v3d: add shader-db stat to count SFU stalls
[mesa.git] / src / broadcom / compiler / qpu_schedule.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 * Copyright © 2014-2017 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 /**
26 * @file
27 *
28 * The basic model of the list scheduler is to take a basic block, compute a
29 * DAG of the dependencies, and make a list of the DAG heads. Heuristically
30 * pick a DAG head, then put all the children that are now DAG heads into the
31 * list of things to schedule.
32 *
33 * The goal of scheduling here is to pack pairs of operations together in a
34 * single QPU instruction.
35 */
36
37 #include "qpu/qpu_disasm.h"
38 #include "v3d_compiler.h"
39 #include "util/ralloc.h"
40 #include "util/dag.h"
41
42 static bool debug;
43
44 struct schedule_node_child;
45
46 struct schedule_node {
47 struct dag_node dag;
48 struct list_head link;
49 struct qinst *inst;
50
51 /* Longest cycles + instruction_latency() of any parent of this node. */
52 uint32_t unblocked_time;
53
54 /**
55 * Minimum number of cycles from scheduling this instruction until the
56 * end of the program, based on the slowest dependency chain through
57 * the children.
58 */
59 uint32_t delay;
60
61 /**
62 * cycles between this instruction being scheduled and when its result
63 * can be consumed.
64 */
65 uint32_t latency;
66 };
67
68 /* When walking the instructions in reverse, we need to swap before/after in
69 * add_dep().
70 */
71 enum direction { F, R };
72
73 struct schedule_state {
74 const struct v3d_device_info *devinfo;
75 struct dag *dag;
76 struct schedule_node *last_r[6];
77 struct schedule_node *last_rf[64];
78 struct schedule_node *last_sf;
79 struct schedule_node *last_vpm_read;
80 struct schedule_node *last_tmu_write;
81 struct schedule_node *last_tmu_config;
82 struct schedule_node *last_tlb;
83 struct schedule_node *last_vpm;
84 struct schedule_node *last_unif;
85 struct schedule_node *last_rtop;
86 enum direction dir;
87 /* Estimated cycle when the current instruction would start. */
88 uint32_t time;
89 };
90
91 static void
92 add_dep(struct schedule_state *state,
93 struct schedule_node *before,
94 struct schedule_node *after,
95 bool write)
96 {
97 bool write_after_read = !write && state->dir == R;
98 void *edge_data = (void *)(uintptr_t)write_after_read;
99
100 if (!before || !after)
101 return;
102
103 assert(before != after);
104
105 if (state->dir == F)
106 dag_add_edge(&before->dag, &after->dag, edge_data);
107 else
108 dag_add_edge(&after->dag, &before->dag, edge_data);
109 }
110
111 static void
112 add_read_dep(struct schedule_state *state,
113 struct schedule_node *before,
114 struct schedule_node *after)
115 {
116 add_dep(state, before, after, false);
117 }
118
119 static void
120 add_write_dep(struct schedule_state *state,
121 struct schedule_node **before,
122 struct schedule_node *after)
123 {
124 add_dep(state, *before, after, true);
125 *before = after;
126 }
127
128 static bool
129 qpu_inst_is_tlb(const struct v3d_qpu_instr *inst)
130 {
131 if (inst->sig.ldtlb || inst->sig.ldtlbu)
132 return true;
133
134 if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
135 return false;
136
137 if (inst->alu.add.magic_write &&
138 (inst->alu.add.waddr == V3D_QPU_WADDR_TLB ||
139 inst->alu.add.waddr == V3D_QPU_WADDR_TLBU))
140 return true;
141
142 if (inst->alu.mul.magic_write &&
143 (inst->alu.mul.waddr == V3D_QPU_WADDR_TLB ||
144 inst->alu.mul.waddr == V3D_QPU_WADDR_TLBU))
145 return true;
146
147 return false;
148 }
149
150 static void
151 process_mux_deps(struct schedule_state *state, struct schedule_node *n,
152 enum v3d_qpu_mux mux)
153 {
154 switch (mux) {
155 case V3D_QPU_MUX_A:
156 add_read_dep(state, state->last_rf[n->inst->qpu.raddr_a], n);
157 break;
158 case V3D_QPU_MUX_B:
159 if (!n->inst->qpu.sig.small_imm) {
160 add_read_dep(state,
161 state->last_rf[n->inst->qpu.raddr_b], n);
162 }
163 break;
164 default:
165 add_read_dep(state, state->last_r[mux - V3D_QPU_MUX_R0], n);
166 break;
167 }
168 }
169
170
171 static void
172 process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
173 uint32_t waddr, bool magic)
174 {
175 if (!magic) {
176 add_write_dep(state, &state->last_rf[waddr], n);
177 } else if (v3d_qpu_magic_waddr_is_tmu(waddr)) {
178 /* XXX perf: For V3D 4.x, we could reorder TMU writes other
179 * than the TMUS/TMUD/TMUA to improve scheduling flexibility.
180 */
181 add_write_dep(state, &state->last_tmu_write, n);
182 switch (waddr) {
183 case V3D_QPU_WADDR_TMUS:
184 case V3D_QPU_WADDR_TMUSCM:
185 case V3D_QPU_WADDR_TMUSF:
186 case V3D_QPU_WADDR_TMUSLOD:
187 add_write_dep(state, &state->last_tmu_config, n);
188 break;
189 default:
190 break;
191 }
192 } else if (v3d_qpu_magic_waddr_is_sfu(waddr)) {
193 /* Handled by v3d_qpu_writes_r4() check. */
194 } else {
195 switch (waddr) {
196 case V3D_QPU_WADDR_R0:
197 case V3D_QPU_WADDR_R1:
198 case V3D_QPU_WADDR_R2:
199 add_write_dep(state,
200 &state->last_r[waddr - V3D_QPU_WADDR_R0],
201 n);
202 break;
203 case V3D_QPU_WADDR_R3:
204 case V3D_QPU_WADDR_R4:
205 case V3D_QPU_WADDR_R5:
206 /* Handled by v3d_qpu_writes_r*() checks below. */
207 break;
208
209 case V3D_QPU_WADDR_VPM:
210 case V3D_QPU_WADDR_VPMU:
211 add_write_dep(state, &state->last_vpm, n);
212 break;
213
214 case V3D_QPU_WADDR_TLB:
215 case V3D_QPU_WADDR_TLBU:
216 add_write_dep(state, &state->last_tlb, n);
217 break;
218
219 case V3D_QPU_WADDR_SYNC:
220 case V3D_QPU_WADDR_SYNCB:
221 case V3D_QPU_WADDR_SYNCU:
222 /* For CS barrier(): Sync against any other memory
223 * accesses. There doesn't appear to be any need for
224 * barriers to affect ALU operations.
225 */
226 add_write_dep(state, &state->last_tmu_write, n);
227 break;
228
229 case V3D_QPU_WADDR_NOP:
230 break;
231
232 default:
233 fprintf(stderr, "Unknown waddr %d\n", waddr);
234 abort();
235 }
236 }
237 }
238
239 /**
240 * Common code for dependencies that need to be tracked both forward and
241 * backward.
242 *
243 * This is for things like "all reads of r4 have to happen between the r4
244 * writes that surround them".
245 */
246 static void
247 calculate_deps(struct schedule_state *state, struct schedule_node *n)
248 {
249 const struct v3d_device_info *devinfo = state->devinfo;
250 struct qinst *qinst = n->inst;
251 struct v3d_qpu_instr *inst = &qinst->qpu;
252 /* If the input and output segments are shared, then all VPM reads to
253 * a location need to happen before all writes. We handle this by
254 * serializing all VPM operations for now.
255 */
256 bool separate_vpm_segment = false;
257
258 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
259 if (inst->branch.cond != V3D_QPU_BRANCH_COND_ALWAYS)
260 add_read_dep(state, state->last_sf, n);
261
262 /* XXX: BDI */
263 /* XXX: BDU */
264 /* XXX: ub */
265 /* XXX: raddr_a */
266
267 add_write_dep(state, &state->last_unif, n);
268 return;
269 }
270
271 assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
272
273 /* XXX: LOAD_IMM */
274
275 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0)
276 process_mux_deps(state, n, inst->alu.add.a);
277 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1)
278 process_mux_deps(state, n, inst->alu.add.b);
279
280 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0)
281 process_mux_deps(state, n, inst->alu.mul.a);
282 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1)
283 process_mux_deps(state, n, inst->alu.mul.b);
284
285 switch (inst->alu.add.op) {
286 case V3D_QPU_A_VPMSETUP:
287 /* Could distinguish read/write by unpacking the uniform. */
288 add_write_dep(state, &state->last_vpm, n);
289 add_write_dep(state, &state->last_vpm_read, n);
290 break;
291
292 case V3D_QPU_A_STVPMV:
293 case V3D_QPU_A_STVPMD:
294 case V3D_QPU_A_STVPMP:
295 add_write_dep(state, &state->last_vpm, n);
296 break;
297
298 case V3D_QPU_A_LDVPMV_IN:
299 case V3D_QPU_A_LDVPMD_IN:
300 case V3D_QPU_A_LDVPMG_IN:
301 case V3D_QPU_A_LDVPMP:
302 if (!separate_vpm_segment)
303 add_write_dep(state, &state->last_vpm, n);
304 break;
305
306 case V3D_QPU_A_VPMWT:
307 add_read_dep(state, state->last_vpm, n);
308 break;
309
310 case V3D_QPU_A_MSF:
311 add_read_dep(state, state->last_tlb, n);
312 break;
313
314 case V3D_QPU_A_SETMSF:
315 case V3D_QPU_A_SETREVF:
316 add_write_dep(state, &state->last_tlb, n);
317 break;
318
319 default:
320 break;
321 }
322
323 switch (inst->alu.mul.op) {
324 case V3D_QPU_M_MULTOP:
325 case V3D_QPU_M_UMUL24:
326 /* MULTOP sets rtop, and UMUL24 implicitly reads rtop and
327 * resets it to 0. We could possibly reorder umul24s relative
328 * to each other, but for now just keep all the MUL parts in
329 * order.
330 */
331 add_write_dep(state, &state->last_rtop, n);
332 break;
333 default:
334 break;
335 }
336
337 if (inst->alu.add.op != V3D_QPU_A_NOP) {
338 process_waddr_deps(state, n, inst->alu.add.waddr,
339 inst->alu.add.magic_write);
340 }
341 if (inst->alu.mul.op != V3D_QPU_M_NOP) {
342 process_waddr_deps(state, n, inst->alu.mul.waddr,
343 inst->alu.mul.magic_write);
344 }
345 if (v3d_qpu_sig_writes_address(devinfo, &inst->sig)) {
346 process_waddr_deps(state, n, inst->sig_addr,
347 inst->sig_magic);
348 }
349
350 if (v3d_qpu_writes_r3(devinfo, inst))
351 add_write_dep(state, &state->last_r[3], n);
352 if (v3d_qpu_writes_r4(devinfo, inst))
353 add_write_dep(state, &state->last_r[4], n);
354 if (v3d_qpu_writes_r5(devinfo, inst))
355 add_write_dep(state, &state->last_r[5], n);
356
357 if (inst->sig.thrsw) {
358 /* All accumulator contents and flags are undefined after the
359 * switch.
360 */
361 for (int i = 0; i < ARRAY_SIZE(state->last_r); i++)
362 add_write_dep(state, &state->last_r[i], n);
363 add_write_dep(state, &state->last_sf, n);
364 add_write_dep(state, &state->last_rtop, n);
365
366 /* Scoreboard-locking operations have to stay after the last
367 * thread switch.
368 */
369 add_write_dep(state, &state->last_tlb, n);
370
371 add_write_dep(state, &state->last_tmu_write, n);
372 add_write_dep(state, &state->last_tmu_config, n);
373 }
374
375 if (v3d_qpu_waits_on_tmu(inst)) {
376 /* TMU loads are coming from a FIFO, so ordering is important.
377 */
378 add_write_dep(state, &state->last_tmu_write, n);
379 }
380
381 if (inst->sig.wrtmuc)
382 add_write_dep(state, &state->last_tmu_config, n);
383
384 if (inst->sig.ldtlb | inst->sig.ldtlbu)
385 add_write_dep(state, &state->last_tlb, n);
386
387 if (inst->sig.ldvpm) {
388 add_write_dep(state, &state->last_vpm_read, n);
389
390 /* At least for now, we're doing shared I/O segments, so queue
391 * all writes after all reads.
392 */
393 if (!separate_vpm_segment)
394 add_write_dep(state, &state->last_vpm, n);
395 }
396
397 /* inst->sig.ldunif or sideband uniform read */
398 if (vir_has_uniform(qinst))
399 add_write_dep(state, &state->last_unif, n);
400
401 if (v3d_qpu_reads_flags(inst))
402 add_read_dep(state, state->last_sf, n);
403 if (v3d_qpu_writes_flags(inst))
404 add_write_dep(state, &state->last_sf, n);
405 }
406
407 static void
408 calculate_forward_deps(struct v3d_compile *c, struct dag *dag,
409 struct list_head *schedule_list)
410 {
411 struct schedule_state state;
412
413 memset(&state, 0, sizeof(state));
414 state.dag = dag;
415 state.devinfo = c->devinfo;
416 state.dir = F;
417
418 list_for_each_entry(struct schedule_node, node, schedule_list, link)
419 calculate_deps(&state, node);
420 }
421
422 static void
423 calculate_reverse_deps(struct v3d_compile *c, struct dag *dag,
424 struct list_head *schedule_list)
425 {
426 struct schedule_state state;
427
428 memset(&state, 0, sizeof(state));
429 state.dag = dag;
430 state.devinfo = c->devinfo;
431 state.dir = R;
432
433 list_for_each_entry_rev(struct schedule_node, node, schedule_list,
434 link) {
435 calculate_deps(&state, (struct schedule_node *)node);
436 }
437 }
438
439 struct choose_scoreboard {
440 struct dag *dag;
441 int tick;
442 int last_magic_sfu_write_tick;
443 int last_stallable_sfu_reg;
444 int last_stallable_sfu_tick;
445 int last_ldvary_tick;
446 int last_uniforms_reset_tick;
447 int last_thrsw_tick;
448 bool tlb_locked;
449 };
450
451 static bool
452 mux_reads_too_soon(struct choose_scoreboard *scoreboard,
453 const struct v3d_qpu_instr *inst, enum v3d_qpu_mux mux)
454 {
455 switch (mux) {
456 case V3D_QPU_MUX_R4:
457 if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick <= 2)
458 return true;
459 break;
460
461 case V3D_QPU_MUX_R5:
462 if (scoreboard->tick - scoreboard->last_ldvary_tick <= 1)
463 return true;
464 break;
465 default:
466 break;
467 }
468
469 return false;
470 }
471
472 static bool
473 reads_too_soon_after_write(struct choose_scoreboard *scoreboard,
474 struct qinst *qinst)
475 {
476 const struct v3d_qpu_instr *inst = &qinst->qpu;
477
478 /* XXX: Branching off of raddr. */
479 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
480 return false;
481
482 assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
483
484 if (inst->alu.add.op != V3D_QPU_A_NOP) {
485 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0 &&
486 mux_reads_too_soon(scoreboard, inst, inst->alu.add.a)) {
487 return true;
488 }
489 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1 &&
490 mux_reads_too_soon(scoreboard, inst, inst->alu.add.b)) {
491 return true;
492 }
493 }
494
495 if (inst->alu.mul.op != V3D_QPU_M_NOP) {
496 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0 &&
497 mux_reads_too_soon(scoreboard, inst, inst->alu.mul.a)) {
498 return true;
499 }
500 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1 &&
501 mux_reads_too_soon(scoreboard, inst, inst->alu.mul.b)) {
502 return true;
503 }
504 }
505
506 /* XXX: imm */
507
508 return false;
509 }
510
511 static bool
512 writes_too_soon_after_write(const struct v3d_device_info *devinfo,
513 struct choose_scoreboard *scoreboard,
514 struct qinst *qinst)
515 {
516 const struct v3d_qpu_instr *inst = &qinst->qpu;
517
518 /* Don't schedule any other r4 write too soon after an SFU write.
519 * This would normally be prevented by dependency tracking, but might
520 * occur if a dead SFU computation makes it to scheduling.
521 */
522 if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick < 2 &&
523 v3d_qpu_writes_r4(devinfo, inst))
524 return true;
525
526 return false;
527 }
528
529 static bool
530 pixel_scoreboard_too_soon(struct choose_scoreboard *scoreboard,
531 const struct v3d_qpu_instr *inst)
532 {
533 return (scoreboard->tick == 0 && qpu_inst_is_tlb(inst));
534 }
535
536 static bool
537 qpu_instruction_uses_rf(const struct v3d_qpu_instr *inst,
538 uint32_t waddr) {
539
540 if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
541 return false;
542
543 if (v3d_qpu_uses_mux(inst, V3D_QPU_MUX_A) &&
544 inst->raddr_a == waddr)
545 return true;
546
547 if (v3d_qpu_uses_mux(inst, V3D_QPU_MUX_B) &&
548 !inst->sig.small_imm && (inst->raddr_b == waddr))
549 return true;
550
551 return false;
552 }
553
554 static bool
555 mux_read_stalls(struct choose_scoreboard *scoreboard,
556 const struct v3d_qpu_instr *inst)
557 {
558 return scoreboard->tick == scoreboard->last_stallable_sfu_tick + 1 &&
559 qpu_instruction_uses_rf(inst,
560 scoreboard->last_stallable_sfu_reg);
561 }
562
563 static int
564 get_instruction_priority(const struct v3d_qpu_instr *inst)
565 {
566 uint32_t baseline_score;
567 uint32_t next_score = 0;
568
569 /* Schedule TLB operations as late as possible, to get more
570 * parallelism between shaders.
571 */
572 if (qpu_inst_is_tlb(inst))
573 return next_score;
574 next_score++;
575
576 /* Schedule texture read results collection late to hide latency. */
577 if (v3d_qpu_waits_on_tmu(inst))
578 return next_score;
579 next_score++;
580
581 /* XXX perf: We should schedule SFU ALU ops so that the reader is 2
582 * instructions after the producer if possible, not just 1.
583 */
584
585 /* Default score for things that aren't otherwise special. */
586 baseline_score = next_score;
587 next_score++;
588
589 /* Schedule texture read setup early to hide their latency better. */
590 if (v3d_qpu_writes_tmu(inst))
591 return next_score;
592 next_score++;
593
594 return baseline_score;
595 }
596
597 static bool
598 qpu_magic_waddr_is_periph(enum v3d_qpu_waddr waddr)
599 {
600 return (v3d_qpu_magic_waddr_is_tmu(waddr) ||
601 v3d_qpu_magic_waddr_is_sfu(waddr) ||
602 v3d_qpu_magic_waddr_is_tlb(waddr) ||
603 v3d_qpu_magic_waddr_is_vpm(waddr) ||
604 v3d_qpu_magic_waddr_is_tsy(waddr));
605 }
606
607 static bool
608 qpu_accesses_peripheral(const struct v3d_qpu_instr *inst)
609 {
610 if (v3d_qpu_uses_vpm(inst))
611 return true;
612 if (v3d_qpu_uses_sfu(inst))
613 return true;
614
615 if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
616 if (inst->alu.add.op != V3D_QPU_A_NOP &&
617 inst->alu.add.magic_write &&
618 qpu_magic_waddr_is_periph(inst->alu.add.waddr)) {
619 return true;
620 }
621
622 if (inst->alu.add.op == V3D_QPU_A_TMUWT)
623 return true;
624
625 if (inst->alu.mul.op != V3D_QPU_M_NOP &&
626 inst->alu.mul.magic_write &&
627 qpu_magic_waddr_is_periph(inst->alu.mul.waddr)) {
628 return true;
629 }
630 }
631
632 return (inst->sig.ldvpm ||
633 inst->sig.ldtmu ||
634 inst->sig.ldtlb ||
635 inst->sig.ldtlbu ||
636 inst->sig.wrtmuc);
637 }
638
639 static bool
640 qpu_compatible_peripheral_access(const struct v3d_device_info *devinfo,
641 const struct v3d_qpu_instr *a,
642 const struct v3d_qpu_instr *b)
643 {
644 const bool a_uses_peripheral = qpu_accesses_peripheral(a);
645 const bool b_uses_peripheral = qpu_accesses_peripheral(b);
646
647 /* We can always do one peripheral access per instruction. */
648 if (!a_uses_peripheral || !b_uses_peripheral)
649 return true;
650
651 if (devinfo->ver < 41)
652 return false;
653
654 /* V3D 4.1 and later allow TMU read along with a VPM read or write, and
655 * WRTMUC with a TMU magic register write (other than tmuc).
656 */
657 if ((a->sig.ldtmu && v3d_qpu_uses_vpm(b)) ||
658 (b->sig.ldtmu && v3d_qpu_uses_vpm(a))) {
659 return true;
660 }
661
662 if ((a->sig.wrtmuc && v3d_qpu_writes_tmu_not_tmuc(b)) ||
663 (b->sig.wrtmuc && v3d_qpu_writes_tmu_not_tmuc(a))) {
664 return true;
665 }
666
667 return false;
668 }
669
670 static bool
671 qpu_merge_inst(const struct v3d_device_info *devinfo,
672 struct v3d_qpu_instr *result,
673 const struct v3d_qpu_instr *a,
674 const struct v3d_qpu_instr *b)
675 {
676 if (a->type != V3D_QPU_INSTR_TYPE_ALU ||
677 b->type != V3D_QPU_INSTR_TYPE_ALU) {
678 return false;
679 }
680
681 if (!qpu_compatible_peripheral_access(devinfo, a, b))
682 return false;
683
684 struct v3d_qpu_instr merge = *a;
685
686 if (b->alu.add.op != V3D_QPU_A_NOP) {
687 if (a->alu.add.op != V3D_QPU_A_NOP)
688 return false;
689 merge.alu.add = b->alu.add;
690
691 merge.flags.ac = b->flags.ac;
692 merge.flags.apf = b->flags.apf;
693 merge.flags.auf = b->flags.auf;
694 }
695
696 if (b->alu.mul.op != V3D_QPU_M_NOP) {
697 if (a->alu.mul.op != V3D_QPU_M_NOP)
698 return false;
699 merge.alu.mul = b->alu.mul;
700
701 merge.flags.mc = b->flags.mc;
702 merge.flags.mpf = b->flags.mpf;
703 merge.flags.muf = b->flags.muf;
704 }
705
706 if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_A)) {
707 if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_A) &&
708 a->raddr_a != b->raddr_a) {
709 return false;
710 }
711 merge.raddr_a = b->raddr_a;
712 }
713
714 if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_B)) {
715 if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_B) &&
716 (a->raddr_b != b->raddr_b ||
717 a->sig.small_imm != b->sig.small_imm)) {
718 return false;
719 }
720 merge.raddr_b = b->raddr_b;
721 }
722
723 merge.sig.thrsw |= b->sig.thrsw;
724 merge.sig.ldunif |= b->sig.ldunif;
725 merge.sig.ldunifrf |= b->sig.ldunifrf;
726 merge.sig.ldunifa |= b->sig.ldunifa;
727 merge.sig.ldunifarf |= b->sig.ldunifarf;
728 merge.sig.ldtmu |= b->sig.ldtmu;
729 merge.sig.ldvary |= b->sig.ldvary;
730 merge.sig.ldvpm |= b->sig.ldvpm;
731 merge.sig.small_imm |= b->sig.small_imm;
732 merge.sig.ldtlb |= b->sig.ldtlb;
733 merge.sig.ldtlbu |= b->sig.ldtlbu;
734 merge.sig.ucb |= b->sig.ucb;
735 merge.sig.rotate |= b->sig.rotate;
736 merge.sig.wrtmuc |= b->sig.wrtmuc;
737
738 if (v3d_qpu_sig_writes_address(devinfo, &a->sig) &&
739 v3d_qpu_sig_writes_address(devinfo, &b->sig))
740 return false;
741 merge.sig_addr |= b->sig_addr;
742 merge.sig_magic |= b->sig_magic;
743
744 uint64_t packed;
745 bool ok = v3d_qpu_instr_pack(devinfo, &merge, &packed);
746
747 *result = merge;
748 /* No modifying the real instructions on failure. */
749 assert(ok || (a != result && b != result));
750
751 return ok;
752 }
753
754 static struct schedule_node *
755 choose_instruction_to_schedule(const struct v3d_device_info *devinfo,
756 struct choose_scoreboard *scoreboard,
757 struct schedule_node *prev_inst)
758 {
759 struct schedule_node *chosen = NULL;
760 int chosen_prio = 0;
761
762 /* Don't pair up anything with a thread switch signal -- emit_thrsw()
763 * will handle pairing it along with filling the delay slots.
764 */
765 if (prev_inst) {
766 if (prev_inst->inst->qpu.sig.thrsw)
767 return NULL;
768 }
769
770 list_for_each_entry(struct schedule_node, n, &scoreboard->dag->heads,
771 dag.link) {
772 const struct v3d_qpu_instr *inst = &n->inst->qpu;
773
774 /* Don't choose the branch instruction until it's the last one
775 * left. We'll move it up to fit its delay slots after we
776 * choose it.
777 */
778 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH &&
779 !list_is_singular(&scoreboard->dag->heads)) {
780 continue;
781 }
782
783 /* "An instruction must not read from a location in physical
784 * regfile A or B that was written to by the previous
785 * instruction."
786 */
787 if (reads_too_soon_after_write(scoreboard, n->inst))
788 continue;
789
790 if (writes_too_soon_after_write(devinfo, scoreboard, n->inst))
791 continue;
792
793 /* "A scoreboard wait must not occur in the first two
794 * instructions of a fragment shader. This is either the
795 * explicit Wait for Scoreboard signal or an implicit wait
796 * with the first tile-buffer read or write instruction."
797 */
798 if (pixel_scoreboard_too_soon(scoreboard, inst))
799 continue;
800
801 /* ldunif and ldvary both write r5, but ldunif does so a tick
802 * sooner. If the ldvary's r5 wasn't used, then ldunif might
803 * otherwise get scheduled so ldunif and ldvary try to update
804 * r5 in the same tick.
805 *
806 * XXX perf: To get good pipelining of a sequence of varying
807 * loads, we need to figure out how to pair the ldvary signal
808 * up to the instruction before the last r5 user in the
809 * previous ldvary sequence. Currently, it usually pairs with
810 * the last r5 user.
811 */
812 if ((inst->sig.ldunif || inst->sig.ldunifa) &&
813 scoreboard->tick == scoreboard->last_ldvary_tick + 1) {
814 continue;
815 }
816
817 /* If we're trying to pair with another instruction, check
818 * that they're compatible.
819 */
820 if (prev_inst) {
821 /* Don't pair up a thread switch signal -- we'll
822 * handle pairing it when we pick it on its own.
823 */
824 if (inst->sig.thrsw)
825 continue;
826
827 if (prev_inst->inst->uniform != -1 &&
828 n->inst->uniform != -1)
829 continue;
830
831 /* Don't merge in something that will lock the TLB.
832 * Hopwefully what we have in inst will release some
833 * other instructions, allowing us to delay the
834 * TLB-locking instruction until later.
835 */
836 if (!scoreboard->tlb_locked && qpu_inst_is_tlb(inst))
837 continue;
838
839 struct v3d_qpu_instr merged_inst;
840 if (!qpu_merge_inst(devinfo, &merged_inst,
841 &prev_inst->inst->qpu, inst)) {
842 continue;
843 }
844 }
845
846 int prio = get_instruction_priority(inst);
847
848 /* Found a valid instruction. If nothing better comes along,
849 * this one works.
850 */
851 if (!chosen) {
852 chosen = n;
853 chosen_prio = prio;
854 continue;
855 }
856
857 if (prio > chosen_prio) {
858 chosen = n;
859 chosen_prio = prio;
860 } else if (prio < chosen_prio) {
861 continue;
862 }
863
864 if (n->delay > chosen->delay) {
865 chosen = n;
866 chosen_prio = prio;
867 } else if (n->delay < chosen->delay) {
868 continue;
869 }
870 }
871
872 return chosen;
873 }
874
875 static void
876 update_scoreboard_for_magic_waddr(struct choose_scoreboard *scoreboard,
877 enum v3d_qpu_waddr waddr)
878 {
879 if (v3d_qpu_magic_waddr_is_sfu(waddr))
880 scoreboard->last_magic_sfu_write_tick = scoreboard->tick;
881 }
882
883 static void
884 update_scoreboard_for_sfu_stall_waddr(struct choose_scoreboard *scoreboard,
885 const struct v3d_qpu_instr *inst)
886 {
887 if (v3d_qpu_instr_is_sfu(inst)) {
888 scoreboard->last_stallable_sfu_reg = inst->alu.add.waddr;
889 scoreboard->last_stallable_sfu_tick = scoreboard->tick;
890 }
891 }
892
893 static void
894 update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
895 const struct v3d_qpu_instr *inst)
896 {
897 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
898 return;
899
900 assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
901
902 if (inst->alu.add.op != V3D_QPU_A_NOP) {
903 if (inst->alu.add.magic_write) {
904 update_scoreboard_for_magic_waddr(scoreboard,
905 inst->alu.add.waddr);
906 } else {
907 update_scoreboard_for_sfu_stall_waddr(scoreboard,
908 inst);
909 }
910 }
911
912 if (inst->alu.mul.op != V3D_QPU_M_NOP) {
913 if (inst->alu.mul.magic_write) {
914 update_scoreboard_for_magic_waddr(scoreboard,
915 inst->alu.mul.waddr);
916 }
917 }
918
919 if (inst->sig.ldvary)
920 scoreboard->last_ldvary_tick = scoreboard->tick;
921
922 if (qpu_inst_is_tlb(inst))
923 scoreboard->tlb_locked = true;
924 }
925
926 static void
927 dump_state(const struct v3d_device_info *devinfo, struct dag *dag)
928 {
929 list_for_each_entry(struct schedule_node, n, &dag->heads, dag.link) {
930 fprintf(stderr, " t=%4d: ", n->unblocked_time);
931 v3d_qpu_dump(devinfo, &n->inst->qpu);
932 fprintf(stderr, "\n");
933
934 util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
935 struct schedule_node *child =
936 (struct schedule_node *)edge->child;
937 if (!child)
938 continue;
939
940 fprintf(stderr, " - ");
941 v3d_qpu_dump(devinfo, &child->inst->qpu);
942 fprintf(stderr, " (%d parents, %c)\n",
943 child->dag.parent_count,
944 edge->data ? 'w' : 'r');
945 }
946 }
947 }
948
949 static uint32_t magic_waddr_latency(enum v3d_qpu_waddr waddr,
950 const struct v3d_qpu_instr *after)
951 {
952 /* Apply some huge latency between texture fetch requests and getting
953 * their results back.
954 *
955 * FIXME: This is actually pretty bogus. If we do:
956 *
957 * mov tmu0_s, a
958 * <a bit of math>
959 * mov tmu0_s, b
960 * load_tmu0
961 * <more math>
962 * load_tmu0
963 *
964 * we count that as worse than
965 *
966 * mov tmu0_s, a
967 * mov tmu0_s, b
968 * <lots of math>
969 * load_tmu0
970 * <more math>
971 * load_tmu0
972 *
973 * because we associate the first load_tmu0 with the *second* tmu0_s.
974 */
975 if (v3d_qpu_magic_waddr_is_tmu(waddr) && v3d_qpu_waits_on_tmu(after))
976 return 100;
977
978 /* Assume that anything depending on us is consuming the SFU result. */
979 if (v3d_qpu_magic_waddr_is_sfu(waddr))
980 return 3;
981
982 return 1;
983 }
984
985 static uint32_t
986 instruction_latency(struct schedule_node *before, struct schedule_node *after)
987 {
988 const struct v3d_qpu_instr *before_inst = &before->inst->qpu;
989 const struct v3d_qpu_instr *after_inst = &after->inst->qpu;
990 uint32_t latency = 1;
991
992 if (before_inst->type != V3D_QPU_INSTR_TYPE_ALU ||
993 after_inst->type != V3D_QPU_INSTR_TYPE_ALU)
994 return latency;
995
996 if (before_inst->alu.add.magic_write) {
997 latency = MAX2(latency,
998 magic_waddr_latency(before_inst->alu.add.waddr,
999 after_inst));
1000 }
1001
1002 if (before_inst->alu.mul.magic_write) {
1003 latency = MAX2(latency,
1004 magic_waddr_latency(before_inst->alu.mul.waddr,
1005 after_inst));
1006 }
1007
1008 return latency;
1009 }
1010
1011 /** Recursive computation of the delay member of a node. */
1012 static void
1013 compute_delay(struct dag_node *node, void *state)
1014 {
1015 struct schedule_node *n = (struct schedule_node *)node;
1016
1017 n->delay = 1;
1018
1019 util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
1020 struct schedule_node *child =
1021 (struct schedule_node *)edge->child;
1022
1023 n->delay = MAX2(n->delay, (child->delay +
1024 instruction_latency(n, child)));
1025 }
1026 }
1027
1028 /* Removes a DAG head, but removing only the WAR edges. (dag_prune_head()
1029 * should be called on it later to finish pruning the other edges).
1030 */
1031 static void
1032 pre_remove_head(struct dag *dag, struct schedule_node *n)
1033 {
1034 list_delinit(&n->dag.link);
1035
1036 util_dynarray_foreach(&n->dag.edges, struct dag_edge, edge) {
1037 if (edge->data)
1038 dag_remove_edge(dag, edge);
1039 }
1040 }
1041
1042 static void
1043 mark_instruction_scheduled(struct dag *dag,
1044 uint32_t time,
1045 struct schedule_node *node)
1046 {
1047 if (!node)
1048 return;
1049
1050 util_dynarray_foreach(&node->dag.edges, struct dag_edge, edge) {
1051 struct schedule_node *child =
1052 (struct schedule_node *)edge->child;
1053
1054 if (!child)
1055 continue;
1056
1057 uint32_t latency = instruction_latency(node, child);
1058
1059 child->unblocked_time = MAX2(child->unblocked_time,
1060 time + latency);
1061 }
1062 dag_prune_head(dag, &node->dag);
1063 }
1064
1065 static void
1066 insert_scheduled_instruction(struct v3d_compile *c,
1067 struct qblock *block,
1068 struct choose_scoreboard *scoreboard,
1069 struct qinst *inst)
1070 {
1071 list_addtail(&inst->link, &block->instructions);
1072
1073 update_scoreboard_for_chosen(scoreboard, &inst->qpu);
1074 c->qpu_inst_count++;
1075 scoreboard->tick++;
1076 }
1077
1078 static struct qinst *
1079 vir_nop()
1080 {
1081 struct qreg undef = vir_nop_reg();
1082 struct qinst *qinst = vir_add_inst(V3D_QPU_A_NOP, undef, undef, undef);
1083
1084 return qinst;
1085 }
1086
1087 static void
1088 emit_nop(struct v3d_compile *c, struct qblock *block,
1089 struct choose_scoreboard *scoreboard)
1090 {
1091 insert_scheduled_instruction(c, block, scoreboard, vir_nop());
1092 }
1093
1094 static bool
1095 qpu_instruction_valid_in_thrend_slot(struct v3d_compile *c,
1096 const struct qinst *qinst, int slot)
1097 {
1098 const struct v3d_qpu_instr *inst = &qinst->qpu;
1099
1100 /* Only TLB Z writes are prohibited in the last slot, but we don't
1101 * have those flagged so prohibit all TLB ops for now.
1102 */
1103 if (slot == 2 && qpu_inst_is_tlb(inst))
1104 return false;
1105
1106 if (slot > 0 && qinst->uniform != ~0)
1107 return false;
1108
1109 if (v3d_qpu_uses_vpm(inst))
1110 return false;
1111
1112 if (inst->sig.ldvary)
1113 return false;
1114
1115 if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
1116 /* GFXH-1625: TMUWT not allowed in the final instruction. */
1117 if (slot == 2 && inst->alu.add.op == V3D_QPU_A_TMUWT)
1118 return false;
1119
1120 /* No writing physical registers at the end. */
1121 if (!inst->alu.add.magic_write ||
1122 !inst->alu.mul.magic_write) {
1123 return false;
1124 }
1125
1126 if (c->devinfo->ver < 40 && inst->alu.add.op == V3D_QPU_A_SETMSF)
1127 return false;
1128
1129 /* RF0-2 might be overwritten during the delay slots by
1130 * fragment shader setup.
1131 */
1132 if (inst->raddr_a < 3 &&
1133 (inst->alu.add.a == V3D_QPU_MUX_A ||
1134 inst->alu.add.b == V3D_QPU_MUX_A ||
1135 inst->alu.mul.a == V3D_QPU_MUX_A ||
1136 inst->alu.mul.b == V3D_QPU_MUX_A)) {
1137 return false;
1138 }
1139
1140 if (inst->raddr_b < 3 &&
1141 !inst->sig.small_imm &&
1142 (inst->alu.add.a == V3D_QPU_MUX_B ||
1143 inst->alu.add.b == V3D_QPU_MUX_B ||
1144 inst->alu.mul.a == V3D_QPU_MUX_B ||
1145 inst->alu.mul.b == V3D_QPU_MUX_B)) {
1146 return false;
1147 }
1148 }
1149
1150 return true;
1151 }
1152
1153 static bool
1154 valid_thrsw_sequence(struct v3d_compile *c, struct choose_scoreboard *scoreboard,
1155 struct qinst *qinst, int instructions_in_sequence,
1156 bool is_thrend)
1157 {
1158 /* No emitting our thrsw while the previous thrsw hasn't happened yet. */
1159 if (scoreboard->last_thrsw_tick + 3 >
1160 scoreboard->tick - instructions_in_sequence) {
1161 return false;
1162 }
1163
1164 for (int slot = 0; slot < instructions_in_sequence; slot++) {
1165 /* No scheduling SFU when the result would land in the other
1166 * thread. The simulator complains for safety, though it
1167 * would only occur for dead code in our case.
1168 */
1169 if (slot > 0 &&
1170 qinst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
1171 (v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.add.waddr) ||
1172 v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.mul.waddr))) {
1173 return false;
1174 }
1175
1176 if (slot > 0 && qinst->qpu.sig.ldvary)
1177 return false;
1178
1179 if (is_thrend &&
1180 !qpu_instruction_valid_in_thrend_slot(c, qinst, slot)) {
1181 return false;
1182 }
1183
1184 /* Note that the list is circular, so we can only do this up
1185 * to instructions_in_sequence.
1186 */
1187 qinst = (struct qinst *)qinst->link.next;
1188 }
1189
1190 return true;
1191 }
1192
1193 /**
1194 * Emits a THRSW signal in the stream, trying to move it up to pair with
1195 * another instruction.
1196 */
1197 static int
1198 emit_thrsw(struct v3d_compile *c,
1199 struct qblock *block,
1200 struct choose_scoreboard *scoreboard,
1201 struct qinst *inst,
1202 bool is_thrend)
1203 {
1204 int time = 0;
1205
1206 /* There should be nothing in a thrsw inst being scheduled other than
1207 * the signal bits.
1208 */
1209 assert(inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU);
1210 assert(inst->qpu.alu.add.op == V3D_QPU_A_NOP);
1211 assert(inst->qpu.alu.mul.op == V3D_QPU_M_NOP);
1212
1213 /* Find how far back into previous instructions we can put the THRSW. */
1214 int slots_filled = 0;
1215 struct qinst *merge_inst = NULL;
1216 vir_for_each_inst_rev(prev_inst, block) {
1217 struct v3d_qpu_sig sig = prev_inst->qpu.sig;
1218 sig.thrsw = true;
1219 uint32_t packed_sig;
1220
1221 if (!v3d_qpu_sig_pack(c->devinfo, &sig, &packed_sig))
1222 break;
1223
1224 if (!valid_thrsw_sequence(c, scoreboard,
1225 prev_inst, slots_filled + 1,
1226 is_thrend)) {
1227 break;
1228 }
1229
1230 merge_inst = prev_inst;
1231 if (++slots_filled == 3)
1232 break;
1233 }
1234
1235 bool needs_free = false;
1236 if (merge_inst) {
1237 merge_inst->qpu.sig.thrsw = true;
1238 needs_free = true;
1239 scoreboard->last_thrsw_tick = scoreboard->tick - slots_filled;
1240 } else {
1241 scoreboard->last_thrsw_tick = scoreboard->tick;
1242 insert_scheduled_instruction(c, block, scoreboard, inst);
1243 time++;
1244 slots_filled++;
1245 merge_inst = inst;
1246 }
1247
1248 /* Insert any extra delay slot NOPs we need. */
1249 for (int i = 0; i < 3 - slots_filled; i++) {
1250 emit_nop(c, block, scoreboard);
1251 time++;
1252 }
1253
1254 /* If we're emitting the last THRSW (other than program end), then
1255 * signal that to the HW by emitting two THRSWs in a row.
1256 */
1257 if (inst->is_last_thrsw) {
1258 struct qinst *second_inst =
1259 (struct qinst *)merge_inst->link.next;
1260 second_inst->qpu.sig.thrsw = true;
1261 }
1262
1263 /* If we put our THRSW into another instruction, free up the
1264 * instruction that didn't end up scheduled into the list.
1265 */
1266 if (needs_free)
1267 free(inst);
1268
1269 return time;
1270 }
1271
1272 static uint32_t
1273 schedule_instructions(struct v3d_compile *c,
1274 struct choose_scoreboard *scoreboard,
1275 struct qblock *block,
1276 enum quniform_contents *orig_uniform_contents,
1277 uint32_t *orig_uniform_data,
1278 uint32_t *next_uniform)
1279 {
1280 const struct v3d_device_info *devinfo = c->devinfo;
1281 uint32_t time = 0;
1282
1283 while (!list_empty(&scoreboard->dag->heads)) {
1284 struct schedule_node *chosen =
1285 choose_instruction_to_schedule(devinfo,
1286 scoreboard,
1287 NULL);
1288 struct schedule_node *merge = NULL;
1289
1290 /* If there are no valid instructions to schedule, drop a NOP
1291 * in.
1292 */
1293 struct qinst *qinst = chosen ? chosen->inst : vir_nop();
1294 struct v3d_qpu_instr *inst = &qinst->qpu;
1295
1296 if (debug) {
1297 fprintf(stderr, "t=%4d: current list:\n",
1298 time);
1299 dump_state(devinfo, scoreboard->dag);
1300 fprintf(stderr, "t=%4d: chose: ", time);
1301 v3d_qpu_dump(devinfo, inst);
1302 fprintf(stderr, "\n");
1303 }
1304
1305 /* We can't mark_instruction_scheduled() the chosen inst until
1306 * we're done identifying instructions to merge, so put the
1307 * merged instructions on a list for a moment.
1308 */
1309 struct list_head merged_list;
1310 list_inithead(&merged_list);
1311
1312 /* Schedule this instruction onto the QPU list. Also try to
1313 * find an instruction to pair with it.
1314 */
1315 if (chosen) {
1316 time = MAX2(chosen->unblocked_time, time);
1317 pre_remove_head(scoreboard->dag, chosen);
1318
1319 while ((merge =
1320 choose_instruction_to_schedule(devinfo,
1321 scoreboard,
1322 chosen))) {
1323 time = MAX2(merge->unblocked_time, time);
1324 pre_remove_head(scoreboard->dag, chosen);
1325 list_addtail(&merge->link, &merged_list);
1326 (void)qpu_merge_inst(devinfo, inst,
1327 inst, &merge->inst->qpu);
1328 if (merge->inst->uniform != -1) {
1329 chosen->inst->uniform =
1330 merge->inst->uniform;
1331 }
1332
1333 if (debug) {
1334 fprintf(stderr, "t=%4d: merging: ",
1335 time);
1336 v3d_qpu_dump(devinfo, &merge->inst->qpu);
1337 fprintf(stderr, "\n");
1338 fprintf(stderr, " result: ");
1339 v3d_qpu_dump(devinfo, inst);
1340 fprintf(stderr, "\n");
1341 }
1342 }
1343 if (mux_read_stalls(scoreboard, inst))
1344 c->qpu_inst_stalled_count++;
1345 }
1346
1347 /* Update the uniform index for the rewritten location --
1348 * branch target updating will still need to change
1349 * c->uniform_data[] using this index.
1350 */
1351 if (qinst->uniform != -1) {
1352 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
1353 block->branch_uniform = *next_uniform;
1354
1355 c->uniform_data[*next_uniform] =
1356 orig_uniform_data[qinst->uniform];
1357 c->uniform_contents[*next_uniform] =
1358 orig_uniform_contents[qinst->uniform];
1359 qinst->uniform = *next_uniform;
1360 (*next_uniform)++;
1361 }
1362
1363 if (debug) {
1364 fprintf(stderr, "\n");
1365 }
1366
1367 /* Now that we've scheduled a new instruction, some of its
1368 * children can be promoted to the list of instructions ready to
1369 * be scheduled. Update the children's unblocked time for this
1370 * DAG edge as we do so.
1371 */
1372 mark_instruction_scheduled(scoreboard->dag, time, chosen);
1373 list_for_each_entry(struct schedule_node, merge, &merged_list,
1374 link) {
1375 mark_instruction_scheduled(scoreboard->dag, time, merge);
1376
1377 /* The merged VIR instruction doesn't get re-added to the
1378 * block, so free it now.
1379 */
1380 free(merge->inst);
1381 }
1382
1383 if (inst->sig.thrsw) {
1384 time += emit_thrsw(c, block, scoreboard, qinst, false);
1385 } else {
1386 insert_scheduled_instruction(c, block,
1387 scoreboard, qinst);
1388
1389 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
1390 block->branch_qpu_ip = c->qpu_inst_count - 1;
1391 /* Fill the delay slots.
1392 *
1393 * We should fill these with actual instructions,
1394 * instead, but that will probably need to be done
1395 * after this, once we know what the leading
1396 * instructions of the successors are (so we can
1397 * handle A/B register file write latency)
1398 */
1399 for (int i = 0; i < 3; i++)
1400 emit_nop(c, block, scoreboard);
1401 }
1402 }
1403 }
1404
1405 return time;
1406 }
1407
1408 static uint32_t
1409 qpu_schedule_instructions_block(struct v3d_compile *c,
1410 struct choose_scoreboard *scoreboard,
1411 struct qblock *block,
1412 enum quniform_contents *orig_uniform_contents,
1413 uint32_t *orig_uniform_data,
1414 uint32_t *next_uniform)
1415 {
1416 void *mem_ctx = ralloc_context(NULL);
1417 scoreboard->dag = dag_create(mem_ctx);
1418 struct list_head setup_list;
1419
1420 list_inithead(&setup_list);
1421
1422 /* Wrap each instruction in a scheduler structure. */
1423 while (!list_empty(&block->instructions)) {
1424 struct qinst *qinst = (struct qinst *)block->instructions.next;
1425 struct schedule_node *n =
1426 rzalloc(mem_ctx, struct schedule_node);
1427
1428 dag_init_node(scoreboard->dag, &n->dag);
1429 n->inst = qinst;
1430
1431 list_del(&qinst->link);
1432 list_addtail(&n->link, &setup_list);
1433 }
1434
1435 calculate_forward_deps(c, scoreboard->dag, &setup_list);
1436 calculate_reverse_deps(c, scoreboard->dag, &setup_list);
1437
1438 dag_traverse_bottom_up(scoreboard->dag, compute_delay, NULL);
1439
1440 uint32_t cycles = schedule_instructions(c, scoreboard, block,
1441 orig_uniform_contents,
1442 orig_uniform_data,
1443 next_uniform);
1444
1445 ralloc_free(mem_ctx);
1446 scoreboard->dag = NULL;
1447
1448 return cycles;
1449 }
1450
1451 static void
1452 qpu_set_branch_targets(struct v3d_compile *c)
1453 {
1454 vir_for_each_block(block, c) {
1455 /* The end block of the program has no branch. */
1456 if (!block->successors[0])
1457 continue;
1458
1459 /* If there was no branch instruction, then the successor
1460 * block must follow immediately after this one.
1461 */
1462 if (block->branch_qpu_ip == ~0) {
1463 assert(block->end_qpu_ip + 1 ==
1464 block->successors[0]->start_qpu_ip);
1465 continue;
1466 }
1467
1468 /* Walk back through the delay slots to find the branch
1469 * instr.
1470 */
1471 struct list_head *entry = block->instructions.prev;
1472 for (int i = 0; i < 3; i++)
1473 entry = entry->prev;
1474 struct qinst *branch = container_of(entry, branch, link);
1475 assert(branch->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH);
1476
1477 /* Make sure that the if-we-don't-jump
1478 * successor was scheduled just after the
1479 * delay slots.
1480 */
1481 assert(!block->successors[1] ||
1482 block->successors[1]->start_qpu_ip ==
1483 block->branch_qpu_ip + 4);
1484
1485 branch->qpu.branch.offset =
1486 ((block->successors[0]->start_qpu_ip -
1487 (block->branch_qpu_ip + 4)) *
1488 sizeof(uint64_t));
1489
1490 /* Set up the relative offset to jump in the
1491 * uniform stream.
1492 *
1493 * Use a temporary here, because
1494 * uniform_data[inst->uniform] may be shared
1495 * between multiple instructions.
1496 */
1497 assert(c->uniform_contents[branch->uniform] == QUNIFORM_CONSTANT);
1498 c->uniform_data[branch->uniform] =
1499 (block->successors[0]->start_uniform -
1500 (block->branch_uniform + 1)) * 4;
1501 }
1502 }
1503
1504 uint32_t
1505 v3d_qpu_schedule_instructions(struct v3d_compile *c)
1506 {
1507 const struct v3d_device_info *devinfo = c->devinfo;
1508 struct qblock *end_block = list_last_entry(&c->blocks,
1509 struct qblock, link);
1510
1511 /* We reorder the uniforms as we schedule instructions, so save the
1512 * old data off and replace it.
1513 */
1514 uint32_t *uniform_data = c->uniform_data;
1515 enum quniform_contents *uniform_contents = c->uniform_contents;
1516 c->uniform_contents = ralloc_array(c, enum quniform_contents,
1517 c->num_uniforms);
1518 c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
1519 c->uniform_array_size = c->num_uniforms;
1520 uint32_t next_uniform = 0;
1521
1522 struct choose_scoreboard scoreboard;
1523 memset(&scoreboard, 0, sizeof(scoreboard));
1524 scoreboard.last_ldvary_tick = -10;
1525 scoreboard.last_magic_sfu_write_tick = -10;
1526 scoreboard.last_uniforms_reset_tick = -10;
1527 scoreboard.last_thrsw_tick = -10;
1528 scoreboard.last_stallable_sfu_tick = -10;
1529
1530 if (debug) {
1531 fprintf(stderr, "Pre-schedule instructions\n");
1532 vir_for_each_block(block, c) {
1533 fprintf(stderr, "BLOCK %d\n", block->index);
1534 list_for_each_entry(struct qinst, qinst,
1535 &block->instructions, link) {
1536 v3d_qpu_dump(devinfo, &qinst->qpu);
1537 fprintf(stderr, "\n");
1538 }
1539 }
1540 fprintf(stderr, "\n");
1541 }
1542
1543 uint32_t cycles = 0;
1544 vir_for_each_block(block, c) {
1545 block->start_qpu_ip = c->qpu_inst_count;
1546 block->branch_qpu_ip = ~0;
1547 block->start_uniform = next_uniform;
1548
1549 cycles += qpu_schedule_instructions_block(c,
1550 &scoreboard,
1551 block,
1552 uniform_contents,
1553 uniform_data,
1554 &next_uniform);
1555
1556 block->end_qpu_ip = c->qpu_inst_count - 1;
1557 }
1558
1559 /* Emit the program-end THRSW instruction. */;
1560 struct qinst *thrsw = vir_nop();
1561 thrsw->qpu.sig.thrsw = true;
1562 emit_thrsw(c, end_block, &scoreboard, thrsw, true);
1563
1564 qpu_set_branch_targets(c);
1565
1566 assert(next_uniform == c->num_uniforms);
1567
1568 return cycles;
1569 }