment_varying(c, var, chan, array_index);
740 }
741 }
742
743 static void
744 emit_compact_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
745 int array_index)
746 {
747 /* Compact variables are scalar arrays where each set of 4 elements
748 * consumes a single location.
749 */
750 int loc_offset = array_index / 4;
751 int chan = var->data.location_frac + array_index % 4;
752 c->inputs[(attr + loc_offset) * 4 + chan] =
753 emit_fragment_varying(c, var, chan, loc_offset);
754 }
755
756 static void
757 add_output(struct v3d_compile *c,
758 uint32_t decl_offset,
759 uint8_t slot,
760 uint8_t swizzle)
761 {
762 uint32_t old_array_size = c->outputs_array_size;
763 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
764 decl_offset + 1);
765
766 if (old_array_size != c->outputs_array_size) {
767 c->output_slots = reralloc(c,
768 c->output_slots,
769 struct v3d_varying_slot,
770 c->outputs_array_size);
771 }
772
773 c->output_slots[decl_offset] =
774 v3d_slot_from_slot_and_component(slot, swizzle);
775 }
776
777 /**
778 * If compare_instr is a valid comparison instruction, emits the
779 * compare_instr's comparison and returns the sel_instr's return value based
780 * on the compare_instr's result.
781 */
782 static bool
783 ntq_emit_comparison(struct v3d_compile *c,
784 nir_alu_instr *compare_instr,
785 enum v3d_qpu_cond *out_cond)
786 {
787 struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
788 struct qreg src1;
789 if (nir_op_infos[compare_instr->op].num_inputs > 1)
790 src1 = ntq_get_alu_src(c, compare_instr, 1);
791 bool cond_invert = false;
792 struct qreg nop = vir_nop_reg();
793
794 switch (compare_instr->op) {
795 case nir_op_feq32:
796 case nir_op_seq:
797 vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
798 break;
799 case nir_op_ieq32:
800 vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
801 break;
802
803 case nir_op_fneu32:
804 case nir_op_sne:
805 vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
806 cond_invert = true;
807 break;
808 case nir_op_ine32:
809 vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
810 cond_invert = true;
811 break;
812
813 case nir_op_fge32:
814 case nir_op_sge:
815 vir_set_pf(vir_FCMP_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
816 break;
817 case nir_op_ige32:
818 vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
819 cond_invert = true;
820 break;
821 case nir_op_uge32:
822 vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
823 cond_invert = true;
824 break;
825
826 case nir_op_slt:
827 case nir_op_flt32:
828 vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHN);
829 break;
830 case nir_op_ilt32:
831 vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
832 break;
833 case nir_op_ult32:
834 vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
835 break;
836
837 case nir_op_i2b32:
838 vir_set_pf(vir_MOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
839 cond_invert = true;
840 break;
841
842 case nir_op_f2b32:
843 vir_set_pf(vir_FMOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
844 cond_invert = true;
845 break;
846
847 default:
848 return false;
849 }
850
851 *out_cond = cond_invert ? V3D_QPU_COND_IFNA : V3D_QPU_COND_IFA;
852
853 return true;
854 }
855
856 /* Finds an ALU instruction that generates our src value that could
857 * (potentially) be greedily emitted in the consuming instruction.
858 */
859 static struct nir_alu_instr *
860 ntq_get_alu_parent(nir_src src)
861 {
862 if (!src.is_ssa || src.ssa->parent_instr->type != nir_instr_type_alu)
863 return NULL;
864 nir_alu_instr *instr = nir_instr_as_alu(src.ssa->parent_instr);
865 if (!instr)
866 return NULL;
867
868 /* If the ALU instr's srcs are non-SSA, then we would have to avoid
869 * moving emission of the ALU instr down past another write of the
870 * src.
871 */
872 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
873 if (!instr->src[i].src.is_ssa)
874 return NULL;
875 }
876
877 return instr;
878 }
879
880 /* Turns a NIR bool into a condition code to predicate on. */
881 static enum v3d_qpu_cond
882 ntq_emit_bool_to_cond(struct v3d_compile *c, nir_src src)
883 {
884 nir_alu_instr *compare = ntq_get_alu_parent(src);
885 if (!compare)
886 goto out;
887
888 enum v3d_qpu_cond cond;
889 if (ntq_emit_comparison(c, compare, &cond))
890 return cond;
891
892 out:
893 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), ntq_get_src(c, src, 0)),
894 V3D_QPU_PF_PUSHZ);
895 return V3D_QPU_COND_IFNA;
896 }
897
898 static void
899 ntq_emit_alu(struct v3d_compile *c, nir_alu_instr *instr)
900 {
901 /* This should always be lowered to ALU operations for V3D. */
902 assert(!instr->dest.saturate);
903
904 /* Vectors are special in that they have non-scalarized writemasks,
905 * and just take the first swizzle channel for each argument in order
906 * into each writemask channel.
907 */
908 if (instr->op == nir_op_vec2 ||
909 instr->op == nir_op_vec3 ||
910 instr->op == nir_op_vec4) {
911 struct qreg srcs[4];
912 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
913 srcs[i] = ntq_get_src(c, instr->src[i].src,
914 instr->src[i].swizzle[0]);
915 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
916 ntq_store_dest(c, &instr->dest.dest, i,
917 vir_MOV(c, srcs[i]));
918 return;
919 }
920
921 /* General case: We can just grab the one used channel per src. */
922 struct qreg src[nir_op_infos[instr->op].num_inputs];
923 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
924 src[i] = ntq_get_alu_src(c, instr, i);
925 }
926
927 struct qreg result;
928
929 switch (instr->op) {
930 case nir_op_mov:
931 result = vir_MOV(c, src[0]);
932 break;
933
934 case nir_op_fneg:
935 result = vir_XOR(c, src[0], vir_uniform_ui(c, 1 << 31));
936 break;
937 case nir_op_ineg:
938 result = vir_NEG(c, src[0]);
939 break;
940
941 case nir_op_fmul:
942 result = vir_FMUL(c, src[0], src[1]);
943 break;
944 case nir_op_fadd:
945 result = vir_FADD(c, src[0], src[1]);
946 break;
947 case nir_op_fsub:
948 result = vir_FSUB(c, src[0], src[1]);
949 break;
950 case nir_op_fmin:
951 result = vir_FMIN(c, src[0], src[1]);
952 break;
953 case nir_op_fmax:
954 result = vir_FMAX(c, src[0], src[1]);
955 break;
956
957 case nir_op_f2i32: {
958 nir_alu_instr *src0_alu = ntq_get_alu_parent(instr->src[0].src);
959 if (src0_alu && src0_alu->op == nir_op_fround_even) {
960 result = vir_FTOIN(c, ntq_get_alu_src(c, src0_alu, 0));
961 } else {
962 result = vir_FTOIZ(c, src[0]);
963 }
964 break;
965 }
966
967 case nir_op_f2u32:
968 result = vir_FTOUZ(c, src[0]);
969 break;
970 case nir_op_i2f32:
971 result = vir_ITOF(c, src[0]);
972 break;
973 case nir_op_u2f32:
974 result = vir_UTOF(c, src[0]);
975 break;
976 case nir_op_b2f32:
977 result = vir_AND(c, src[0], vir_uniform_f(c, 1.0));
978 break;
979 case nir_op_b2i32:
980 result = vir_AND(c, src[0], vir_uniform_ui(c, 1));
981 break;
982
983 case nir_op_iadd:
984 result = vir_ADD(c, src[0], src[1]);
985 break;
986 case nir_op_ushr:
987 result = vir_SHR(c, src[0], src[1]);
988 break;
989 case nir_op_isub:
990 result = vir_SUB(c, src[0], src[1]);
991 break;
992 case nir_op_ishr:
993 result = vir_ASR(c, src[0], src[1]);
994 break;
995 case nir_op_ishl:
996 result = vir_SHL(c, src[0], src[1]);
997 break;
998 case nir_op_imin:
999 result = vir_MIN(c, src[0], src[1]);
1000 break;
1001 case nir_op_umin:
1002 result = vir_UMIN(c, src[0], src[1]);
1003 break;
1004 case nir_op_imax:
1005 result = vir_MAX(c, src[0], src[1]);
1006 break;
1007 case nir_op_umax:
1008 result = vir_UMAX(c, src[0], src[1]);
1009 break;
1010 case nir_op_iand:
1011 result = vir_AND(c, src[0], src[1]);
1012 break;
1013 case nir_op_ior:
1014 result = vir_OR(c, src[0], src[1]);
1015 break;
1016 case nir_op_ixor:
1017 result = vir_XOR(c, src[0], src[1]);
1018 break;
1019 case nir_op_inot:
1020 result = vir_NOT(c, src[0]);
1021 break;
1022
1023 case nir_op_ufind_msb:
1024 result = vir_SUB(c, vir_uniform_ui(c, 31), vir_CLZ(c, src[0]));
1025 break;
1026
1027 case nir_op_imul:
1028 result = vir_UMUL(c, src[0], src[1]);
1029 break;
1030
1031 case nir_op_seq:
1032 case nir_op_sne:
1033 case nir_op_sge:
1034 case nir_op_slt: {
1035 enum v3d_qpu_cond cond;
1036 ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
1037 assert(ok);
1038 result = vir_MOV(c, vir_SEL(c, cond,
1039 vir_uniform_f(c, 1.0),
1040 vir_uniform_f(c, 0.0)));
1041 break;
1042 }
1043
1044 case nir_op_i2b32:
1045 case nir_op_f2b32:
1046 case nir_op_feq32:
1047 case nir_op_fneu32:
1048 case nir_op_fge32:
1049 case nir_op_flt32:
1050 case nir_op_ieq32:
1051 case nir_op_ine32:
1052 case nir_op_ige32:
1053 case nir_op_uge32:
1054 case nir_op_ilt32:
1055 case nir_op_ult32: {
1056 enum v3d_qpu_cond cond;
1057 ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
1058 assert(ok);
1059 result = vir_MOV(c, vir_SEL(c, cond,
1060 vir_uniform_ui(c, ~0),
1061 vir_uniform_ui(c, 0)));
1062 break;
1063 }
1064
1065 case nir_op_b32csel:
1066 result = vir_MOV(c,
1067 vir_SEL(c,
1068 ntq_emit_bool_to_cond(c, instr->src[0].src),
1069 src[1], src[2]));
1070 break;
1071
1072 case nir_op_fcsel:
1073 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), src[0]),
1074 V3D_QPU_PF_PUSHZ);
1075 result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
1076 src[1], src[2]));
1077 break;
1078
1079 case nir_op_frcp:
1080 result = vir_RECIP(c, src[0]);
1081 break;
1082 case nir_op_frsq:
1083 result = vir_RSQRT(c, src[0]);
1084 break;
1085 case nir_op_fexp2:
1086 result = vir_EXP(c, src[0]);
1087 break;
1088 case nir_op_flog2:
1089 result = vir_LOG(c, src[0]);
1090 break;
1091
1092 case nir_op_fceil:
1093 result = vir_FCEIL(c, src[0]);
1094 break;
1095 case nir_op_ffloor:
1096 result = vir_FFLOOR(c, src[0]);
1097 break;
1098 case nir_op_fround_even:
1099 result = vir_FROUND(c, src[0]);
1100 break;
1101 case nir_op_ftrunc:
1102 result = vir_FTRUNC(c, src[0]);
1103 break;
1104
1105 case nir_op_fsin:
1106 result = ntq_fsincos(c, src[0], false);
1107 break;
1108 case nir_op_fcos:
1109 result = ntq_fsincos(c, src[0], true);
1110 break;
1111
1112 case nir_op_fsign:
1113 result = ntq_fsign(c, src[0]);
1114 break;
1115
1116 case nir_op_fabs: {
1117 result = vir_FMOV(c, src[0]);
1118 vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_ABS);
1119 break;
1120 }
1121
1122 case nir_op_iabs:
1123 result = vir_MAX(c, src[0], vir_NEG(c, src[0]));
1124 break;
1125
1126 case nir_op_fddx:
1127 case nir_op_fddx_coarse:
1128 case nir_op_fddx_fine:
1129 result = vir_FDX(c, src[0]);
1130 break;
1131
1132 case nir_op_fddy:
1133 case nir_op_fddy_coarse:
1134 case nir_op_fddy_fine:
1135 result = vir_FDY(c, src[0]);
1136 break;
1137
1138 case nir_op_uadd_carry:
1139 vir_set_pf(vir_ADD_dest(c, vir_nop_reg(), src[0], src[1]),
1140 V3D_QPU_PF_PUSHC);
1141 result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
1142 vir_uniform_ui(c, ~0),
1143 vir_uniform_ui(c, 0)));
1144 break;
1145
1146 case nir_op_pack_half_2x16_split:
1147 result = vir_VFPACK(c, src[0], src[1]);
1148 break;
1149
1150 case nir_op_unpack_half_2x16_split_x:
1151 result = vir_FMOV(c, src[0]);
1152 vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_L);
1153 break;
1154
1155 case nir_op_unpack_half_2x16_split_y:
1156 result = vir_FMOV(c, src[0]);
1157 vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_H);
1158 break;
1159
1160 default:
1161 fprintf(stderr, "unknown NIR ALU inst: ");
1162 nir_print_instr(&instr->instr, stderr);
1163 fprintf(stderr, "\n");
1164 abort();
1165 }
1166
1167 /* We have a scalar result, so the instruction should only have a
1168 * single channel written to.
1169 */
1170 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1171 ntq_store_dest(c, &instr->dest.dest,
1172 ffs(instr->dest.write_mask) - 1, result);
1173 }
1174
1175 /* Each TLB read/write setup (a render target or depth buffer) takes an 8-bit
1176 * specifier. They come from a register that's preloaded with 0xffffffff
1177 * (0xff gets you normal vec4 f16 RT0 writes), and when one is neaded the low
1178 * 8 bits are shifted off the bottom and 0xff shifted in from the top.
1179 */
1180 #define TLB_TYPE_F16_COLOR (3 << 6)
1181 #define TLB_TYPE_I32_COLOR (1 << 6)
1182 #define TLB_TYPE_F32_COLOR (0 << 6)
1183 #define TLB_RENDER_TARGET_SHIFT 3 /* Reversed! 7 = RT 0, 0 = RT 7. */
1184 #define TLB_SAMPLE_MODE_PER_SAMPLE (0 << 2)
1185 #define TLB_SAMPLE_MODE_PER_PIXEL (1 << 2)
1186 #define TLB_F16_SWAP_HI_LO (1 << 1)
1187 #define TLB_VEC_SIZE_4_F16 (1 << 0)
1188 #define TLB_VEC_SIZE_2_F16 (0 << 0)
1189 #define TLB_VEC_SIZE_MINUS_1_SHIFT 0
1190
1191 /* Triggers Z/Stencil testing, used when the shader state's "FS modifies Z"
1192 * flag is set.
1193 */
1194 #define TLB_TYPE_DEPTH ((2 << 6) | (0 << 4))
1195 #define TLB_DEPTH_TYPE_INVARIANT (0 << 2) /* Unmodified sideband input used */
1196 #define TLB_DEPTH_TYPE_PER_PIXEL (1 << 2) /* QPU result used */
1197 #define TLB_V42_DEPTH_TYPE_INVARIANT (0 << 3) /* Unmodified sideband input used */
1198 #define TLB_V42_DEPTH_TYPE_PER_PIXEL (1 << 3) /* QPU result used */
1199
1200 /* Stencil is a single 32-bit write. */
1201 #define TLB_TYPE_STENCIL_ALPHA ((2 << 6) | (1 << 4))
1202
1203 static void
1204 vir_emit_tlb_color_write(struct v3d_compile *c, unsigned rt)
1205 {
1206 if (!(c->fs_key->cbufs & (1 << rt)) || !c->output_color_var[rt])
1207 return;
1208
1209 struct qreg tlb_reg = vir_magic_reg(V3D_QPU_WADDR_TLB);
1210 struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
1211
1212 nir_variable *var = c->output_color_var[rt];
1213 int num_components = glsl_get_vector_elements(var->type);
1214 uint32_t conf = 0xffffff00;
1215 struct qinst *inst;
1216
1217 conf |= c->msaa_per_sample_output ? TLB_SAMPLE_MODE_PER_SAMPLE :
1218 TLB_SAMPLE_MODE_PER_PIXEL;
1219 conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
1220
1221 if (c->fs_key->swap_color_rb & (1 << rt))
1222 num_components = MAX2(num_components, 3);
1223 assert(num_components != 0);
1224
1225 enum glsl_base_type type = glsl_get_base_type(var->type);
1226 bool is_int_format = type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT;
1227 bool is_32b_tlb_format = is_int_format ||
1228 (c->fs_key->f32_color_rb & (1 << rt));
1229
1230 if (is_int_format) {
1231 /* The F32 vs I32 distinction was dropped in 4.2. */
1232 if (c->devinfo->ver < 42)
1233 conf |= TLB_TYPE_I32_COLOR;
1234 else
1235 conf |= TLB_TYPE_F32_COLOR;
1236 conf |= ((num_components - 1) << TLB_VEC_SIZE_MINUS_1_SHIFT);
1237 } else {
1238 if (c->fs_key->f32_color_rb & (1 << rt)) {
1239 conf |= TLB_TYPE_F32_COLOR;
1240 conf |= ((num_components - 1) <<
1241 TLB_VEC_SIZE_MINUS_1_SHIFT);
1242 } else {
1243 conf |= TLB_TYPE_F16_COLOR;
1244 conf |= TLB_F16_SWAP_HI_LO;
1245 if (num_components >= 3)
1246 conf |= TLB_VEC_SIZE_4_F16;
1247 else
1248 conf |= TLB_VEC_SIZE_2_F16;
1249 }
1250 }
1251
1252 int num_samples = c->msaa_per_sample_output ? V3D_MAX_SAMPLES : 1;
1253 for (int i = 0; i < num_samples; i++) {
1254 struct qreg *color = c->msaa_per_sample_output ?
1255 &c->sample_colors[(rt * V3D_MAX_SAMPLES + i) * 4] :
1256 &c->outputs[var->data.driver_location * 4];
1257
1258 struct qreg r = color[0];
1259 struct qreg g = color[1];
1260 struct qreg b = color[2];
1261 struct qreg a = color[3];
1262
1263 if (c->fs_key->swap_color_rb & (1 << rt)) {
1264 r = color[2];
1265 b = color[0];
1266 }
1267
1268 if (c->fs_key->sample_alpha_to_one)
1269 a = vir_uniform_f(c, 1.0);
1270
1271 if (is_32b_tlb_format) {
1272 if (i == 0) {
1273 inst = vir_MOV_dest(c, tlbu_reg, r);
1274 inst->uniform =
1275 vir_get_uniform_index(c,
1276 QUNIFORM_CONSTANT,
1277 conf);
1278 } else {
1279 inst = vir_MOV_dest(c, tlb_reg, r);
1280 }
1281
1282 if (num_components >= 2)
1283 vir_MOV_dest(c, tlb_reg, g);
1284 if (num_components >= 3)
1285 vir_MOV_dest(c, tlb_reg, b);
1286 if (num_components >= 4)
1287 vir_MOV_dest(c, tlb_reg, a);
1288 } else {
1289 inst = vir_VFPACK_dest(c, tlb_reg, r, g);
1290 if (conf != ~0 && i == 0) {
1291 inst->dst = tlbu_reg;
1292 inst->uniform =
1293 vir_get_uniform_index(c,
1294 QUNIFORM_CONSTANT,
1295 conf);
1296 }
1297
1298 if (num_components >= 3)
1299 inst = vir_VFPACK_dest(c, tlb_reg, b, a);
1300 }
1301 }
1302 }
1303
1304 static void
1305 emit_frag_end(struct v3d_compile *c)
1306 {
1307 /* XXX
1308 if (c->output_sample_mask_index != -1) {
1309 vir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1310 }
1311 */
1312
1313 bool has_any_tlb_color_write = false;
1314 for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++) {
1315 if (c->fs_key->cbufs & (1 << rt) && c->output_color_var[rt])
1316 has_any_tlb_color_write = true;
1317 }
1318
1319 if (c->fs_key->sample_alpha_to_coverage && c->output_color_var[0]) {
1320 struct nir_variable *var = c->output_color_var[0];
1321 struct qreg *color = &c->outputs[var->data.driver_location * 4];
1322
1323 vir_SETMSF_dest(c, vir_nop_reg(),
1324 vir_AND(c,
1325 vir_MSF(c),
1326 vir_FTOC(c, color[3])));
1327 }
1328
1329 struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
1330 if (c->output_position_index != -1) {
1331 struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
1332 c->outputs[c->output_position_index]);
1333 uint8_t tlb_specifier = TLB_TYPE_DEPTH;
1334
1335 if (c->devinfo->ver >= 42) {
1336 tlb_specifier |= (TLB_V42_DEPTH_TYPE_PER_PIXEL |
1337 TLB_SAMPLE_MODE_PER_PIXEL);
1338 } else
1339 tlb_specifier |= TLB_DEPTH_TYPE_PER_PIXEL;
1340
1341 inst->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT,
1342 tlb_specifier |
1343 0xffffff00);
1344 c->writes_z = true;
1345 } else if (c->s->info.fs.uses_discard ||
1346 !c->s->info.fs.early_fragment_tests ||
1347 c->fs_key->sample_alpha_to_coverage ||
1348 !has_any_tlb_color_write) {
1349 /* Emit passthrough Z if it needed to be delayed until shader
1350 * end due to potential discards.
1351 *
1352 * Since (single-threaded) fragment shaders always need a TLB
1353 * write, emit passthrouh Z if we didn't have any color
1354 * buffers and flag us as potentially discarding, so that we
1355 * can use Z as the TLB write.
1356 */
1357 c->s->info.fs.uses_discard = true;
1358
1359 struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
1360 vir_nop_reg());
1361 uint8_t tlb_specifier = TLB_TYPE_DEPTH;
1362
1363 if (c->devinfo->ver >= 42) {
1364 /* The spec says the PER_PIXEL flag is ignored for
1365 * invariant writes, but the simulator demands it.
1366 */
1367 tlb_specifier |= (TLB_V42_DEPTH_TYPE_INVARIANT |
1368 TLB_SAMPLE_MODE_PER_PIXEL);
1369 } else {
1370 tlb_specifier |= TLB_DEPTH_TYPE_INVARIANT;
1371 }
1372
1373 inst->uniform = vir_get_uniform_index(c,
1374 QUNIFORM_CONSTANT,
1375 tlb_specifier |
1376 0xffffff00);
1377 c->writes_z = true;
1378 }
1379
1380 /* XXX: Performance improvement: Merge Z write and color writes TLB
1381 * uniform setup
1382 */
1383 for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++)
1384 vir_emit_tlb_color_write(c, rt);
1385 }
1386
1387 static inline void
1388 vir_VPM_WRITE_indirect(struct v3d_compile *c,
1389 struct qreg val,
1390 struct qreg vpm_index)
1391 {
1392 assert(c->devinfo->ver >= 40);
1393 vir_STVPMV(c, vpm_index, val);
1394 }
1395
1396 static void
1397 vir_VPM_WRITE(struct v3d_compile *c, struct qreg val, uint32_t vpm_index)
1398 {
1399 if (c->devinfo->ver >= 40) {
1400 vir_VPM_WRITE_indirect(c, val, vir_uniform_ui(c, vpm_index));
1401 } else {
1402 /* XXX: v3d33_vir_vpm_write_setup(c); */
1403 vir_MOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM), val);
1404 }
1405 }
1406
1407 static void
1408 emit_vert_end(struct v3d_compile *c)
1409 {
1410 /* GFXH-1684: VPM writes need to be complete by the end of the shader.
1411 */
1412 if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
1413 vir_VPMWT(c);
1414 }
1415
1416 static void
1417 emit_geom_end(struct v3d_compile *c)
1418 {
1419 /* GFXH-1684: VPM writes need to be complete by the end of the shader.
1420 */
1421 if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
1422 vir_VPMWT(c);
1423 }
1424
1425 void
1426 v3d_optimize_nir(struct nir_shader *s)
1427 {
1428 bool progress;
1429 unsigned lower_flrp =
1430 (s->options->lower_flrp16 ? 16 : 0) |
1431 (s->options->lower_flrp32 ? 32 : 0) |
1432 (s->options->lower_flrp64 ? 64 : 0);
1433
1434 do {
1435 progress = false;
1436
1437 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1438 NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
1439 NIR_PASS(progress, s, nir_lower_phis_to_scalar);
1440 NIR_PASS(progress, s, nir_copy_prop);
1441 NIR_PASS(progress, s, nir_opt_remove_phis);
1442 NIR_PASS(progress, s, nir_opt_dce);
1443 NIR_PASS(progress, s, nir_opt_dead_cf);
1444 NIR_PASS(progress, s, nir_opt_cse);
1445 NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
1446 NIR_PASS(progress, s, nir_opt_algebraic);
1447 NIR_PASS(progress, s, nir_opt_constant_folding);
1448
1449 if (lower_flrp != 0) {
1450 bool lower_flrp_progress = false;
1451
1452 NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
1453 lower_flrp,
1454 false /* always_precise */);
1455 if (lower_flrp_progress) {
1456 NIR_PASS(progress, s, nir_opt_constant_folding);
1457 progress = true;
1458 }
1459
1460 /* Nothing should rematerialize any flrps, so we only
1461 * need to do this lowering once.
1462 */
1463 lower_flrp = 0;
1464 }
1465
1466 NIR_PASS(progress, s, nir_opt_undef);
1467 } while (progress);
1468
1469 NIR_PASS(progress, s, nir_opt_move, nir_move_load_ubo);
1470 }
1471
1472 static int
1473 driver_location_compare(const void *in_a, const void *in_b)
1474 {
1475 const nir_variable *const *a = in_a;
1476 const nir_variable *const *b = in_b;
1477
1478 if ((*a)->data.driver_location == (*b)->data.driver_location)
1479 return (*a)->data.location_frac - (*b)->data.location_frac;
1480
1481 return (*a)->data.driver_location - (*b)->data.driver_location;
1482 }
1483
1484 static struct qreg
1485 ntq_emit_vpm_read(struct v3d_compile *c,
1486 uint32_t *num_components_queued,
1487 uint32_t *remaining,
1488 uint32_t vpm_index)
1489 {
1490 struct qreg vpm = vir_reg(QFILE_VPM, vpm_index);
1491
1492 if (c->devinfo->ver >= 40 ) {
1493 return vir_LDVPMV_IN(c,
1494 vir_uniform_ui(c,
1495 (*num_components_queued)++));
1496 }
1497
1498 if (*num_components_queued != 0) {
1499 (*num_components_queued)--;
1500 return vir_MOV(c, vpm);
1501 }
1502
1503 uint32_t num_components = MIN2(*remaining, 32);
1504
1505 v3d33_vir_vpm_read_setup(c, num_components);
1506
1507 *num_components_queued = num_components - 1;
1508 *remaining -= num_components;
1509
1510 return vir_MOV(c, vpm);
1511 }
1512
1513 static void
1514 ntq_setup_vs_inputs(struct v3d_compile *c)
1515 {
1516 /* Figure out how many components of each vertex attribute the shader
1517 * uses. Each variable should have been split to individual
1518 * components and unused ones DCEed. The vertex fetcher will load
1519 * from the start of the attribute to the number of components we
1520 * declare we need in c->vattr_sizes[].
1521 */
1522 nir_foreach_shader_in_variable(var, c->s) {
1523 /* No VS attribute array support. */
1524 assert(MAX2(glsl_get_length(var->type), 1) == 1);
1525
1526 unsigned loc = var->data.driver_location;
1527 int start_component = var->data.location_frac;
1528 int num_components = glsl_get_components(var->type);
1529
1530 c->vattr_sizes[loc] = MAX2(c->vattr_sizes[loc],
1531 start_component + num_components);
1532 }
1533
1534 unsigned num_components = 0;
1535 uint32_t vpm_components_queued = 0;
1536 bool uses_iid = c->s->info.system_values_read &
1537 (1ull << SYSTEM_VALUE_INSTANCE_ID);
1538 bool uses_vid = c->s->info.system_values_read &
1539 (1ull << SYSTEM_VALUE_VERTEX_ID);
1540 num_components += uses_iid;
1541 num_components += uses_vid;
1542
1543 for (int i = 0; i < ARRAY_SIZE(c->vattr_sizes); i++)
1544 num_components += c->vattr_sizes[i];
1545
1546 if (uses_iid) {
1547 c->iid = ntq_emit_vpm_read(c, &vpm_components_queued,
1548 &num_components, ~0);
1549 }
1550
1551 if (uses_vid) {
1552 c->vid = ntq_emit_vpm_read(c, &vpm_components_queued,
1553 &num_components, ~0);
1554 }
1555
1556 /* The actual loads will happen directly in nir_intrinsic_load_input
1557 * on newer versions.
1558 */
1559 if (c->devinfo->ver >= 40)
1560 return;
1561
1562 for (int loc = 0; loc < ARRAY_SIZE(c->vattr_sizes); loc++) {
1563 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1564 (loc + 1) * 4);
1565
1566 for (int i = 0; i < c->vattr_sizes[loc]; i++) {
1567 c->inputs[loc * 4 + i] =
1568 ntq_emit_vpm_read(c,
1569 &vpm_components_queued,
1570 &num_components,
1571 loc * 4 + i);
1572
1573 }
1574 }
1575
1576 if (c->devinfo->ver >= 40) {
1577 assert(vpm_components_queued == num_components);
1578 } else {
1579 assert(vpm_components_queued == 0);
1580 assert(num_components == 0);
1581 }
1582 }
1583
1584 static bool
1585 program_reads_point_coord(struct v3d_compile *c)
1586 {
1587 nir_foreach_shader_in_variable(var, c->s) {
1588 if (util_varying_is_point_coord(var->data.location,
1589 c->fs_key->point_sprite_mask)) {
1590 return true;
1591 }
1592 }
1593
1594 return false;
1595 }
1596
1597 static void
1598 get_sorted_input_variables(struct v3d_compile *c,
1599 unsigned *num_entries,
1600 nir_variable ***vars)
1601 {
1602 *num_entries = 0;
1603 nir_foreach_shader_in_variable(var, c->s)
1604 (*num_entries)++;
1605
1606 *vars = ralloc_array(c, nir_variable *, *num_entries);
1607
1608 unsigned i = 0;
1609 nir_foreach_shader_in_variable(var, c->s)
1610 (*vars)[i++] = var;
1611
1612 /* Sort the variables so that we emit the input setup in
1613 * driver_location order. This is required for VPM reads, whose data
1614 * is fetched into the VPM in driver_location (TGSI register index)
1615 * order.
1616 */
1617 qsort(*vars, *num_entries, sizeof(**vars), driver_location_compare);
1618 }
1619
1620 static void
1621 ntq_setup_gs_inputs(struct v3d_compile *c)
1622 {
1623 nir_variable **vars;
1624 unsigned num_entries;
1625 get_sorted_input_variables(c, &num_entries, &vars);
1626
1627 for (unsigned i = 0; i < num_entries; i++) {
1628 nir_variable *var = vars[i];
1629
1630 /* All GS inputs are arrays with as many entries as vertices
1631 * in the input primitive, but here we only care about the
1632 * per-vertex input type.
1633 */
1634 const struct glsl_type *type = glsl_without_array(var->type);
1635 unsigned array_len = MAX2(glsl_get_length(type), 1);
1636 unsigned loc = var->data.driver_location;
1637
1638 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1639 (loc + array_len) * 4);
1640
1641 for (unsigned j = 0; j < array_len; j++) {
1642 unsigned num_elements = glsl_get_vector_elements(type);
1643 for (unsigned k = 0; k < num_elements; k++) {
1644 unsigned chan = var->data.location_frac + k;
1645 unsigned input_idx = c->num_inputs++;
1646 struct v3d_varying_slot slot =
1647 v3d_slot_from_slot_and_component(var->data.location + j, chan);
1648 c->input_slots[input_idx] = slot;
1649 }
1650 }
1651 }
1652 }
1653
1654
1655 static void
1656 ntq_setup_fs_inputs(struct v3d_compile *c)
1657 {
1658 nir_variable **vars;
1659 unsigned num_entries;
1660 get_sorted_input_variables(c, &num_entries, &vars);
1661
1662 for (unsigned i = 0; i < num_entries; i++) {
1663 nir_variable *var = vars[i];
1664 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1665 unsigned loc = var->data.driver_location;
1666
1667 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1668 (loc + array_len) * 4);
1669
1670 if (var->data.location == VARYING_SLOT_POS) {
1671 emit_fragcoord_input(c, loc);
1672 } else if (util_varying_is_point_coord(var->data.location,
1673 c->fs_key->point_sprite_mask)) {
1674 c->inputs[loc * 4 + 0] = c->point_x;
1675 c->inputs[loc * 4 + 1] = c->point_y;
1676 } else if (var->data.compact) {
1677 for (int j = 0; j < array_len; j++)
1678 emit_compact_fragment_input(c, loc, var, j);
1679 } else {
1680 for (int j = 0; j < array_len; j++)
1681 emit_fragment_input(c, loc + j, var, j);
1682 }
1683 }
1684 }
1685
1686 static void
1687 ntq_setup_outputs(struct v3d_compile *c)
1688 {
1689 if (c->s->info.stage != MESA_SHADER_FRAGMENT)
1690 return;
1691
1692 nir_foreach_shader_out_variable(var, c->s) {
1693 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1694 unsigned loc = var->data.driver_location * 4;
1695
1696 assert(array_len == 1);
1697 (void)array_len;
1698
1699 for (int i = 0; i < 4 - var->data.location_frac; i++) {
1700 add_output(c, loc + var->data.location_frac + i,
1701 var->data.location,
1702 var->data.location_frac + i);
1703 }
1704
1705 switch (var->data.location) {
1706 case FRAG_RESULT_COLOR:
1707 c->output_color_var[0] = var;
1708 c->output_color_var[1] = var;
1709 c->output_color_var[2] = var;
1710 c->output_color_var[3] = var;
1711 break;
1712 case FRAG_RESULT_DATA0:
1713 case FRAG_RESULT_DATA1:
1714 case FRAG_RESULT_DATA2:
1715 case FRAG_RESULT_DATA3:
1716 c->output_color_var[var->data.location -
1717 FRAG_RESULT_DATA0] = var;
1718 break;
1719 case FRAG_RESULT_DEPTH:
1720 c->output_position_index = loc;
1721 break;
1722 case FRAG_RESULT_SAMPLE_MASK:
1723 c->output_sample_mask_index = loc;
1724 break;
1725 }
1726 }
1727 }
1728
1729 /**
1730 * Sets up the mapping from nir_register to struct qreg *.
1731 *
1732 * Each nir_register gets a struct qreg per 32-bit component being stored.
1733 */
1734 static void
1735 ntq_setup_registers(struct v3d_compile *c, struct exec_list *list)
1736 {
1737 foreach_list_typed(nir_register, nir_reg, node, list) {
1738 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1739 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1740 array_len *
1741 nir_reg->num_components);
1742
1743 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1744
1745 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1746 qregs[i] = vir_get_temp(c);
1747 }
1748 }
1749
1750 static void
1751 ntq_emit_load_const(struct v3d_compile *c, nir_load_const_instr *instr)
1752 {
1753 /* XXX perf: Experiment with using immediate loads to avoid having
1754 * these end up in the uniform stream. Watch out for breaking the
1755 * small immediates optimization in the process!
1756 */
1757 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1758 for (int i = 0; i < instr->def.num_components; i++)
1759 qregs[i] = vir_uniform_ui(c, instr->value[i].u32);
1760
1761 _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1762 }
1763
1764 static void
1765 ntq_emit_ssa_undef(struct v3d_compile *c, nir_ssa_undef_instr *instr)
1766 {
1767 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1768
1769 /* VIR needs there to be *some* value, so pick 0 (same as for
1770 * ntq_setup_registers().
1771 */
1772 for (int i = 0; i < instr->def.num_components; i++)
1773 qregs[i] = vir_uniform_ui(c, 0);
1774 }
1775
1776 static void
1777 ntq_emit_image_size(struct v3d_compile *c, nir_intrinsic_instr *instr)
1778 {
1779 unsigned image_index = nir_src_as_uint(instr->src[0]);
1780 bool is_array = nir_intrinsic_image_array(instr);
1781
1782 assert(nir_src_as_uint(instr->src[1]) == 0);
1783
1784 ntq_store_dest(c, &instr->dest, 0,
1785 vir_uniform(c, QUNIFORM_IMAGE_WIDTH, image_index));
1786 if (instr->num_components > 1) {
1787 ntq_store_dest(c, &instr->dest, 1,
1788 vir_uniform(c,
1789 instr->num_components == 2 && is_array ?
1790 QUNIFORM_IMAGE_ARRAY_SIZE :
1791 QUNIFORM_IMAGE_HEIGHT,
1792 image_index));
1793 }
1794 if (instr->num_components > 2) {
1795 ntq_store_dest(c, &instr->dest, 2,
1796 vir_uniform(c,
1797 is_array ?
1798 QUNIFORM_IMAGE_ARRAY_SIZE :
1799 QUNIFORM_IMAGE_DEPTH,
1800 image_index));
1801 }
1802 }
1803
1804 static void
1805 vir_emit_tlb_color_read(struct v3d_compile *c, nir_intrinsic_instr *instr)
1806 {
1807 assert(c->s->info.stage == MESA_SHADER_FRAGMENT);
1808
1809 int rt = nir_src_as_uint(instr->src[0]);
1810 assert(rt < V3D_MAX_DRAW_BUFFERS);
1811
1812 int sample_index = nir_intrinsic_base(instr) ;
1813 assert(sample_index < V3D_MAX_SAMPLES);
1814
1815 int component = nir_intrinsic_component(instr);
1816 assert(component < 4);
1817
1818 /* We need to emit our TLB reads after we have acquired the scoreboard
1819 * lock, or the GPU will hang. Usually, we do our scoreboard locking on
1820 * the last thread switch to improve parallelism, however, that is only
1821 * guaranteed to happen before the tlb color writes.
1822 *
1823 * To fix that, we make sure we always emit a thread switch before the
1824 * first tlb color read. If that happens to be the last thread switch
1825 * we emit, then everything is fine, but otherwsie, if any code after
1826 * this point needs to emit additional thread switches, then we will
1827 * switch the strategy to locking the scoreboard on the first thread
1828 * switch instead -- see vir_emit_thrsw().
1829 */
1830 if (!c->emitted_tlb_load) {
1831 if (!c->last_thrsw_at_top_level) {
1832 assert(c->devinfo->ver >= 41);
1833 vir_emit_thrsw(c);
1834 }
1835
1836 c->emitted_tlb_load = true;
1837 }
1838
1839 struct qreg *color_reads_for_sample =
1840 &c->color_reads[(rt * V3D_MAX_SAMPLES + sample_index) * 4];
1841
1842 if (color_reads_for_sample[component].file == QFILE_NULL) {
1843 enum pipe_format rt_format = c->fs_key->color_fmt[rt].format;
1844 int num_components =
1845 util_format_get_nr_components(rt_format);
1846
1847 const bool swap_rb = c->fs_key->swap_color_rb & (1 << rt);
1848 if (swap_rb)
1849 num_components = MAX2(num_components, 3);
1850
1851 nir_variable *var = c->output_color_var[rt];
1852 enum glsl_base_type type = glsl_get_base_type(var->type);
1853
1854 bool is_int_format = type == GLSL_TYPE_INT ||
1855 type == GLSL_TYPE_UINT;
1856
1857 bool is_32b_tlb_format = is_int_format ||
1858 (c->fs_key->f32_color_rb & (1 << rt));
1859
1860 int num_samples = c->fs_key->msaa ? V3D_MAX_SAMPLES : 1;
1861
1862 uint32_t conf = 0xffffff00;
1863 conf |= c->fs_key->msaa ? TLB_SAMPLE_MODE_PER_SAMPLE :
1864 TLB_SAMPLE_MODE_PER_PIXEL;
1865 conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
1866
1867 if (is_32b_tlb_format) {
1868 /* The F32 vs I32 distinction was dropped in 4.2. */
1869 conf |= (c->devinfo->ver < 42 && is_int_format) ?
1870 TLB_TYPE_I32_COLOR : TLB_TYPE_F32_COLOR;
1871
1872 conf |= ((num_components - 1) <<
1873 TLB_VEC_SIZE_MINUS_1_SHIFT);
1874 } else {
1875 conf |= TLB_TYPE_F16_COLOR;
1876 conf |= TLB_F16_SWAP_HI_LO;
1877
1878 if (num_components >= 3)
1879 conf |= TLB_VEC_SIZE_4_F16;
1880 else
1881 conf |= TLB_VEC_SIZE_2_F16;
1882 }
1883
1884
1885 for (int i = 0; i < num_samples; i++) {
1886 struct qreg r, g, b, a;
1887 if (is_32b_tlb_format) {
1888 r = conf != 0xffffffff && i == 0?
1889 vir_TLBU_COLOR_READ(c, conf) :
1890 vir_TLB_COLOR_READ(c);
1891 if (num_components >= 2)
1892 g = vir_TLB_COLOR_READ(c);
1893 if (num_components >= 3)
1894 b = vir_TLB_COLOR_READ(c);
1895 if (num_components >= 4)
1896 a = vir_TLB_COLOR_READ(c);
1897 } else {
1898 struct qreg rg = conf != 0xffffffff && i == 0 ?
1899 vir_TLBU_COLOR_READ(c, conf) :
1900 vir_TLB_COLOR_READ(c);
1901 r = vir_FMOV(c, rg);
1902 vir_set_unpack(c->defs[r.index], 0,
1903 V3D_QPU_UNPACK_L);
1904 g = vir_FMOV(c, rg);
1905 vir_set_unpack(c->defs[g.index], 0,
1906 V3D_QPU_UNPACK_H);
1907
1908 if (num_components > 2) {
1909 struct qreg ba = vir_TLB_COLOR_READ(c);
1910 b = vir_FMOV(c, ba);
1911 vir_set_unpack(c->defs[b.index], 0,
1912 V3D_QPU_UNPACK_L);
1913 a = vir_FMOV(c, ba);
1914 vir_set_unpack(c->defs[a.index], 0,
1915 V3D_QPU_UNPACK_H);
1916 }
1917 }
1918
1919 struct qreg *color_reads =
1920 &c->color_reads[(rt * V3D_MAX_SAMPLES + i) * 4];
1921
1922 color_reads[0] = swap_rb ? b : r;
1923 if (num_components >= 2)
1924 color_reads[1] = g;
1925 if (num_components >= 3)
1926 color_reads[2] = swap_rb ? r : b;
1927 if (num_components >= 4)
1928 color_reads[3] = a;
1929 }
1930 }
1931
1932 assert(color_reads_for_sample[component].file != QFILE_NULL);
1933 ntq_store_dest(c, &instr->dest, 0,
1934 vir_MOV(c, color_reads_for_sample[component]));
1935 }
1936
1937 static void
1938 ntq_emit_load_uniform(struct v3d_compile *c, nir_intrinsic_instr *instr)
1939 {
1940 if (nir_src_is_const(instr->src[0])) {
1941 int offset = (nir_intrinsic_base(instr) +
1942 nir_src_as_uint(instr->src[0]));
1943 assert(offset % 4 == 0);
1944 /* We need dwords */
1945 offset = offset / 4;
1946 for (int i = 0; i < instr->num_components; i++) {
1947 ntq_store_dest(c, &instr->dest, i,
1948 vir_uniform(c, QUNIFORM_UNIFORM,
1949 offset + i));
1950 }
1951 } else {
1952 ntq_emit_tmu_general(c, instr, false);
1953 }
1954 }
1955
1956 static void
1957 ntq_emit_load_input(struct v3d_compile *c, nir_intrinsic_instr *instr)
1958 {
1959 /* XXX: Use ldvpmv (uniform offset) or ldvpmd (non-uniform offset)
1960 * and enable PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR.
1961 */
1962 unsigned offset =
1963 nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
1964
1965 if (c->s->info.stage != MESA_SHADER_FRAGMENT && c->devinfo->ver >= 40) {
1966 /* Emit the LDVPM directly now, rather than at the top
1967 * of the shader like we did for V3D 3.x (which needs
1968 * vpmsetup when not just taking the next offset).
1969 *
1970 * Note that delaying like this may introduce stalls,
1971 * as LDVPMV takes a minimum of 1 instruction but may
1972 * be slower if the VPM unit is busy with another QPU.
1973 */
1974 int index = 0;
1975 if (c->s->info.system_values_read &
1976 (1ull << SYSTEM_VALUE_INSTANCE_ID)) {
1977 index++;
1978 }
1979 if (c->s->info.system_values_read &
1980 (1ull << SYSTEM_VALUE_VERTEX_ID)) {
1981 index++;
1982 }
1983 for (int i = 0; i < offset; i++)
1984 index += c->vattr_sizes[i];
1985 index += nir_intrinsic_component(instr);
1986 for (int i = 0; i < instr->num_components; i++) {
1987 struct qreg vpm_offset = vir_uniform_ui(c, index++);
1988 ntq_store_dest(c, &instr->dest, i,
1989 vir_LDVPMV_IN(c, vpm_offset));
1990 }
1991 } else {
1992 for (int i = 0; i < instr->num_components; i++) {
1993 int comp = nir_intrinsic_component(instr) + i;
1994 ntq_store_dest(c, &instr->dest, i,
1995 vir_MOV(c, c->inputs[offset * 4 + comp]));
1996 }
1997 }
1998 }
1999
2000 static void
2001 ntq_emit_per_sample_color_write(struct v3d_compile *c,
2002 nir_intrinsic_instr *instr)
2003 {
2004 assert(instr->intrinsic == nir_intrinsic_store_tlb_sample_color_v3d);
2005
2006 unsigned rt = nir_src_as_uint(instr->src[1]);
2007 assert(rt < V3D_MAX_DRAW_BUFFERS);
2008
2009 unsigned sample_idx = nir_intrinsic_base(instr);
2010 assert(sample_idx < V3D_MAX_SAMPLES);
2011
2012 unsigned offset = (rt * V3D_MAX_SAMPLES + sample_idx) * 4;
2013 for (int i = 0; i < instr->num_components; i++) {
2014 c->sample_colors[offset + i] =
2015 vir_MOV(c, ntq_get_src(c, instr->src[0], i));
2016 }
2017 }
2018
2019 static void
2020 ntq_emit_color_write(struct v3d_compile *c,
2021 nir_intrinsic_instr *instr)
2022 {
2023 unsigned offset = (nir_intrinsic_base(instr) +
2024 nir_src_as_uint(instr->src[1])) * 4 +
2025 nir_intrinsic_component(instr);
2026 for (int i = 0; i < instr->num_components; i++) {
2027 c->outputs[offset + i] =
2028 vir_MOV(c, ntq_get_src(c, instr->src[0], i));
2029 }
2030 }
2031
2032 static void
2033 emit_store_output_gs(struct v3d_compile *c, nir_intrinsic_instr *instr)
2034 {
2035 assert(instr->num_components == 1);
2036
2037 struct qreg offset = ntq_get_src(c, instr->src[1], 0);
2038
2039 uint32_t base_offset = nir_intrinsic_base(instr);
2040
2041 if (base_offset)
2042 offset = vir_ADD(c, vir_uniform_ui(c, base_offset), offset);
2043
2044 /* Usually, for VS or FS, we only emit outputs once at program end so
2045 * our VPM writes are never in non-uniform control flow, but this
2046 * is not true for GS, where we are emitting multiple vertices.
2047 */
2048 if (vir_in_nonuniform_control_flow(c)) {
2049 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2050 V3D_QPU_PF_PUSHZ);
2051 }
2052
2053 struct qreg val = ntq_get_src(c, instr->src[0], 0);
2054
2055 /* The offset isn’t necessarily dynamically uniform for a geometry
2056 * shader. This can happen if the shader sometimes doesn’t emit one of
2057 * the vertices. In that case subsequent vertices will be written to
2058 * different offsets in the VPM and we need to use the scatter write
2059 * instruction to have a different offset for each lane.
2060 */
2061 if (nir_src_is_dynamically_uniform(instr->src[1]))
2062 vir_VPM_WRITE_indirect(c, val, offset);
2063 else
2064 vir_STVPMD(c, offset, val);
2065
2066 if (vir_in_nonuniform_control_flow(c)) {
2067 struct qinst *last_inst =
2068 (struct qinst *)c->cur_block->instructions.prev;
2069 vir_set_cond(last_inst, V3D_QPU_COND_IFA);
2070 }
2071 }
2072
2073 static void
2074 ntq_emit_store_output(struct v3d_compile *c, nir_intrinsic_instr *instr)
2075 {
2076 /* XXX perf: Use stvpmv with uniform non-constant offsets and
2077 * stvpmd with non-uniform offsets and enable
2078 * PIPE_SHADER_CAP_INDIRECT_OUTPUT_ADDR.
2079 */
2080 if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
2081 ntq_emit_color_write(c, instr);
2082 } else if (c->s->info.stage == MESA_SHADER_GEOMETRY) {
2083 emit_store_output_gs(c, instr);
2084 } else {
2085 assert(c->s->info.stage == MESA_SHADER_VERTEX);
2086 assert(instr->num_components == 1);
2087
2088 vir_VPM_WRITE(c,
2089 ntq_get_src(c, instr->src[0], 0),
2090 nir_intrinsic_base(instr));
2091 }
2092 }
2093
2094 static void
2095 ntq_emit_intrinsic(struct v3d_compile *c, nir_intrinsic_instr *instr)
2096 {
2097 switch (instr->intrinsic) {
2098 case nir_intrinsic_load_uniform:
2099 ntq_emit_load_uniform(c, instr);
2100 break;
2101
2102 case nir_intrinsic_load_ubo:
2103 ntq_emit_tmu_general(c, instr, false);
2104 break;
2105
2106 case nir_intrinsic_ssbo_atomic_add:
2107 case nir_intrinsic_ssbo_atomic_imin:
2108 case nir_intrinsic_ssbo_atomic_umin:
2109 case nir_intrinsic_ssbo_atomic_imax:
2110 case nir_intrinsic_ssbo_atomic_umax:
2111 case nir_intrinsic_ssbo_atomic_and:
2112 case nir_intrinsic_ssbo_atomic_or:
2113 case nir_intrinsic_ssbo_atomic_xor:
2114 case nir_intrinsic_ssbo_atomic_exchange:
2115 case nir_intrinsic_ssbo_atomic_comp_swap:
2116 case nir_intrinsic_load_ssbo:
2117 case nir_intrinsic_store_ssbo:
2118 ntq_emit_tmu_general(c, instr, false);
2119 break;
2120
2121 case nir_intrinsic_shared_atomic_add:
2122 case nir_intrinsic_shared_atomic_imin:
2123 case nir_intrinsic_shared_atomic_umin:
2124 case nir_intrinsic_shared_atomic_imax:
2125 case nir_intrinsic_shared_atomic_umax:
2126 case nir_intrinsic_shared_atomic_and:
2127 case nir_intrinsic_shared_atomic_or:
2128 case nir_intrinsic_shared_atomic_xor:
2129 case nir_intrinsic_shared_atomic_exchange:
2130 case nir_intrinsic_shared_atomic_comp_swap:
2131 case nir_intrinsic_load_shared:
2132 case nir_intrinsic_store_shared:
2133 case nir_intrinsic_load_scratch:
2134 case nir_intrinsic_store_scratch:
2135 ntq_emit_tmu_general(c, instr, true);
2136 break;
2137
2138 case nir_intrinsic_image_load:
2139 case nir_intrinsic_image_store:
2140 case nir_intrinsic_image_atomic_add:
2141 case nir_intrinsic_image_atomic_imin:
2142 case nir_intrinsic_image_atomic_umin:
2143 case nir_intrinsic_image_atomic_imax:
2144 case nir_intrinsic_image_atomic_umax:
2145 case nir_intrinsic_image_atomic_and:
2146 case nir_intrinsic_image_atomic_or:
2147 case nir_intrinsic_image_atomic_xor:
2148 case nir_intrinsic_image_atomic_exchange:
2149 case nir_intrinsic_image_atomic_comp_swap:
2150 v3d40_vir_emit_image_load_store(c, instr);
2151 break;
2152
2153 case nir_intrinsic_get_buffer_size:
2154 ntq_store_dest(c, &instr->dest, 0,
2155 vir_uniform(c, QUNIFORM_GET_BUFFER_SIZE,
2156 nir_src_as_uint(instr->src[0])));
2157 break;
2158
2159 case nir_intrinsic_load_user_clip_plane:
2160 for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
2161 ntq_store_dest(c, &instr->dest, i,
2162 vir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
2163 nir_intrinsic_ucp_id(instr) *
2164 4 + i));
2165 }
2166 break;
2167
2168 case nir_intrinsic_load_viewport_x_scale:
2169 ntq_store_dest(c, &instr->dest, 0,
2170 vir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE, 0));
2171 break;
2172
2173 case nir_intrinsic_load_viewport_y_scale:
2174 ntq_store_dest(c, &instr->dest, 0,
2175 vir_uniform(c, QUNIFORM_VIEWPORT_Y_SCALE, 0));
2176 break;
2177
2178 case nir_intrinsic_load_viewport_z_scale:
2179 ntq_store_dest(c, &instr->dest, 0,
2180 vir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0));
2181 break;
2182
2183 case nir_intrinsic_load_viewport_z_offset:
2184 ntq_store_dest(c, &instr->dest, 0,
2185 vir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0));
2186 break;
2187
2188 case nir_intrinsic_load_alpha_ref_float:
2189 ntq_store_dest(c, &instr->dest, 0,
2190 vir_uniform(c, QUNIFORM_ALPHA_REF, 0));
2191 break;
2192
2193 case nir_intrinsic_load_line_coord:
2194 ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->line_x));
2195 break;
2196
2197 case nir_intrinsic_load_line_width:
2198 ntq_store_dest(c, &instr->dest, 0,
2199 vir_uniform(c, QUNIFORM_LINE_WIDTH, 0));
2200 break;
2201
2202 case nir_intrinsic_load_aa_line_width:
2203 ntq_store_dest(c, &instr->dest, 0,
2204 vir_uniform(c, QUNIFORM_AA_LINE_WIDTH, 0));
2205 break;
2206
2207 case nir_intrinsic_load_sample_mask_in:
2208 ntq_store_dest(c, &instr->dest, 0, vir_MSF(c));
2209 break;
2210
2211 case nir_intrinsic_load_helper_invocation:
2212 vir_set_pf(vir_MSF_dest(c, vir_nop_reg()), V3D_QPU_PF_PUSHZ);
2213 ntq_store_dest(c, &instr->dest, 0,
2214 vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
2215 vir_uniform_ui(c, ~0),
2216 vir_uniform_ui(c, 0))));
2217 break;
2218
2219 case nir_intrinsic_load_front_face:
2220 /* The register contains 0 (front) or 1 (back), and we need to
2221 * turn it into a NIR bool where true means front.
2222 */
2223 ntq_store_dest(c, &instr->dest, 0,
2224 vir_ADD(c,
2225 vir_uniform_ui(c, -1),
2226 vir_REVF(c)));
2227 break;
2228
2229 case nir_intrinsic_load_instance_id:
2230 ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->iid));
2231 break;
2232
2233 case nir_intrinsic_load_vertex_id:
2234 ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->vid));
2235 break;
2236
2237 case nir_intrinsic_load_tlb_color_v3d:
2238 vir_emit_tlb_color_read(c, instr);
2239 break;
2240
2241 case nir_intrinsic_load_input:
2242 ntq_emit_load_input(c, instr);
2243 break;
2244
2245 case nir_intrinsic_store_tlb_sample_color_v3d:
2246 ntq_emit_per_sample_color_write(c, instr);
2247 break;
2248
2249 case nir_intrinsic_store_output:
2250 ntq_emit_store_output(c, instr);
2251 break;
2252
2253 case nir_intrinsic_image_size:
2254 ntq_emit_image_size(c, instr);
2255 break;
2256
2257 case nir_intrinsic_discard:
2258 if (vir_in_nonuniform_control_flow(c)) {
2259 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2260 V3D_QPU_PF_PUSHZ);
2261 vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
2262 vir_uniform_ui(c, 0)),
2263 V3D_QPU_COND_IFA);
2264 } else {
2265 vir_SETMSF_dest(c, vir_nop_reg(),
2266 vir_uniform_ui(c, 0));
2267 }
2268 break;
2269
2270 case nir_intrinsic_discard_if: {
2271 enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, instr->src[0]);
2272
2273 if (vir_in_nonuniform_control_flow(c)) {
2274 struct qinst *exec_flag = vir_MOV_dest(c, vir_nop_reg(),
2275 c->execute);
2276 if (cond == V3D_QPU_COND_IFA) {
2277 vir_set_uf(exec_flag, V3D_QPU_UF_ANDZ);
2278 } else {
2279 vir_set_uf(exec_flag, V3D_QPU_UF_NORNZ);
2280 cond = V3D_QPU_COND_IFA;
2281 }
2282 }
2283
2284 vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
2285 vir_uniform_ui(c, 0)), cond);
2286
2287 break;
2288 }
2289
2290 case nir_intrinsic_memory_barrier:
2291 case nir_intrinsic_memory_barrier_buffer:
2292 case nir_intrinsic_memory_barrier_image:
2293 case nir_intrinsic_memory_barrier_shared:
2294 case nir_intrinsic_memory_barrier_tcs_patch:
2295 case nir_intrinsic_group_memory_barrier:
2296 /* We don't do any instruction scheduling of these NIR
2297 * instructions between each other, so we just need to make
2298 * sure that the TMU operations before the barrier are flushed
2299 * before the ones after the barrier. That is currently
2300 * handled by having a THRSW in each of them and a LDTMU
2301 * series or a TMUWT after.
2302 */
2303 break;
2304
2305 case nir_intrinsic_control_barrier:
2306 /* Emit a TSY op to get all invocations in the workgroup
2307 * (actually supergroup) to block until the last invocation
2308 * reaches the TSY op.
2309 */
2310 if (c->devinfo->ver >= 42) {
2311 vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
2312 V3D_QPU_WADDR_SYNCB));
2313 } else {
2314 struct qinst *sync =
2315 vir_BARRIERID_dest(c,
2316 vir_reg(QFILE_MAGIC,
2317 V3D_QPU_WADDR_SYNCU));
2318 sync->uniform =
2319 vir_get_uniform_index(c, QUNIFORM_CONSTANT,
2320 0xffffff00 |
2321 V3D_TSY_WAIT_INC_CHECK);
2322
2323 }
2324
2325 /* The blocking of a TSY op only happens at the next thread
2326 * switch. No texturing may be outstanding at the time of a
2327 * TSY blocking operation.
2328 */
2329 vir_emit_thrsw(c);
2330 break;
2331
2332 case nir_intrinsic_load_num_work_groups:
2333 for (int i = 0; i < 3; i++) {
2334 ntq_store_dest(c, &instr->dest, i,
2335 vir_uniform(c, QUNIFORM_NUM_WORK_GROUPS,
2336 i));
2337 }
2338 break;
2339
2340 case nir_intrinsic_load_local_invocation_index:
2341 ntq_store_dest(c, &instr->dest, 0,
2342 vir_SHR(c, c->cs_payload[1],
2343 vir_uniform_ui(c, 32 - c->local_invocation_index_bits)));
2344 break;
2345
2346 case nir_intrinsic_load_work_group_id:
2347 ntq_store_dest(c, &instr->dest, 0,
2348 vir_AND(c, c->cs_payload[0],
2349 vir_uniform_ui(c, 0xffff)));
2350 ntq_store_dest(c, &instr->dest, 1,
2351 vir_SHR(c, c->cs_payload[0],
2352 vir_uniform_ui(c, 16)));
2353 ntq_store_dest(c, &instr->dest, 2,
2354 vir_AND(c, c->cs_payload[1],
2355 vir_uniform_ui(c, 0xffff)));
2356 break;
2357
2358 case nir_intrinsic_load_subgroup_id:
2359 ntq_store_dest(c, &instr->dest, 0, vir_EIDX(c));
2360 break;
2361
2362 case nir_intrinsic_load_per_vertex_input: {
2363 /* col: vertex index, row = varying index */
2364 struct qreg col = ntq_get_src(c, instr->src[0], 0);
2365 uint32_t row_idx = nir_intrinsic_base(instr) * 4 +
2366 nir_intrinsic_component(instr);
2367 for (int i = 0; i < instr->num_components; i++) {
2368 struct qreg row = vir_uniform_ui(c, row_idx++);
2369 ntq_store_dest(c, &instr->dest, i,
2370 vir_LDVPMG_IN(c, row, col));
2371 }
2372 break;
2373 }
2374
2375 case nir_intrinsic_emit_vertex:
2376 case nir_intrinsic_end_primitive:
2377 unreachable("Should have been lowered in v3d_nir_lower_io");
2378 break;
2379
2380 case nir_intrinsic_load_primitive_id: {
2381 /* gl_PrimitiveIdIn is written by the GBG in the first word of
2382 * VPM output header. According to docs, we should read this
2383 * using ldvpm(v,d)_in (See Table 71).
2384 */
2385 ntq_store_dest(c, &instr->dest, 0,
2386 vir_LDVPMV_IN(c, vir_uniform_ui(c, 0)));
2387 break;
2388 }
2389
2390 case nir_intrinsic_load_invocation_id:
2391 ntq_store_dest(c, &instr->dest, 0, vir_IID(c));
2392 break;
2393
2394 case nir_intrinsic_load_fb_layers_v3d:
2395 ntq_store_dest(c, &instr->dest, 0,
2396 vir_uniform(c, QUNIFORM_FB_LAYERS, 0));
2397 break;
2398
2399 case nir_intrinsic_load_sample_id:
2400 ntq_store_dest(c, &instr->dest, 0, vir_SAMPID(c));
2401 break;
2402
2403 default:
2404 fprintf(stderr, "Unknown intrinsic: ");
2405 nir_print_instr(&instr->instr, stderr);
2406 fprintf(stderr, "\n");
2407 break;
2408 }
2409 }
2410
2411 /* Clears (activates) the execute flags for any channels whose jump target
2412 * matches this block.
2413 *
2414 * XXX perf: Could we be using flpush/flpop somehow for our execution channel
2415 * enabling?
2416 *
2417 * XXX perf: For uniform control flow, we should be able to skip c->execute
2418 * handling entirely.
2419 */
2420 static void
2421 ntq_activate_execute_for_block(struct v3d_compile *c)
2422 {
2423 vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
2424 c->execute, vir_uniform_ui(c, c->cur_block->index)),
2425 V3D_QPU_PF_PUSHZ);
2426
2427 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
2428 }
2429
2430 static void
2431 ntq_emit_uniform_if(struct v3d_compile *c, nir_if *if_stmt)
2432 {
2433 nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
2434 bool empty_else_block =
2435 (nir_else_block == nir_if_last_else_block(if_stmt) &&
2436 exec_list_is_empty(&nir_else_block->instr_list));
2437
2438 struct qblock *then_block = vir_new_block(c);
2439 struct qblock *after_block = vir_new_block(c);
2440 struct qblock *else_block;
2441 if (empty_else_block)
2442 else_block = after_block;
2443 else
2444 else_block = vir_new_block(c);
2445
2446 /* Set up the flags for the IF condition (taking the THEN branch). */
2447 enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
2448
2449 /* Jump to ELSE. */
2450 vir_BRANCH(c, cond == V3D_QPU_COND_IFA ?
2451 V3D_QPU_BRANCH_COND_ALLNA :
2452 V3D_QPU_BRANCH_COND_ALLA);
2453 vir_link_blocks(c->cur_block, else_block);
2454 vir_link_blocks(c->cur_block, then_block);
2455
2456 /* Process the THEN block. */
2457 vir_set_emit_block(c, then_block);
2458 ntq_emit_cf_list(c, &if_stmt->then_list);
2459
2460 if (!empty_else_block) {
2461 /* At the end of the THEN block, jump to ENDIF */
2462 vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
2463 vir_link_blocks(c->cur_block, after_block);
2464
2465 /* Emit the else block. */
2466 vir_set_emit_block(c, else_block);
2467 ntq_emit_cf_list(c, &if_stmt->else_list);
2468 }
2469
2470 vir_link_blocks(c->cur_block, after_block);
2471
2472 vir_set_emit_block(c, after_block);
2473 }
2474
2475 static void
2476 ntq_emit_nonuniform_if(struct v3d_compile *c, nir_if *if_stmt)
2477 {
2478 nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
2479 bool empty_else_block =
2480 (nir_else_block == nir_if_last_else_block(if_stmt) &&
2481 exec_list_is_empty(&nir_else_block->instr_list));
2482
2483 struct qblock *then_block = vir_new_block(c);
2484 struct qblock *after_block = vir_new_block(c);
2485 struct qblock *else_block;
2486 if (empty_else_block)
2487 else_block = after_block;
2488 else
2489 else_block = vir_new_block(c);
2490
2491 bool was_uniform_control_flow = false;
2492 if (!vir_in_nonuniform_control_flow(c)) {
2493 c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
2494 was_uniform_control_flow = true;
2495 }
2496
2497 /* Set up the flags for the IF condition (taking the THEN branch). */
2498 enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
2499
2500 /* Update the flags+cond to mean "Taking the ELSE branch (!cond) and
2501 * was previously active (execute Z) for updating the exec flags.
2502 */
2503 if (was_uniform_control_flow) {
2504 cond = v3d_qpu_cond_invert(cond);
2505 } else {
2506 struct qinst *inst = vir_MOV_dest(c, vir_nop_reg(), c->execute);
2507 if (cond == V3D_QPU_COND_IFA) {
2508 vir_set_uf(inst, V3D_QPU_UF_NORNZ);
2509 } else {
2510 vir_set_uf(inst, V3D_QPU_UF_ANDZ);
2511 cond = V3D_QPU_COND_IFA;
2512 }
2513 }
2514
2515 vir_MOV_cond(c, cond,
2516 c->execute,
2517 vir_uniform_ui(c, else_block->index));
2518
2519 /* Jump to ELSE if nothing is active for THEN, otherwise fall
2520 * through.
2521 */
2522 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
2523 vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLNA);
2524 vir_link_blocks(c->cur_block, else_block);
2525 vir_link_blocks(c->cur_block, then_block);
2526
2527 /* Process the THEN block. */
2528 vir_set_emit_block(c, then_block);
2529 ntq_emit_cf_list(c, &if_stmt->then_list);
2530
2531 if (!empty_else_block) {
2532 /* Handle the end of the THEN block. First, all currently
2533 * active channels update their execute flags to point to
2534 * ENDIF
2535 */
2536 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2537 V3D_QPU_PF_PUSHZ);
2538 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
2539 vir_uniform_ui(c, after_block->index));
2540
2541 /* If everything points at ENDIF, then jump there immediately. */
2542 vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
2543 c->execute,
2544 vir_uniform_ui(c, after_block->index)),
2545 V3D_QPU_PF_PUSHZ);
2546 vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLA);
2547 vir_link_blocks(c->cur_block, after_block);
2548 vir_link_blocks(c->cur_block, else_block);
2549
2550 vir_set_emit_block(c, else_block);
2551 ntq_activate_execute_for_block(c);
2552 ntq_emit_cf_list(c, &if_stmt->else_list);
2553 }
2554
2555 vir_link_blocks(c->cur_block, after_block);
2556
2557 vir_set_emit_block(c, after_block);
2558 if (was_uniform_control_flow)
2559 c->execute = c->undef;
2560 else
2561 ntq_activate_execute_for_block(c);
2562 }
2563
2564 static void
2565 ntq_emit_if(struct v3d_compile *c, nir_if *nif)
2566 {
2567 bool was_in_control_flow = c->in_control_flow;
2568 c->in_control_flow = true;
2569 if (!vir_in_nonuniform_control_flow(c) &&
2570 nir_src_is_dynamically_uniform(nif->condition)) {
2571 ntq_emit_uniform_if(c, nif);
2572 } else {
2573 ntq_emit_nonuniform_if(c, nif);
2574 }
2575 c->in_control_flow = was_in_control_flow;
2576 }
2577
2578 static void
2579 ntq_emit_jump(struct v3d_compile *c, nir_jump_instr *jump)
2580 {
2581 switch (jump->type) {
2582 case nir_jump_break:
2583 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2584 V3D_QPU_PF_PUSHZ);
2585 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
2586 vir_uniform_ui(c, c->loop_break_block->index));
2587 break;
2588
2589 case nir_jump_continue:
2590 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
2591 V3D_QPU_PF_PUSHZ);
2592 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
2593 vir_uniform_ui(c, c->loop_cont_block->index));
2594 break;
2595
2596 case nir_jump_return:
2597 unreachable("All returns shouold be lowered\n");
2598 break;
2599
2600 case nir_jump_goto:
2601 case nir_jump_goto_if:
2602 unreachable("not supported\n");
2603 break;
2604 }
2605 }
2606
2607 static void
2608 ntq_emit_instr(struct v3d_compile *c, nir_instr *instr)
2609 {
2610 switch (instr->type) {
2611 case nir_instr_type_alu:
2612 ntq_emit_alu(c, nir_instr_as_alu(instr));
2613 break;
2614
2615 case nir_instr_type_intrinsic:
2616 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2617 break;
2618
2619 case nir_instr_type_load_const:
2620 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2621 break;
2622
2623 case nir_instr_type_ssa_undef:
2624 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2625 break;
2626
2627 case nir_instr_type_tex:
2628 ntq_emit_tex(c, nir_instr_as_tex(instr));
2629 break;
2630
2631 case nir_instr_type_jump:
2632 ntq_emit_jump(c, nir_instr_as_jump(instr));
2633 break;
2634
2635 default:
2636 fprintf(stderr, "Unknown NIR instr type: ");
2637 nir_print_instr(instr, stderr);
2638 fprintf(stderr, "\n");
2639 abort();
2640 }
2641 }
2642
2643 static void
2644 ntq_emit_block(struct v3d_compile *c, nir_block *block)
2645 {
2646 nir_foreach_instr(instr, block) {
2647 ntq_emit_instr(c, instr);
2648 }
2649 }
2650
2651 static void ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
2652
2653 static void
2654 ntq_emit_loop(struct v3d_compile *c, nir_loop *loop)
2655 {
2656 bool was_in_control_flow = c->in_control_flow;
2657 c->in_control_flow = true;
2658
2659 bool was_uniform_control_flow = false;
2660 if (!vir_in_nonuniform_control_flow(c)) {
2661 c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
2662 was_uniform_control_flow = true;
2663 }
2664
2665 struct qblock *save_loop_cont_block = c->loop_cont_block;
2666 struct qblock *save_loop_break_block = c->loop_break_block;
2667
2668 c->loop_cont_block = vir_new_block(c);
2669 c->loop_break_block = vir_new_block(c);
2670
2671 vir_link_blocks(c->cur_block, c->loop_cont_block);
2672 vir_set_emit_block(c, c->loop_cont_block);
2673 ntq_activate_execute_for_block(c);
2674
2675 ntq_emit_cf_list(c, &loop->body);
2676
2677 /* Re-enable any previous continues now, so our ANYA check below
2678 * works.
2679 *
2680 * XXX: Use the .ORZ flags update, instead.
2681 */
2682 vir_set_pf(vir_XOR_dest(c,
2683 vir_nop_reg(),
2684 c->execute,
2685 vir_uniform_ui(c, c->loop_cont_block->index)),
2686 V3D_QPU_PF_PUSHZ);
2687 vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
2688
2689 vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
2690
2691 struct qinst *branch = vir_BRANCH(c, V3D_QPU_BRANCH_COND_ANYA);
2692 /* Pixels that were not dispatched or have been discarded should not
2693 * contribute to looping again.
2694 */
2695 branch->qpu.branch.msfign = V3D_QPU_MSFIGN_P;
2696 vir_link_blocks(c->cur_block, c->loop_cont_block);
2697 vir_link_blocks(c->cur_block, c->loop_break_block);
2698
2699 vir_set_emit_block(c, c->loop_break_block);
2700 if (was_uniform_control_flow)
2701 c->execute = c->undef;
2702 else
2703 ntq_activate_execute_for_block(c);
2704
2705 c->loop_break_block = save_loop_break_block;
2706 c->loop_cont_block = save_loop_cont_block;
2707
2708 c->loops++;
2709
2710 c->in_control_flow = was_in_control_flow;
2711 }
2712
2713 static void
2714 ntq_emit_function(struct v3d_compile *c, nir_function_impl *func)
2715 {
2716 fprintf(stderr, "FUNCTIONS not handled.\n");
2717 abort();
2718 }
2719
2720 static void
2721 ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list)
2722 {
2723 foreach_list_typed(nir_cf_node, node, node, list) {
2724 switch (node->type) {
2725 case nir_cf_node_block:
2726 ntq_emit_block(c, nir_cf_node_as_block(node));
2727 break;
2728
2729 case nir_cf_node_if:
2730 ntq_emit_if(c, nir_cf_node_as_if(node));
2731 break;
2732
2733 case nir_cf_node_loop:
2734 ntq_emit_loop(c, nir_cf_node_as_loop(node));
2735 break;
2736
2737 case nir_cf_node_function:
2738 ntq_emit_function(c, nir_cf_node_as_function(node));
2739 break;
2740
2741 default:
2742 fprintf(stderr, "Unknown NIR node type\n");
2743 abort();
2744 }
2745 }
2746 }
2747
2748 static void
2749 ntq_emit_impl(struct v3d_compile *c, nir_function_impl *impl)
2750 {
2751 ntq_setup_registers(c, &impl->registers);
2752 ntq_emit_cf_list(c, &impl->body);
2753 }
2754
2755 static void
2756 nir_to_vir(struct v3d_compile *c)
2757 {
2758 switch (c->s->info.stage) {
2759 case MESA_SHADER_FRAGMENT:
2760 c->payload_w = vir_MOV(c, vir_reg(QFILE_REG, 0));
2761 c->payload_w_centroid = vir_MOV(c, vir_reg(QFILE_REG, 1));
2762 c->payload_z = vir_MOV(c, vir_reg(QFILE_REG, 2));
2763
2764 /* V3D 4.x can disable implicit point coordinate varyings if
2765 * they are not used.
2766 */
2767 if (c->fs_key->is_points &&
2768 (c->devinfo->ver < 40 || program_reads_point_coord(c))) {
2769 c->point_x = emit_fragment_varying(c, NULL, 0, 0);
2770 c->point_y = emit_fragment_varying(c, NULL, 0, 0);
2771 c->uses_implicit_point_line_varyings = true;
2772 } else if (c->fs_key->is_lines &&
2773 (c->devinfo->ver < 40 ||
2774 (c->s->info.system_values_read &
2775 BITFIELD64_BIT(SYSTEM_VALUE_LINE_COORD)))) {
2776 c->line_x = emit_fragment_varying(c, NULL, 0, 0);
2777 c->uses_implicit_point_line_varyings = true;
2778 }
2779 break;
2780 case MESA_SHADER_COMPUTE:
2781 /* Set up the TSO for barriers, assuming we do some. */
2782 if (c->devinfo->ver < 42) {
2783 vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
2784 V3D_QPU_WADDR_SYNC));
2785 }
2786
2787 c->cs_payload[0] = vir_MOV(c, vir_reg(QFILE_REG, 0));
2788 c->cs_payload[1] = vir_MOV(c, vir_reg(QFILE_REG, 2));
2789
2790 /* Set up the division between gl_LocalInvocationIndex and
2791 * wg_in_mem in the payload reg.
2792 */
2793 int wg_size = (c->s->info.cs.local_size[0] *
2794 c->s->info.cs.local_size[1] *
2795 c->s->info.cs.local_size[2]);
2796 c->local_invocation_index_bits =
2797 ffs(util_next_power_of_two(MAX2(wg_size, 64))) - 1;
2798 assert(c->local_invocation_index_bits <= 8);
2799
2800 if (c->s->info.cs.shared_size) {
2801 struct qreg wg_in_mem = vir_SHR(c, c->cs_payload[1],
2802 vir_uniform_ui(c, 16));
2803 if (c->s->info.cs.local_size[0] != 1 ||
2804 c->s->info.cs.local_size[1] != 1 ||
2805 c->s->info.cs.local_size[2] != 1) {
2806 int wg_bits = (16 -
2807 c->local_invocation_index_bits);
2808 int wg_mask = (1 << wg_bits) - 1;
2809 wg_in_mem = vir_AND(c, wg_in_mem,
2810 vir_uniform_ui(c, wg_mask));
2811 }
2812 struct qreg shared_per_wg =
2813 vir_uniform_ui(c, c->s->info.cs.shared_size);
2814
2815 c->cs_shared_offset =
2816 vir_ADD(c,
2817 vir_uniform(c, QUNIFORM_SHARED_OFFSET,0),
2818 vir_UMUL(c, wg_in_mem, shared_per_wg));
2819 }
2820 break;
2821 default:
2822 break;
2823 }
2824
2825 if (c->s->scratch_size) {
2826 v3d_setup_spill_base(c);
2827 c->spill_size += V3D_CHANNELS * c->s->scratch_size;
2828 }
2829
2830 switch (c->s->info.stage) {
2831 case MESA_SHADER_VERTEX:
2832 ntq_setup_vs_inputs(c);
2833 break;
2834 case MESA_SHADER_GEOMETRY:
2835 ntq_setup_gs_inputs(c);
2836 break;
2837 case MESA_SHADER_FRAGMENT:
2838 ntq_setup_fs_inputs(c);
2839 break;
2840 case MESA_SHADER_COMPUTE:
2841 break;
2842 default:
2843 unreachable("unsupported shader stage");
2844 }
2845
2846 ntq_setup_outputs(c);
2847
2848 /* Find the main function and emit the body. */
2849 nir_foreach_function(function, c->s) {
2850 assert(strcmp(function->name, "main") == 0);
2851 assert(function->impl);
2852 ntq_emit_impl(c, function->impl);
2853 }
2854 }
2855
2856 const nir_shader_compiler_options v3d_nir_options = {
2857 .lower_all_io_to_temps = true,
2858 .lower_extract_byte = true,
2859 .lower_extract_word = true,
2860 .lower_bitfield_insert_to_shifts = true,
2861 .lower_bitfield_extract_to_shifts = true,
2862 .lower_bitfield_reverse = true,
2863 .lower_bit_count = true,
2864 .lower_cs_local_id_from_index = true,
2865 .lower_ffract = true,
2866 .lower_fmod = true,
2867 .lower_pack_unorm_2x16 = true,
2868 .lower_pack_snorm_2x16 = true,
2869 .lower_pack_unorm_4x8 = true,
2870 .lower_pack_snorm_4x8 = true,
2871 .lower_unpack_unorm_4x8 = true,
2872 .lower_unpack_snorm_4x8 = true,
2873 .lower_pack_half_2x16 = true,
2874 .lower_unpack_half_2x16 = true,
2875 .lower_fdiv = true,
2876 .lower_find_lsb = true,
2877 .lower_ffma = true,
2878 .lower_flrp32 = true,
2879 .lower_fpow = true,
2880 .lower_fsat = true,
2881 .lower_fsqrt = true,
2882 .lower_ifind_msb = true,
2883 .lower_isign = true,
2884 .lower_ldexp = true,
2885 .lower_mul_high = true,
2886 .lower_wpos_pntc = true,
2887 .lower_rotate = true,
2888 .lower_to_scalar = true,
2889 };
2890
2891 /**
2892 * When demoting a shader down to single-threaded, removes the THRSW
2893 * instructions (one will still be inserted at v3d_vir_to_qpu() for the
2894 * program end).
2895 */
2896 static void
2897 vir_remove_thrsw(struct v3d_compile *c)
2898 {
2899 vir_for_each_block(block, c) {
2900 vir_for_each_inst_safe(inst, block) {
2901 if (inst->qpu.sig.thrsw)
2902 vir_remove_instruction(c, inst);
2903 }
2904 }
2905
2906 c->last_thrsw = NULL;
2907 }
2908
2909 void
2910 vir_emit_last_thrsw(struct v3d_compile *c)
2911 {
2912 /* On V3D before 4.1, we need a TMU op to be outstanding when thread
2913 * switching, so disable threads if we didn't do any TMU ops (each of
2914 * which would have emitted a THRSW).
2915 */
2916 if (!c->last_thrsw_at_top_level && c->devinfo->ver < 41) {
2917 c->threads = 1;
2918 if (c->last_thrsw)
2919 vir_remove_thrsw(c);
2920 return;
2921 }
2922
2923 /* If we're threaded and the last THRSW was in conditional code, then
2924 * we need to emit another one so that we can flag it as the last
2925 * thrsw.
2926 */
2927 if (c->last_thrsw && !c->last_thrsw_at_top_level) {
2928 assert(c->devinfo->ver >= 41);
2929 vir_emit_thrsw(c);
2930 }
2931
2932 /* If we're threaded, then we need to mark the last THRSW instruction
2933 * so we can emit a pair of them at QPU emit time.
2934 *
2935 * For V3D 4.x, we can spawn the non-fragment shaders already in the
2936 * post-last-THRSW state, so we can skip this.
2937 */
2938 if (!c->last_thrsw && c->s->info.stage == MESA_SHADER_FRAGMENT) {
2939 assert(c->devinfo->ver >= 41);
2940 vir_emit_thrsw(c);
2941 }
2942
2943 if (c->last_thrsw)
2944 c->last_thrsw->is_last_thrsw = true;
2945 }
2946
2947 /* There's a flag in the shader for "center W is needed for reasons other than
2948 * non-centroid varyings", so we just walk the program after VIR optimization
2949 * to see if it's used. It should be harmless to set even if we only use
2950 * center W for varyings.
2951 */
2952 static void
2953 vir_check_payload_w(struct v3d_compile *c)
2954 {
2955 if (c->s->info.stage != MESA_SHADER_FRAGMENT)
2956 return;
2957
2958 vir_for_each_inst_inorder(inst, c) {
2959 for (int i = 0; i < vir_get_nsrc(inst); i++) {
2960 if (inst->src[i].file == QFILE_REG &&
2961 inst->src[i].index == 0) {
2962 c->uses_center_w = true;
2963 return;
2964 }
2965 }
2966 }
2967
2968 }
2969
2970 void
2971 v3d_nir_to_vir(struct v3d_compile *c)
2972 {
2973 if (V3D_DEBUG & (V3D_DEBUG_NIR |
2974 v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
2975 fprintf(stderr, "%s prog %d/%d NIR:\n",
2976 vir_get_stage_name(c),
2977 c->program_id, c->variant_id);
2978 nir_print_shader(c->s, stderr);
2979 }
2980
2981 nir_to_vir(c);
2982
2983 /* Emit the last THRSW before STVPM and TLB writes. */
2984 vir_emit_last_thrsw(c);
2985
2986 switch (c->s->info.stage) {
2987 case MESA_SHADER_FRAGMENT:
2988 emit_frag_end(c);
2989 break;
2990 case MESA_SHADER_GEOMETRY:
2991 emit_geom_end(c);
2992 break;
2993 case MESA_SHADER_VERTEX:
2994 emit_vert_end(c);
2995 break;
2996 case MESA_SHADER_COMPUTE:
2997 break;
2998 default:
2999 unreachable("bad stage");
3000 }
3001
3002 if (V3D_DEBUG & (V3D_DEBUG_VIR |
3003 v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
3004 fprintf(stderr, "%s prog %d/%d pre-opt VIR:\n",
3005 vir_get_stage_name(c),
3006 c->program_id, c->variant_id);
3007 vir_dump(c);
3008 fprintf(stderr, "\n");
3009 }
3010
3011 vir_optimize(c);
3012
3013 vir_check_payload_w(c);
3014
3015 /* XXX perf: On VC4, we do a VIR-level instruction scheduling here.
3016 * We used that on that platform to pipeline TMU writes and reduce the
3017 * number of thread switches, as well as try (mostly successfully) to
3018 * reduce maximum register pressure to allow more threads. We should
3019 * do something of that sort for V3D -- either instruction scheduling
3020 * here, or delay the the THRSW and LDTMUs from our texture
3021 * instructions until the results are needed.
3022 */
3023
3024 if (V3D_DEBUG & (V3D_DEBUG_VIR |
3025 v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
3026 fprintf(stderr, "%s prog %d/%d VIR:\n",
3027 vir_get_stage_name(c),
3028 c->program_id, c->variant_id);
3029 vir_dump(c);
3030 fprintf(stderr, "\n");
3031 }
3032
3033 /* Attempt to allocate registers for the temporaries. If we fail,
3034 * reduce thread count and try again.
3035 */
3036 int min_threads = (c->devinfo->ver >= 41) ? 2 : 1;
3037 struct qpu_reg *temp_registers;
3038 while (true) {
3039 bool spilled;
3040 temp_registers = v3d_register_allocate(c, &spilled);
3041 if (spilled)
3042 continue;
3043
3044 if (temp_registers)
3045 break;
3046
3047 if (c->threads == min_threads) {
3048 if (c->fallback_scheduler) {
3049 fprintf(stderr,
3050 "Failed to register allocate at %d "
3051 "threads:\n",
3052 c->threads);
3053 vir_dump(c);
3054 }
3055 c->compilation_result =
3056 V3D_COMPILATION_FAILED_REGISTER_ALLOCATION;
3057 return;
3058 }
3059
3060 c->threads /= 2;
3061
3062 if (c->threads == 1)
3063 vir_remove_thrsw(c);
3064 }
3065
3066 if (c->spills &&
3067 (V3D_DEBUG & (V3D_DEBUG_VIR |
3068 v3d_debug_flag_for_shader_stage(c->s->info.stage)))) {
3069 fprintf(stderr, "%s prog %d/%d spilled VIR:\n",
3070 vir_get_stage_name(c),
3071 c->program_id, c->variant_id);
3072 vir_dump(c);
3073 fprintf(stderr, "\n");
3074 }
3075
3076 v3d_vir_to_qpu(c, temp_registers);
3077 }