Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / compiler / glsl / float64.glsl
1 /*
2 * The implementations contained in this file are heavily based on the
3 * implementations found in the Berkeley SoftFloat library. As such, they are
4 * licensed under the same 3-clause BSD license:
5 *
6 * License for Berkeley SoftFloat Release 3e
7 *
8 * John R. Hauser
9 * 2018 January 20
10 *
11 * The following applies to the whole of SoftFloat Release 3e as well as to
12 * each source file individually.
13 *
14 * Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the
15 * University of California. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright notice,
21 * this list of conditions, and the following disclaimer.
22 *
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions, and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 *
27 * 3. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
34 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 #version 430
44 #extension GL_ARB_gpu_shader_int64 : enable
45 #extension GL_ARB_shader_bit_encoding : enable
46 #extension GL_EXT_shader_integer_mix : enable
47 #extension GL_MESA_shader_integer_functions : enable
48
49 #pragma warning(off)
50
51 /* Software IEEE floating-point rounding mode.
52 * GLSL spec section "4.7.1 Range and Precision":
53 * The rounding mode cannot be set and is undefined.
54 * But here, we are able to define the rounding mode at the compilation time.
55 */
56 #define FLOAT_ROUND_NEAREST_EVEN 0
57 #define FLOAT_ROUND_TO_ZERO 1
58 #define FLOAT_ROUND_DOWN 2
59 #define FLOAT_ROUND_UP 3
60 #define FLOAT_ROUNDING_MODE FLOAT_ROUND_NEAREST_EVEN
61
62 /* Relax propagation of NaN. Binary operations with a NaN source will still
63 * produce a NaN result, but it won't follow strict IEEE rules.
64 */
65 #define RELAXED_NAN_PROPAGATION
66
67 /* Absolute value of a Float64 :
68 * Clear the sign bit
69 */
70 uint64_t
71 __fabs64(uint64_t __a)
72 {
73 uvec2 a = unpackUint2x32(__a);
74 a.y &= 0x7FFFFFFFu;
75 return packUint2x32(a);
76 }
77
78 /* Returns 1 if the double-precision floating-point value `a' is a NaN;
79 * otherwise returns 0.
80 */
81 bool
82 __is_nan(uint64_t __a)
83 {
84 uvec2 a = unpackUint2x32(__a);
85 return (0xFFE00000u <= (a.y<<1)) &&
86 ((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u));
87 }
88
89 /* Negate value of a Float64 :
90 * Toggle the sign bit
91 */
92 uint64_t
93 __fneg64(uint64_t __a)
94 {
95 uvec2 a = unpackUint2x32(__a);
96 a.y ^= (1u << 31);
97 return packUint2x32(a);
98 }
99
100 uint64_t
101 __fsign64(uint64_t __a)
102 {
103 uvec2 a = unpackUint2x32(__a);
104 uvec2 retval;
105 retval.x = 0u;
106 retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u);
107 return packUint2x32(retval);
108 }
109
110 /* Returns the fraction bits of the double-precision floating-point value `a'.*/
111 uint
112 __extractFloat64FracLo(uint64_t a)
113 {
114 return unpackUint2x32(a).x;
115 }
116
117 uint
118 __extractFloat64FracHi(uint64_t a)
119 {
120 return unpackUint2x32(a).y & 0x000FFFFFu;
121 }
122
123 /* Returns the exponent bits of the double-precision floating-point value `a'.*/
124 int
125 __extractFloat64Exp(uint64_t __a)
126 {
127 uvec2 a = unpackUint2x32(__a);
128 return int((a.y>>20) & 0x7FFu);
129 }
130
131 bool
132 __feq64_nonnan(uint64_t __a, uint64_t __b)
133 {
134 uvec2 a = unpackUint2x32(__a);
135 uvec2 b = unpackUint2x32(__b);
136 return (a.x == b.x) &&
137 ((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u)));
138 }
139
140 /* Returns true if the double-precision floating-point value `a' is equal to the
141 * corresponding value `b', and false otherwise. The comparison is performed
142 * according to the IEEE Standard for Floating-Point Arithmetic.
143 */
144 bool
145 __feq64(uint64_t a, uint64_t b)
146 {
147 if (__is_nan(a) || __is_nan(b))
148 return false;
149
150 return __feq64_nonnan(a, b);
151 }
152
153 /* Returns true if the double-precision floating-point value `a' is not equal
154 * to the corresponding value `b', and false otherwise. The comparison is
155 * performed according to the IEEE Standard for Floating-Point Arithmetic.
156 */
157 bool
158 __fneu64(uint64_t a, uint64_t b)
159 {
160 if (__is_nan(a) || __is_nan(b))
161 return true;
162
163 return !__feq64_nonnan(a, b);
164 }
165
166 /* Returns the sign bit of the double-precision floating-point value `a'.*/
167 uint
168 __extractFloat64Sign(uint64_t a)
169 {
170 return unpackUint2x32(a).y & 0x80000000u;
171 }
172
173 /* Returns true if the signed 64-bit value formed by concatenating `a0' and
174 * `a1' is less than the signed 64-bit value formed by concatenating `b0' and
175 * `b1'. Otherwise, returns false.
176 */
177 bool
178 ilt64(uint a0, uint a1, uint b0, uint b1)
179 {
180 return (int(a0) < int(b0)) || ((a0 == b0) && (a1 < b1));
181 }
182
183 bool
184 __flt64_nonnan(uint64_t __a, uint64_t __b)
185 {
186 uvec2 a = unpackUint2x32(__a);
187 uvec2 b = unpackUint2x32(__b);
188
189 /* IEEE 754 floating point numbers are specifically designed so that, with
190 * two exceptions, values can be compared by bit-casting to signed integers
191 * with the same number of bits.
192 *
193 * From https://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers:
194 *
195 * When comparing as 2's-complement integers: If the sign bits differ,
196 * the negative number precedes the positive number, so 2's complement
197 * gives the correct result (except that negative zero and positive zero
198 * should be considered equal). If both values are positive, the 2's
199 * complement comparison again gives the correct result. Otherwise (two
200 * negative numbers), the correct FP ordering is the opposite of the 2's
201 * complement ordering.
202 *
203 * The logic implied by the above quotation is:
204 *
205 * !both_are_zero(a, b) && (both_negative(a, b) ? a > b : a < b)
206 *
207 * This is equivalent to
208 *
209 * fneu(a, b) && (both_negative(a, b) ? a >= b : a < b)
210 *
211 * fneu(a, b) && (both_negative(a, b) ? !(a < b) : a < b)
212 *
213 * fneu(a, b) && ((both_negative(a, b) && !(a < b)) ||
214 * (!both_negative(a, b) && (a < b)))
215 *
216 * (A!|B)&(A|!B) is (A xor B) which is implemented here using !=.
217 *
218 * fneu(a, b) && (both_negative(a, b) != (a < b))
219 */
220 bool lt = ilt64(a.y, a.x, b.y, b.x);
221 bool both_negative = (a.y & b.y & 0x80000000u) != 0;
222
223 return !__feq64_nonnan(__a, __b) && (lt != both_negative);
224 }
225
226 /* Returns true if the double-precision floating-point value `a' is less than
227 * the corresponding value `b', and false otherwise. The comparison is performed
228 * according to the IEEE Standard for Floating-Point Arithmetic.
229 */
230 bool
231 __flt64(uint64_t a, uint64_t b)
232 {
233 /* This weird layout matters. Doing the "obvious" thing results in extra
234 * flow control being inserted to implement the short-circuit evaluation
235 * rules. Flow control is bad!
236 */
237 bool x = !__is_nan(a);
238 bool y = !__is_nan(b);
239 bool z = __flt64_nonnan(a, b);
240
241 return (x && y && z);
242 }
243
244 /* Returns true if the double-precision floating-point value `a' is greater
245 * than or equal to * the corresponding value `b', and false otherwise. The
246 * comparison is performed * according to the IEEE Standard for Floating-Point
247 * Arithmetic.
248 */
249 bool
250 __fge64(uint64_t a, uint64_t b)
251 {
252 /* This weird layout matters. Doing the "obvious" thing results in extra
253 * flow control being inserted to implement the short-circuit evaluation
254 * rules. Flow control is bad!
255 */
256 bool x = !__is_nan(a);
257 bool y = !__is_nan(b);
258 bool z = !__flt64_nonnan(a, b);
259
260 return (x && y && z);
261 }
262
263 uint64_t
264 __fsat64(uint64_t __a)
265 {
266 uvec2 a = unpackUint2x32(__a);
267
268 /* fsat(NaN) should be zero. */
269 if (__is_nan(__a) || int(a.y) < 0)
270 return 0ul;
271
272 /* IEEE 754 floating point numbers are specifically designed so that, with
273 * two exceptions, values can be compared by bit-casting to signed integers
274 * with the same number of bits.
275 *
276 * From https://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers:
277 *
278 * When comparing as 2's-complement integers: If the sign bits differ,
279 * the negative number precedes the positive number, so 2's complement
280 * gives the correct result (except that negative zero and positive zero
281 * should be considered equal). If both values are positive, the 2's
282 * complement comparison again gives the correct result. Otherwise (two
283 * negative numbers), the correct FP ordering is the opposite of the 2's
284 * complement ordering.
285 *
286 * We know that both values are not negative, and we know that at least one
287 * value is not zero. Therefore, we can just use the 2's complement
288 * comparison ordering.
289 */
290 if (ilt64(0x3FF00000, 0x00000000, a.y, a.x))
291 return 0x3FF0000000000000ul;
292
293 return __a;
294 }
295
296 /* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
297 * value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
298 * any carry out is lost. The result is broken into two 32-bit pieces which
299 * are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
300 */
301 void
302 __add64(uint a0, uint a1, uint b0, uint b1,
303 out uint z0Ptr,
304 out uint z1Ptr)
305 {
306 uint z1 = a1 + b1;
307 z1Ptr = z1;
308 z0Ptr = a0 + b0 + uint(z1 < a1);
309 }
310
311
312 /* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
313 * 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
314 * 2^64, so any borrow out (carry out) is lost. The result is broken into two
315 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
316 * `z1Ptr'.
317 */
318 void
319 __sub64(uint a0, uint a1, uint b0, uint b1,
320 out uint z0Ptr,
321 out uint z1Ptr)
322 {
323 z1Ptr = a1 - b1;
324 z0Ptr = a0 - b0 - uint(a1 < b1);
325 }
326
327 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
328 * number of bits given in `count'. If any nonzero bits are shifted off, they
329 * are "jammed" into the least significant bit of the result by setting the
330 * least significant bit to 1. The value of `count' can be arbitrarily large;
331 * in particular, if `count' is greater than 64, the result will be either 0
332 * or 1, depending on whether the concatenation of `a0' and `a1' is zero or
333 * nonzero. The result is broken into two 32-bit pieces which are stored at
334 * the locations pointed to by `z0Ptr' and `z1Ptr'.
335 */
336 void
337 __shift64RightJamming(uint a0,
338 uint a1,
339 int count,
340 out uint z0Ptr,
341 out uint z1Ptr)
342 {
343 uint z0;
344 uint z1;
345 int negCount = (-count) & 31;
346
347 z0 = mix(0u, a0, count == 0);
348 z0 = mix(z0, (a0 >> count), count < 32);
349
350 z1 = uint((a0 | a1) != 0u); /* count >= 64 */
351 uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u);
352 z1 = mix(z1, z1_lt64, count < 64);
353 z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32);
354 uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u);
355 z1 = mix(z1, z1_lt32, count < 32);
356 z1 = mix(z1, a1, count == 0);
357 z1Ptr = z1;
358 z0Ptr = z0;
359 }
360
361 /* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
362 * by 32 _plus_ the number of bits given in `count'. The shifted result is
363 * at most 64 nonzero bits; these are broken into two 32-bit pieces which are
364 * stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
365 * off form a third 32-bit result as follows: The _last_ bit shifted off is
366 * the most-significant bit of the extra result, and the other 31 bits of the
367 * extra result are all zero if and only if _all_but_the_last_ bits shifted off
368 * were all zero. This extra result is stored in the location pointed to by
369 * `z2Ptr'. The value of `count' can be arbitrarily large.
370 * (This routine makes more sense if `a0', `a1', and `a2' are considered
371 * to form a fixed-point value with binary point between `a1' and `a2'. This
372 * fixed-point value is shifted right by the number of bits given in `count',
373 * and the integer part of the result is returned at the locations pointed to
374 * by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
375 * corrupted as described above, and is returned at the location pointed to by
376 * `z2Ptr'.)
377 */
378 void
379 __shift64ExtraRightJamming(uint a0, uint a1, uint a2,
380 int count,
381 out uint z0Ptr,
382 out uint z1Ptr,
383 out uint z2Ptr)
384 {
385 uint z0 = 0u;
386 uint z1;
387 uint z2;
388 int negCount = (-count) & 31;
389
390 z2 = mix(uint(a0 != 0u), a0, count == 64);
391 z2 = mix(z2, a0 << negCount, count < 64);
392 z2 = mix(z2, a1 << negCount, count < 32);
393
394 z1 = mix(0u, (a0 >> (count & 31)), count < 64);
395 z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
396
397 a2 = mix(a2 | a1, a2, count < 32);
398 z0 = mix(z0, a0 >> count, count < 32);
399 z2 |= uint(a2 != 0u);
400
401 z0 = mix(z0, 0u, (count == 32));
402 z1 = mix(z1, a0, (count == 32));
403 z2 = mix(z2, a1, (count == 32));
404 z0 = mix(z0, a0, (count == 0));
405 z1 = mix(z1, a1, (count == 0));
406 z2 = mix(z2, a2, (count == 0));
407 z2Ptr = z2;
408 z1Ptr = z1;
409 z0Ptr = z0;
410 }
411
412 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
413 * number of bits given in `count'. Any bits shifted off are lost. The value
414 * of `count' must be less than 32. The result is broken into two 32-bit
415 * pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
416 */
417 void
418 __shortShift64Left(uint a0, uint a1,
419 int count,
420 out uint z0Ptr,
421 out uint z1Ptr)
422 {
423 z1Ptr = a1<<count;
424 z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0);
425 }
426
427 /* Packs the sign `zSign', the exponent `zExp', and the significand formed by
428 * the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
429 * point value, returning the result. After being shifted into the proper
430 * positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
431 * together to form the most significant 32 bits of the result. This means
432 * that any integer portion of `zFrac0' will be added into the exponent. Since
433 * a properly normalized significand will have an integer portion equal to 1,
434 * the `zExp' input should be 1 less than the desired result exponent whenever
435 * `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
436 */
437 uint64_t
438 __packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1)
439 {
440 uvec2 z;
441
442 z.y = zSign + (uint(zExp) << 20) + zFrac0;
443 z.x = zFrac1;
444 return packUint2x32(z);
445 }
446
447 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
448 * and extended significand formed by the concatenation of `zFrac0', `zFrac1',
449 * and `zFrac2', and returns the proper double-precision floating-point value
450 * corresponding to the abstract input. Ordinarily, the abstract value is
451 * simply rounded and packed into the double-precision format, with the inexact
452 * exception raised if the abstract input cannot be represented exactly.
453 * However, if the abstract value is too large, the overflow and inexact
454 * exceptions are raised and an infinity or maximal finite value is returned.
455 * If the abstract value is too small, the input value is rounded to a
456 * subnormal number, and the underflow and inexact exceptions are raised if the
457 * abstract input cannot be represented exactly as a subnormal double-precision
458 * floating-point number.
459 * The input significand must be normalized or smaller. If the input
460 * significand is not normalized, `zExp' must be 0; in that case, the result
461 * returned is a subnormal number, and it must not require rounding. In the
462 * usual case that the input significand is normalized, `zExp' must be 1 less
463 * than the "true" floating-point exponent. The handling of underflow and
464 * overflow follows the IEEE Standard for Floating-Point Arithmetic.
465 */
466 uint64_t
467 __roundAndPackFloat64(uint zSign,
468 int zExp,
469 uint zFrac0,
470 uint zFrac1,
471 uint zFrac2)
472 {
473 bool roundNearestEven;
474 bool increment;
475
476 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
477 increment = int(zFrac2) < 0;
478 if (!roundNearestEven) {
479 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
480 increment = false;
481 } else {
482 if (zSign != 0u) {
483 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
484 (zFrac2 != 0u);
485 } else {
486 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
487 (zFrac2 != 0u);
488 }
489 }
490 }
491 if (0x7FD <= zExp) {
492 if ((0x7FD < zExp) ||
493 ((zExp == 0x7FD) &&
494 (0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) &&
495 increment)) {
496 if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) ||
497 ((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) ||
498 ((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) {
499 return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu);
500 }
501 return __packFloat64(zSign, 0x7FF, 0u, 0u);
502 }
503 }
504
505 if (zExp < 0) {
506 __shift64ExtraRightJamming(
507 zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2);
508 zExp = 0;
509 if (roundNearestEven) {
510 increment = zFrac2 < 0u;
511 } else {
512 if (zSign != 0u) {
513 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
514 (zFrac2 != 0u);
515 } else {
516 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
517 (zFrac2 != 0u);
518 }
519 }
520 }
521
522 if (increment) {
523 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
524 zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven));
525 } else {
526 zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u);
527 }
528 return __packFloat64(zSign, zExp, zFrac0, zFrac1);
529 }
530
531 uint64_t
532 __roundAndPackUInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
533 {
534 bool roundNearestEven;
535 bool increment;
536 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
537
538 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
539
540 if (zFrac2 >= 0x80000000u)
541 increment = false;
542
543 if (!roundNearestEven) {
544 if (zSign != 0u) {
545 if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)) {
546 increment = false;
547 }
548 } else {
549 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
550 (zFrac2 != 0u);
551 }
552 }
553
554 if (increment) {
555 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
556 if ((zFrac0 | zFrac1) != 0u)
557 zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
558 }
559 return mix(packUint2x32(uvec2(zFrac1, zFrac0)), default_nan,
560 (zSign != 0u && (zFrac0 | zFrac1) != 0u));
561 }
562
563 int64_t
564 __roundAndPackInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
565 {
566 bool roundNearestEven;
567 bool increment;
568 int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
569 int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
570
571 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
572
573 if (zFrac2 >= 0x80000000u)
574 increment = false;
575
576 if (!roundNearestEven) {
577 if (zSign != 0u) {
578 increment = ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
579 (zFrac2 != 0u));
580 } else {
581 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
582 (zFrac2 != 0u);
583 }
584 }
585
586 if (increment) {
587 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
588 if ((zFrac0 | zFrac1) != 0u)
589 zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
590 }
591
592 int64_t absZ = mix(int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
593 -int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
594 zSign != 0u);
595 int64_t nan = mix(default_PosNaN, default_NegNaN, zSign != 0u);
596 return mix(absZ, nan, ((zSign != 0u) != (absZ < 0)) && bool(absZ));
597 }
598
599 /* Returns the number of leading 0 bits before the most-significant 1 bit of
600 * `a'. If `a' is zero, 32 is returned.
601 */
602 int
603 __countLeadingZeros32(uint a)
604 {
605 return 31 - findMSB(a);
606 }
607
608 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
609 * and significand formed by the concatenation of `zSig0' and `zSig1', and
610 * returns the proper double-precision floating-point value corresponding
611 * to the abstract input. This routine is just like `__roundAndPackFloat64'
612 * except that the input significand has fewer bits and does not have to be
613 * normalized. In all cases, `zExp' must be 1 less than the "true" floating-
614 * point exponent.
615 */
616 uint64_t
617 __normalizeRoundAndPackFloat64(uint zSign,
618 int zExp,
619 uint zFrac0,
620 uint zFrac1)
621 {
622 int shiftCount;
623 uint zFrac2;
624
625 if (zFrac0 == 0u) {
626 zExp -= 32;
627 zFrac0 = zFrac1;
628 zFrac1 = 0u;
629 }
630
631 shiftCount = __countLeadingZeros32(zFrac0) - 11;
632 if (0 <= shiftCount) {
633 zFrac2 = 0u;
634 __shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1);
635 } else {
636 __shift64ExtraRightJamming(
637 zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2);
638 }
639 zExp -= shiftCount;
640 return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
641 }
642
643 /* Takes two double-precision floating-point values `a' and `b', one of which
644 * is a NaN, and returns the appropriate NaN result.
645 */
646 uint64_t
647 __propagateFloat64NaN(uint64_t __a, uint64_t __b)
648 {
649 #if defined RELAXED_NAN_PROPAGATION
650 uvec2 a = unpackUint2x32(__a);
651 uvec2 b = unpackUint2x32(__b);
652
653 return packUint2x32(uvec2(a.x | b.x, a.y | b.y));
654 #else
655 bool aIsNaN = __is_nan(__a);
656 bool bIsNaN = __is_nan(__b);
657 uvec2 a = unpackUint2x32(__a);
658 uvec2 b = unpackUint2x32(__b);
659 a.y |= 0x00080000u;
660 b.y |= 0x00080000u;
661
662 return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN)));
663 #endif
664 }
665
666 /* If a shader is in the soft-fp64 path, it almost certainly has register
667 * pressure problems. Choose a method to exchange two values that does not
668 * require a temporary.
669 */
670 #define EXCHANGE(a, b) \
671 do { \
672 a ^= b; \
673 b ^= a; \
674 a ^= b; \
675 } while (false)
676
677 /* Returns the result of adding the double-precision floating-point values
678 * `a' and `b'. The operation is performed according to the IEEE Standard for
679 * Floating-Point Arithmetic.
680 */
681 uint64_t
682 __fadd64(uint64_t a, uint64_t b)
683 {
684 uint aSign = __extractFloat64Sign(a);
685 uint bSign = __extractFloat64Sign(b);
686 uint aFracLo = __extractFloat64FracLo(a);
687 uint aFracHi = __extractFloat64FracHi(a);
688 uint bFracLo = __extractFloat64FracLo(b);
689 uint bFracHi = __extractFloat64FracHi(b);
690 int aExp = __extractFloat64Exp(a);
691 int bExp = __extractFloat64Exp(b);
692 int expDiff = aExp - bExp;
693 if (aSign == bSign) {
694 uint zFrac0;
695 uint zFrac1;
696 uint zFrac2;
697 int zExp;
698
699 if (expDiff == 0) {
700 if (aExp == 0x7FF) {
701 bool propagate = ((aFracHi | bFracHi) | (aFracLo| bFracLo)) != 0u;
702 return mix(a, __propagateFloat64NaN(a, b), propagate);
703 }
704 __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
705 if (aExp == 0)
706 return __packFloat64(aSign, 0, zFrac0, zFrac1);
707 zFrac2 = 0u;
708 zFrac0 |= 0x00200000u;
709 zExp = aExp;
710 __shift64ExtraRightJamming(
711 zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
712 } else {
713 if (expDiff < 0) {
714 EXCHANGE(aFracHi, bFracHi);
715 EXCHANGE(aFracLo, bFracLo);
716 EXCHANGE(aExp, bExp);
717 }
718
719 if (aExp == 0x7FF) {
720 bool propagate = (aFracHi | aFracLo) != 0u;
721 return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
722 }
723
724 expDiff = mix(abs(expDiff), abs(expDiff) - 1, bExp == 0);
725 bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0);
726 __shift64ExtraRightJamming(
727 bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2);
728 zExp = aExp;
729
730 aFracHi |= 0x00100000u;
731 __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
732 --zExp;
733 if (!(zFrac0 < 0x00200000u)) {
734 __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
735 ++zExp;
736 }
737 }
738 return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2);
739
740 } else {
741 int zExp;
742
743 __shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo);
744 __shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo);
745 if (expDiff != 0) {
746 uint zFrac0;
747 uint zFrac1;
748
749 if (expDiff < 0) {
750 EXCHANGE(aFracHi, bFracHi);
751 EXCHANGE(aFracLo, bFracLo);
752 EXCHANGE(aExp, bExp);
753 aSign ^= 0x80000000u;
754 }
755
756 if (aExp == 0x7FF) {
757 bool propagate = (aFracHi | aFracLo) != 0u;
758 return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
759 }
760
761 expDiff = mix(abs(expDiff), abs(expDiff) - 1, bExp == 0);
762 bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0);
763 __shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo);
764 aFracHi |= 0x40000000u;
765 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
766 zExp = aExp;
767 --zExp;
768 return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
769 }
770 if (aExp == 0x7FF) {
771 bool propagate = ((aFracHi | bFracHi) | (aFracLo | bFracLo)) != 0u;
772 return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate);
773 }
774 bExp = mix(bExp, 1, aExp == 0);
775 aExp = mix(aExp, 1, aExp == 0);
776
777 uint zFrac0;
778 uint zFrac1;
779 uint sign_of_difference = 0;
780 if (bFracHi < aFracHi) {
781 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
782 }
783 else if (aFracHi < bFracHi) {
784 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
785 sign_of_difference = 0x80000000;
786 }
787 else if (bFracLo <= aFracLo) {
788 /* It is possible that zFrac0 and zFrac1 may be zero after this. */
789 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
790 }
791 else {
792 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
793 sign_of_difference = 0x80000000;
794 }
795 zExp = mix(bExp, aExp, sign_of_difference == 0u);
796 aSign ^= sign_of_difference;
797 uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) << 31, 0, 0u, 0u);
798 uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1);
799 return mix(retval_0, retval_1, zFrac0 != 0u || zFrac1 != 0u);
800 }
801 }
802
803 /* Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
804 * 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
805 * product. The product is broken into four 32-bit pieces which are stored at
806 * the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
807 */
808 void
809 __mul64To128(uint a0, uint a1, uint b0, uint b1,
810 out uint z0Ptr,
811 out uint z1Ptr,
812 out uint z2Ptr,
813 out uint z3Ptr)
814 {
815 uint z0 = 0u;
816 uint z1 = 0u;
817 uint z2 = 0u;
818 uint z3 = 0u;
819 uint more1 = 0u;
820 uint more2 = 0u;
821
822 umulExtended(a1, b1, z2, z3);
823 umulExtended(a1, b0, z1, more2);
824 __add64(z1, more2, 0u, z2, z1, z2);
825 umulExtended(a0, b0, z0, more1);
826 __add64(z0, more1, 0u, z1, z0, z1);
827 umulExtended(a0, b1, more1, more2);
828 __add64(more1, more2, 0u, z2, more1, z2);
829 __add64(z0, z1, 0u, more1, z0, z1);
830 z3Ptr = z3;
831 z2Ptr = z2;
832 z1Ptr = z1;
833 z0Ptr = z0;
834 }
835
836 /* Normalizes the subnormal double-precision floating-point value represented
837 * by the denormalized significand formed by the concatenation of `aFrac0' and
838 * `aFrac1'. The normalized exponent is stored at the location pointed to by
839 * `zExpPtr'. The most significant 21 bits of the normalized significand are
840 * stored at the location pointed to by `zFrac0Ptr', and the least significant
841 * 32 bits of the normalized significand are stored at the location pointed to
842 * by `zFrac1Ptr'.
843 */
844 void
845 __normalizeFloat64Subnormal(uint aFrac0, uint aFrac1,
846 out int zExpPtr,
847 out uint zFrac0Ptr,
848 out uint zFrac1Ptr)
849 {
850 int shiftCount;
851 uint temp_zfrac0, temp_zfrac1;
852 shiftCount = __countLeadingZeros32(mix(aFrac0, aFrac1, aFrac0 == 0u)) - 11;
853 zExpPtr = mix(1 - shiftCount, -shiftCount - 31, aFrac0 == 0u);
854
855 temp_zfrac0 = mix(aFrac1<<shiftCount, aFrac1>>(-shiftCount), shiftCount < 0);
856 temp_zfrac1 = mix(0u, aFrac1<<(shiftCount & 31), shiftCount < 0);
857
858 __shortShift64Left(aFrac0, aFrac1, shiftCount, zFrac0Ptr, zFrac1Ptr);
859
860 zFrac0Ptr = mix(zFrac0Ptr, temp_zfrac0, aFrac0 == 0);
861 zFrac1Ptr = mix(zFrac1Ptr, temp_zfrac1, aFrac0 == 0);
862 }
863
864 /* Returns the result of multiplying the double-precision floating-point values
865 * `a' and `b'. The operation is performed according to the IEEE Standard for
866 * Floating-Point Arithmetic.
867 */
868 uint64_t
869 __fmul64(uint64_t a, uint64_t b)
870 {
871 uint zFrac0 = 0u;
872 uint zFrac1 = 0u;
873 uint zFrac2 = 0u;
874 uint zFrac3 = 0u;
875 int zExp;
876
877 uint aFracLo = __extractFloat64FracLo(a);
878 uint aFracHi = __extractFloat64FracHi(a);
879 uint bFracLo = __extractFloat64FracLo(b);
880 uint bFracHi = __extractFloat64FracHi(b);
881 int aExp = __extractFloat64Exp(a);
882 uint aSign = __extractFloat64Sign(a);
883 int bExp = __extractFloat64Exp(b);
884 uint bSign = __extractFloat64Sign(b);
885 uint zSign = aSign ^ bSign;
886 if (aExp == 0x7FF) {
887 if (((aFracHi | aFracLo) != 0u) ||
888 ((bExp == 0x7FF) && ((bFracHi | bFracLo) != 0u))) {
889 return __propagateFloat64NaN(a, b);
890 }
891 if ((uint(bExp) | bFracHi | bFracLo) == 0u)
892 return 0xFFFFFFFFFFFFFFFFUL;
893 return __packFloat64(zSign, 0x7FF, 0u, 0u);
894 }
895 if (bExp == 0x7FF) {
896 /* a cannot be NaN, but is b NaN? */
897 if ((bFracHi | bFracLo) != 0u)
898 #if defined RELAXED_NAN_PROPAGATION
899 return b;
900 #else
901 return __propagateFloat64NaN(a, b);
902 #endif
903 if ((uint(aExp) | aFracHi | aFracLo) == 0u)
904 return 0xFFFFFFFFFFFFFFFFUL;
905 return __packFloat64(zSign, 0x7FF, 0u, 0u);
906 }
907 if (aExp == 0) {
908 if ((aFracHi | aFracLo) == 0u)
909 return __packFloat64(zSign, 0, 0u, 0u);
910 __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
911 }
912 if (bExp == 0) {
913 if ((bFracHi | bFracLo) == 0u)
914 return __packFloat64(zSign, 0, 0u, 0u);
915 __normalizeFloat64Subnormal(bFracHi, bFracLo, bExp, bFracHi, bFracLo);
916 }
917 zExp = aExp + bExp - 0x400;
918 aFracHi |= 0x00100000u;
919 __shortShift64Left(bFracHi, bFracLo, 12, bFracHi, bFracLo);
920 __mul64To128(
921 aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1, zFrac2, zFrac3);
922 __add64(zFrac0, zFrac1, aFracHi, aFracLo, zFrac0, zFrac1);
923 zFrac2 |= uint(zFrac3 != 0u);
924 if (0x00200000u <= zFrac0) {
925 __shift64ExtraRightJamming(
926 zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
927 ++zExp;
928 }
929 return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
930 }
931
932 uint64_t
933 __ffma64(uint64_t a, uint64_t b, uint64_t c)
934 {
935 return __fadd64(__fmul64(a, b), c);
936 }
937
938 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
939 * number of bits given in `count'. Any bits shifted off are lost. The value
940 * of `count' can be arbitrarily large; in particular, if `count' is greater
941 * than 64, the result will be 0. The result is broken into two 32-bit pieces
942 * which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
943 */
944 void
945 __shift64Right(uint a0, uint a1,
946 int count,
947 out uint z0Ptr,
948 out uint z1Ptr)
949 {
950 uint z0;
951 uint z1;
952 int negCount = (-count) & 31;
953
954 z0 = 0u;
955 z0 = mix(z0, (a0 >> count), count < 32);
956 z0 = mix(z0, a0, count == 0);
957
958 z1 = mix(0u, (a0 >> (count & 31)), count < 64);
959 z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
960 z1 = mix(z1, a0, count == 0);
961
962 z1Ptr = z1;
963 z0Ptr = z0;
964 }
965
966 /* Returns the result of converting the double-precision floating-point value
967 * `a' to the unsigned integer format. The conversion is performed according
968 * to the IEEE Standard for Floating-Point Arithmetic.
969 */
970 uint
971 __fp64_to_uint(uint64_t a)
972 {
973 uint aFracLo = __extractFloat64FracLo(a);
974 uint aFracHi = __extractFloat64FracHi(a);
975 int aExp = __extractFloat64Exp(a);
976 uint aSign = __extractFloat64Sign(a);
977
978 if ((aExp == 0x7FF) && ((aFracHi | aFracLo) != 0u))
979 return 0xFFFFFFFFu;
980
981 aFracHi |= mix(0u, 0x00100000u, aExp != 0);
982
983 int shiftDist = 0x427 - aExp;
984 if (0 < shiftDist)
985 __shift64RightJamming(aFracHi, aFracLo, shiftDist, aFracHi, aFracLo);
986
987 if ((aFracHi & 0xFFFFF000u) != 0u)
988 return mix(~0u, 0u, aSign != 0u);
989
990 uint z = 0u;
991 uint zero = 0u;
992 __shift64Right(aFracHi, aFracLo, 12, zero, z);
993
994 uint expt = mix(~0u, 0u, aSign != 0u);
995
996 return mix(z, expt, (aSign != 0u) && (z != 0u));
997 }
998
999 uint64_t
1000 __uint_to_fp64(uint a)
1001 {
1002 if (a == 0u)
1003 return 0ul;
1004
1005 int shiftDist = __countLeadingZeros32(a) + 21;
1006
1007 uint aHigh = 0u;
1008 uint aLow = 0u;
1009 int negCount = (- shiftDist) & 31;
1010
1011 aHigh = mix(0u, a<< shiftDist - 32, shiftDist < 64);
1012 aLow = 0u;
1013 aHigh = mix(aHigh, 0u, shiftDist == 0);
1014 aLow = mix(aLow, a, shiftDist ==0);
1015 aHigh = mix(aHigh, a >> negCount, shiftDist < 32);
1016 aLow = mix(aLow, a << shiftDist, shiftDist < 32);
1017
1018 return __packFloat64(0u, 0x432 - shiftDist, aHigh, aLow);
1019 }
1020
1021 uint64_t
1022 __uint64_to_fp64(uint64_t a)
1023 {
1024 if (a == 0u)
1025 return 0ul;
1026
1027 uvec2 aFrac = unpackUint2x32(a);
1028 uint aFracLo = __extractFloat64FracLo(a);
1029 uint aFracHi = __extractFloat64FracHi(a);
1030
1031 if ((aFracHi & 0x80000000u) != 0u) {
1032 __shift64RightJamming(aFracHi, aFracLo, 1, aFracHi, aFracLo);
1033 return __roundAndPackFloat64(0, 0x433, aFracHi, aFracLo, 0u);
1034 } else {
1035 return __normalizeRoundAndPackFloat64(0, 0x432, aFrac.y, aFrac.x);
1036 }
1037 }
1038
1039 uint64_t
1040 __fp64_to_uint64(uint64_t a)
1041 {
1042 uint aFracLo = __extractFloat64FracLo(a);
1043 uint aFracHi = __extractFloat64FracHi(a);
1044 int aExp = __extractFloat64Exp(a);
1045 uint aSign = __extractFloat64Sign(a);
1046 uint zFrac2 = 0u;
1047 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1048
1049 aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
1050 int shiftCount = 0x433 - aExp;
1051
1052 if ( shiftCount <= 0 ) {
1053 if (shiftCount < -11 && aExp == 0x7FF) {
1054 if ((aFracHi | aFracLo) != 0u)
1055 return __propagateFloat64NaN(a, a);
1056 return mix(default_nan, a, aSign == 0u);
1057 }
1058 __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
1059 } else {
1060 __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
1061 aFracHi, aFracLo, zFrac2);
1062 }
1063 return __roundAndPackUInt64(aSign, aFracHi, aFracLo, zFrac2);
1064 }
1065
1066 int64_t
1067 __fp64_to_int64(uint64_t a)
1068 {
1069 uint zFrac2 = 0u;
1070 uint aFracLo = __extractFloat64FracLo(a);
1071 uint aFracHi = __extractFloat64FracHi(a);
1072 int aExp = __extractFloat64Exp(a);
1073 uint aSign = __extractFloat64Sign(a);
1074 int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
1075 int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
1076
1077 aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
1078 int shiftCount = 0x433 - aExp;
1079
1080 if (shiftCount <= 0) {
1081 if (shiftCount < -11 && aExp == 0x7FF) {
1082 if ((aFracHi | aFracLo) != 0u)
1083 return default_NegNaN;
1084 return mix(default_NegNaN, default_PosNaN, aSign == 0u);
1085 }
1086 __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
1087 } else {
1088 __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
1089 aFracHi, aFracLo, zFrac2);
1090 }
1091
1092 return __roundAndPackInt64(aSign, aFracHi, aFracLo, zFrac2);
1093 }
1094
1095 uint64_t
1096 __int64_to_fp64(int64_t a)
1097 {
1098 if (a==0)
1099 return 0ul;
1100
1101 uint64_t absA = mix(uint64_t(a), uint64_t(-a), a < 0);
1102 uint aFracHi = __extractFloat64FracHi(absA);
1103 uvec2 aFrac = unpackUint2x32(absA);
1104 uint zSign = uint(unpackInt2x32(a).y) & 0x80000000u;
1105
1106 if ((aFracHi & 0x80000000u) != 0u) {
1107 return mix(0ul, __packFloat64(0x80000000u, 0x434, 0u, 0u), a < 0);
1108 }
1109
1110 return __normalizeRoundAndPackFloat64(zSign, 0x432, aFrac.y, aFrac.x);
1111 }
1112
1113 /* Returns the result of converting the double-precision floating-point value
1114 * `a' to the 32-bit two's complement integer format. The conversion is
1115 * performed according to the IEEE Standard for Floating-Point Arithmetic---
1116 * which means in particular that the conversion is rounded according to the
1117 * current rounding mode. If `a' is a NaN, the largest positive integer is
1118 * returned. Otherwise, if the conversion overflows, the largest integer with
1119 * the same sign as `a' is returned.
1120 */
1121 int
1122 __fp64_to_int(uint64_t a)
1123 {
1124 uint aFracLo = __extractFloat64FracLo(a);
1125 uint aFracHi = __extractFloat64FracHi(a);
1126 int aExp = __extractFloat64Exp(a);
1127 uint aSign = __extractFloat64Sign(a);
1128
1129 uint absZ = 0u;
1130 uint aFracExtra = 0u;
1131 int shiftCount = aExp - 0x413;
1132
1133 if (0 <= shiftCount) {
1134 if (0x41E < aExp) {
1135 if ((aExp == 0x7FF) && bool(aFracHi | aFracLo))
1136 aSign = 0u;
1137 return mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
1138 }
1139 __shortShift64Left(aFracHi | 0x00100000u, aFracLo, shiftCount, absZ, aFracExtra);
1140 } else {
1141 if (aExp < 0x3FF)
1142 return 0;
1143
1144 aFracHi |= 0x00100000u;
1145 aFracExtra = ( aFracHi << (shiftCount & 31)) | aFracLo;
1146 absZ = aFracHi >> (- shiftCount);
1147 }
1148
1149 int z = mix(int(absZ), -int(absZ), aSign != 0u);
1150 int nan = mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
1151 return mix(z, nan, ((aSign != 0u) != (z < 0)) && bool(z));
1152 }
1153
1154 /* Returns the result of converting the 32-bit two's complement integer `a'
1155 * to the double-precision floating-point format. The conversion is performed
1156 * according to the IEEE Standard for Floating-Point Arithmetic.
1157 */
1158 uint64_t
1159 __int_to_fp64(int a)
1160 {
1161 uint zFrac0 = 0u;
1162 uint zFrac1 = 0u;
1163 if (a==0)
1164 return __packFloat64(0u, 0, 0u, 0u);
1165 uint zSign = uint(a) & 0x80000000u;
1166 uint absA = mix(uint(a), uint(-a), a < 0);
1167 int shiftCount = __countLeadingZeros32(absA) - 11;
1168 if (0 <= shiftCount) {
1169 zFrac0 = absA << shiftCount;
1170 zFrac1 = 0u;
1171 } else {
1172 __shift64Right(absA, 0u, -shiftCount, zFrac0, zFrac1);
1173 }
1174 return __packFloat64(zSign, 0x412 - shiftCount, zFrac0, zFrac1);
1175 }
1176
1177 bool
1178 __fp64_to_bool(uint64_t a)
1179 {
1180 return !__feq64_nonnan(__fabs64(a), 0ul);
1181 }
1182
1183 uint64_t
1184 __bool_to_fp64(bool a)
1185 {
1186 return packUint2x32(uvec2(0x00000000u, uint(-int(a) & 0x3ff00000)));
1187 }
1188
1189 /* Packs the sign `zSign', exponent `zExp', and significand `zFrac' into a
1190 * single-precision floating-point value, returning the result. After being
1191 * shifted into the proper positions, the three fields are simply added
1192 * together to form the result. This means that any integer portion of `zSig'
1193 * will be added into the exponent. Since a properly normalized significand
1194 * will have an integer portion equal to 1, the `zExp' input should be 1 less
1195 * than the desired result exponent whenever `zFrac' is a complete, normalized
1196 * significand.
1197 */
1198 float
1199 __packFloat32(uint zSign, int zExp, uint zFrac)
1200 {
1201 return uintBitsToFloat(zSign + (uint(zExp)<<23) + zFrac);
1202 }
1203
1204 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1205 * and significand `zFrac', and returns the proper single-precision floating-
1206 * point value corresponding to the abstract input. Ordinarily, the abstract
1207 * value is simply rounded and packed into the single-precision format, with
1208 * the inexact exception raised if the abstract input cannot be represented
1209 * exactly. However, if the abstract value is too large, the overflow and
1210 * inexact exceptions are raised and an infinity or maximal finite value is
1211 * returned. If the abstract value is too small, the input value is rounded to
1212 * a subnormal number, and the underflow and inexact exceptions are raised if
1213 * the abstract input cannot be represented exactly as a subnormal single-
1214 * precision floating-point number.
1215 * The input significand `zFrac' has its binary point between bits 30
1216 * and 29, which is 7 bits to the left of the usual location. This shifted
1217 * significand must be normalized or smaller. If `zFrac' is not normalized,
1218 * `zExp' must be 0; in that case, the result returned is a subnormal number,
1219 * and it must not require rounding. In the usual case that `zFrac' is
1220 * normalized, `zExp' must be 1 less than the "true" floating-point exponent.
1221 * The handling of underflow and overflow follows the IEEE Standard for
1222 * Floating-Point Arithmetic.
1223 */
1224 float
1225 __roundAndPackFloat32(uint zSign, int zExp, uint zFrac)
1226 {
1227 bool roundNearestEven;
1228 int roundIncrement;
1229 int roundBits;
1230
1231 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
1232 roundIncrement = 0x40;
1233 if (!roundNearestEven) {
1234 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
1235 roundIncrement = 0;
1236 } else {
1237 roundIncrement = 0x7F;
1238 if (zSign != 0u) {
1239 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)
1240 roundIncrement = 0;
1241 } else {
1242 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN)
1243 roundIncrement = 0;
1244 }
1245 }
1246 }
1247 roundBits = int(zFrac & 0x7Fu);
1248 if (0xFDu <= uint(zExp)) {
1249 if ((0xFD < zExp) || ((zExp == 0xFD) && (int(zFrac) + roundIncrement) < 0))
1250 return __packFloat32(zSign, 0xFF, 0u) - float(roundIncrement == 0);
1251 int count = -zExp;
1252 bool zexp_lt0 = zExp < 0;
1253 uint zFrac_lt0 = mix(uint(zFrac != 0u), (zFrac>>count) | uint((zFrac<<((-count) & 31)) != 0u), (-zExp) < 32);
1254 zFrac = mix(zFrac, zFrac_lt0, zexp_lt0);
1255 roundBits = mix(roundBits, int(zFrac) & 0x7f, zexp_lt0);
1256 zExp = mix(zExp, 0, zexp_lt0);
1257 }
1258 zFrac = (zFrac + uint(roundIncrement))>>7;
1259 zFrac &= ~uint(((roundBits ^ 0x40) == 0) && roundNearestEven);
1260
1261 return __packFloat32(zSign, mix(zExp, 0, zFrac == 0u), zFrac);
1262 }
1263
1264 /* Returns the result of converting the double-precision floating-point value
1265 * `a' to the single-precision floating-point format. The conversion is
1266 * performed according to the IEEE Standard for Floating-Point Arithmetic.
1267 */
1268 float
1269 __fp64_to_fp32(uint64_t __a)
1270 {
1271 uvec2 a = unpackUint2x32(__a);
1272 uint zFrac = 0u;
1273 uint allZero = 0u;
1274
1275 uint aFracLo = __extractFloat64FracLo(__a);
1276 uint aFracHi = __extractFloat64FracHi(__a);
1277 int aExp = __extractFloat64Exp(__a);
1278 uint aSign = __extractFloat64Sign(__a);
1279 if (aExp == 0x7FF) {
1280 __shortShift64Left(a.y, a.x, 12, a.y, a.x);
1281 float rval = uintBitsToFloat(aSign | 0x7FC00000u | (a.y>>9));
1282 rval = mix(__packFloat32(aSign, 0xFF, 0u), rval, (aFracHi | aFracLo) != 0u);
1283 return rval;
1284 }
1285 __shift64RightJamming(aFracHi, aFracLo, 22, allZero, zFrac);
1286 zFrac = mix(zFrac, zFrac | 0x40000000u, aExp != 0);
1287 return __roundAndPackFloat32(aSign, aExp - 0x381, zFrac);
1288 }
1289
1290 /* Returns the result of converting the single-precision floating-point value
1291 * `a' to the double-precision floating-point format.
1292 */
1293 uint64_t
1294 __fp32_to_fp64(float f)
1295 {
1296 uint a = floatBitsToUint(f);
1297 uint aFrac = a & 0x007FFFFFu;
1298 int aExp = int((a>>23) & 0xFFu);
1299 uint aSign = a & 0x80000000u;
1300 uint zFrac0 = 0u;
1301 uint zFrac1 = 0u;
1302
1303 if (aExp == 0xFF) {
1304 if (aFrac != 0u) {
1305 uint nanLo = 0u;
1306 uint nanHi = a<<9;
1307 __shift64Right(nanHi, nanLo, 12, nanHi, nanLo);
1308 nanHi |= aSign | 0x7FF80000u;
1309 return packUint2x32(uvec2(nanLo, nanHi));
1310 }
1311 return __packFloat64(aSign, 0x7FF, 0u, 0u);
1312 }
1313
1314 if (aExp == 0) {
1315 if (aFrac == 0u)
1316 return __packFloat64(aSign, 0, 0u, 0u);
1317 /* Normalize subnormal */
1318 int shiftCount = __countLeadingZeros32(aFrac) - 8;
1319 aFrac <<= shiftCount;
1320 aExp = 1 - shiftCount;
1321 --aExp;
1322 }
1323
1324 __shift64Right(aFrac, 0u, 3, zFrac0, zFrac1);
1325 return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1);
1326 }
1327
1328 /* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
1329 * 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
1330 * modulo 2^96, so any carry out is lost. The result is broken into three
1331 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
1332 * `z1Ptr', and `z2Ptr'.
1333 */
1334 void
1335 __add96(uint a0, uint a1, uint a2,
1336 uint b0, uint b1, uint b2,
1337 out uint z0Ptr,
1338 out uint z1Ptr,
1339 out uint z2Ptr)
1340 {
1341 uint z2 = a2 + b2;
1342 uint carry1 = uint(z2 < a2);
1343 uint z1 = a1 + b1;
1344 uint carry0 = uint(z1 < a1);
1345 uint z0 = a0 + b0;
1346 z1 += carry1;
1347 z0 += uint(z1 < carry1);
1348 z0 += carry0;
1349 z2Ptr = z2;
1350 z1Ptr = z1;
1351 z0Ptr = z0;
1352 }
1353
1354 /* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
1355 * the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
1356 * is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
1357 * into three 32-bit pieces which are stored at the locations pointed to by
1358 * `z0Ptr', `z1Ptr', and `z2Ptr'.
1359 */
1360 void
1361 __sub96(uint a0, uint a1, uint a2,
1362 uint b0, uint b1, uint b2,
1363 out uint z0Ptr,
1364 out uint z1Ptr,
1365 out uint z2Ptr)
1366 {
1367 uint z2 = a2 - b2;
1368 uint borrow1 = uint(a2 < b2);
1369 uint z1 = a1 - b1;
1370 uint borrow0 = uint(a1 < b1);
1371 uint z0 = a0 - b0;
1372 z0 -= uint(z1 < borrow1);
1373 z1 -= borrow1;
1374 z0 -= borrow0;
1375 z2Ptr = z2;
1376 z1Ptr = z1;
1377 z0Ptr = z0;
1378 }
1379
1380 /* Returns an approximation to the 32-bit integer quotient obtained by dividing
1381 * `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
1382 * divisor `b' must be at least 2^31. If q is the exact quotient truncated
1383 * toward zero, the approximation returned lies between q and q + 2 inclusive.
1384 * If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
1385 * unsigned integer is returned.
1386 */
1387 uint
1388 __estimateDiv64To32(uint a0, uint a1, uint b)
1389 {
1390 uint b0;
1391 uint b1;
1392 uint rem0 = 0u;
1393 uint rem1 = 0u;
1394 uint term0 = 0u;
1395 uint term1 = 0u;
1396 uint z;
1397
1398 if (b <= a0)
1399 return 0xFFFFFFFFu;
1400 b0 = b>>16;
1401 z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16;
1402 umulExtended(b, z, term0, term1);
1403 __sub64(a0, a1, term0, term1, rem0, rem1);
1404 while (int(rem0) < 0) {
1405 z -= 0x10000u;
1406 b1 = b<<16;
1407 __add64(rem0, rem1, b0, b1, rem0, rem1);
1408 }
1409 rem0 = (rem0<<16) | (rem1>>16);
1410 z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0;
1411 return z;
1412 }
1413
1414 uint
1415 __sqrtOddAdjustments(int index)
1416 {
1417 uint res = 0u;
1418 if (index == 0)
1419 res = 0x0004u;
1420 if (index == 1)
1421 res = 0x0022u;
1422 if (index == 2)
1423 res = 0x005Du;
1424 if (index == 3)
1425 res = 0x00B1u;
1426 if (index == 4)
1427 res = 0x011Du;
1428 if (index == 5)
1429 res = 0x019Fu;
1430 if (index == 6)
1431 res = 0x0236u;
1432 if (index == 7)
1433 res = 0x02E0u;
1434 if (index == 8)
1435 res = 0x039Cu;
1436 if (index == 9)
1437 res = 0x0468u;
1438 if (index == 10)
1439 res = 0x0545u;
1440 if (index == 11)
1441 res = 0x631u;
1442 if (index == 12)
1443 res = 0x072Bu;
1444 if (index == 13)
1445 res = 0x0832u;
1446 if (index == 14)
1447 res = 0x0946u;
1448 if (index == 15)
1449 res = 0x0A67u;
1450
1451 return res;
1452 }
1453
1454 uint
1455 __sqrtEvenAdjustments(int index)
1456 {
1457 uint res = 0u;
1458 if (index == 0)
1459 res = 0x0A2Du;
1460 if (index == 1)
1461 res = 0x08AFu;
1462 if (index == 2)
1463 res = 0x075Au;
1464 if (index == 3)
1465 res = 0x0629u;
1466 if (index == 4)
1467 res = 0x051Au;
1468 if (index == 5)
1469 res = 0x0429u;
1470 if (index == 6)
1471 res = 0x0356u;
1472 if (index == 7)
1473 res = 0x029Eu;
1474 if (index == 8)
1475 res = 0x0200u;
1476 if (index == 9)
1477 res = 0x0179u;
1478 if (index == 10)
1479 res = 0x0109u;
1480 if (index == 11)
1481 res = 0x00AFu;
1482 if (index == 12)
1483 res = 0x0068u;
1484 if (index == 13)
1485 res = 0x0034u;
1486 if (index == 14)
1487 res = 0x0012u;
1488 if (index == 15)
1489 res = 0x0002u;
1490
1491 return res;
1492 }
1493
1494 /* Returns an approximation to the square root of the 32-bit significand given
1495 * by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
1496 * `aExp' (the least significant bit) is 1, the integer returned approximates
1497 * 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
1498 * is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
1499 * case, the approximation returned lies strictly within +/-2 of the exact
1500 * value.
1501 */
1502 uint
1503 __estimateSqrt32(int aExp, uint a)
1504 {
1505 uint z;
1506
1507 int index = int(a>>27 & 15u);
1508 if ((aExp & 1) != 0) {
1509 z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index);
1510 z = ((a / z)<<14) + (z<<15);
1511 a >>= 1;
1512 } else {
1513 z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index);
1514 z = a / z + z;
1515 z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15);
1516 if (z <= a)
1517 return uint(int(a)>>1);
1518 }
1519 return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1);
1520 }
1521
1522 /* Returns the square root of the double-precision floating-point value `a'.
1523 * The operation is performed according to the IEEE Standard for Floating-Point
1524 * Arithmetic.
1525 */
1526 uint64_t
1527 __fsqrt64(uint64_t a)
1528 {
1529 uint zFrac0 = 0u;
1530 uint zFrac1 = 0u;
1531 uint zFrac2 = 0u;
1532 uint doubleZFrac0 = 0u;
1533 uint rem0 = 0u;
1534 uint rem1 = 0u;
1535 uint rem2 = 0u;
1536 uint rem3 = 0u;
1537 uint term0 = 0u;
1538 uint term1 = 0u;
1539 uint term2 = 0u;
1540 uint term3 = 0u;
1541 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1542
1543 uint aFracLo = __extractFloat64FracLo(a);
1544 uint aFracHi = __extractFloat64FracHi(a);
1545 int aExp = __extractFloat64Exp(a);
1546 uint aSign = __extractFloat64Sign(a);
1547 if (aExp == 0x7FF) {
1548 if ((aFracHi | aFracLo) != 0u)
1549 return __propagateFloat64NaN(a, a);
1550 if (aSign == 0u)
1551 return a;
1552 return default_nan;
1553 }
1554 if (aSign != 0u) {
1555 if ((uint(aExp) | aFracHi | aFracLo) == 0u)
1556 return a;
1557 return default_nan;
1558 }
1559 if (aExp == 0) {
1560 if ((aFracHi | aFracLo) == 0u)
1561 return __packFloat64(0u, 0, 0u, 0u);
1562 __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
1563 }
1564 int zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
1565 aFracHi |= 0x00100000u;
1566 __shortShift64Left(aFracHi, aFracLo, 11, term0, term1);
1567 zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u;
1568 if (zFrac0 == 0u)
1569 zFrac0 = 0x7FFFFFFFu;
1570 doubleZFrac0 = zFrac0 + zFrac0;
1571 __shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo);
1572 umulExtended(zFrac0, zFrac0, term0, term1);
1573 __sub64(aFracHi, aFracLo, term0, term1, rem0, rem1);
1574 while (int(rem0) < 0) {
1575 --zFrac0;
1576 doubleZFrac0 -= 2u;
1577 __add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1);
1578 }
1579 zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0);
1580 if ((zFrac1 & 0x1FFu) <= 5u) {
1581 if (zFrac1 == 0u)
1582 zFrac1 = 1u;
1583 umulExtended(doubleZFrac0, zFrac1, term1, term2);
1584 __sub64(rem1, 0u, term1, term2, rem1, rem2);
1585 umulExtended(zFrac1, zFrac1, term2, term3);
1586 __sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3);
1587 while (int(rem1) < 0) {
1588 --zFrac1;
1589 __shortShift64Left(0u, zFrac1, 1, term2, term3);
1590 term3 |= 1u;
1591 term2 |= doubleZFrac0;
1592 __add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3);
1593 }
1594 zFrac1 |= uint((rem1 | rem2 | rem3) != 0u);
1595 }
1596 __shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2);
1597 return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2);
1598 }
1599
1600 uint64_t
1601 __ftrunc64(uint64_t __a)
1602 {
1603 uvec2 a = unpackUint2x32(__a);
1604 int aExp = __extractFloat64Exp(__a);
1605 uint zLo;
1606 uint zHi;
1607
1608 int unbiasedExp = aExp - 1023;
1609 int fracBits = 52 - unbiasedExp;
1610 uint maskLo = mix(~0u << fracBits, 0u, fracBits >= 32);
1611 uint maskHi = mix(~0u << (fracBits - 32), ~0u, fracBits < 33);
1612 zLo = maskLo & a.x;
1613 zHi = maskHi & a.y;
1614
1615 zLo = mix(zLo, 0u, unbiasedExp < 0);
1616 zHi = mix(zHi, 0u, unbiasedExp < 0);
1617 zLo = mix(zLo, a.x, unbiasedExp > 52);
1618 zHi = mix(zHi, a.y, unbiasedExp > 52);
1619 return packUint2x32(uvec2(zLo, zHi));
1620 }
1621
1622 uint64_t
1623 __ffloor64(uint64_t a)
1624 {
1625 /* The big assumtion is that when 'a' is NaN, __ftrunc(a) returns a. Based
1626 * on that assumption, NaN values that don't have the sign bit will safely
1627 * return NaN (identity). This is guarded by RELAXED_NAN_PROPAGATION
1628 * because otherwise the NaN should have the "signal" bit set. The
1629 * __fadd64 will ensure that occurs.
1630 */
1631 bool is_positive =
1632 #if defined RELAXED_NAN_PROPAGATION
1633 int(unpackUint2x32(a).y) >= 0
1634 #else
1635 __fge64(a, 0ul)
1636 #endif
1637 ;
1638 uint64_t tr = __ftrunc64(a);
1639
1640 if (is_positive || __feq64(tr, a)) {
1641 return tr;
1642 } else {
1643 return __fadd64(tr, 0xbff0000000000000ul /* -1.0 */);
1644 }
1645 }
1646
1647 uint64_t
1648 __fround64(uint64_t __a)
1649 {
1650 uvec2 a = unpackUint2x32(__a);
1651 int unbiasedExp = __extractFloat64Exp(__a) - 1023;
1652 uint aHi = a.y;
1653 uint aLo = a.x;
1654
1655 if (unbiasedExp < 20) {
1656 if (unbiasedExp < 0) {
1657 if ((aHi & 0x80000000u) != 0u && aLo == 0u) {
1658 return 0;
1659 }
1660 aHi &= 0x80000000u;
1661 if ((a.y & 0x000FFFFFu) == 0u && a.x == 0u) {
1662 aLo = 0u;
1663 return packUint2x32(uvec2(aLo, aHi));
1664 }
1665 aHi = mix(aHi, (aHi | 0x3FF00000u), unbiasedExp == -1);
1666 aLo = 0u;
1667 } else {
1668 uint maskExp = 0x000FFFFFu >> unbiasedExp;
1669 uint lastBit = maskExp + 1;
1670 aHi += 0x00080000u >> unbiasedExp;
1671 if ((aHi & maskExp) == 0u)
1672 aHi &= ~lastBit;
1673 aHi &= ~maskExp;
1674 aLo = 0u;
1675 }
1676 } else if (unbiasedExp > 51 || unbiasedExp == 1024) {
1677 return __a;
1678 } else {
1679 uint maskExp = 0xFFFFFFFFu >> (unbiasedExp - 20);
1680 if ((aLo & maskExp) == 0u)
1681 return __a;
1682 uint tmp = aLo + (1u << (51 - unbiasedExp));
1683 if(tmp < aLo)
1684 aHi += 1u;
1685 aLo = tmp;
1686 aLo &= ~maskExp;
1687 }
1688
1689 return packUint2x32(uvec2(aLo, aHi));
1690 }
1691
1692 uint64_t
1693 __fmin64(uint64_t a, uint64_t b)
1694 {
1695 /* This weird layout matters. Doing the "obvious" thing results in extra
1696 * flow control being inserted to implement the short-circuit evaluation
1697 * rules. Flow control is bad!
1698 */
1699 bool b_nan = __is_nan(b);
1700 bool a_lt_b = __flt64_nonnan(a, b);
1701 bool a_nan = __is_nan(a);
1702
1703 return (b_nan || a_lt_b) && !a_nan ? a : b;
1704 }
1705
1706 uint64_t
1707 __fmax64(uint64_t a, uint64_t b)
1708 {
1709 /* This weird layout matters. Doing the "obvious" thing results in extra
1710 * flow control being inserted to implement the short-circuit evaluation
1711 * rules. Flow control is bad!
1712 */
1713 bool b_nan = __is_nan(b);
1714 bool a_lt_b = __flt64_nonnan(a, b);
1715 bool a_nan = __is_nan(a);
1716
1717 return (b_nan || a_lt_b) && !a_nan ? b : a;
1718 }
1719
1720 uint64_t
1721 __ffract64(uint64_t a)
1722 {
1723 return __fadd64(a, __fneg64(__ffloor64(a)));
1724 }