Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 rzalloc_array(this, unsigned, type->length);
488 }
489 }
490
491 /**
492 * Change this->interface_type on a variable that previously had a
493 * different, but compatible, interface_type. This is used during linking
494 * to set the size of arrays in interface blocks.
495 */
496 void change_interface_type(const struct glsl_type *type)
497 {
498 if (this->u.max_ifc_array_access != NULL) {
499 /* max_ifc_array_access has already been allocated, so make sure the
500 * new interface has the same number of fields as the old one.
501 */
502 assert(this->interface_type->length == type->length);
503 }
504 this->interface_type = type;
505 }
506
507 /**
508 * Change this->interface_type on a variable that previously had a
509 * different, and incompatible, interface_type. This is used during
510 * compilation to handle redeclaration of the built-in gl_PerVertex
511 * interface block.
512 */
513 void reinit_interface_type(const struct glsl_type *type)
514 {
515 if (this->u.max_ifc_array_access != NULL) {
516 #ifndef NDEBUG
517 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
518 * it defines have been accessed yet; so it's safe to throw away the
519 * old max_ifc_array_access pointer, since all of its values are
520 * zero.
521 */
522 for (unsigned i = 0; i < this->interface_type->length; i++)
523 assert(this->u.max_ifc_array_access[i] == 0);
524 #endif
525 ralloc_free(this->u.max_ifc_array_access);
526 this->u.max_ifc_array_access = NULL;
527 }
528 this->interface_type = NULL;
529 init_interface_type(type);
530 }
531
532 const glsl_type *get_interface_type() const
533 {
534 return this->interface_type;
535 }
536
537 /**
538 * Get the max_ifc_array_access pointer
539 *
540 * A "set" function is not needed because the array is dynmically allocated
541 * as necessary.
542 */
543 inline unsigned *get_max_ifc_array_access()
544 {
545 assert(this->data._num_state_slots == 0);
546 return this->u.max_ifc_array_access;
547 }
548
549 inline unsigned get_num_state_slots() const
550 {
551 assert(!this->is_interface_instance()
552 || this->data._num_state_slots == 0);
553 return this->data._num_state_slots;
554 }
555
556 inline void set_num_state_slots(unsigned n)
557 {
558 assert(!this->is_interface_instance()
559 || n == 0);
560 this->data._num_state_slots = n;
561 }
562
563 inline ir_state_slot *get_state_slots()
564 {
565 return this->is_interface_instance() ? NULL : this->u.state_slots;
566 }
567
568 inline const ir_state_slot *get_state_slots() const
569 {
570 return this->is_interface_instance() ? NULL : this->u.state_slots;
571 }
572
573 inline ir_state_slot *allocate_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance());
576
577 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
578 this->data._num_state_slots = 0;
579
580 if (this->u.state_slots != NULL)
581 this->data._num_state_slots = n;
582
583 return this->u.state_slots;
584 }
585
586 inline bool is_name_ralloced() const
587 {
588 return this->name != ir_variable::tmp_name;
589 }
590
591 /**
592 * Enable emitting extension warnings for this variable
593 */
594 void enable_extension_warning(const char *extension);
595
596 /**
597 * Get the extension warning string for this variable
598 *
599 * If warnings are not enabled, \c NULL is returned.
600 */
601 const char *get_extension_warning() const;
602
603 /**
604 * Declared type of the variable
605 */
606 const struct glsl_type *type;
607
608 /**
609 * Declared name of the variable
610 */
611 const char *name;
612
613 struct ir_variable_data {
614
615 /**
616 * Is the variable read-only?
617 *
618 * This is set for variables declared as \c const, shader inputs,
619 * and uniforms.
620 */
621 unsigned read_only:1;
622 unsigned centroid:1;
623 unsigned sample:1;
624 unsigned patch:1;
625 unsigned invariant:1;
626 unsigned precise:1;
627
628 /**
629 * Has this variable been used for reading or writing?
630 *
631 * Several GLSL semantic checks require knowledge of whether or not a
632 * variable has been used. For example, it is an error to redeclare a
633 * variable as invariant after it has been used.
634 *
635 * This is only maintained in the ast_to_hir.cpp path, not in
636 * Mesa's fixed function or ARB program paths.
637 */
638 unsigned used:1;
639
640 /**
641 * Has this variable been statically assigned?
642 *
643 * This answers whether the variable was assigned in any path of
644 * the shader during ast_to_hir. This doesn't answer whether it is
645 * still written after dead code removal, nor is it maintained in
646 * non-ast_to_hir.cpp (GLSL parsing) paths.
647 */
648 unsigned assigned:1;
649
650 /**
651 * When separate shader programs are enabled, only input/outputs between
652 * the stages of a multi-stage separate program can be safely removed
653 * from the shader interface. Other input/outputs must remains active.
654 */
655 unsigned always_active_io:1;
656
657 /**
658 * Enum indicating how the variable was declared. See
659 * ir_var_declaration_type.
660 *
661 * This is used to detect certain kinds of illegal variable redeclarations.
662 */
663 unsigned how_declared:2;
664
665 /**
666 * Storage class of the variable.
667 *
668 * \sa ir_variable_mode
669 */
670 unsigned mode:4;
671
672 /**
673 * Interpolation mode for shader inputs / outputs
674 *
675 * \sa ir_variable_interpolation
676 */
677 unsigned interpolation:2;
678
679 /**
680 * \name ARB_fragment_coord_conventions
681 * @{
682 */
683 unsigned origin_upper_left:1;
684 unsigned pixel_center_integer:1;
685 /*@}*/
686
687 /**
688 * Was the location explicitly set in the shader?
689 *
690 * If the location is explicitly set in the shader, it \b cannot be changed
691 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
692 * no effect).
693 */
694 unsigned explicit_location:1;
695 unsigned explicit_index:1;
696
697 /**
698 * Was an initial binding explicitly set in the shader?
699 *
700 * If so, constant_value contains an integer ir_constant representing the
701 * initial binding point.
702 */
703 unsigned explicit_binding:1;
704
705 /**
706 * Does this variable have an initializer?
707 *
708 * This is used by the linker to cross-validiate initializers of global
709 * variables.
710 */
711 unsigned has_initializer:1;
712
713 /**
714 * Is this variable a generic output or input that has not yet been matched
715 * up to a variable in another stage of the pipeline?
716 *
717 * This is used by the linker as scratch storage while assigning locations
718 * to generic inputs and outputs.
719 */
720 unsigned is_unmatched_generic_inout:1;
721
722 /**
723 * Is this varying used only by transform feedback?
724 *
725 * This is used by the linker to decide if its safe to pack the varying.
726 */
727 unsigned is_xfb_only:1;
728
729 /**
730 * If non-zero, then this variable may be packed along with other variables
731 * into a single varying slot, so this offset should be applied when
732 * accessing components. For example, an offset of 1 means that the x
733 * component of this variable is actually stored in component y of the
734 * location specified by \c location.
735 */
736 unsigned location_frac:2;
737
738 /**
739 * Layout of the matrix. Uses glsl_matrix_layout values.
740 */
741 unsigned matrix_layout:2;
742
743 /**
744 * Non-zero if this variable was created by lowering a named interface
745 * block which was not an array.
746 *
747 * Note that this variable and \c from_named_ifc_block_array will never
748 * both be non-zero.
749 */
750 unsigned from_named_ifc_block_nonarray:1;
751
752 /**
753 * Non-zero if this variable was created by lowering a named interface
754 * block which was an array.
755 *
756 * Note that this variable and \c from_named_ifc_block_nonarray will never
757 * both be non-zero.
758 */
759 unsigned from_named_ifc_block_array:1;
760
761 /**
762 * Non-zero if the variable must be a shader input. This is useful for
763 * constraints on function parameters.
764 */
765 unsigned must_be_shader_input:1;
766
767 /**
768 * Output index for dual source blending.
769 *
770 * \note
771 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
772 * source blending.
773 */
774 unsigned index:1;
775
776 /**
777 * Precision qualifier.
778 *
779 * In desktop GLSL we do not care about precision qualifiers at all, in
780 * fact, the spec says that precision qualifiers are ignored.
781 *
782 * To make things easy, we make it so that this field is always
783 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
784 * have the same precision value and the checks we add in the compiler
785 * for this field will never break a desktop shader compile.
786 */
787 unsigned precision:2;
788
789 /**
790 * \brief Layout qualifier for gl_FragDepth.
791 *
792 * This is not equal to \c ir_depth_layout_none if and only if this
793 * variable is \c gl_FragDepth and a layout qualifier is specified.
794 */
795 ir_depth_layout depth_layout:3;
796
797 /**
798 * ARB_shader_image_load_store qualifiers.
799 */
800 unsigned image_read_only:1; /**< "readonly" qualifier. */
801 unsigned image_write_only:1; /**< "writeonly" qualifier. */
802 unsigned image_coherent:1;
803 unsigned image_volatile:1;
804 unsigned image_restrict:1;
805
806 /**
807 * ARB_shader_storage_buffer_object
808 */
809 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
810
811 /**
812 * Emit a warning if this variable is accessed.
813 */
814 private:
815 uint8_t warn_extension_index;
816
817 public:
818 /** Image internal format if specified explicitly, otherwise GL_NONE. */
819 uint16_t image_format;
820
821 private:
822 /**
823 * Number of state slots used
824 *
825 * \note
826 * This could be stored in as few as 7-bits, if necessary. If it is made
827 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
828 * be safe.
829 */
830 uint16_t _num_state_slots;
831
832 public:
833 /**
834 * Initial binding point for a sampler, atomic, or UBO.
835 *
836 * For array types, this represents the binding point for the first element.
837 */
838 int16_t binding;
839
840 /**
841 * Storage location of the base of this variable
842 *
843 * The precise meaning of this field depends on the nature of the variable.
844 *
845 * - Vertex shader input: one of the values from \c gl_vert_attrib.
846 * - Vertex shader output: one of the values from \c gl_varying_slot.
847 * - Geometry shader input: one of the values from \c gl_varying_slot.
848 * - Geometry shader output: one of the values from \c gl_varying_slot.
849 * - Fragment shader input: one of the values from \c gl_varying_slot.
850 * - Fragment shader output: one of the values from \c gl_frag_result.
851 * - Uniforms: Per-stage uniform slot number for default uniform block.
852 * - Uniforms: Index within the uniform block definition for UBO members.
853 * - Non-UBO Uniforms: explicit location until linking then reused to
854 * store uniform slot number.
855 * - Other: This field is not currently used.
856 *
857 * If the variable is a uniform, shader input, or shader output, and the
858 * slot has not been assigned, the value will be -1.
859 */
860 int location;
861
862 /**
863 * for glsl->tgsi/mesa IR we need to store the index into the
864 * parameters for uniforms, initially the code overloaded location
865 * but this causes problems with indirect samplers and AoA.
866 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
867 */
868 int param_index;
869
870 /**
871 * Vertex stream output identifier.
872 */
873 unsigned stream;
874
875 /**
876 * Atomic or block member offset.
877 */
878 unsigned offset;
879
880 /**
881 * Highest element accessed with a constant expression array index
882 *
883 * Not used for non-array variables.
884 */
885 unsigned max_array_access;
886
887 /**
888 * Allow (only) ir_variable direct access private members.
889 */
890 friend class ir_variable;
891 } data;
892
893 /**
894 * Value assigned in the initializer of a variable declared "const"
895 */
896 ir_constant *constant_value;
897
898 /**
899 * Constant expression assigned in the initializer of the variable
900 *
901 * \warning
902 * This field and \c ::constant_value are distinct. Even if the two fields
903 * refer to constants with the same value, they must point to separate
904 * objects.
905 */
906 ir_constant *constant_initializer;
907
908 private:
909 static const char *const warn_extension_table[];
910
911 union {
912 /**
913 * For variables which satisfy the is_interface_instance() predicate,
914 * this points to an array of integers such that if the ith member of
915 * the interface block is an array, max_ifc_array_access[i] is the
916 * maximum array element of that member that has been accessed. If the
917 * ith member of the interface block is not an array,
918 * max_ifc_array_access[i] is unused.
919 *
920 * For variables whose type is not an interface block, this pointer is
921 * NULL.
922 */
923 unsigned *max_ifc_array_access;
924
925 /**
926 * Built-in state that backs this uniform
927 *
928 * Once set at variable creation, \c state_slots must remain invariant.
929 *
930 * If the variable is not a uniform, \c _num_state_slots will be zero
931 * and \c state_slots will be \c NULL.
932 */
933 ir_state_slot *state_slots;
934 } u;
935
936 /**
937 * For variables that are in an interface block or are an instance of an
938 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
939 *
940 * \sa ir_variable::location
941 */
942 const glsl_type *interface_type;
943
944 /**
945 * Name used for anonymous compiler temporaries
946 */
947 static const char tmp_name[];
948
949 public:
950 /**
951 * Should the construct keep names for ir_var_temporary variables?
952 *
953 * When this global is false, names passed to the constructor for
954 * \c ir_var_temporary variables will be dropped. Instead, the variable will
955 * be named "compiler_temp". This name will be in static storage.
956 *
957 * \warning
958 * \b NEVER change the mode of an \c ir_var_temporary.
959 *
960 * \warning
961 * This variable is \b not thread-safe. It is global, \b not
962 * per-context. It begins life false. A context can, at some point, make
963 * it true. From that point on, it will be true forever. This should be
964 * okay since it will only be set true while debugging.
965 */
966 static bool temporaries_allocate_names;
967 };
968
969 /**
970 * A function that returns whether a built-in function is available in the
971 * current shading language (based on version, ES or desktop, and extensions).
972 */
973 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
974
975 /*@{*/
976 /**
977 * The representation of a function instance; may be the full definition or
978 * simply a prototype.
979 */
980 class ir_function_signature : public ir_instruction {
981 /* An ir_function_signature will be part of the list of signatures in
982 * an ir_function.
983 */
984 public:
985 ir_function_signature(const glsl_type *return_type,
986 builtin_available_predicate builtin_avail = NULL);
987
988 virtual ir_function_signature *clone(void *mem_ctx,
989 struct hash_table *ht) const;
990 ir_function_signature *clone_prototype(void *mem_ctx,
991 struct hash_table *ht) const;
992
993 virtual void accept(ir_visitor *v)
994 {
995 v->visit(this);
996 }
997
998 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
999
1000 /**
1001 * Attempt to evaluate this function as a constant expression,
1002 * given a list of the actual parameters and the variable context.
1003 * Returns NULL for non-built-ins.
1004 */
1005 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1006
1007 /**
1008 * Get the name of the function for which this is a signature
1009 */
1010 const char *function_name() const;
1011
1012 /**
1013 * Get a handle to the function for which this is a signature
1014 *
1015 * There is no setter function, this function returns a \c const pointer,
1016 * and \c ir_function_signature::_function is private for a reason. The
1017 * only way to make a connection between a function and function signature
1018 * is via \c ir_function::add_signature. This helps ensure that certain
1019 * invariants (i.e., a function signature is in the list of signatures for
1020 * its \c _function) are met.
1021 *
1022 * \sa ir_function::add_signature
1023 */
1024 inline const class ir_function *function() const
1025 {
1026 return this->_function;
1027 }
1028
1029 /**
1030 * Check whether the qualifiers match between this signature's parameters
1031 * and the supplied parameter list. If not, returns the name of the first
1032 * parameter with mismatched qualifiers (for use in error messages).
1033 */
1034 const char *qualifiers_match(exec_list *params);
1035
1036 /**
1037 * Replace the current parameter list with the given one. This is useful
1038 * if the current information came from a prototype, and either has invalid
1039 * or missing parameter names.
1040 */
1041 void replace_parameters(exec_list *new_params);
1042
1043 /**
1044 * Function return type.
1045 *
1046 * \note This discards the optional precision qualifier.
1047 */
1048 const struct glsl_type *return_type;
1049
1050 /**
1051 * List of ir_variable of function parameters.
1052 *
1053 * This represents the storage. The paramaters passed in a particular
1054 * call will be in ir_call::actual_paramaters.
1055 */
1056 struct exec_list parameters;
1057
1058 /** Whether or not this function has a body (which may be empty). */
1059 unsigned is_defined:1;
1060
1061 /** Whether or not this function signature is a built-in. */
1062 bool is_builtin() const;
1063
1064 /**
1065 * Whether or not this function is an intrinsic to be implemented
1066 * by the driver.
1067 */
1068 bool is_intrinsic;
1069
1070 /** Whether or not a built-in is available for this shader. */
1071 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1072
1073 /** Body of instructions in the function. */
1074 struct exec_list body;
1075
1076 private:
1077 /**
1078 * A function pointer to a predicate that answers whether a built-in
1079 * function is available in the current shader. NULL if not a built-in.
1080 */
1081 builtin_available_predicate builtin_avail;
1082
1083 /** Function of which this signature is one overload. */
1084 class ir_function *_function;
1085
1086 /** Function signature of which this one is a prototype clone */
1087 const ir_function_signature *origin;
1088
1089 friend class ir_function;
1090
1091 /**
1092 * Helper function to run a list of instructions for constant
1093 * expression evaluation.
1094 *
1095 * The hash table represents the values of the visible variables.
1096 * There are no scoping issues because the table is indexed on
1097 * ir_variable pointers, not variable names.
1098 *
1099 * Returns false if the expression is not constant, true otherwise,
1100 * and the value in *result if result is non-NULL.
1101 */
1102 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1103 struct hash_table *variable_context,
1104 ir_constant **result);
1105 };
1106
1107
1108 /**
1109 * Header for tracking multiple overloaded functions with the same name.
1110 * Contains a list of ir_function_signatures representing each of the
1111 * actual functions.
1112 */
1113 class ir_function : public ir_instruction {
1114 public:
1115 ir_function(const char *name);
1116
1117 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1118
1119 virtual void accept(ir_visitor *v)
1120 {
1121 v->visit(this);
1122 }
1123
1124 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1125
1126 void add_signature(ir_function_signature *sig)
1127 {
1128 sig->_function = this;
1129 this->signatures.push_tail(sig);
1130 }
1131
1132 /**
1133 * Find a signature that matches a set of actual parameters, taking implicit
1134 * conversions into account. Also flags whether the match was exact.
1135 */
1136 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1137 const exec_list *actual_param,
1138 bool allow_builtins,
1139 bool *match_is_exact);
1140
1141 /**
1142 * Find a signature that matches a set of actual parameters, taking implicit
1143 * conversions into account.
1144 */
1145 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1146 const exec_list *actual_param,
1147 bool allow_builtins);
1148
1149 /**
1150 * Find a signature that exactly matches a set of actual parameters without
1151 * any implicit type conversions.
1152 */
1153 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1154 const exec_list *actual_ps);
1155
1156 /**
1157 * Name of the function.
1158 */
1159 const char *name;
1160
1161 /** Whether or not this function has a signature that isn't a built-in. */
1162 bool has_user_signature();
1163
1164 /**
1165 * List of ir_function_signature for each overloaded function with this name.
1166 */
1167 struct exec_list signatures;
1168
1169 /**
1170 * is this function a subroutine type declaration
1171 * e.g. subroutine void type1(float arg1);
1172 */
1173 bool is_subroutine;
1174
1175 /**
1176 * is this function associated to a subroutine type
1177 * e.g. subroutine (type1, type2) function_name { function_body };
1178 * would have num_subroutine_types 2,
1179 * and pointers to the type1 and type2 types.
1180 */
1181 int num_subroutine_types;
1182 const struct glsl_type **subroutine_types;
1183
1184 int subroutine_index;
1185 };
1186
1187 inline const char *ir_function_signature::function_name() const
1188 {
1189 return this->_function->name;
1190 }
1191 /*@}*/
1192
1193
1194 /**
1195 * IR instruction representing high-level if-statements
1196 */
1197 class ir_if : public ir_instruction {
1198 public:
1199 ir_if(ir_rvalue *condition)
1200 : ir_instruction(ir_type_if), condition(condition)
1201 {
1202 }
1203
1204 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1205
1206 virtual void accept(ir_visitor *v)
1207 {
1208 v->visit(this);
1209 }
1210
1211 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1212
1213 ir_rvalue *condition;
1214 /** List of ir_instruction for the body of the then branch */
1215 exec_list then_instructions;
1216 /** List of ir_instruction for the body of the else branch */
1217 exec_list else_instructions;
1218 };
1219
1220
1221 /**
1222 * IR instruction representing a high-level loop structure.
1223 */
1224 class ir_loop : public ir_instruction {
1225 public:
1226 ir_loop();
1227
1228 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1229
1230 virtual void accept(ir_visitor *v)
1231 {
1232 v->visit(this);
1233 }
1234
1235 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1236
1237 /** List of ir_instruction that make up the body of the loop. */
1238 exec_list body_instructions;
1239 };
1240
1241
1242 class ir_assignment : public ir_instruction {
1243 public:
1244 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1245
1246 /**
1247 * Construct an assignment with an explicit write mask
1248 *
1249 * \note
1250 * Since a write mask is supplied, the LHS must already be a bare
1251 * \c ir_dereference. The cannot be any swizzles in the LHS.
1252 */
1253 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1254 unsigned write_mask);
1255
1256 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1257
1258 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1259
1260 virtual void accept(ir_visitor *v)
1261 {
1262 v->visit(this);
1263 }
1264
1265 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1266
1267 /**
1268 * Get a whole variable written by an assignment
1269 *
1270 * If the LHS of the assignment writes a whole variable, the variable is
1271 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1272 * assignment are:
1273 *
1274 * - Assigning to a scalar
1275 * - Assigning to all components of a vector
1276 * - Whole array (or matrix) assignment
1277 * - Whole structure assignment
1278 */
1279 ir_variable *whole_variable_written();
1280
1281 /**
1282 * Set the LHS of an assignment
1283 */
1284 void set_lhs(ir_rvalue *lhs);
1285
1286 /**
1287 * Left-hand side of the assignment.
1288 *
1289 * This should be treated as read only. If you need to set the LHS of an
1290 * assignment, use \c ir_assignment::set_lhs.
1291 */
1292 ir_dereference *lhs;
1293
1294 /**
1295 * Value being assigned
1296 */
1297 ir_rvalue *rhs;
1298
1299 /**
1300 * Optional condition for the assignment.
1301 */
1302 ir_rvalue *condition;
1303
1304
1305 /**
1306 * Component mask written
1307 *
1308 * For non-vector types in the LHS, this field will be zero. For vector
1309 * types, a bit will be set for each component that is written. Note that
1310 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1311 *
1312 * A partially-set write mask means that each enabled channel gets
1313 * the value from a consecutive channel of the rhs. For example,
1314 * to write just .xyw of gl_FrontColor with color:
1315 *
1316 * (assign (constant bool (1)) (xyw)
1317 * (var_ref gl_FragColor)
1318 * (swiz xyw (var_ref color)))
1319 */
1320 unsigned write_mask:4;
1321 };
1322
1323 /* Update ir_expression::get_num_operands() and operator_strs when
1324 * updating this list.
1325 */
1326 enum ir_expression_operation {
1327 ir_unop_bit_not,
1328 ir_unop_logic_not,
1329 ir_unop_neg,
1330 ir_unop_abs,
1331 ir_unop_sign,
1332 ir_unop_rcp,
1333 ir_unop_rsq,
1334 ir_unop_sqrt,
1335 ir_unop_exp, /**< Log base e on gentype */
1336 ir_unop_log, /**< Natural log on gentype */
1337 ir_unop_exp2,
1338 ir_unop_log2,
1339 ir_unop_f2i, /**< Float-to-integer conversion. */
1340 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1341 ir_unop_i2f, /**< Integer-to-float conversion. */
1342 ir_unop_f2b, /**< Float-to-boolean conversion */
1343 ir_unop_b2f, /**< Boolean-to-float conversion */
1344 ir_unop_i2b, /**< int-to-boolean conversion */
1345 ir_unop_b2i, /**< Boolean-to-int conversion */
1346 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1347 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1348 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1349 ir_unop_d2f, /**< Double-to-float conversion. */
1350 ir_unop_f2d, /**< Float-to-double conversion. */
1351 ir_unop_d2i, /**< Double-to-integer conversion. */
1352 ir_unop_i2d, /**< Integer-to-double conversion. */
1353 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1354 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1355 ir_unop_d2b, /**< Double-to-boolean conversion. */
1356 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1357 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1358 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1359 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1360
1361 /**
1362 * \name Unary floating-point rounding operations.
1363 */
1364 /*@{*/
1365 ir_unop_trunc,
1366 ir_unop_ceil,
1367 ir_unop_floor,
1368 ir_unop_fract,
1369 ir_unop_round_even,
1370 /*@}*/
1371
1372 /**
1373 * \name Trigonometric operations.
1374 */
1375 /*@{*/
1376 ir_unop_sin,
1377 ir_unop_cos,
1378 /*@}*/
1379
1380 /**
1381 * \name Partial derivatives.
1382 */
1383 /*@{*/
1384 ir_unop_dFdx,
1385 ir_unop_dFdx_coarse,
1386 ir_unop_dFdx_fine,
1387 ir_unop_dFdy,
1388 ir_unop_dFdy_coarse,
1389 ir_unop_dFdy_fine,
1390 /*@}*/
1391
1392 /**
1393 * \name Floating point pack and unpack operations.
1394 */
1395 /*@{*/
1396 ir_unop_pack_snorm_2x16,
1397 ir_unop_pack_snorm_4x8,
1398 ir_unop_pack_unorm_2x16,
1399 ir_unop_pack_unorm_4x8,
1400 ir_unop_pack_half_2x16,
1401 ir_unop_unpack_snorm_2x16,
1402 ir_unop_unpack_snorm_4x8,
1403 ir_unop_unpack_unorm_2x16,
1404 ir_unop_unpack_unorm_4x8,
1405 ir_unop_unpack_half_2x16,
1406 /*@}*/
1407
1408 /**
1409 * \name Bit operations, part of ARB_gpu_shader5.
1410 */
1411 /*@{*/
1412 ir_unop_bitfield_reverse,
1413 ir_unop_bit_count,
1414 ir_unop_find_msb,
1415 ir_unop_find_lsb,
1416 /*@}*/
1417
1418 ir_unop_saturate,
1419
1420 /**
1421 * \name Double packing, part of ARB_gpu_shader_fp64.
1422 */
1423 /*@{*/
1424 ir_unop_pack_double_2x32,
1425 ir_unop_unpack_double_2x32,
1426 /*@}*/
1427
1428 ir_unop_frexp_sig,
1429 ir_unop_frexp_exp,
1430
1431 ir_unop_noise,
1432
1433 ir_unop_subroutine_to_int,
1434 /**
1435 * Interpolate fs input at centroid
1436 *
1437 * operand0 is the fs input.
1438 */
1439 ir_unop_interpolate_at_centroid,
1440
1441 /**
1442 * Ask the driver for the total size of a buffer block.
1443 *
1444 * operand0 is the ir_constant buffer block index in the linked shader.
1445 */
1446 ir_unop_get_buffer_size,
1447
1448 /**
1449 * Calculate length of an unsized array inside a buffer block.
1450 * This opcode is going to be replaced in a lowering pass inside
1451 * the linker.
1452 *
1453 * operand0 is the unsized array's ir_value for the calculation
1454 * of its length.
1455 */
1456 ir_unop_ssbo_unsized_array_length,
1457
1458 /**
1459 * A sentinel marking the last of the unary operations.
1460 */
1461 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1462
1463 ir_binop_add,
1464 ir_binop_sub,
1465 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1466 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1467 ir_binop_div,
1468
1469 /**
1470 * Returns the carry resulting from the addition of the two arguments.
1471 */
1472 /*@{*/
1473 ir_binop_carry,
1474 /*@}*/
1475
1476 /**
1477 * Returns the borrow resulting from the subtraction of the second argument
1478 * from the first argument.
1479 */
1480 /*@{*/
1481 ir_binop_borrow,
1482 /*@}*/
1483
1484 /**
1485 * Takes one of two combinations of arguments:
1486 *
1487 * - mod(vecN, vecN)
1488 * - mod(vecN, float)
1489 *
1490 * Does not take integer types.
1491 */
1492 ir_binop_mod,
1493
1494 /**
1495 * \name Binary comparison operators which return a boolean vector.
1496 * The type of both operands must be equal.
1497 */
1498 /*@{*/
1499 ir_binop_less,
1500 ir_binop_greater,
1501 ir_binop_lequal,
1502 ir_binop_gequal,
1503 ir_binop_equal,
1504 ir_binop_nequal,
1505 /**
1506 * Returns single boolean for whether all components of operands[0]
1507 * equal the components of operands[1].
1508 */
1509 ir_binop_all_equal,
1510 /**
1511 * Returns single boolean for whether any component of operands[0]
1512 * is not equal to the corresponding component of operands[1].
1513 */
1514 ir_binop_any_nequal,
1515 /*@}*/
1516
1517 /**
1518 * \name Bit-wise binary operations.
1519 */
1520 /*@{*/
1521 ir_binop_lshift,
1522 ir_binop_rshift,
1523 ir_binop_bit_and,
1524 ir_binop_bit_xor,
1525 ir_binop_bit_or,
1526 /*@}*/
1527
1528 ir_binop_logic_and,
1529 ir_binop_logic_xor,
1530 ir_binop_logic_or,
1531
1532 ir_binop_dot,
1533 ir_binop_min,
1534 ir_binop_max,
1535
1536 ir_binop_pow,
1537
1538 /**
1539 * Load a value the size of a given GLSL type from a uniform block.
1540 *
1541 * operand0 is the ir_constant uniform block index in the linked shader.
1542 * operand1 is a byte offset within the uniform block.
1543 */
1544 ir_binop_ubo_load,
1545
1546 /**
1547 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1548 */
1549 /*@{*/
1550 ir_binop_ldexp,
1551 /*@}*/
1552
1553 /**
1554 * Extract a scalar from a vector
1555 *
1556 * operand0 is the vector
1557 * operand1 is the index of the field to read from operand0
1558 */
1559 ir_binop_vector_extract,
1560
1561 /**
1562 * Interpolate fs input at offset
1563 *
1564 * operand0 is the fs input
1565 * operand1 is the offset from the pixel center
1566 */
1567 ir_binop_interpolate_at_offset,
1568
1569 /**
1570 * Interpolate fs input at sample position
1571 *
1572 * operand0 is the fs input
1573 * operand1 is the sample ID
1574 */
1575 ir_binop_interpolate_at_sample,
1576
1577 /**
1578 * A sentinel marking the last of the binary operations.
1579 */
1580 ir_last_binop = ir_binop_interpolate_at_sample,
1581
1582 /**
1583 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1584 */
1585 /*@{*/
1586 ir_triop_fma,
1587 /*@}*/
1588
1589 ir_triop_lrp,
1590
1591 /**
1592 * \name Conditional Select
1593 *
1594 * A vector conditional select instruction (like ?:, but operating per-
1595 * component on vectors).
1596 *
1597 * \see lower_instructions_visitor::ldexp_to_arith
1598 */
1599 /*@{*/
1600 ir_triop_csel,
1601 /*@}*/
1602
1603 ir_triop_bitfield_extract,
1604
1605 /**
1606 * Generate a value with one field of a vector changed
1607 *
1608 * operand0 is the vector
1609 * operand1 is the value to write into the vector result
1610 * operand2 is the index in operand0 to be modified
1611 */
1612 ir_triop_vector_insert,
1613
1614 /**
1615 * A sentinel marking the last of the ternary operations.
1616 */
1617 ir_last_triop = ir_triop_vector_insert,
1618
1619 ir_quadop_bitfield_insert,
1620
1621 ir_quadop_vector,
1622
1623 /**
1624 * A sentinel marking the last of the ternary operations.
1625 */
1626 ir_last_quadop = ir_quadop_vector,
1627
1628 /**
1629 * A sentinel marking the last of all operations.
1630 */
1631 ir_last_opcode = ir_quadop_vector
1632 };
1633
1634 class ir_expression : public ir_rvalue {
1635 public:
1636 ir_expression(int op, const struct glsl_type *type,
1637 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1638 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1639
1640 /**
1641 * Constructor for unary operation expressions
1642 */
1643 ir_expression(int op, ir_rvalue *);
1644
1645 /**
1646 * Constructor for binary operation expressions
1647 */
1648 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1649
1650 /**
1651 * Constructor for ternary operation expressions
1652 */
1653 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1654
1655 virtual bool equals(const ir_instruction *ir,
1656 enum ir_node_type ignore = ir_type_unset) const;
1657
1658 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1659
1660 /**
1661 * Attempt to constant-fold the expression
1662 *
1663 * The "variable_context" hash table links ir_variable * to ir_constant *
1664 * that represent the variables' values. \c NULL represents an empty
1665 * context.
1666 *
1667 * If the expression cannot be constant folded, this method will return
1668 * \c NULL.
1669 */
1670 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1671
1672 /**
1673 * Determine the number of operands used by an expression
1674 */
1675 static unsigned int get_num_operands(ir_expression_operation);
1676
1677 /**
1678 * Determine the number of operands used by an expression
1679 */
1680 unsigned int get_num_operands() const
1681 {
1682 return (this->operation == ir_quadop_vector)
1683 ? this->type->vector_elements : get_num_operands(operation);
1684 }
1685
1686 /**
1687 * Return whether the expression operates on vectors horizontally.
1688 */
1689 bool is_horizontal() const
1690 {
1691 return operation == ir_binop_all_equal ||
1692 operation == ir_binop_any_nequal ||
1693 operation == ir_binop_dot ||
1694 operation == ir_binop_vector_extract ||
1695 operation == ir_triop_vector_insert ||
1696 operation == ir_binop_ubo_load ||
1697 operation == ir_quadop_vector;
1698 }
1699
1700 /**
1701 * Return a string representing this expression's operator.
1702 */
1703 const char *operator_string();
1704
1705 /**
1706 * Return a string representing this expression's operator.
1707 */
1708 static const char *operator_string(ir_expression_operation);
1709
1710
1711 /**
1712 * Do a reverse-lookup to translate the given string into an operator.
1713 */
1714 static ir_expression_operation get_operator(const char *);
1715
1716 virtual void accept(ir_visitor *v)
1717 {
1718 v->visit(this);
1719 }
1720
1721 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1722
1723 virtual ir_variable *variable_referenced() const;
1724
1725 ir_expression_operation operation;
1726 ir_rvalue *operands[4];
1727 };
1728
1729
1730 /**
1731 * HIR instruction representing a high-level function call, containing a list
1732 * of parameters and returning a value in the supplied temporary.
1733 */
1734 class ir_call : public ir_instruction {
1735 public:
1736 ir_call(ir_function_signature *callee,
1737 ir_dereference_variable *return_deref,
1738 exec_list *actual_parameters)
1739 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1740 {
1741 assert(callee->return_type != NULL);
1742 actual_parameters->move_nodes_to(& this->actual_parameters);
1743 this->use_builtin = callee->is_builtin();
1744 }
1745
1746 ir_call(ir_function_signature *callee,
1747 ir_dereference_variable *return_deref,
1748 exec_list *actual_parameters,
1749 ir_variable *var, ir_rvalue *array_idx)
1750 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1751 {
1752 assert(callee->return_type != NULL);
1753 actual_parameters->move_nodes_to(& this->actual_parameters);
1754 this->use_builtin = callee->is_builtin();
1755 }
1756
1757 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1758
1759 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1760
1761 virtual void accept(ir_visitor *v)
1762 {
1763 v->visit(this);
1764 }
1765
1766 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1767
1768 /**
1769 * Get the name of the function being called.
1770 */
1771 const char *callee_name() const
1772 {
1773 return callee->function_name();
1774 }
1775
1776 /**
1777 * Generates an inline version of the function before @ir,
1778 * storing the return value in return_deref.
1779 */
1780 void generate_inline(ir_instruction *ir);
1781
1782 /**
1783 * Storage for the function's return value.
1784 * This must be NULL if the return type is void.
1785 */
1786 ir_dereference_variable *return_deref;
1787
1788 /**
1789 * The specific function signature being called.
1790 */
1791 ir_function_signature *callee;
1792
1793 /* List of ir_rvalue of paramaters passed in this call. */
1794 exec_list actual_parameters;
1795
1796 /** Should this call only bind to a built-in function? */
1797 bool use_builtin;
1798
1799 /*
1800 * ARB_shader_subroutine support -
1801 * the subroutine uniform variable and array index
1802 * rvalue to be used in the lowering pass later.
1803 */
1804 ir_variable *sub_var;
1805 ir_rvalue *array_idx;
1806 };
1807
1808
1809 /**
1810 * \name Jump-like IR instructions.
1811 *
1812 * These include \c break, \c continue, \c return, and \c discard.
1813 */
1814 /*@{*/
1815 class ir_jump : public ir_instruction {
1816 protected:
1817 ir_jump(enum ir_node_type t)
1818 : ir_instruction(t)
1819 {
1820 }
1821 };
1822
1823 class ir_return : public ir_jump {
1824 public:
1825 ir_return()
1826 : ir_jump(ir_type_return), value(NULL)
1827 {
1828 }
1829
1830 ir_return(ir_rvalue *value)
1831 : ir_jump(ir_type_return), value(value)
1832 {
1833 }
1834
1835 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1836
1837 ir_rvalue *get_value() const
1838 {
1839 return value;
1840 }
1841
1842 virtual void accept(ir_visitor *v)
1843 {
1844 v->visit(this);
1845 }
1846
1847 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1848
1849 ir_rvalue *value;
1850 };
1851
1852
1853 /**
1854 * Jump instructions used inside loops
1855 *
1856 * These include \c break and \c continue. The \c break within a loop is
1857 * different from the \c break within a switch-statement.
1858 *
1859 * \sa ir_switch_jump
1860 */
1861 class ir_loop_jump : public ir_jump {
1862 public:
1863 enum jump_mode {
1864 jump_break,
1865 jump_continue
1866 };
1867
1868 ir_loop_jump(jump_mode mode)
1869 : ir_jump(ir_type_loop_jump)
1870 {
1871 this->mode = mode;
1872 }
1873
1874 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1875
1876 virtual void accept(ir_visitor *v)
1877 {
1878 v->visit(this);
1879 }
1880
1881 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1882
1883 bool is_break() const
1884 {
1885 return mode == jump_break;
1886 }
1887
1888 bool is_continue() const
1889 {
1890 return mode == jump_continue;
1891 }
1892
1893 /** Mode selector for the jump instruction. */
1894 enum jump_mode mode;
1895 };
1896
1897 /**
1898 * IR instruction representing discard statements.
1899 */
1900 class ir_discard : public ir_jump {
1901 public:
1902 ir_discard()
1903 : ir_jump(ir_type_discard)
1904 {
1905 this->condition = NULL;
1906 }
1907
1908 ir_discard(ir_rvalue *cond)
1909 : ir_jump(ir_type_discard)
1910 {
1911 this->condition = cond;
1912 }
1913
1914 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1915
1916 virtual void accept(ir_visitor *v)
1917 {
1918 v->visit(this);
1919 }
1920
1921 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1922
1923 ir_rvalue *condition;
1924 };
1925 /*@}*/
1926
1927
1928 /**
1929 * Texture sampling opcodes used in ir_texture
1930 */
1931 enum ir_texture_opcode {
1932 ir_tex, /**< Regular texture look-up */
1933 ir_txb, /**< Texture look-up with LOD bias */
1934 ir_txl, /**< Texture look-up with explicit LOD */
1935 ir_txd, /**< Texture look-up with partial derivatvies */
1936 ir_txf, /**< Texel fetch with explicit LOD */
1937 ir_txf_ms, /**< Multisample texture fetch */
1938 ir_txs, /**< Texture size */
1939 ir_lod, /**< Texture lod query */
1940 ir_tg4, /**< Texture gather */
1941 ir_query_levels, /**< Texture levels query */
1942 ir_texture_samples, /**< Texture samples query */
1943 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1944 };
1945
1946
1947 /**
1948 * IR instruction to sample a texture
1949 *
1950 * The specific form of the IR instruction depends on the \c mode value
1951 * selected from \c ir_texture_opcodes. In the printed IR, these will
1952 * appear as:
1953 *
1954 * Texel offset (0 or an expression)
1955 * | Projection divisor
1956 * | | Shadow comparitor
1957 * | | |
1958 * v v v
1959 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1960 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1961 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1962 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1963 * (txf <type> <sampler> <coordinate> 0 <lod>)
1964 * (txf_ms
1965 * <type> <sampler> <coordinate> <sample_index>)
1966 * (txs <type> <sampler> <lod>)
1967 * (lod <type> <sampler> <coordinate>)
1968 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1969 * (query_levels <type> <sampler>)
1970 * (samples_identical <sampler> <coordinate>)
1971 */
1972 class ir_texture : public ir_rvalue {
1973 public:
1974 ir_texture(enum ir_texture_opcode op)
1975 : ir_rvalue(ir_type_texture),
1976 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1977 shadow_comparitor(NULL), offset(NULL)
1978 {
1979 memset(&lod_info, 0, sizeof(lod_info));
1980 }
1981
1982 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1983
1984 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1985
1986 virtual void accept(ir_visitor *v)
1987 {
1988 v->visit(this);
1989 }
1990
1991 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1992
1993 virtual bool equals(const ir_instruction *ir,
1994 enum ir_node_type ignore = ir_type_unset) const;
1995
1996 /**
1997 * Return a string representing the ir_texture_opcode.
1998 */
1999 const char *opcode_string();
2000
2001 /** Set the sampler and type. */
2002 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2003
2004 /**
2005 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2006 */
2007 static ir_texture_opcode get_opcode(const char *);
2008
2009 enum ir_texture_opcode op;
2010
2011 /** Sampler to use for the texture access. */
2012 ir_dereference *sampler;
2013
2014 /** Texture coordinate to sample */
2015 ir_rvalue *coordinate;
2016
2017 /**
2018 * Value used for projective divide.
2019 *
2020 * If there is no projective divide (the common case), this will be
2021 * \c NULL. Optimization passes should check for this to point to a constant
2022 * of 1.0 and replace that with \c NULL.
2023 */
2024 ir_rvalue *projector;
2025
2026 /**
2027 * Coordinate used for comparison on shadow look-ups.
2028 *
2029 * If there is no shadow comparison, this will be \c NULL. For the
2030 * \c ir_txf opcode, this *must* be \c NULL.
2031 */
2032 ir_rvalue *shadow_comparitor;
2033
2034 /** Texel offset. */
2035 ir_rvalue *offset;
2036
2037 union {
2038 ir_rvalue *lod; /**< Floating point LOD */
2039 ir_rvalue *bias; /**< Floating point LOD bias */
2040 ir_rvalue *sample_index; /**< MSAA sample index */
2041 ir_rvalue *component; /**< Gather component selector */
2042 struct {
2043 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2044 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2045 } grad;
2046 } lod_info;
2047 };
2048
2049
2050 struct ir_swizzle_mask {
2051 unsigned x:2;
2052 unsigned y:2;
2053 unsigned z:2;
2054 unsigned w:2;
2055
2056 /**
2057 * Number of components in the swizzle.
2058 */
2059 unsigned num_components:3;
2060
2061 /**
2062 * Does the swizzle contain duplicate components?
2063 *
2064 * L-value swizzles cannot contain duplicate components.
2065 */
2066 unsigned has_duplicates:1;
2067 };
2068
2069
2070 class ir_swizzle : public ir_rvalue {
2071 public:
2072 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2073 unsigned count);
2074
2075 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2076
2077 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2078
2079 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2080
2081 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2082
2083 /**
2084 * Construct an ir_swizzle from the textual representation. Can fail.
2085 */
2086 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2087
2088 virtual void accept(ir_visitor *v)
2089 {
2090 v->visit(this);
2091 }
2092
2093 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2094
2095 virtual bool equals(const ir_instruction *ir,
2096 enum ir_node_type ignore = ir_type_unset) const;
2097
2098 bool is_lvalue() const
2099 {
2100 return val->is_lvalue() && !mask.has_duplicates;
2101 }
2102
2103 /**
2104 * Get the variable that is ultimately referenced by an r-value
2105 */
2106 virtual ir_variable *variable_referenced() const;
2107
2108 ir_rvalue *val;
2109 ir_swizzle_mask mask;
2110
2111 private:
2112 /**
2113 * Initialize the mask component of a swizzle
2114 *
2115 * This is used by the \c ir_swizzle constructors.
2116 */
2117 void init_mask(const unsigned *components, unsigned count);
2118 };
2119
2120
2121 class ir_dereference : public ir_rvalue {
2122 public:
2123 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2124
2125 bool is_lvalue() const;
2126
2127 /**
2128 * Get the variable that is ultimately referenced by an r-value
2129 */
2130 virtual ir_variable *variable_referenced() const = 0;
2131
2132 protected:
2133 ir_dereference(enum ir_node_type t)
2134 : ir_rvalue(t)
2135 {
2136 }
2137 };
2138
2139
2140 class ir_dereference_variable : public ir_dereference {
2141 public:
2142 ir_dereference_variable(ir_variable *var);
2143
2144 virtual ir_dereference_variable *clone(void *mem_ctx,
2145 struct hash_table *) const;
2146
2147 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2148
2149 virtual bool equals(const ir_instruction *ir,
2150 enum ir_node_type ignore = ir_type_unset) const;
2151
2152 /**
2153 * Get the variable that is ultimately referenced by an r-value
2154 */
2155 virtual ir_variable *variable_referenced() const
2156 {
2157 return this->var;
2158 }
2159
2160 virtual ir_variable *whole_variable_referenced()
2161 {
2162 /* ir_dereference_variable objects always dereference the entire
2163 * variable. However, if this dereference is dereferenced by anything
2164 * else, the complete deferefernce chain is not a whole-variable
2165 * dereference. This method should only be called on the top most
2166 * ir_rvalue in a dereference chain.
2167 */
2168 return this->var;
2169 }
2170
2171 virtual void accept(ir_visitor *v)
2172 {
2173 v->visit(this);
2174 }
2175
2176 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2177
2178 /**
2179 * Object being dereferenced.
2180 */
2181 ir_variable *var;
2182 };
2183
2184
2185 class ir_dereference_array : public ir_dereference {
2186 public:
2187 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2188
2189 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2190
2191 virtual ir_dereference_array *clone(void *mem_ctx,
2192 struct hash_table *) const;
2193
2194 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2195
2196 virtual bool equals(const ir_instruction *ir,
2197 enum ir_node_type ignore = ir_type_unset) const;
2198
2199 /**
2200 * Get the variable that is ultimately referenced by an r-value
2201 */
2202 virtual ir_variable *variable_referenced() const
2203 {
2204 return this->array->variable_referenced();
2205 }
2206
2207 virtual void accept(ir_visitor *v)
2208 {
2209 v->visit(this);
2210 }
2211
2212 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2213
2214 ir_rvalue *array;
2215 ir_rvalue *array_index;
2216
2217 private:
2218 void set_array(ir_rvalue *value);
2219 };
2220
2221
2222 class ir_dereference_record : public ir_dereference {
2223 public:
2224 ir_dereference_record(ir_rvalue *value, const char *field);
2225
2226 ir_dereference_record(ir_variable *var, const char *field);
2227
2228 virtual ir_dereference_record *clone(void *mem_ctx,
2229 struct hash_table *) const;
2230
2231 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2232
2233 /**
2234 * Get the variable that is ultimately referenced by an r-value
2235 */
2236 virtual ir_variable *variable_referenced() const
2237 {
2238 return this->record->variable_referenced();
2239 }
2240
2241 virtual void accept(ir_visitor *v)
2242 {
2243 v->visit(this);
2244 }
2245
2246 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2247
2248 ir_rvalue *record;
2249 const char *field;
2250 };
2251
2252
2253 /**
2254 * Data stored in an ir_constant
2255 */
2256 union ir_constant_data {
2257 unsigned u[16];
2258 int i[16];
2259 float f[16];
2260 bool b[16];
2261 double d[16];
2262 };
2263
2264
2265 class ir_constant : public ir_rvalue {
2266 public:
2267 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2268 ir_constant(bool b, unsigned vector_elements=1);
2269 ir_constant(unsigned int u, unsigned vector_elements=1);
2270 ir_constant(int i, unsigned vector_elements=1);
2271 ir_constant(float f, unsigned vector_elements=1);
2272 ir_constant(double d, unsigned vector_elements=1);
2273
2274 /**
2275 * Construct an ir_constant from a list of ir_constant values
2276 */
2277 ir_constant(const struct glsl_type *type, exec_list *values);
2278
2279 /**
2280 * Construct an ir_constant from a scalar component of another ir_constant
2281 *
2282 * The new \c ir_constant inherits the type of the component from the
2283 * source constant.
2284 *
2285 * \note
2286 * In the case of a matrix constant, the new constant is a scalar, \b not
2287 * a vector.
2288 */
2289 ir_constant(const ir_constant *c, unsigned i);
2290
2291 /**
2292 * Return a new ir_constant of the specified type containing all zeros.
2293 */
2294 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2295
2296 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2297
2298 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2299
2300 virtual void accept(ir_visitor *v)
2301 {
2302 v->visit(this);
2303 }
2304
2305 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2306
2307 virtual bool equals(const ir_instruction *ir,
2308 enum ir_node_type ignore = ir_type_unset) const;
2309
2310 /**
2311 * Get a particular component of a constant as a specific type
2312 *
2313 * This is useful, for example, to get a value from an integer constant
2314 * as a float or bool. This appears frequently when constructors are
2315 * called with all constant parameters.
2316 */
2317 /*@{*/
2318 bool get_bool_component(unsigned i) const;
2319 float get_float_component(unsigned i) const;
2320 double get_double_component(unsigned i) const;
2321 int get_int_component(unsigned i) const;
2322 unsigned get_uint_component(unsigned i) const;
2323 /*@}*/
2324
2325 ir_constant *get_array_element(unsigned i) const;
2326
2327 ir_constant *get_record_field(const char *name);
2328
2329 /**
2330 * Copy the values on another constant at a given offset.
2331 *
2332 * The offset is ignored for array or struct copies, it's only for
2333 * scalars or vectors into vectors or matrices.
2334 *
2335 * With identical types on both sides and zero offset it's clone()
2336 * without creating a new object.
2337 */
2338
2339 void copy_offset(ir_constant *src, int offset);
2340
2341 /**
2342 * Copy the values on another constant at a given offset and
2343 * following an assign-like mask.
2344 *
2345 * The mask is ignored for scalars.
2346 *
2347 * Note that this function only handles what assign can handle,
2348 * i.e. at most a vector as source and a column of a matrix as
2349 * destination.
2350 */
2351
2352 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2353
2354 /**
2355 * Determine whether a constant has the same value as another constant
2356 *
2357 * \sa ir_constant::is_zero, ir_constant::is_one,
2358 * ir_constant::is_negative_one
2359 */
2360 bool has_value(const ir_constant *) const;
2361
2362 /**
2363 * Return true if this ir_constant represents the given value.
2364 *
2365 * For vectors, this checks that each component is the given value.
2366 */
2367 virtual bool is_value(float f, int i) const;
2368 virtual bool is_zero() const;
2369 virtual bool is_one() const;
2370 virtual bool is_negative_one() const;
2371
2372 /**
2373 * Return true for constants that could be stored as 16-bit unsigned values.
2374 *
2375 * Note that this will return true even for signed integer ir_constants, as
2376 * long as the value is non-negative and fits in 16-bits.
2377 */
2378 virtual bool is_uint16_constant() const;
2379
2380 /**
2381 * Value of the constant.
2382 *
2383 * The field used to back the values supplied by the constant is determined
2384 * by the type associated with the \c ir_instruction. Constants may be
2385 * scalars, vectors, or matrices.
2386 */
2387 union ir_constant_data value;
2388
2389 /* Array elements */
2390 ir_constant **array_elements;
2391
2392 /* Structure fields */
2393 exec_list components;
2394
2395 private:
2396 /**
2397 * Parameterless constructor only used by the clone method
2398 */
2399 ir_constant(void);
2400 };
2401
2402 /**
2403 * IR instruction to emit a vertex in a geometry shader.
2404 */
2405 class ir_emit_vertex : public ir_instruction {
2406 public:
2407 ir_emit_vertex(ir_rvalue *stream)
2408 : ir_instruction(ir_type_emit_vertex),
2409 stream(stream)
2410 {
2411 assert(stream);
2412 }
2413
2414 virtual void accept(ir_visitor *v)
2415 {
2416 v->visit(this);
2417 }
2418
2419 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2420 {
2421 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2422 }
2423
2424 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2425
2426 int stream_id() const
2427 {
2428 return stream->as_constant()->value.i[0];
2429 }
2430
2431 ir_rvalue *stream;
2432 };
2433
2434 /**
2435 * IR instruction to complete the current primitive and start a new one in a
2436 * geometry shader.
2437 */
2438 class ir_end_primitive : public ir_instruction {
2439 public:
2440 ir_end_primitive(ir_rvalue *stream)
2441 : ir_instruction(ir_type_end_primitive),
2442 stream(stream)
2443 {
2444 assert(stream);
2445 }
2446
2447 virtual void accept(ir_visitor *v)
2448 {
2449 v->visit(this);
2450 }
2451
2452 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2453 {
2454 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2455 }
2456
2457 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2458
2459 int stream_id() const
2460 {
2461 return stream->as_constant()->value.i[0];
2462 }
2463
2464 ir_rvalue *stream;
2465 };
2466
2467 /**
2468 * IR instruction for tessellation control and compute shader barrier.
2469 */
2470 class ir_barrier : public ir_instruction {
2471 public:
2472 ir_barrier()
2473 : ir_instruction(ir_type_barrier)
2474 {
2475 }
2476
2477 virtual void accept(ir_visitor *v)
2478 {
2479 v->visit(this);
2480 }
2481
2482 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2483 {
2484 return new(mem_ctx) ir_barrier();
2485 }
2486
2487 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2488 };
2489
2490 /*@}*/
2491
2492 /**
2493 * Apply a visitor to each IR node in a list
2494 */
2495 void
2496 visit_exec_list(exec_list *list, ir_visitor *visitor);
2497
2498 /**
2499 * Validate invariants on each IR node in a list
2500 */
2501 void validate_ir_tree(exec_list *instructions);
2502
2503 struct _mesa_glsl_parse_state;
2504 struct gl_shader_program;
2505
2506 /**
2507 * Detect whether an unlinked shader contains static recursion
2508 *
2509 * If the list of instructions is determined to contain static recursion,
2510 * \c _mesa_glsl_error will be called to emit error messages for each function
2511 * that is in the recursion cycle.
2512 */
2513 void
2514 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2515 exec_list *instructions);
2516
2517 /**
2518 * Detect whether a linked shader contains static recursion
2519 *
2520 * If the list of instructions is determined to contain static recursion,
2521 * \c link_error_printf will be called to emit error messages for each function
2522 * that is in the recursion cycle. In addition,
2523 * \c gl_shader_program::LinkStatus will be set to false.
2524 */
2525 void
2526 detect_recursion_linked(struct gl_shader_program *prog,
2527 exec_list *instructions);
2528
2529 /**
2530 * Make a clone of each IR instruction in a list
2531 *
2532 * \param in List of IR instructions that are to be cloned
2533 * \param out List to hold the cloned instructions
2534 */
2535 void
2536 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2537
2538 extern void
2539 _mesa_glsl_initialize_variables(exec_list *instructions,
2540 struct _mesa_glsl_parse_state *state);
2541
2542 extern void
2543 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2544
2545 extern void
2546 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2547
2548 extern void
2549 _mesa_glsl_initialize_builtin_functions();
2550
2551 extern ir_function_signature *
2552 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2553 const char *name, exec_list *actual_parameters);
2554
2555 extern ir_function *
2556 _mesa_glsl_find_builtin_function_by_name(const char *name);
2557
2558 extern gl_shader *
2559 _mesa_glsl_get_builtin_function_shader(void);
2560
2561 extern ir_function_signature *
2562 _mesa_get_main_function_signature(gl_shader *sh);
2563
2564 extern void
2565 _mesa_glsl_release_functions(void);
2566
2567 extern void
2568 _mesa_glsl_release_builtin_functions(void);
2569
2570 extern void
2571 reparent_ir(exec_list *list, void *mem_ctx);
2572
2573 struct glsl_symbol_table;
2574
2575 extern void
2576 import_prototypes(const exec_list *source, exec_list *dest,
2577 struct glsl_symbol_table *symbols, void *mem_ctx);
2578
2579 extern bool
2580 ir_has_call(ir_instruction *ir);
2581
2582 extern void
2583 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2584 gl_shader_stage shader_stage);
2585
2586 extern char *
2587 prototype_string(const glsl_type *return_type, const char *name,
2588 exec_list *parameters);
2589
2590 const char *
2591 mode_string(const ir_variable *var);
2592
2593 /**
2594 * Built-in / reserved GL variables names start with "gl_"
2595 */
2596 static inline bool
2597 is_gl_identifier(const char *s)
2598 {
2599 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2600 }
2601
2602 extern "C" {
2603 #endif /* __cplusplus */
2604
2605 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2606 struct _mesa_glsl_parse_state *state);
2607
2608 extern void
2609 fprint_ir(FILE *f, const void *instruction);
2610
2611 #ifdef __cplusplus
2612 } /* extern "C" */
2613 #endif
2614
2615 unsigned
2616 vertices_per_prim(GLenum prim);
2617
2618 #endif /* IR_H */