glsl: Add a method to get precision from a deref instruction
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "util/format/u_format.h"
33 #include "util/half_float.h"
34 #include "compiler/glsl_types.h"
35 #include "list.h"
36 #include "ir_visitor.h"
37 #include "ir_hierarchical_visitor.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_demote,
80 ir_type_emit_vertex,
81 ir_type_end_primitive,
82 ir_type_barrier,
83 ir_type_max, /**< maximum ir_type enum number, for validation */
84 ir_type_unset = ir_type_max
85 };
86
87
88 /**
89 * Base class of all IR instructions
90 */
91 class ir_instruction : public exec_node {
92 public:
93 enum ir_node_type ir_type;
94
95 /**
96 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
97 * there's a virtual destructor present. Because we almost
98 * universally use ralloc for our memory management of
99 * ir_instructions, the destructor doesn't need to do any work.
100 */
101 virtual ~ir_instruction()
102 {
103 }
104
105 /** ir_print_visitor helper for debugging. */
106 void print(void) const;
107 void fprint(FILE *f) const;
108
109 virtual void accept(ir_visitor *) = 0;
110 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
111 virtual ir_instruction *clone(void *mem_ctx,
112 struct hash_table *ht) const = 0;
113
114 bool is_rvalue() const
115 {
116 return ir_type == ir_type_dereference_array ||
117 ir_type == ir_type_dereference_record ||
118 ir_type == ir_type_dereference_variable ||
119 ir_type == ir_type_constant ||
120 ir_type == ir_type_expression ||
121 ir_type == ir_type_swizzle ||
122 ir_type == ir_type_texture;
123 }
124
125 bool is_dereference() const
126 {
127 return ir_type == ir_type_dereference_array ||
128 ir_type == ir_type_dereference_record ||
129 ir_type == ir_type_dereference_variable;
130 }
131
132 bool is_jump() const
133 {
134 return ir_type == ir_type_loop_jump ||
135 ir_type == ir_type_return ||
136 ir_type == ir_type_discard;
137 }
138
139 /**
140 * \name IR instruction downcast functions
141 *
142 * These functions either cast the object to a derived class or return
143 * \c NULL if the object's type does not match the specified derived class.
144 * Additional downcast functions will be added as needed.
145 */
146 /*@{*/
147 #define AS_BASE(TYPE) \
148 class ir_##TYPE *as_##TYPE() \
149 { \
150 assume(this != NULL); \
151 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
152 } \
153 const class ir_##TYPE *as_##TYPE() const \
154 { \
155 assume(this != NULL); \
156 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
157 }
158
159 AS_BASE(rvalue)
160 AS_BASE(dereference)
161 AS_BASE(jump)
162 #undef AS_BASE
163
164 #define AS_CHILD(TYPE) \
165 class ir_##TYPE * as_##TYPE() \
166 { \
167 assume(this != NULL); \
168 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
169 } \
170 const class ir_##TYPE * as_##TYPE() const \
171 { \
172 assume(this != NULL); \
173 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
174 }
175 AS_CHILD(variable)
176 AS_CHILD(function)
177 AS_CHILD(dereference_array)
178 AS_CHILD(dereference_variable)
179 AS_CHILD(dereference_record)
180 AS_CHILD(expression)
181 AS_CHILD(loop)
182 AS_CHILD(assignment)
183 AS_CHILD(call)
184 AS_CHILD(return)
185 AS_CHILD(if)
186 AS_CHILD(swizzle)
187 AS_CHILD(texture)
188 AS_CHILD(constant)
189 AS_CHILD(discard)
190 #undef AS_CHILD
191 /*@}*/
192
193 /**
194 * IR equality method: Return true if the referenced instruction would
195 * return the same value as this one.
196 *
197 * This intended to be used for CSE and algebraic optimizations, on rvalues
198 * in particular. No support for other instruction types (assignments,
199 * jumps, calls, etc.) is planned.
200 */
201 virtual bool equals(const ir_instruction *ir,
202 enum ir_node_type ignore = ir_type_unset) const;
203
204 protected:
205 ir_instruction(enum ir_node_type t)
206 : ir_type(t)
207 {
208 }
209
210 private:
211 ir_instruction()
212 {
213 assert(!"Should not get here.");
214 }
215 };
216
217
218 /**
219 * The base class for all "values"/expression trees.
220 */
221 class ir_rvalue : public ir_instruction {
222 public:
223 const struct glsl_type *type;
224
225 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
226
227 virtual void accept(ir_visitor *v)
228 {
229 v->visit(this);
230 }
231
232 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
233
234 virtual ir_constant *constant_expression_value(void *mem_ctx,
235 struct hash_table *variable_context = NULL);
236
237 ir_rvalue *as_rvalue_to_saturate();
238
239 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
240 {
241 return false;
242 }
243
244 /**
245 * Get the variable that is ultimately referenced by an r-value
246 */
247 virtual ir_variable *variable_referenced() const
248 {
249 return NULL;
250 }
251
252
253 /**
254 * If an r-value is a reference to a whole variable, get that variable
255 *
256 * \return
257 * Pointer to a variable that is completely dereferenced by the r-value. If
258 * the r-value is not a dereference or the dereference does not access the
259 * entire variable (i.e., it's just one array element, struct field), \c NULL
260 * is returned.
261 */
262 virtual ir_variable *whole_variable_referenced()
263 {
264 return NULL;
265 }
266
267 /**
268 * Determine if an r-value has the value zero
269 *
270 * The base implementation of this function always returns \c false. The
271 * \c ir_constant class over-rides this function to return \c true \b only
272 * for vector and scalar types that have all elements set to the value
273 * zero (or \c false for booleans).
274 *
275 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
276 */
277 virtual bool is_zero() const;
278
279 /**
280 * Determine if an r-value has the value one
281 *
282 * The base implementation of this function always returns \c false. The
283 * \c ir_constant class over-rides this function to return \c true \b only
284 * for vector and scalar types that have all elements set to the value
285 * one (or \c true for booleans).
286 *
287 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
288 */
289 virtual bool is_one() const;
290
291 /**
292 * Determine if an r-value has the value negative one
293 *
294 * The base implementation of this function always returns \c false. The
295 * \c ir_constant class over-rides this function to return \c true \b only
296 * for vector and scalar types that have all elements set to the value
297 * negative one. For boolean types, the result is always \c false.
298 *
299 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
300 */
301 virtual bool is_negative_one() const;
302
303 /**
304 * Determine if an r-value is an unsigned integer constant which can be
305 * stored in 16 bits.
306 *
307 * \sa ir_constant::is_uint16_constant.
308 */
309 virtual bool is_uint16_constant() const { return false; }
310
311 /**
312 * Return a generic value of error_type.
313 *
314 * Allocation will be performed with 'mem_ctx' as ralloc owner.
315 */
316 static ir_rvalue *error_value(void *mem_ctx);
317
318 protected:
319 ir_rvalue(enum ir_node_type t);
320 };
321
322
323 /**
324 * Variable storage classes
325 */
326 enum ir_variable_mode {
327 ir_var_auto = 0, /**< Function local variables and globals. */
328 ir_var_uniform, /**< Variable declared as a uniform. */
329 ir_var_shader_storage, /**< Variable declared as an ssbo. */
330 ir_var_shader_shared, /**< Variable declared as shared. */
331 ir_var_shader_in,
332 ir_var_shader_out,
333 ir_var_function_in,
334 ir_var_function_out,
335 ir_var_function_inout,
336 ir_var_const_in, /**< "in" param that must be a constant expression */
337 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
338 ir_var_temporary, /**< Temporary variable generated during compilation. */
339 ir_var_mode_count /**< Number of variable modes */
340 };
341
342 /**
343 * Enum keeping track of how a variable was declared. For error checking of
344 * the gl_PerVertex redeclaration rules.
345 */
346 enum ir_var_declaration_type {
347 /**
348 * Normal declaration (for most variables, this means an explicit
349 * declaration. Exception: temporaries are always implicitly declared, but
350 * they still use ir_var_declared_normally).
351 *
352 * Note: an ir_variable that represents a named interface block uses
353 * ir_var_declared_normally.
354 */
355 ir_var_declared_normally = 0,
356
357 /**
358 * Variable was explicitly declared (or re-declared) in an unnamed
359 * interface block.
360 */
361 ir_var_declared_in_block,
362
363 /**
364 * Variable is an implicitly declared built-in that has not been explicitly
365 * re-declared by the shader.
366 */
367 ir_var_declared_implicitly,
368
369 /**
370 * Variable is implicitly generated by the compiler and should not be
371 * visible via the API.
372 */
373 ir_var_hidden,
374 };
375
376 /**
377 * \brief Layout qualifiers for gl_FragDepth.
378 *
379 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
380 * with a layout qualifier.
381 */
382 enum ir_depth_layout {
383 ir_depth_layout_none, /**< No depth layout is specified. */
384 ir_depth_layout_any,
385 ir_depth_layout_greater,
386 ir_depth_layout_less,
387 ir_depth_layout_unchanged
388 };
389
390 /**
391 * \brief Convert depth layout qualifier to string.
392 */
393 const char*
394 depth_layout_string(ir_depth_layout layout);
395
396 /**
397 * Description of built-in state associated with a uniform
398 *
399 * \sa ir_variable::state_slots
400 */
401 struct ir_state_slot {
402 gl_state_index16 tokens[STATE_LENGTH];
403 int swizzle;
404 };
405
406
407 /**
408 * Get the string value for an interpolation qualifier
409 *
410 * \return The string that would be used in a shader to specify \c
411 * mode will be returned.
412 *
413 * This function is used to generate error messages of the form "shader
414 * uses %s interpolation qualifier", so in the case where there is no
415 * interpolation qualifier, it returns "no".
416 *
417 * This function should only be used on a shader input or output variable.
418 */
419 const char *interpolation_string(unsigned interpolation);
420
421
422 class ir_variable : public ir_instruction {
423 public:
424 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
425
426 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
427
428 virtual void accept(ir_visitor *v)
429 {
430 v->visit(this);
431 }
432
433 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
434
435
436 /**
437 * Determine whether or not a variable is part of a uniform or
438 * shader storage block.
439 */
440 inline bool is_in_buffer_block() const
441 {
442 return (this->data.mode == ir_var_uniform ||
443 this->data.mode == ir_var_shader_storage) &&
444 this->interface_type != NULL;
445 }
446
447 /**
448 * Determine whether or not a variable is part of a shader storage block.
449 */
450 inline bool is_in_shader_storage_block() const
451 {
452 return this->data.mode == ir_var_shader_storage &&
453 this->interface_type != NULL;
454 }
455
456 /**
457 * Determine whether or not a variable is the declaration of an interface
458 * block
459 *
460 * For the first declaration below, there will be an \c ir_variable named
461 * "instance" whose type and whose instance_type will be the same
462 * \c glsl_type. For the second declaration, there will be an \c ir_variable
463 * named "f" whose type is float and whose instance_type is B2.
464 *
465 * "instance" is an interface instance variable, but "f" is not.
466 *
467 * uniform B1 {
468 * float f;
469 * } instance;
470 *
471 * uniform B2 {
472 * float f;
473 * };
474 */
475 inline bool is_interface_instance() const
476 {
477 return this->type->without_array() == this->interface_type;
478 }
479
480 /**
481 * Return whether this variable contains a bindless sampler/image.
482 */
483 inline bool contains_bindless() const
484 {
485 if (!this->type->contains_sampler() && !this->type->contains_image())
486 return false;
487
488 return this->data.bindless || this->data.mode != ir_var_uniform;
489 }
490
491 /**
492 * Set this->interface_type on a newly created variable.
493 */
494 void init_interface_type(const struct glsl_type *type)
495 {
496 assert(this->interface_type == NULL);
497 this->interface_type = type;
498 if (this->is_interface_instance()) {
499 this->u.max_ifc_array_access =
500 ralloc_array(this, int, type->length);
501 for (unsigned i = 0; i < type->length; i++) {
502 this->u.max_ifc_array_access[i] = -1;
503 }
504 }
505 }
506
507 /**
508 * Change this->interface_type on a variable that previously had a
509 * different, but compatible, interface_type. This is used during linking
510 * to set the size of arrays in interface blocks.
511 */
512 void change_interface_type(const struct glsl_type *type)
513 {
514 if (this->u.max_ifc_array_access != NULL) {
515 /* max_ifc_array_access has already been allocated, so make sure the
516 * new interface has the same number of fields as the old one.
517 */
518 assert(this->interface_type->length == type->length);
519 }
520 this->interface_type = type;
521 }
522
523 /**
524 * Change this->interface_type on a variable that previously had a
525 * different, and incompatible, interface_type. This is used during
526 * compilation to handle redeclaration of the built-in gl_PerVertex
527 * interface block.
528 */
529 void reinit_interface_type(const struct glsl_type *type)
530 {
531 if (this->u.max_ifc_array_access != NULL) {
532 #ifndef NDEBUG
533 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
534 * it defines have been accessed yet; so it's safe to throw away the
535 * old max_ifc_array_access pointer, since all of its values are
536 * zero.
537 */
538 for (unsigned i = 0; i < this->interface_type->length; i++)
539 assert(this->u.max_ifc_array_access[i] == -1);
540 #endif
541 ralloc_free(this->u.max_ifc_array_access);
542 this->u.max_ifc_array_access = NULL;
543 }
544 this->interface_type = NULL;
545 init_interface_type(type);
546 }
547
548 const glsl_type *get_interface_type() const
549 {
550 return this->interface_type;
551 }
552
553 enum glsl_interface_packing get_interface_type_packing() const
554 {
555 return this->interface_type->get_interface_packing();
556 }
557 /**
558 * Get the max_ifc_array_access pointer
559 *
560 * A "set" function is not needed because the array is dynmically allocated
561 * as necessary.
562 */
563 inline int *get_max_ifc_array_access()
564 {
565 assert(this->data._num_state_slots == 0);
566 return this->u.max_ifc_array_access;
567 }
568
569 inline unsigned get_num_state_slots() const
570 {
571 assert(!this->is_interface_instance()
572 || this->data._num_state_slots == 0);
573 return this->data._num_state_slots;
574 }
575
576 inline void set_num_state_slots(unsigned n)
577 {
578 assert(!this->is_interface_instance()
579 || n == 0);
580 this->data._num_state_slots = n;
581 }
582
583 inline ir_state_slot *get_state_slots()
584 {
585 return this->is_interface_instance() ? NULL : this->u.state_slots;
586 }
587
588 inline const ir_state_slot *get_state_slots() const
589 {
590 return this->is_interface_instance() ? NULL : this->u.state_slots;
591 }
592
593 inline ir_state_slot *allocate_state_slots(unsigned n)
594 {
595 assert(!this->is_interface_instance());
596
597 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
598 this->data._num_state_slots = 0;
599
600 if (this->u.state_slots != NULL)
601 this->data._num_state_slots = n;
602
603 return this->u.state_slots;
604 }
605
606 inline bool is_interpolation_flat() const
607 {
608 return this->data.interpolation == INTERP_MODE_FLAT ||
609 this->type->contains_integer() ||
610 this->type->contains_double();
611 }
612
613 inline bool is_name_ralloced() const
614 {
615 return this->name != ir_variable::tmp_name &&
616 this->name != this->name_storage;
617 }
618
619 /**
620 * Enable emitting extension warnings for this variable
621 */
622 void enable_extension_warning(const char *extension);
623
624 /**
625 * Get the extension warning string for this variable
626 *
627 * If warnings are not enabled, \c NULL is returned.
628 */
629 const char *get_extension_warning() const;
630
631 /**
632 * Declared type of the variable
633 */
634 const struct glsl_type *type;
635
636 /**
637 * Declared name of the variable
638 */
639 const char *name;
640
641 private:
642 /**
643 * If the name length fits into name_storage, it's used, otherwise
644 * the name is ralloc'd. shader-db mining showed that 70% of variables
645 * fit here. This is a win over ralloc where only ralloc_header has
646 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
647 */
648 char name_storage[16];
649
650 public:
651 struct ir_variable_data {
652
653 /**
654 * Is the variable read-only?
655 *
656 * This is set for variables declared as \c const, shader inputs,
657 * and uniforms.
658 */
659 unsigned read_only:1;
660 unsigned centroid:1;
661 unsigned sample:1;
662 unsigned patch:1;
663 /**
664 * Was an 'invariant' qualifier explicitly set in the shader?
665 *
666 * This is used to cross validate qualifiers.
667 */
668 unsigned explicit_invariant:1;
669 /**
670 * Is the variable invariant?
671 *
672 * It can happen either by having the 'invariant' qualifier
673 * explicitly set in the shader or by being used in calculations
674 * of other invariant variables.
675 */
676 unsigned invariant:1;
677 unsigned precise:1;
678
679 /**
680 * Has this variable been used for reading or writing?
681 *
682 * Several GLSL semantic checks require knowledge of whether or not a
683 * variable has been used. For example, it is an error to redeclare a
684 * variable as invariant after it has been used.
685 *
686 * This is maintained in the ast_to_hir.cpp path and during linking,
687 * but not in Mesa's fixed function or ARB program paths.
688 */
689 unsigned used:1;
690
691 /**
692 * Has this variable been statically assigned?
693 *
694 * This answers whether the variable was assigned in any path of
695 * the shader during ast_to_hir. This doesn't answer whether it is
696 * still written after dead code removal, nor is it maintained in
697 * non-ast_to_hir.cpp (GLSL parsing) paths.
698 */
699 unsigned assigned:1;
700
701 /**
702 * When separate shader programs are enabled, only input/outputs between
703 * the stages of a multi-stage separate program can be safely removed
704 * from the shader interface. Other input/outputs must remains active.
705 */
706 unsigned always_active_io:1;
707
708 /**
709 * Enum indicating how the variable was declared. See
710 * ir_var_declaration_type.
711 *
712 * This is used to detect certain kinds of illegal variable redeclarations.
713 */
714 unsigned how_declared:2;
715
716 /**
717 * Storage class of the variable.
718 *
719 * \sa ir_variable_mode
720 */
721 unsigned mode:4;
722
723 /**
724 * Interpolation mode for shader inputs / outputs
725 *
726 * \sa glsl_interp_mode
727 */
728 unsigned interpolation:2;
729
730 /**
731 * Was the location explicitly set in the shader?
732 *
733 * If the location is explicitly set in the shader, it \b cannot be changed
734 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
735 * no effect).
736 */
737 unsigned explicit_location:1;
738 unsigned explicit_index:1;
739
740 /**
741 * Was an initial binding explicitly set in the shader?
742 *
743 * If so, constant_value contains an integer ir_constant representing the
744 * initial binding point.
745 */
746 unsigned explicit_binding:1;
747
748 /**
749 * Was an initial component explicitly set in the shader?
750 */
751 unsigned explicit_component:1;
752
753 /**
754 * Does this variable have an initializer?
755 *
756 * This is used by the linker to cross-validiate initializers of global
757 * variables.
758 */
759 unsigned has_initializer:1;
760
761 /**
762 * Is this variable a generic output or input that has not yet been matched
763 * up to a variable in another stage of the pipeline?
764 *
765 * This is used by the linker as scratch storage while assigning locations
766 * to generic inputs and outputs.
767 */
768 unsigned is_unmatched_generic_inout:1;
769
770 /**
771 * Is this varying used by transform feedback?
772 *
773 * This is used by the linker to decide if it's safe to pack the varying.
774 */
775 unsigned is_xfb:1;
776
777 /**
778 * Is this varying used only by transform feedback?
779 *
780 * This is used by the linker to decide if its safe to pack the varying.
781 */
782 unsigned is_xfb_only:1;
783
784 /**
785 * Was a transform feedback buffer set in the shader?
786 */
787 unsigned explicit_xfb_buffer:1;
788
789 /**
790 * Was a transform feedback offset set in the shader?
791 */
792 unsigned explicit_xfb_offset:1;
793
794 /**
795 * Was a transform feedback stride set in the shader?
796 */
797 unsigned explicit_xfb_stride:1;
798
799 /**
800 * If non-zero, then this variable may be packed along with other variables
801 * into a single varying slot, so this offset should be applied when
802 * accessing components. For example, an offset of 1 means that the x
803 * component of this variable is actually stored in component y of the
804 * location specified by \c location.
805 */
806 unsigned location_frac:2;
807
808 /**
809 * Layout of the matrix. Uses glsl_matrix_layout values.
810 */
811 unsigned matrix_layout:2;
812
813 /**
814 * Non-zero if this variable was created by lowering a named interface
815 * block.
816 */
817 unsigned from_named_ifc_block:1;
818
819 /**
820 * Non-zero if the variable must be a shader input. This is useful for
821 * constraints on function parameters.
822 */
823 unsigned must_be_shader_input:1;
824
825 /**
826 * Output index for dual source blending.
827 *
828 * \note
829 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
830 * source blending.
831 */
832 unsigned index:1;
833
834 /**
835 * Precision qualifier.
836 *
837 * In desktop GLSL we do not care about precision qualifiers at all, in
838 * fact, the spec says that precision qualifiers are ignored.
839 *
840 * To make things easy, we make it so that this field is always
841 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
842 * have the same precision value and the checks we add in the compiler
843 * for this field will never break a desktop shader compile.
844 */
845 unsigned precision:2;
846
847 /**
848 * \brief Layout qualifier for gl_FragDepth.
849 *
850 * This is not equal to \c ir_depth_layout_none if and only if this
851 * variable is \c gl_FragDepth and a layout qualifier is specified.
852 */
853 ir_depth_layout depth_layout:3;
854
855 /**
856 * Memory qualifiers.
857 */
858 unsigned memory_read_only:1; /**< "readonly" qualifier. */
859 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
860 unsigned memory_coherent:1;
861 unsigned memory_volatile:1;
862 unsigned memory_restrict:1;
863
864 /**
865 * ARB_shader_storage_buffer_object
866 */
867 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
868
869 unsigned implicit_sized_array:1;
870
871 /**
872 * Whether this is a fragment shader output implicitly initialized with
873 * the previous contents of the specified render target at the
874 * framebuffer location corresponding to this shader invocation.
875 */
876 unsigned fb_fetch_output:1;
877
878 /**
879 * Non-zero if this variable is considered bindless as defined by
880 * ARB_bindless_texture.
881 */
882 unsigned bindless:1;
883
884 /**
885 * Non-zero if this variable is considered bound as defined by
886 * ARB_bindless_texture.
887 */
888 unsigned bound:1;
889
890 /**
891 * Emit a warning if this variable is accessed.
892 */
893 private:
894 uint8_t warn_extension_index;
895
896 public:
897 /**
898 * Image internal format if specified explicitly, otherwise
899 * PIPE_FORMAT_NONE.
900 */
901 enum pipe_format image_format;
902
903 private:
904 /**
905 * Number of state slots used
906 *
907 * \note
908 * This could be stored in as few as 7-bits, if necessary. If it is made
909 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
910 * be safe.
911 */
912 uint16_t _num_state_slots;
913
914 public:
915 /**
916 * Initial binding point for a sampler, atomic, or UBO.
917 *
918 * For array types, this represents the binding point for the first element.
919 */
920 uint16_t binding;
921
922 /**
923 * Storage location of the base of this variable
924 *
925 * The precise meaning of this field depends on the nature of the variable.
926 *
927 * - Vertex shader input: one of the values from \c gl_vert_attrib.
928 * - Vertex shader output: one of the values from \c gl_varying_slot.
929 * - Geometry shader input: one of the values from \c gl_varying_slot.
930 * - Geometry shader output: one of the values from \c gl_varying_slot.
931 * - Fragment shader input: one of the values from \c gl_varying_slot.
932 * - Fragment shader output: one of the values from \c gl_frag_result.
933 * - Uniforms: Per-stage uniform slot number for default uniform block.
934 * - Uniforms: Index within the uniform block definition for UBO members.
935 * - Non-UBO Uniforms: explicit location until linking then reused to
936 * store uniform slot number.
937 * - Other: This field is not currently used.
938 *
939 * If the variable is a uniform, shader input, or shader output, and the
940 * slot has not been assigned, the value will be -1.
941 */
942 int location;
943
944 /**
945 * for glsl->tgsi/mesa IR we need to store the index into the
946 * parameters for uniforms, initially the code overloaded location
947 * but this causes problems with indirect samplers and AoA.
948 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
949 */
950 int param_index;
951
952 /**
953 * Vertex stream output identifier.
954 *
955 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
956 * stream of the i-th component.
957 */
958 unsigned stream;
959
960 /**
961 * Atomic, transform feedback or block member offset.
962 */
963 unsigned offset;
964
965 /**
966 * Highest element accessed with a constant expression array index
967 *
968 * Not used for non-array variables. -1 is never accessed.
969 */
970 int max_array_access;
971
972 /**
973 * Transform feedback buffer.
974 */
975 unsigned xfb_buffer;
976
977 /**
978 * Transform feedback stride.
979 */
980 unsigned xfb_stride;
981
982 /**
983 * Allow (only) ir_variable direct access private members.
984 */
985 friend class ir_variable;
986 } data;
987
988 /**
989 * Value assigned in the initializer of a variable declared "const"
990 */
991 ir_constant *constant_value;
992
993 /**
994 * Constant expression assigned in the initializer of the variable
995 *
996 * \warning
997 * This field and \c ::constant_value are distinct. Even if the two fields
998 * refer to constants with the same value, they must point to separate
999 * objects.
1000 */
1001 ir_constant *constant_initializer;
1002
1003 private:
1004 static const char *const warn_extension_table[];
1005
1006 union {
1007 /**
1008 * For variables which satisfy the is_interface_instance() predicate,
1009 * this points to an array of integers such that if the ith member of
1010 * the interface block is an array, max_ifc_array_access[i] is the
1011 * maximum array element of that member that has been accessed. If the
1012 * ith member of the interface block is not an array,
1013 * max_ifc_array_access[i] is unused.
1014 *
1015 * For variables whose type is not an interface block, this pointer is
1016 * NULL.
1017 */
1018 int *max_ifc_array_access;
1019
1020 /**
1021 * Built-in state that backs this uniform
1022 *
1023 * Once set at variable creation, \c state_slots must remain invariant.
1024 *
1025 * If the variable is not a uniform, \c _num_state_slots will be zero
1026 * and \c state_slots will be \c NULL.
1027 */
1028 ir_state_slot *state_slots;
1029 } u;
1030
1031 /**
1032 * For variables that are in an interface block or are an instance of an
1033 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1034 *
1035 * \sa ir_variable::location
1036 */
1037 const glsl_type *interface_type;
1038
1039 /**
1040 * Name used for anonymous compiler temporaries
1041 */
1042 static const char tmp_name[];
1043
1044 public:
1045 /**
1046 * Should the construct keep names for ir_var_temporary variables?
1047 *
1048 * When this global is false, names passed to the constructor for
1049 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1050 * be named "compiler_temp". This name will be in static storage.
1051 *
1052 * \warning
1053 * \b NEVER change the mode of an \c ir_var_temporary.
1054 *
1055 * \warning
1056 * This variable is \b not thread-safe. It is global, \b not
1057 * per-context. It begins life false. A context can, at some point, make
1058 * it true. From that point on, it will be true forever. This should be
1059 * okay since it will only be set true while debugging.
1060 */
1061 static bool temporaries_allocate_names;
1062 };
1063
1064 /**
1065 * A function that returns whether a built-in function is available in the
1066 * current shading language (based on version, ES or desktop, and extensions).
1067 */
1068 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1069
1070 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1071 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1072
1073 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1074 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1075
1076 enum ir_intrinsic_id {
1077 ir_intrinsic_invalid = 0,
1078
1079 /**
1080 * \name Generic intrinsics
1081 *
1082 * Each of these intrinsics has a specific version for shared variables and
1083 * SSBOs.
1084 */
1085 /*@{*/
1086 ir_intrinsic_generic_load,
1087 ir_intrinsic_generic_store,
1088 ir_intrinsic_generic_atomic_add,
1089 ir_intrinsic_generic_atomic_and,
1090 ir_intrinsic_generic_atomic_or,
1091 ir_intrinsic_generic_atomic_xor,
1092 ir_intrinsic_generic_atomic_min,
1093 ir_intrinsic_generic_atomic_max,
1094 ir_intrinsic_generic_atomic_exchange,
1095 ir_intrinsic_generic_atomic_comp_swap,
1096 /*@}*/
1097
1098 ir_intrinsic_atomic_counter_read,
1099 ir_intrinsic_atomic_counter_increment,
1100 ir_intrinsic_atomic_counter_predecrement,
1101 ir_intrinsic_atomic_counter_add,
1102 ir_intrinsic_atomic_counter_and,
1103 ir_intrinsic_atomic_counter_or,
1104 ir_intrinsic_atomic_counter_xor,
1105 ir_intrinsic_atomic_counter_min,
1106 ir_intrinsic_atomic_counter_max,
1107 ir_intrinsic_atomic_counter_exchange,
1108 ir_intrinsic_atomic_counter_comp_swap,
1109
1110 ir_intrinsic_image_load,
1111 ir_intrinsic_image_store,
1112 ir_intrinsic_image_atomic_add,
1113 ir_intrinsic_image_atomic_and,
1114 ir_intrinsic_image_atomic_or,
1115 ir_intrinsic_image_atomic_xor,
1116 ir_intrinsic_image_atomic_min,
1117 ir_intrinsic_image_atomic_max,
1118 ir_intrinsic_image_atomic_exchange,
1119 ir_intrinsic_image_atomic_comp_swap,
1120 ir_intrinsic_image_size,
1121 ir_intrinsic_image_samples,
1122 ir_intrinsic_image_atomic_inc_wrap,
1123 ir_intrinsic_image_atomic_dec_wrap,
1124
1125 ir_intrinsic_ssbo_load,
1126 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1127 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1128 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1129 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1130 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1131 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1132 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1133 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1134 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1135
1136 ir_intrinsic_memory_barrier,
1137 ir_intrinsic_shader_clock,
1138 ir_intrinsic_group_memory_barrier,
1139 ir_intrinsic_memory_barrier_atomic_counter,
1140 ir_intrinsic_memory_barrier_buffer,
1141 ir_intrinsic_memory_barrier_image,
1142 ir_intrinsic_memory_barrier_shared,
1143 ir_intrinsic_begin_invocation_interlock,
1144 ir_intrinsic_end_invocation_interlock,
1145
1146 ir_intrinsic_vote_all,
1147 ir_intrinsic_vote_any,
1148 ir_intrinsic_vote_eq,
1149 ir_intrinsic_ballot,
1150 ir_intrinsic_read_invocation,
1151 ir_intrinsic_read_first_invocation,
1152
1153 ir_intrinsic_helper_invocation,
1154
1155 ir_intrinsic_shared_load,
1156 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1157 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1158 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1159 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1160 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1161 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1162 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1163 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1164 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1165 };
1166
1167 /*@{*/
1168 /**
1169 * The representation of a function instance; may be the full definition or
1170 * simply a prototype.
1171 */
1172 class ir_function_signature : public ir_instruction {
1173 /* An ir_function_signature will be part of the list of signatures in
1174 * an ir_function.
1175 */
1176 public:
1177 ir_function_signature(const glsl_type *return_type,
1178 builtin_available_predicate builtin_avail = NULL);
1179
1180 virtual ir_function_signature *clone(void *mem_ctx,
1181 struct hash_table *ht) const;
1182 ir_function_signature *clone_prototype(void *mem_ctx,
1183 struct hash_table *ht) const;
1184
1185 virtual void accept(ir_visitor *v)
1186 {
1187 v->visit(this);
1188 }
1189
1190 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1191
1192 /**
1193 * Attempt to evaluate this function as a constant expression,
1194 * given a list of the actual parameters and the variable context.
1195 * Returns NULL for non-built-ins.
1196 */
1197 ir_constant *constant_expression_value(void *mem_ctx,
1198 exec_list *actual_parameters,
1199 struct hash_table *variable_context);
1200
1201 /**
1202 * Get the name of the function for which this is a signature
1203 */
1204 const char *function_name() const;
1205
1206 /**
1207 * Get a handle to the function for which this is a signature
1208 *
1209 * There is no setter function, this function returns a \c const pointer,
1210 * and \c ir_function_signature::_function is private for a reason. The
1211 * only way to make a connection between a function and function signature
1212 * is via \c ir_function::add_signature. This helps ensure that certain
1213 * invariants (i.e., a function signature is in the list of signatures for
1214 * its \c _function) are met.
1215 *
1216 * \sa ir_function::add_signature
1217 */
1218 inline const class ir_function *function() const
1219 {
1220 return this->_function;
1221 }
1222
1223 /**
1224 * Check whether the qualifiers match between this signature's parameters
1225 * and the supplied parameter list. If not, returns the name of the first
1226 * parameter with mismatched qualifiers (for use in error messages).
1227 */
1228 const char *qualifiers_match(exec_list *params);
1229
1230 /**
1231 * Replace the current parameter list with the given one. This is useful
1232 * if the current information came from a prototype, and either has invalid
1233 * or missing parameter names.
1234 */
1235 void replace_parameters(exec_list *new_params);
1236
1237 /**
1238 * Function return type.
1239 *
1240 * \note The precision qualifier is stored separately in return_precision.
1241 */
1242 const struct glsl_type *return_type;
1243
1244 /**
1245 * List of ir_variable of function parameters.
1246 *
1247 * This represents the storage. The paramaters passed in a particular
1248 * call will be in ir_call::actual_paramaters.
1249 */
1250 struct exec_list parameters;
1251
1252 /** Whether or not this function has a body (which may be empty). */
1253 unsigned is_defined:1;
1254
1255 /*
1256 * Precision qualifier for the return type.
1257 *
1258 * See the comment for ir_variable_data::precision for more details.
1259 */
1260 unsigned return_precision:2;
1261
1262 /** Whether or not this function signature is a built-in. */
1263 bool is_builtin() const;
1264
1265 /**
1266 * Whether or not this function is an intrinsic to be implemented
1267 * by the driver.
1268 */
1269 inline bool is_intrinsic() const
1270 {
1271 return intrinsic_id != ir_intrinsic_invalid;
1272 }
1273
1274 /** Indentifier for this intrinsic. */
1275 enum ir_intrinsic_id intrinsic_id;
1276
1277 /** Whether or not a built-in is available for this shader. */
1278 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1279
1280 /** Body of instructions in the function. */
1281 struct exec_list body;
1282
1283 private:
1284 /**
1285 * A function pointer to a predicate that answers whether a built-in
1286 * function is available in the current shader. NULL if not a built-in.
1287 */
1288 builtin_available_predicate builtin_avail;
1289
1290 /** Function of which this signature is one overload. */
1291 class ir_function *_function;
1292
1293 /** Function signature of which this one is a prototype clone */
1294 const ir_function_signature *origin;
1295
1296 friend class ir_function;
1297
1298 /**
1299 * Helper function to run a list of instructions for constant
1300 * expression evaluation.
1301 *
1302 * The hash table represents the values of the visible variables.
1303 * There are no scoping issues because the table is indexed on
1304 * ir_variable pointers, not variable names.
1305 *
1306 * Returns false if the expression is not constant, true otherwise,
1307 * and the value in *result if result is non-NULL.
1308 */
1309 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1310 const struct exec_list &body,
1311 struct hash_table *variable_context,
1312 ir_constant **result);
1313 };
1314
1315
1316 /**
1317 * Header for tracking multiple overloaded functions with the same name.
1318 * Contains a list of ir_function_signatures representing each of the
1319 * actual functions.
1320 */
1321 class ir_function : public ir_instruction {
1322 public:
1323 ir_function(const char *name);
1324
1325 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1326
1327 virtual void accept(ir_visitor *v)
1328 {
1329 v->visit(this);
1330 }
1331
1332 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1333
1334 void add_signature(ir_function_signature *sig)
1335 {
1336 sig->_function = this;
1337 this->signatures.push_tail(sig);
1338 }
1339
1340 /**
1341 * Find a signature that matches a set of actual parameters, taking implicit
1342 * conversions into account. Also flags whether the match was exact.
1343 */
1344 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1345 const exec_list *actual_param,
1346 bool allow_builtins,
1347 bool *match_is_exact);
1348
1349 /**
1350 * Find a signature that matches a set of actual parameters, taking implicit
1351 * conversions into account.
1352 */
1353 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1354 const exec_list *actual_param,
1355 bool allow_builtins);
1356
1357 /**
1358 * Find a signature that exactly matches a set of actual parameters without
1359 * any implicit type conversions.
1360 */
1361 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1362 const exec_list *actual_ps);
1363
1364 /**
1365 * Name of the function.
1366 */
1367 const char *name;
1368
1369 /** Whether or not this function has a signature that isn't a built-in. */
1370 bool has_user_signature();
1371
1372 /**
1373 * List of ir_function_signature for each overloaded function with this name.
1374 */
1375 struct exec_list signatures;
1376
1377 /**
1378 * is this function a subroutine type declaration
1379 * e.g. subroutine void type1(float arg1);
1380 */
1381 bool is_subroutine;
1382
1383 /**
1384 * is this function associated to a subroutine type
1385 * e.g. subroutine (type1, type2) function_name { function_body };
1386 * would have num_subroutine_types 2,
1387 * and pointers to the type1 and type2 types.
1388 */
1389 int num_subroutine_types;
1390 const struct glsl_type **subroutine_types;
1391
1392 int subroutine_index;
1393 };
1394
1395 inline const char *ir_function_signature::function_name() const
1396 {
1397 return this->_function->name;
1398 }
1399 /*@}*/
1400
1401
1402 /**
1403 * IR instruction representing high-level if-statements
1404 */
1405 class ir_if : public ir_instruction {
1406 public:
1407 ir_if(ir_rvalue *condition)
1408 : ir_instruction(ir_type_if), condition(condition)
1409 {
1410 }
1411
1412 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1413
1414 virtual void accept(ir_visitor *v)
1415 {
1416 v->visit(this);
1417 }
1418
1419 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1420
1421 ir_rvalue *condition;
1422 /** List of ir_instruction for the body of the then branch */
1423 exec_list then_instructions;
1424 /** List of ir_instruction for the body of the else branch */
1425 exec_list else_instructions;
1426 };
1427
1428
1429 /**
1430 * IR instruction representing a high-level loop structure.
1431 */
1432 class ir_loop : public ir_instruction {
1433 public:
1434 ir_loop();
1435
1436 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1437
1438 virtual void accept(ir_visitor *v)
1439 {
1440 v->visit(this);
1441 }
1442
1443 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1444
1445 /** List of ir_instruction that make up the body of the loop. */
1446 exec_list body_instructions;
1447 };
1448
1449
1450 class ir_assignment : public ir_instruction {
1451 public:
1452 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1453
1454 /**
1455 * Construct an assignment with an explicit write mask
1456 *
1457 * \note
1458 * Since a write mask is supplied, the LHS must already be a bare
1459 * \c ir_dereference. The cannot be any swizzles in the LHS.
1460 */
1461 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1462 unsigned write_mask);
1463
1464 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1465
1466 virtual ir_constant *constant_expression_value(void *mem_ctx,
1467 struct hash_table *variable_context = NULL);
1468
1469 virtual void accept(ir_visitor *v)
1470 {
1471 v->visit(this);
1472 }
1473
1474 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1475
1476 /**
1477 * Get a whole variable written by an assignment
1478 *
1479 * If the LHS of the assignment writes a whole variable, the variable is
1480 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1481 * assignment are:
1482 *
1483 * - Assigning to a scalar
1484 * - Assigning to all components of a vector
1485 * - Whole array (or matrix) assignment
1486 * - Whole structure assignment
1487 */
1488 ir_variable *whole_variable_written();
1489
1490 /**
1491 * Set the LHS of an assignment
1492 */
1493 void set_lhs(ir_rvalue *lhs);
1494
1495 /**
1496 * Left-hand side of the assignment.
1497 *
1498 * This should be treated as read only. If you need to set the LHS of an
1499 * assignment, use \c ir_assignment::set_lhs.
1500 */
1501 ir_dereference *lhs;
1502
1503 /**
1504 * Value being assigned
1505 */
1506 ir_rvalue *rhs;
1507
1508 /**
1509 * Optional condition for the assignment.
1510 */
1511 ir_rvalue *condition;
1512
1513
1514 /**
1515 * Component mask written
1516 *
1517 * For non-vector types in the LHS, this field will be zero. For vector
1518 * types, a bit will be set for each component that is written. Note that
1519 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1520 *
1521 * A partially-set write mask means that each enabled channel gets
1522 * the value from a consecutive channel of the rhs. For example,
1523 * to write just .xyw of gl_FrontColor with color:
1524 *
1525 * (assign (constant bool (1)) (xyw)
1526 * (var_ref gl_FragColor)
1527 * (swiz xyw (var_ref color)))
1528 */
1529 unsigned write_mask:4;
1530 };
1531
1532 #include "ir_expression_operation.h"
1533
1534 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1535 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1536
1537 class ir_expression : public ir_rvalue {
1538 public:
1539 ir_expression(int op, const struct glsl_type *type,
1540 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1541 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1542
1543 /**
1544 * Constructor for unary operation expressions
1545 */
1546 ir_expression(int op, ir_rvalue *);
1547
1548 /**
1549 * Constructor for binary operation expressions
1550 */
1551 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1552
1553 /**
1554 * Constructor for ternary operation expressions
1555 */
1556 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1557
1558 virtual bool equals(const ir_instruction *ir,
1559 enum ir_node_type ignore = ir_type_unset) const;
1560
1561 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1562
1563 /**
1564 * Attempt to constant-fold the expression
1565 *
1566 * The "variable_context" hash table links ir_variable * to ir_constant *
1567 * that represent the variables' values. \c NULL represents an empty
1568 * context.
1569 *
1570 * If the expression cannot be constant folded, this method will return
1571 * \c NULL.
1572 */
1573 virtual ir_constant *constant_expression_value(void *mem_ctx,
1574 struct hash_table *variable_context = NULL);
1575
1576 /**
1577 * This is only here for ir_reader to used for testing purposes please use
1578 * the precomputed num_operands field if you need the number of operands.
1579 */
1580 static unsigned get_num_operands(ir_expression_operation);
1581
1582 /**
1583 * Return whether the expression operates on vectors horizontally.
1584 */
1585 bool is_horizontal() const
1586 {
1587 return operation == ir_binop_all_equal ||
1588 operation == ir_binop_any_nequal ||
1589 operation == ir_binop_dot ||
1590 operation == ir_binop_vector_extract ||
1591 operation == ir_triop_vector_insert ||
1592 operation == ir_binop_ubo_load ||
1593 operation == ir_quadop_vector;
1594 }
1595
1596 /**
1597 * Do a reverse-lookup to translate the given string into an operator.
1598 */
1599 static ir_expression_operation get_operator(const char *);
1600
1601 virtual void accept(ir_visitor *v)
1602 {
1603 v->visit(this);
1604 }
1605
1606 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1607
1608 virtual ir_variable *variable_referenced() const;
1609
1610 /**
1611 * Determine the number of operands used by an expression
1612 */
1613 void init_num_operands()
1614 {
1615 if (operation == ir_quadop_vector) {
1616 num_operands = this->type->vector_elements;
1617 } else {
1618 num_operands = get_num_operands(operation);
1619 }
1620 }
1621
1622 ir_expression_operation operation;
1623 ir_rvalue *operands[4];
1624 uint8_t num_operands;
1625 };
1626
1627
1628 /**
1629 * HIR instruction representing a high-level function call, containing a list
1630 * of parameters and returning a value in the supplied temporary.
1631 */
1632 class ir_call : public ir_instruction {
1633 public:
1634 ir_call(ir_function_signature *callee,
1635 ir_dereference_variable *return_deref,
1636 exec_list *actual_parameters)
1637 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1638 {
1639 assert(callee->return_type != NULL);
1640 actual_parameters->move_nodes_to(& this->actual_parameters);
1641 }
1642
1643 ir_call(ir_function_signature *callee,
1644 ir_dereference_variable *return_deref,
1645 exec_list *actual_parameters,
1646 ir_variable *var, ir_rvalue *array_idx)
1647 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1648 {
1649 assert(callee->return_type != NULL);
1650 actual_parameters->move_nodes_to(& this->actual_parameters);
1651 }
1652
1653 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1654
1655 virtual ir_constant *constant_expression_value(void *mem_ctx,
1656 struct hash_table *variable_context = NULL);
1657
1658 virtual void accept(ir_visitor *v)
1659 {
1660 v->visit(this);
1661 }
1662
1663 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1664
1665 /**
1666 * Get the name of the function being called.
1667 */
1668 const char *callee_name() const
1669 {
1670 return callee->function_name();
1671 }
1672
1673 /**
1674 * Generates an inline version of the function before @ir,
1675 * storing the return value in return_deref.
1676 */
1677 void generate_inline(ir_instruction *ir);
1678
1679 /**
1680 * Storage for the function's return value.
1681 * This must be NULL if the return type is void.
1682 */
1683 ir_dereference_variable *return_deref;
1684
1685 /**
1686 * The specific function signature being called.
1687 */
1688 ir_function_signature *callee;
1689
1690 /* List of ir_rvalue of paramaters passed in this call. */
1691 exec_list actual_parameters;
1692
1693 /*
1694 * ARB_shader_subroutine support -
1695 * the subroutine uniform variable and array index
1696 * rvalue to be used in the lowering pass later.
1697 */
1698 ir_variable *sub_var;
1699 ir_rvalue *array_idx;
1700 };
1701
1702
1703 /**
1704 * \name Jump-like IR instructions.
1705 *
1706 * These include \c break, \c continue, \c return, and \c discard.
1707 */
1708 /*@{*/
1709 class ir_jump : public ir_instruction {
1710 protected:
1711 ir_jump(enum ir_node_type t)
1712 : ir_instruction(t)
1713 {
1714 }
1715 };
1716
1717 class ir_return : public ir_jump {
1718 public:
1719 ir_return()
1720 : ir_jump(ir_type_return), value(NULL)
1721 {
1722 }
1723
1724 ir_return(ir_rvalue *value)
1725 : ir_jump(ir_type_return), value(value)
1726 {
1727 }
1728
1729 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1730
1731 ir_rvalue *get_value() const
1732 {
1733 return value;
1734 }
1735
1736 virtual void accept(ir_visitor *v)
1737 {
1738 v->visit(this);
1739 }
1740
1741 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1742
1743 ir_rvalue *value;
1744 };
1745
1746
1747 /**
1748 * Jump instructions used inside loops
1749 *
1750 * These include \c break and \c continue. The \c break within a loop is
1751 * different from the \c break within a switch-statement.
1752 *
1753 * \sa ir_switch_jump
1754 */
1755 class ir_loop_jump : public ir_jump {
1756 public:
1757 enum jump_mode {
1758 jump_break,
1759 jump_continue
1760 };
1761
1762 ir_loop_jump(jump_mode mode)
1763 : ir_jump(ir_type_loop_jump)
1764 {
1765 this->mode = mode;
1766 }
1767
1768 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1769
1770 virtual void accept(ir_visitor *v)
1771 {
1772 v->visit(this);
1773 }
1774
1775 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1776
1777 bool is_break() const
1778 {
1779 return mode == jump_break;
1780 }
1781
1782 bool is_continue() const
1783 {
1784 return mode == jump_continue;
1785 }
1786
1787 /** Mode selector for the jump instruction. */
1788 enum jump_mode mode;
1789 };
1790
1791 /**
1792 * IR instruction representing discard statements.
1793 */
1794 class ir_discard : public ir_jump {
1795 public:
1796 ir_discard()
1797 : ir_jump(ir_type_discard)
1798 {
1799 this->condition = NULL;
1800 }
1801
1802 ir_discard(ir_rvalue *cond)
1803 : ir_jump(ir_type_discard)
1804 {
1805 this->condition = cond;
1806 }
1807
1808 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1809
1810 virtual void accept(ir_visitor *v)
1811 {
1812 v->visit(this);
1813 }
1814
1815 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1816
1817 ir_rvalue *condition;
1818 };
1819 /*@}*/
1820
1821
1822 /**
1823 * IR instruction representing demote statements from
1824 * GL_EXT_demote_to_helper_invocation.
1825 */
1826 class ir_demote : public ir_instruction {
1827 public:
1828 ir_demote()
1829 : ir_instruction(ir_type_demote)
1830 {
1831 }
1832
1833 virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
1834
1835 virtual void accept(ir_visitor *v)
1836 {
1837 v->visit(this);
1838 }
1839
1840 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1841 };
1842
1843
1844 /**
1845 * Texture sampling opcodes used in ir_texture
1846 */
1847 enum ir_texture_opcode {
1848 ir_tex, /**< Regular texture look-up */
1849 ir_txb, /**< Texture look-up with LOD bias */
1850 ir_txl, /**< Texture look-up with explicit LOD */
1851 ir_txd, /**< Texture look-up with partial derivatvies */
1852 ir_txf, /**< Texel fetch with explicit LOD */
1853 ir_txf_ms, /**< Multisample texture fetch */
1854 ir_txs, /**< Texture size */
1855 ir_lod, /**< Texture lod query */
1856 ir_tg4, /**< Texture gather */
1857 ir_query_levels, /**< Texture levels query */
1858 ir_texture_samples, /**< Texture samples query */
1859 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1860 };
1861
1862
1863 /**
1864 * IR instruction to sample a texture
1865 *
1866 * The specific form of the IR instruction depends on the \c mode value
1867 * selected from \c ir_texture_opcodes. In the printed IR, these will
1868 * appear as:
1869 *
1870 * Texel offset (0 or an expression)
1871 * | Projection divisor
1872 * | | Shadow comparator
1873 * | | |
1874 * v v v
1875 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1876 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1877 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1878 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1879 * (txf <type> <sampler> <coordinate> 0 <lod>)
1880 * (txf_ms
1881 * <type> <sampler> <coordinate> <sample_index>)
1882 * (txs <type> <sampler> <lod>)
1883 * (lod <type> <sampler> <coordinate>)
1884 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1885 * (query_levels <type> <sampler>)
1886 * (samples_identical <sampler> <coordinate>)
1887 */
1888 class ir_texture : public ir_rvalue {
1889 public:
1890 ir_texture(enum ir_texture_opcode op)
1891 : ir_rvalue(ir_type_texture),
1892 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1893 shadow_comparator(NULL), offset(NULL)
1894 {
1895 memset(&lod_info, 0, sizeof(lod_info));
1896 }
1897
1898 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1899
1900 virtual ir_constant *constant_expression_value(void *mem_ctx,
1901 struct hash_table *variable_context = NULL);
1902
1903 virtual void accept(ir_visitor *v)
1904 {
1905 v->visit(this);
1906 }
1907
1908 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1909
1910 virtual bool equals(const ir_instruction *ir,
1911 enum ir_node_type ignore = ir_type_unset) const;
1912
1913 /**
1914 * Return a string representing the ir_texture_opcode.
1915 */
1916 const char *opcode_string();
1917
1918 /** Set the sampler and type. */
1919 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1920
1921 /**
1922 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1923 */
1924 static ir_texture_opcode get_opcode(const char *);
1925
1926 enum ir_texture_opcode op;
1927
1928 /** Sampler to use for the texture access. */
1929 ir_dereference *sampler;
1930
1931 /** Texture coordinate to sample */
1932 ir_rvalue *coordinate;
1933
1934 /**
1935 * Value used for projective divide.
1936 *
1937 * If there is no projective divide (the common case), this will be
1938 * \c NULL. Optimization passes should check for this to point to a constant
1939 * of 1.0 and replace that with \c NULL.
1940 */
1941 ir_rvalue *projector;
1942
1943 /**
1944 * Coordinate used for comparison on shadow look-ups.
1945 *
1946 * If there is no shadow comparison, this will be \c NULL. For the
1947 * \c ir_txf opcode, this *must* be \c NULL.
1948 */
1949 ir_rvalue *shadow_comparator;
1950
1951 /** Texel offset. */
1952 ir_rvalue *offset;
1953
1954 union {
1955 ir_rvalue *lod; /**< Floating point LOD */
1956 ir_rvalue *bias; /**< Floating point LOD bias */
1957 ir_rvalue *sample_index; /**< MSAA sample index */
1958 ir_rvalue *component; /**< Gather component selector */
1959 struct {
1960 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1961 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1962 } grad;
1963 } lod_info;
1964 };
1965
1966
1967 struct ir_swizzle_mask {
1968 unsigned x:2;
1969 unsigned y:2;
1970 unsigned z:2;
1971 unsigned w:2;
1972
1973 /**
1974 * Number of components in the swizzle.
1975 */
1976 unsigned num_components:3;
1977
1978 /**
1979 * Does the swizzle contain duplicate components?
1980 *
1981 * L-value swizzles cannot contain duplicate components.
1982 */
1983 unsigned has_duplicates:1;
1984 };
1985
1986
1987 class ir_swizzle : public ir_rvalue {
1988 public:
1989 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1990 unsigned count);
1991
1992 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1993
1994 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1995
1996 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1997
1998 virtual ir_constant *constant_expression_value(void *mem_ctx,
1999 struct hash_table *variable_context = NULL);
2000
2001 /**
2002 * Construct an ir_swizzle from the textual representation. Can fail.
2003 */
2004 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2005
2006 virtual void accept(ir_visitor *v)
2007 {
2008 v->visit(this);
2009 }
2010
2011 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2012
2013 virtual bool equals(const ir_instruction *ir,
2014 enum ir_node_type ignore = ir_type_unset) const;
2015
2016 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
2017 {
2018 return val->is_lvalue(state) && !mask.has_duplicates;
2019 }
2020
2021 /**
2022 * Get the variable that is ultimately referenced by an r-value
2023 */
2024 virtual ir_variable *variable_referenced() const;
2025
2026 ir_rvalue *val;
2027 ir_swizzle_mask mask;
2028
2029 private:
2030 /**
2031 * Initialize the mask component of a swizzle
2032 *
2033 * This is used by the \c ir_swizzle constructors.
2034 */
2035 void init_mask(const unsigned *components, unsigned count);
2036 };
2037
2038
2039 class ir_dereference : public ir_rvalue {
2040 public:
2041 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2042
2043 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2044
2045 /**
2046 * Get the variable that is ultimately referenced by an r-value
2047 */
2048 virtual ir_variable *variable_referenced() const = 0;
2049
2050 /**
2051 * Get the precision. This can either come from the eventual variable that
2052 * is dereferenced, or from a record member.
2053 */
2054 virtual int precision() const = 0;
2055
2056 protected:
2057 ir_dereference(enum ir_node_type t)
2058 : ir_rvalue(t)
2059 {
2060 }
2061 };
2062
2063
2064 class ir_dereference_variable : public ir_dereference {
2065 public:
2066 ir_dereference_variable(ir_variable *var);
2067
2068 virtual ir_dereference_variable *clone(void *mem_ctx,
2069 struct hash_table *) const;
2070
2071 virtual ir_constant *constant_expression_value(void *mem_ctx,
2072 struct hash_table *variable_context = NULL);
2073
2074 virtual bool equals(const ir_instruction *ir,
2075 enum ir_node_type ignore = ir_type_unset) const;
2076
2077 /**
2078 * Get the variable that is ultimately referenced by an r-value
2079 */
2080 virtual ir_variable *variable_referenced() const
2081 {
2082 return this->var;
2083 }
2084
2085 virtual int precision() const
2086 {
2087 return this->var->data.precision;
2088 }
2089
2090 virtual ir_variable *whole_variable_referenced()
2091 {
2092 /* ir_dereference_variable objects always dereference the entire
2093 * variable. However, if this dereference is dereferenced by anything
2094 * else, the complete deferefernce chain is not a whole-variable
2095 * dereference. This method should only be called on the top most
2096 * ir_rvalue in a dereference chain.
2097 */
2098 return this->var;
2099 }
2100
2101 virtual void accept(ir_visitor *v)
2102 {
2103 v->visit(this);
2104 }
2105
2106 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2107
2108 /**
2109 * Object being dereferenced.
2110 */
2111 ir_variable *var;
2112 };
2113
2114
2115 class ir_dereference_array : public ir_dereference {
2116 public:
2117 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2118
2119 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2120
2121 virtual ir_dereference_array *clone(void *mem_ctx,
2122 struct hash_table *) const;
2123
2124 virtual ir_constant *constant_expression_value(void *mem_ctx,
2125 struct hash_table *variable_context = NULL);
2126
2127 virtual bool equals(const ir_instruction *ir,
2128 enum ir_node_type ignore = ir_type_unset) const;
2129
2130 /**
2131 * Get the variable that is ultimately referenced by an r-value
2132 */
2133 virtual ir_variable *variable_referenced() const
2134 {
2135 return this->array->variable_referenced();
2136 }
2137
2138 virtual int precision() const
2139 {
2140 ir_dereference *deref = this->array->as_dereference();
2141
2142 if (deref == NULL)
2143 return GLSL_PRECISION_NONE;
2144 else
2145 return deref->precision();
2146 }
2147
2148 virtual void accept(ir_visitor *v)
2149 {
2150 v->visit(this);
2151 }
2152
2153 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2154
2155 ir_rvalue *array;
2156 ir_rvalue *array_index;
2157
2158 private:
2159 void set_array(ir_rvalue *value);
2160 };
2161
2162
2163 class ir_dereference_record : public ir_dereference {
2164 public:
2165 ir_dereference_record(ir_rvalue *value, const char *field);
2166
2167 ir_dereference_record(ir_variable *var, const char *field);
2168
2169 virtual ir_dereference_record *clone(void *mem_ctx,
2170 struct hash_table *) const;
2171
2172 virtual ir_constant *constant_expression_value(void *mem_ctx,
2173 struct hash_table *variable_context = NULL);
2174
2175 /**
2176 * Get the variable that is ultimately referenced by an r-value
2177 */
2178 virtual ir_variable *variable_referenced() const
2179 {
2180 return this->record->variable_referenced();
2181 }
2182
2183 virtual int precision() const
2184 {
2185 glsl_struct_field *field = record->type->fields.structure + field_idx;
2186
2187 return field->precision;
2188 }
2189
2190 virtual void accept(ir_visitor *v)
2191 {
2192 v->visit(this);
2193 }
2194
2195 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2196
2197 ir_rvalue *record;
2198 int field_idx;
2199 };
2200
2201
2202 /**
2203 * Data stored in an ir_constant
2204 */
2205 union ir_constant_data {
2206 unsigned u[16];
2207 int i[16];
2208 float f[16];
2209 bool b[16];
2210 double d[16];
2211 uint16_t f16[16];
2212 uint64_t u64[16];
2213 int64_t i64[16];
2214 };
2215
2216
2217 class ir_constant : public ir_rvalue {
2218 public:
2219 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2220 ir_constant(bool b, unsigned vector_elements=1);
2221 ir_constant(unsigned int u, unsigned vector_elements=1);
2222 ir_constant(int i, unsigned vector_elements=1);
2223 ir_constant(float16_t f16, unsigned vector_elements=1);
2224 ir_constant(float f, unsigned vector_elements=1);
2225 ir_constant(double d, unsigned vector_elements=1);
2226 ir_constant(uint64_t u64, unsigned vector_elements=1);
2227 ir_constant(int64_t i64, unsigned vector_elements=1);
2228
2229 /**
2230 * Construct an ir_constant from a list of ir_constant values
2231 */
2232 ir_constant(const struct glsl_type *type, exec_list *values);
2233
2234 /**
2235 * Construct an ir_constant from a scalar component of another ir_constant
2236 *
2237 * The new \c ir_constant inherits the type of the component from the
2238 * source constant.
2239 *
2240 * \note
2241 * In the case of a matrix constant, the new constant is a scalar, \b not
2242 * a vector.
2243 */
2244 ir_constant(const ir_constant *c, unsigned i);
2245
2246 /**
2247 * Return a new ir_constant of the specified type containing all zeros.
2248 */
2249 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2250
2251 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2252
2253 virtual ir_constant *constant_expression_value(void *mem_ctx,
2254 struct hash_table *variable_context = NULL);
2255
2256 virtual void accept(ir_visitor *v)
2257 {
2258 v->visit(this);
2259 }
2260
2261 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2262
2263 virtual bool equals(const ir_instruction *ir,
2264 enum ir_node_type ignore = ir_type_unset) const;
2265
2266 /**
2267 * Get a particular component of a constant as a specific type
2268 *
2269 * This is useful, for example, to get a value from an integer constant
2270 * as a float or bool. This appears frequently when constructors are
2271 * called with all constant parameters.
2272 */
2273 /*@{*/
2274 bool get_bool_component(unsigned i) const;
2275 float get_float_component(unsigned i) const;
2276 uint16_t get_float16_component(unsigned i) const;
2277 double get_double_component(unsigned i) const;
2278 int get_int_component(unsigned i) const;
2279 unsigned get_uint_component(unsigned i) const;
2280 int64_t get_int64_component(unsigned i) const;
2281 uint64_t get_uint64_component(unsigned i) const;
2282 /*@}*/
2283
2284 ir_constant *get_array_element(unsigned i) const;
2285
2286 ir_constant *get_record_field(int idx);
2287
2288 /**
2289 * Copy the values on another constant at a given offset.
2290 *
2291 * The offset is ignored for array or struct copies, it's only for
2292 * scalars or vectors into vectors or matrices.
2293 *
2294 * With identical types on both sides and zero offset it's clone()
2295 * without creating a new object.
2296 */
2297
2298 void copy_offset(ir_constant *src, int offset);
2299
2300 /**
2301 * Copy the values on another constant at a given offset and
2302 * following an assign-like mask.
2303 *
2304 * The mask is ignored for scalars.
2305 *
2306 * Note that this function only handles what assign can handle,
2307 * i.e. at most a vector as source and a column of a matrix as
2308 * destination.
2309 */
2310
2311 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2312
2313 /**
2314 * Determine whether a constant has the same value as another constant
2315 *
2316 * \sa ir_constant::is_zero, ir_constant::is_one,
2317 * ir_constant::is_negative_one
2318 */
2319 bool has_value(const ir_constant *) const;
2320
2321 /**
2322 * Return true if this ir_constant represents the given value.
2323 *
2324 * For vectors, this checks that each component is the given value.
2325 */
2326 virtual bool is_value(float f, int i) const;
2327 virtual bool is_zero() const;
2328 virtual bool is_one() const;
2329 virtual bool is_negative_one() const;
2330
2331 /**
2332 * Return true for constants that could be stored as 16-bit unsigned values.
2333 *
2334 * Note that this will return true even for signed integer ir_constants, as
2335 * long as the value is non-negative and fits in 16-bits.
2336 */
2337 virtual bool is_uint16_constant() const;
2338
2339 /**
2340 * Value of the constant.
2341 *
2342 * The field used to back the values supplied by the constant is determined
2343 * by the type associated with the \c ir_instruction. Constants may be
2344 * scalars, vectors, or matrices.
2345 */
2346 union ir_constant_data value;
2347
2348 /* Array elements and structure fields */
2349 ir_constant **const_elements;
2350
2351 private:
2352 /**
2353 * Parameterless constructor only used by the clone method
2354 */
2355 ir_constant(void);
2356 };
2357
2358 /**
2359 * IR instruction to emit a vertex in a geometry shader.
2360 */
2361 class ir_emit_vertex : public ir_instruction {
2362 public:
2363 ir_emit_vertex(ir_rvalue *stream)
2364 : ir_instruction(ir_type_emit_vertex),
2365 stream(stream)
2366 {
2367 assert(stream);
2368 }
2369
2370 virtual void accept(ir_visitor *v)
2371 {
2372 v->visit(this);
2373 }
2374
2375 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2376 {
2377 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2378 }
2379
2380 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2381
2382 int stream_id() const
2383 {
2384 return stream->as_constant()->value.i[0];
2385 }
2386
2387 ir_rvalue *stream;
2388 };
2389
2390 /**
2391 * IR instruction to complete the current primitive and start a new one in a
2392 * geometry shader.
2393 */
2394 class ir_end_primitive : public ir_instruction {
2395 public:
2396 ir_end_primitive(ir_rvalue *stream)
2397 : ir_instruction(ir_type_end_primitive),
2398 stream(stream)
2399 {
2400 assert(stream);
2401 }
2402
2403 virtual void accept(ir_visitor *v)
2404 {
2405 v->visit(this);
2406 }
2407
2408 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2409 {
2410 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2411 }
2412
2413 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2414
2415 int stream_id() const
2416 {
2417 return stream->as_constant()->value.i[0];
2418 }
2419
2420 ir_rvalue *stream;
2421 };
2422
2423 /**
2424 * IR instruction for tessellation control and compute shader barrier.
2425 */
2426 class ir_barrier : public ir_instruction {
2427 public:
2428 ir_barrier()
2429 : ir_instruction(ir_type_barrier)
2430 {
2431 }
2432
2433 virtual void accept(ir_visitor *v)
2434 {
2435 v->visit(this);
2436 }
2437
2438 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2439 {
2440 return new(mem_ctx) ir_barrier();
2441 }
2442
2443 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2444 };
2445
2446 /*@}*/
2447
2448 /**
2449 * Apply a visitor to each IR node in a list
2450 */
2451 void
2452 visit_exec_list(exec_list *list, ir_visitor *visitor);
2453
2454 /**
2455 * Validate invariants on each IR node in a list
2456 */
2457 void validate_ir_tree(exec_list *instructions);
2458
2459 struct _mesa_glsl_parse_state;
2460 struct gl_shader_program;
2461
2462 /**
2463 * Detect whether an unlinked shader contains static recursion
2464 *
2465 * If the list of instructions is determined to contain static recursion,
2466 * \c _mesa_glsl_error will be called to emit error messages for each function
2467 * that is in the recursion cycle.
2468 */
2469 void
2470 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2471 exec_list *instructions);
2472
2473 /**
2474 * Detect whether a linked shader contains static recursion
2475 *
2476 * If the list of instructions is determined to contain static recursion,
2477 * \c link_error_printf will be called to emit error messages for each function
2478 * that is in the recursion cycle. In addition,
2479 * \c gl_shader_program::LinkStatus will be set to false.
2480 */
2481 void
2482 detect_recursion_linked(struct gl_shader_program *prog,
2483 exec_list *instructions);
2484
2485 /**
2486 * Make a clone of each IR instruction in a list
2487 *
2488 * \param in List of IR instructions that are to be cloned
2489 * \param out List to hold the cloned instructions
2490 */
2491 void
2492 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2493
2494 extern void
2495 _mesa_glsl_initialize_variables(exec_list *instructions,
2496 struct _mesa_glsl_parse_state *state);
2497
2498 extern void
2499 reparent_ir(exec_list *list, void *mem_ctx);
2500
2501 extern void
2502 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2503 gl_shader_stage shader_stage);
2504
2505 extern char *
2506 prototype_string(const glsl_type *return_type, const char *name,
2507 exec_list *parameters);
2508
2509 const char *
2510 mode_string(const ir_variable *var);
2511
2512 /**
2513 * Built-in / reserved GL variables names start with "gl_"
2514 */
2515 static inline bool
2516 is_gl_identifier(const char *s)
2517 {
2518 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2519 }
2520
2521 extern "C" {
2522 #endif /* __cplusplus */
2523
2524 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2525 struct _mesa_glsl_parse_state *state);
2526
2527 extern void
2528 fprint_ir(FILE *f, const void *instruction);
2529
2530 extern const struct gl_builtin_uniform_desc *
2531 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2532
2533 #ifdef __cplusplus
2534 } /* extern "C" */
2535 #endif
2536
2537 unsigned
2538 vertices_per_prim(GLenum prim);
2539
2540 #endif /* IR_H */