glsl: add IR fields for transform feedback layout qualifiers
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 rzalloc_array(this, unsigned, type->length);
488 }
489 }
490
491 /**
492 * Change this->interface_type on a variable that previously had a
493 * different, but compatible, interface_type. This is used during linking
494 * to set the size of arrays in interface blocks.
495 */
496 void change_interface_type(const struct glsl_type *type)
497 {
498 if (this->u.max_ifc_array_access != NULL) {
499 /* max_ifc_array_access has already been allocated, so make sure the
500 * new interface has the same number of fields as the old one.
501 */
502 assert(this->interface_type->length == type->length);
503 }
504 this->interface_type = type;
505 }
506
507 /**
508 * Change this->interface_type on a variable that previously had a
509 * different, and incompatible, interface_type. This is used during
510 * compilation to handle redeclaration of the built-in gl_PerVertex
511 * interface block.
512 */
513 void reinit_interface_type(const struct glsl_type *type)
514 {
515 if (this->u.max_ifc_array_access != NULL) {
516 #ifndef NDEBUG
517 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
518 * it defines have been accessed yet; so it's safe to throw away the
519 * old max_ifc_array_access pointer, since all of its values are
520 * zero.
521 */
522 for (unsigned i = 0; i < this->interface_type->length; i++)
523 assert(this->u.max_ifc_array_access[i] == 0);
524 #endif
525 ralloc_free(this->u.max_ifc_array_access);
526 this->u.max_ifc_array_access = NULL;
527 }
528 this->interface_type = NULL;
529 init_interface_type(type);
530 }
531
532 const glsl_type *get_interface_type() const
533 {
534 return this->interface_type;
535 }
536
537 /**
538 * Get the max_ifc_array_access pointer
539 *
540 * A "set" function is not needed because the array is dynmically allocated
541 * as necessary.
542 */
543 inline unsigned *get_max_ifc_array_access()
544 {
545 assert(this->data._num_state_slots == 0);
546 return this->u.max_ifc_array_access;
547 }
548
549 inline unsigned get_num_state_slots() const
550 {
551 assert(!this->is_interface_instance()
552 || this->data._num_state_slots == 0);
553 return this->data._num_state_slots;
554 }
555
556 inline void set_num_state_slots(unsigned n)
557 {
558 assert(!this->is_interface_instance()
559 || n == 0);
560 this->data._num_state_slots = n;
561 }
562
563 inline ir_state_slot *get_state_slots()
564 {
565 return this->is_interface_instance() ? NULL : this->u.state_slots;
566 }
567
568 inline const ir_state_slot *get_state_slots() const
569 {
570 return this->is_interface_instance() ? NULL : this->u.state_slots;
571 }
572
573 inline ir_state_slot *allocate_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance());
576
577 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
578 this->data._num_state_slots = 0;
579
580 if (this->u.state_slots != NULL)
581 this->data._num_state_slots = n;
582
583 return this->u.state_slots;
584 }
585
586 inline bool is_name_ralloced() const
587 {
588 return this->name != ir_variable::tmp_name;
589 }
590
591 /**
592 * Enable emitting extension warnings for this variable
593 */
594 void enable_extension_warning(const char *extension);
595
596 /**
597 * Get the extension warning string for this variable
598 *
599 * If warnings are not enabled, \c NULL is returned.
600 */
601 const char *get_extension_warning() const;
602
603 /**
604 * Declared type of the variable
605 */
606 const struct glsl_type *type;
607
608 /**
609 * Declared name of the variable
610 */
611 const char *name;
612
613 struct ir_variable_data {
614
615 /**
616 * Is the variable read-only?
617 *
618 * This is set for variables declared as \c const, shader inputs,
619 * and uniforms.
620 */
621 unsigned read_only:1;
622 unsigned centroid:1;
623 unsigned sample:1;
624 unsigned patch:1;
625 unsigned invariant:1;
626 unsigned precise:1;
627
628 /**
629 * Has this variable been used for reading or writing?
630 *
631 * Several GLSL semantic checks require knowledge of whether or not a
632 * variable has been used. For example, it is an error to redeclare a
633 * variable as invariant after it has been used.
634 *
635 * This is only maintained in the ast_to_hir.cpp path, not in
636 * Mesa's fixed function or ARB program paths.
637 */
638 unsigned used:1;
639
640 /**
641 * Has this variable been statically assigned?
642 *
643 * This answers whether the variable was assigned in any path of
644 * the shader during ast_to_hir. This doesn't answer whether it is
645 * still written after dead code removal, nor is it maintained in
646 * non-ast_to_hir.cpp (GLSL parsing) paths.
647 */
648 unsigned assigned:1;
649
650 /**
651 * When separate shader programs are enabled, only input/outputs between
652 * the stages of a multi-stage separate program can be safely removed
653 * from the shader interface. Other input/outputs must remains active.
654 */
655 unsigned always_active_io:1;
656
657 /**
658 * Enum indicating how the variable was declared. See
659 * ir_var_declaration_type.
660 *
661 * This is used to detect certain kinds of illegal variable redeclarations.
662 */
663 unsigned how_declared:2;
664
665 /**
666 * Storage class of the variable.
667 *
668 * \sa ir_variable_mode
669 */
670 unsigned mode:4;
671
672 /**
673 * Interpolation mode for shader inputs / outputs
674 *
675 * \sa ir_variable_interpolation
676 */
677 unsigned interpolation:2;
678
679 /**
680 * \name ARB_fragment_coord_conventions
681 * @{
682 */
683 unsigned origin_upper_left:1;
684 unsigned pixel_center_integer:1;
685 /*@}*/
686
687 /**
688 * Was the location explicitly set in the shader?
689 *
690 * If the location is explicitly set in the shader, it \b cannot be changed
691 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
692 * no effect).
693 */
694 unsigned explicit_location:1;
695 unsigned explicit_index:1;
696
697 /**
698 * Was an initial binding explicitly set in the shader?
699 *
700 * If so, constant_value contains an integer ir_constant representing the
701 * initial binding point.
702 */
703 unsigned explicit_binding:1;
704
705 /**
706 * Does this variable have an initializer?
707 *
708 * This is used by the linker to cross-validiate initializers of global
709 * variables.
710 */
711 unsigned has_initializer:1;
712
713 /**
714 * Is this variable a generic output or input that has not yet been matched
715 * up to a variable in another stage of the pipeline?
716 *
717 * This is used by the linker as scratch storage while assigning locations
718 * to generic inputs and outputs.
719 */
720 unsigned is_unmatched_generic_inout:1;
721
722 /**
723 * Is this varying used only by transform feedback?
724 *
725 * This is used by the linker to decide if its safe to pack the varying.
726 */
727 unsigned is_xfb_only:1;
728
729 /**
730 * Was a transfor feedback buffer set in the shader?
731 */
732 unsigned explicit_xfb_buffer:1;
733
734 /**
735 * Was a transfor feedback offset set in the shader?
736 */
737 unsigned explicit_xfb_offset:1;
738
739 /**
740 * Was a transfor feedback stride set in the shader?
741 */
742 unsigned explicit_xfb_stride:1;
743
744 /**
745 * If non-zero, then this variable may be packed along with other variables
746 * into a single varying slot, so this offset should be applied when
747 * accessing components. For example, an offset of 1 means that the x
748 * component of this variable is actually stored in component y of the
749 * location specified by \c location.
750 */
751 unsigned location_frac:2;
752
753 /**
754 * Layout of the matrix. Uses glsl_matrix_layout values.
755 */
756 unsigned matrix_layout:2;
757
758 /**
759 * Non-zero if this variable was created by lowering a named interface
760 * block.
761 */
762 unsigned from_named_ifc_block:1;
763
764 /**
765 * Non-zero if the variable must be a shader input. This is useful for
766 * constraints on function parameters.
767 */
768 unsigned must_be_shader_input:1;
769
770 /**
771 * Output index for dual source blending.
772 *
773 * \note
774 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
775 * source blending.
776 */
777 unsigned index:1;
778
779 /**
780 * Precision qualifier.
781 *
782 * In desktop GLSL we do not care about precision qualifiers at all, in
783 * fact, the spec says that precision qualifiers are ignored.
784 *
785 * To make things easy, we make it so that this field is always
786 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
787 * have the same precision value and the checks we add in the compiler
788 * for this field will never break a desktop shader compile.
789 */
790 unsigned precision:2;
791
792 /**
793 * \brief Layout qualifier for gl_FragDepth.
794 *
795 * This is not equal to \c ir_depth_layout_none if and only if this
796 * variable is \c gl_FragDepth and a layout qualifier is specified.
797 */
798 ir_depth_layout depth_layout:3;
799
800 /**
801 * ARB_shader_image_load_store qualifiers.
802 */
803 unsigned image_read_only:1; /**< "readonly" qualifier. */
804 unsigned image_write_only:1; /**< "writeonly" qualifier. */
805 unsigned image_coherent:1;
806 unsigned image_volatile:1;
807 unsigned image_restrict:1;
808
809 /**
810 * ARB_shader_storage_buffer_object
811 */
812 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
813
814 /**
815 * Emit a warning if this variable is accessed.
816 */
817 private:
818 uint8_t warn_extension_index;
819
820 public:
821 /** Image internal format if specified explicitly, otherwise GL_NONE. */
822 uint16_t image_format;
823
824 private:
825 /**
826 * Number of state slots used
827 *
828 * \note
829 * This could be stored in as few as 7-bits, if necessary. If it is made
830 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
831 * be safe.
832 */
833 uint16_t _num_state_slots;
834
835 public:
836 /**
837 * Initial binding point for a sampler, atomic, or UBO.
838 *
839 * For array types, this represents the binding point for the first element.
840 */
841 int16_t binding;
842
843 /**
844 * Storage location of the base of this variable
845 *
846 * The precise meaning of this field depends on the nature of the variable.
847 *
848 * - Vertex shader input: one of the values from \c gl_vert_attrib.
849 * - Vertex shader output: one of the values from \c gl_varying_slot.
850 * - Geometry shader input: one of the values from \c gl_varying_slot.
851 * - Geometry shader output: one of the values from \c gl_varying_slot.
852 * - Fragment shader input: one of the values from \c gl_varying_slot.
853 * - Fragment shader output: one of the values from \c gl_frag_result.
854 * - Uniforms: Per-stage uniform slot number for default uniform block.
855 * - Uniforms: Index within the uniform block definition for UBO members.
856 * - Non-UBO Uniforms: explicit location until linking then reused to
857 * store uniform slot number.
858 * - Other: This field is not currently used.
859 *
860 * If the variable is a uniform, shader input, or shader output, and the
861 * slot has not been assigned, the value will be -1.
862 */
863 int location;
864
865 /**
866 * for glsl->tgsi/mesa IR we need to store the index into the
867 * parameters for uniforms, initially the code overloaded location
868 * but this causes problems with indirect samplers and AoA.
869 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
870 */
871 int param_index;
872
873 /**
874 * Vertex stream output identifier.
875 */
876 unsigned stream;
877
878 /**
879 * Atomic, transform feedback or block member offset.
880 */
881 unsigned offset;
882
883 /**
884 * Highest element accessed with a constant expression array index
885 *
886 * Not used for non-array variables.
887 */
888 unsigned max_array_access;
889
890 /**
891 * Transform feedback buffer.
892 */
893 unsigned xfb_buffer;
894
895 /**
896 * Transform feedback stride.
897 */
898 unsigned xfb_stride;
899
900 /**
901 * Allow (only) ir_variable direct access private members.
902 */
903 friend class ir_variable;
904 } data;
905
906 /**
907 * Value assigned in the initializer of a variable declared "const"
908 */
909 ir_constant *constant_value;
910
911 /**
912 * Constant expression assigned in the initializer of the variable
913 *
914 * \warning
915 * This field and \c ::constant_value are distinct. Even if the two fields
916 * refer to constants with the same value, they must point to separate
917 * objects.
918 */
919 ir_constant *constant_initializer;
920
921 private:
922 static const char *const warn_extension_table[];
923
924 union {
925 /**
926 * For variables which satisfy the is_interface_instance() predicate,
927 * this points to an array of integers such that if the ith member of
928 * the interface block is an array, max_ifc_array_access[i] is the
929 * maximum array element of that member that has been accessed. If the
930 * ith member of the interface block is not an array,
931 * max_ifc_array_access[i] is unused.
932 *
933 * For variables whose type is not an interface block, this pointer is
934 * NULL.
935 */
936 unsigned *max_ifc_array_access;
937
938 /**
939 * Built-in state that backs this uniform
940 *
941 * Once set at variable creation, \c state_slots must remain invariant.
942 *
943 * If the variable is not a uniform, \c _num_state_slots will be zero
944 * and \c state_slots will be \c NULL.
945 */
946 ir_state_slot *state_slots;
947 } u;
948
949 /**
950 * For variables that are in an interface block or are an instance of an
951 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
952 *
953 * \sa ir_variable::location
954 */
955 const glsl_type *interface_type;
956
957 /**
958 * Name used for anonymous compiler temporaries
959 */
960 static const char tmp_name[];
961
962 public:
963 /**
964 * Should the construct keep names for ir_var_temporary variables?
965 *
966 * When this global is false, names passed to the constructor for
967 * \c ir_var_temporary variables will be dropped. Instead, the variable will
968 * be named "compiler_temp". This name will be in static storage.
969 *
970 * \warning
971 * \b NEVER change the mode of an \c ir_var_temporary.
972 *
973 * \warning
974 * This variable is \b not thread-safe. It is global, \b not
975 * per-context. It begins life false. A context can, at some point, make
976 * it true. From that point on, it will be true forever. This should be
977 * okay since it will only be set true while debugging.
978 */
979 static bool temporaries_allocate_names;
980 };
981
982 /**
983 * A function that returns whether a built-in function is available in the
984 * current shading language (based on version, ES or desktop, and extensions).
985 */
986 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
987
988 /*@{*/
989 /**
990 * The representation of a function instance; may be the full definition or
991 * simply a prototype.
992 */
993 class ir_function_signature : public ir_instruction {
994 /* An ir_function_signature will be part of the list of signatures in
995 * an ir_function.
996 */
997 public:
998 ir_function_signature(const glsl_type *return_type,
999 builtin_available_predicate builtin_avail = NULL);
1000
1001 virtual ir_function_signature *clone(void *mem_ctx,
1002 struct hash_table *ht) const;
1003 ir_function_signature *clone_prototype(void *mem_ctx,
1004 struct hash_table *ht) const;
1005
1006 virtual void accept(ir_visitor *v)
1007 {
1008 v->visit(this);
1009 }
1010
1011 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1012
1013 /**
1014 * Attempt to evaluate this function as a constant expression,
1015 * given a list of the actual parameters and the variable context.
1016 * Returns NULL for non-built-ins.
1017 */
1018 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1019
1020 /**
1021 * Get the name of the function for which this is a signature
1022 */
1023 const char *function_name() const;
1024
1025 /**
1026 * Get a handle to the function for which this is a signature
1027 *
1028 * There is no setter function, this function returns a \c const pointer,
1029 * and \c ir_function_signature::_function is private for a reason. The
1030 * only way to make a connection between a function and function signature
1031 * is via \c ir_function::add_signature. This helps ensure that certain
1032 * invariants (i.e., a function signature is in the list of signatures for
1033 * its \c _function) are met.
1034 *
1035 * \sa ir_function::add_signature
1036 */
1037 inline const class ir_function *function() const
1038 {
1039 return this->_function;
1040 }
1041
1042 /**
1043 * Check whether the qualifiers match between this signature's parameters
1044 * and the supplied parameter list. If not, returns the name of the first
1045 * parameter with mismatched qualifiers (for use in error messages).
1046 */
1047 const char *qualifiers_match(exec_list *params);
1048
1049 /**
1050 * Replace the current parameter list with the given one. This is useful
1051 * if the current information came from a prototype, and either has invalid
1052 * or missing parameter names.
1053 */
1054 void replace_parameters(exec_list *new_params);
1055
1056 /**
1057 * Function return type.
1058 *
1059 * \note This discards the optional precision qualifier.
1060 */
1061 const struct glsl_type *return_type;
1062
1063 /**
1064 * List of ir_variable of function parameters.
1065 *
1066 * This represents the storage. The paramaters passed in a particular
1067 * call will be in ir_call::actual_paramaters.
1068 */
1069 struct exec_list parameters;
1070
1071 /** Whether or not this function has a body (which may be empty). */
1072 unsigned is_defined:1;
1073
1074 /** Whether or not this function signature is a built-in. */
1075 bool is_builtin() const;
1076
1077 /**
1078 * Whether or not this function is an intrinsic to be implemented
1079 * by the driver.
1080 */
1081 bool is_intrinsic;
1082
1083 /** Whether or not a built-in is available for this shader. */
1084 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1085
1086 /** Body of instructions in the function. */
1087 struct exec_list body;
1088
1089 private:
1090 /**
1091 * A function pointer to a predicate that answers whether a built-in
1092 * function is available in the current shader. NULL if not a built-in.
1093 */
1094 builtin_available_predicate builtin_avail;
1095
1096 /** Function of which this signature is one overload. */
1097 class ir_function *_function;
1098
1099 /** Function signature of which this one is a prototype clone */
1100 const ir_function_signature *origin;
1101
1102 friend class ir_function;
1103
1104 /**
1105 * Helper function to run a list of instructions for constant
1106 * expression evaluation.
1107 *
1108 * The hash table represents the values of the visible variables.
1109 * There are no scoping issues because the table is indexed on
1110 * ir_variable pointers, not variable names.
1111 *
1112 * Returns false if the expression is not constant, true otherwise,
1113 * and the value in *result if result is non-NULL.
1114 */
1115 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1116 struct hash_table *variable_context,
1117 ir_constant **result);
1118 };
1119
1120
1121 /**
1122 * Header for tracking multiple overloaded functions with the same name.
1123 * Contains a list of ir_function_signatures representing each of the
1124 * actual functions.
1125 */
1126 class ir_function : public ir_instruction {
1127 public:
1128 ir_function(const char *name);
1129
1130 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1131
1132 virtual void accept(ir_visitor *v)
1133 {
1134 v->visit(this);
1135 }
1136
1137 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1138
1139 void add_signature(ir_function_signature *sig)
1140 {
1141 sig->_function = this;
1142 this->signatures.push_tail(sig);
1143 }
1144
1145 /**
1146 * Find a signature that matches a set of actual parameters, taking implicit
1147 * conversions into account. Also flags whether the match was exact.
1148 */
1149 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1150 const exec_list *actual_param,
1151 bool allow_builtins,
1152 bool *match_is_exact);
1153
1154 /**
1155 * Find a signature that matches a set of actual parameters, taking implicit
1156 * conversions into account.
1157 */
1158 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1159 const exec_list *actual_param,
1160 bool allow_builtins);
1161
1162 /**
1163 * Find a signature that exactly matches a set of actual parameters without
1164 * any implicit type conversions.
1165 */
1166 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1167 const exec_list *actual_ps);
1168
1169 /**
1170 * Name of the function.
1171 */
1172 const char *name;
1173
1174 /** Whether or not this function has a signature that isn't a built-in. */
1175 bool has_user_signature();
1176
1177 /**
1178 * List of ir_function_signature for each overloaded function with this name.
1179 */
1180 struct exec_list signatures;
1181
1182 /**
1183 * is this function a subroutine type declaration
1184 * e.g. subroutine void type1(float arg1);
1185 */
1186 bool is_subroutine;
1187
1188 /**
1189 * is this function associated to a subroutine type
1190 * e.g. subroutine (type1, type2) function_name { function_body };
1191 * would have num_subroutine_types 2,
1192 * and pointers to the type1 and type2 types.
1193 */
1194 int num_subroutine_types;
1195 const struct glsl_type **subroutine_types;
1196
1197 int subroutine_index;
1198 };
1199
1200 inline const char *ir_function_signature::function_name() const
1201 {
1202 return this->_function->name;
1203 }
1204 /*@}*/
1205
1206
1207 /**
1208 * IR instruction representing high-level if-statements
1209 */
1210 class ir_if : public ir_instruction {
1211 public:
1212 ir_if(ir_rvalue *condition)
1213 : ir_instruction(ir_type_if), condition(condition)
1214 {
1215 }
1216
1217 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1218
1219 virtual void accept(ir_visitor *v)
1220 {
1221 v->visit(this);
1222 }
1223
1224 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1225
1226 ir_rvalue *condition;
1227 /** List of ir_instruction for the body of the then branch */
1228 exec_list then_instructions;
1229 /** List of ir_instruction for the body of the else branch */
1230 exec_list else_instructions;
1231 };
1232
1233
1234 /**
1235 * IR instruction representing a high-level loop structure.
1236 */
1237 class ir_loop : public ir_instruction {
1238 public:
1239 ir_loop();
1240
1241 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1242
1243 virtual void accept(ir_visitor *v)
1244 {
1245 v->visit(this);
1246 }
1247
1248 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1249
1250 /** List of ir_instruction that make up the body of the loop. */
1251 exec_list body_instructions;
1252 };
1253
1254
1255 class ir_assignment : public ir_instruction {
1256 public:
1257 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1258
1259 /**
1260 * Construct an assignment with an explicit write mask
1261 *
1262 * \note
1263 * Since a write mask is supplied, the LHS must already be a bare
1264 * \c ir_dereference. The cannot be any swizzles in the LHS.
1265 */
1266 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1267 unsigned write_mask);
1268
1269 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1270
1271 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1272
1273 virtual void accept(ir_visitor *v)
1274 {
1275 v->visit(this);
1276 }
1277
1278 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1279
1280 /**
1281 * Get a whole variable written by an assignment
1282 *
1283 * If the LHS of the assignment writes a whole variable, the variable is
1284 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1285 * assignment are:
1286 *
1287 * - Assigning to a scalar
1288 * - Assigning to all components of a vector
1289 * - Whole array (or matrix) assignment
1290 * - Whole structure assignment
1291 */
1292 ir_variable *whole_variable_written();
1293
1294 /**
1295 * Set the LHS of an assignment
1296 */
1297 void set_lhs(ir_rvalue *lhs);
1298
1299 /**
1300 * Left-hand side of the assignment.
1301 *
1302 * This should be treated as read only. If you need to set the LHS of an
1303 * assignment, use \c ir_assignment::set_lhs.
1304 */
1305 ir_dereference *lhs;
1306
1307 /**
1308 * Value being assigned
1309 */
1310 ir_rvalue *rhs;
1311
1312 /**
1313 * Optional condition for the assignment.
1314 */
1315 ir_rvalue *condition;
1316
1317
1318 /**
1319 * Component mask written
1320 *
1321 * For non-vector types in the LHS, this field will be zero. For vector
1322 * types, a bit will be set for each component that is written. Note that
1323 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1324 *
1325 * A partially-set write mask means that each enabled channel gets
1326 * the value from a consecutive channel of the rhs. For example,
1327 * to write just .xyw of gl_FrontColor with color:
1328 *
1329 * (assign (constant bool (1)) (xyw)
1330 * (var_ref gl_FragColor)
1331 * (swiz xyw (var_ref color)))
1332 */
1333 unsigned write_mask:4;
1334 };
1335
1336 /* Update ir_expression::get_num_operands() and operator_strs when
1337 * updating this list.
1338 */
1339 enum ir_expression_operation {
1340 ir_unop_bit_not,
1341 ir_unop_logic_not,
1342 ir_unop_neg,
1343 ir_unop_abs,
1344 ir_unop_sign,
1345 ir_unop_rcp,
1346 ir_unop_rsq,
1347 ir_unop_sqrt,
1348 ir_unop_exp, /**< Log base e on gentype */
1349 ir_unop_log, /**< Natural log on gentype */
1350 ir_unop_exp2,
1351 ir_unop_log2,
1352 ir_unop_f2i, /**< Float-to-integer conversion. */
1353 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1354 ir_unop_i2f, /**< Integer-to-float conversion. */
1355 ir_unop_f2b, /**< Float-to-boolean conversion */
1356 ir_unop_b2f, /**< Boolean-to-float conversion */
1357 ir_unop_i2b, /**< int-to-boolean conversion */
1358 ir_unop_b2i, /**< Boolean-to-int conversion */
1359 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1360 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1361 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1362 ir_unop_d2f, /**< Double-to-float conversion. */
1363 ir_unop_f2d, /**< Float-to-double conversion. */
1364 ir_unop_d2i, /**< Double-to-integer conversion. */
1365 ir_unop_i2d, /**< Integer-to-double conversion. */
1366 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1367 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1368 ir_unop_d2b, /**< Double-to-boolean conversion. */
1369 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1370 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1371 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1372 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1373
1374 /**
1375 * \name Unary floating-point rounding operations.
1376 */
1377 /*@{*/
1378 ir_unop_trunc,
1379 ir_unop_ceil,
1380 ir_unop_floor,
1381 ir_unop_fract,
1382 ir_unop_round_even,
1383 /*@}*/
1384
1385 /**
1386 * \name Trigonometric operations.
1387 */
1388 /*@{*/
1389 ir_unop_sin,
1390 ir_unop_cos,
1391 /*@}*/
1392
1393 /**
1394 * \name Partial derivatives.
1395 */
1396 /*@{*/
1397 ir_unop_dFdx,
1398 ir_unop_dFdx_coarse,
1399 ir_unop_dFdx_fine,
1400 ir_unop_dFdy,
1401 ir_unop_dFdy_coarse,
1402 ir_unop_dFdy_fine,
1403 /*@}*/
1404
1405 /**
1406 * \name Floating point pack and unpack operations.
1407 */
1408 /*@{*/
1409 ir_unop_pack_snorm_2x16,
1410 ir_unop_pack_snorm_4x8,
1411 ir_unop_pack_unorm_2x16,
1412 ir_unop_pack_unorm_4x8,
1413 ir_unop_pack_half_2x16,
1414 ir_unop_unpack_snorm_2x16,
1415 ir_unop_unpack_snorm_4x8,
1416 ir_unop_unpack_unorm_2x16,
1417 ir_unop_unpack_unorm_4x8,
1418 ir_unop_unpack_half_2x16,
1419 /*@}*/
1420
1421 /**
1422 * \name Bit operations, part of ARB_gpu_shader5.
1423 */
1424 /*@{*/
1425 ir_unop_bitfield_reverse,
1426 ir_unop_bit_count,
1427 ir_unop_find_msb,
1428 ir_unop_find_lsb,
1429 /*@}*/
1430
1431 ir_unop_saturate,
1432
1433 /**
1434 * \name Double packing, part of ARB_gpu_shader_fp64.
1435 */
1436 /*@{*/
1437 ir_unop_pack_double_2x32,
1438 ir_unop_unpack_double_2x32,
1439 /*@}*/
1440
1441 ir_unop_frexp_sig,
1442 ir_unop_frexp_exp,
1443
1444 ir_unop_noise,
1445
1446 ir_unop_subroutine_to_int,
1447 /**
1448 * Interpolate fs input at centroid
1449 *
1450 * operand0 is the fs input.
1451 */
1452 ir_unop_interpolate_at_centroid,
1453
1454 /**
1455 * Ask the driver for the total size of a buffer block.
1456 *
1457 * operand0 is the ir_constant buffer block index in the linked shader.
1458 */
1459 ir_unop_get_buffer_size,
1460
1461 /**
1462 * Calculate length of an unsized array inside a buffer block.
1463 * This opcode is going to be replaced in a lowering pass inside
1464 * the linker.
1465 *
1466 * operand0 is the unsized array's ir_value for the calculation
1467 * of its length.
1468 */
1469 ir_unop_ssbo_unsized_array_length,
1470
1471 /**
1472 * A sentinel marking the last of the unary operations.
1473 */
1474 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1475
1476 ir_binop_add,
1477 ir_binop_sub,
1478 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1479 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1480 ir_binop_div,
1481
1482 /**
1483 * Returns the carry resulting from the addition of the two arguments.
1484 */
1485 /*@{*/
1486 ir_binop_carry,
1487 /*@}*/
1488
1489 /**
1490 * Returns the borrow resulting from the subtraction of the second argument
1491 * from the first argument.
1492 */
1493 /*@{*/
1494 ir_binop_borrow,
1495 /*@}*/
1496
1497 /**
1498 * Takes one of two combinations of arguments:
1499 *
1500 * - mod(vecN, vecN)
1501 * - mod(vecN, float)
1502 *
1503 * Does not take integer types.
1504 */
1505 ir_binop_mod,
1506
1507 /**
1508 * \name Binary comparison operators which return a boolean vector.
1509 * The type of both operands must be equal.
1510 */
1511 /*@{*/
1512 ir_binop_less,
1513 ir_binop_greater,
1514 ir_binop_lequal,
1515 ir_binop_gequal,
1516 ir_binop_equal,
1517 ir_binop_nequal,
1518 /**
1519 * Returns single boolean for whether all components of operands[0]
1520 * equal the components of operands[1].
1521 */
1522 ir_binop_all_equal,
1523 /**
1524 * Returns single boolean for whether any component of operands[0]
1525 * is not equal to the corresponding component of operands[1].
1526 */
1527 ir_binop_any_nequal,
1528 /*@}*/
1529
1530 /**
1531 * \name Bit-wise binary operations.
1532 */
1533 /*@{*/
1534 ir_binop_lshift,
1535 ir_binop_rshift,
1536 ir_binop_bit_and,
1537 ir_binop_bit_xor,
1538 ir_binop_bit_or,
1539 /*@}*/
1540
1541 ir_binop_logic_and,
1542 ir_binop_logic_xor,
1543 ir_binop_logic_or,
1544
1545 ir_binop_dot,
1546 ir_binop_min,
1547 ir_binop_max,
1548
1549 ir_binop_pow,
1550
1551 /**
1552 * Load a value the size of a given GLSL type from a uniform block.
1553 *
1554 * operand0 is the ir_constant uniform block index in the linked shader.
1555 * operand1 is a byte offset within the uniform block.
1556 */
1557 ir_binop_ubo_load,
1558
1559 /**
1560 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1561 */
1562 /*@{*/
1563 ir_binop_ldexp,
1564 /*@}*/
1565
1566 /**
1567 * Extract a scalar from a vector
1568 *
1569 * operand0 is the vector
1570 * operand1 is the index of the field to read from operand0
1571 */
1572 ir_binop_vector_extract,
1573
1574 /**
1575 * Interpolate fs input at offset
1576 *
1577 * operand0 is the fs input
1578 * operand1 is the offset from the pixel center
1579 */
1580 ir_binop_interpolate_at_offset,
1581
1582 /**
1583 * Interpolate fs input at sample position
1584 *
1585 * operand0 is the fs input
1586 * operand1 is the sample ID
1587 */
1588 ir_binop_interpolate_at_sample,
1589
1590 /**
1591 * A sentinel marking the last of the binary operations.
1592 */
1593 ir_last_binop = ir_binop_interpolate_at_sample,
1594
1595 /**
1596 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1597 */
1598 /*@{*/
1599 ir_triop_fma,
1600 /*@}*/
1601
1602 ir_triop_lrp,
1603
1604 /**
1605 * \name Conditional Select
1606 *
1607 * A vector conditional select instruction (like ?:, but operating per-
1608 * component on vectors).
1609 *
1610 * \see lower_instructions_visitor::ldexp_to_arith
1611 */
1612 /*@{*/
1613 ir_triop_csel,
1614 /*@}*/
1615
1616 ir_triop_bitfield_extract,
1617
1618 /**
1619 * Generate a value with one field of a vector changed
1620 *
1621 * operand0 is the vector
1622 * operand1 is the value to write into the vector result
1623 * operand2 is the index in operand0 to be modified
1624 */
1625 ir_triop_vector_insert,
1626
1627 /**
1628 * A sentinel marking the last of the ternary operations.
1629 */
1630 ir_last_triop = ir_triop_vector_insert,
1631
1632 ir_quadop_bitfield_insert,
1633
1634 ir_quadop_vector,
1635
1636 /**
1637 * A sentinel marking the last of the ternary operations.
1638 */
1639 ir_last_quadop = ir_quadop_vector,
1640
1641 /**
1642 * A sentinel marking the last of all operations.
1643 */
1644 ir_last_opcode = ir_quadop_vector
1645 };
1646
1647 class ir_expression : public ir_rvalue {
1648 public:
1649 ir_expression(int op, const struct glsl_type *type,
1650 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1651 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1652
1653 /**
1654 * Constructor for unary operation expressions
1655 */
1656 ir_expression(int op, ir_rvalue *);
1657
1658 /**
1659 * Constructor for binary operation expressions
1660 */
1661 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1662
1663 /**
1664 * Constructor for ternary operation expressions
1665 */
1666 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1667
1668 virtual bool equals(const ir_instruction *ir,
1669 enum ir_node_type ignore = ir_type_unset) const;
1670
1671 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1672
1673 /**
1674 * Attempt to constant-fold the expression
1675 *
1676 * The "variable_context" hash table links ir_variable * to ir_constant *
1677 * that represent the variables' values. \c NULL represents an empty
1678 * context.
1679 *
1680 * If the expression cannot be constant folded, this method will return
1681 * \c NULL.
1682 */
1683 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1684
1685 /**
1686 * Determine the number of operands used by an expression
1687 */
1688 static unsigned int get_num_operands(ir_expression_operation);
1689
1690 /**
1691 * Determine the number of operands used by an expression
1692 */
1693 unsigned int get_num_operands() const
1694 {
1695 return (this->operation == ir_quadop_vector)
1696 ? this->type->vector_elements : get_num_operands(operation);
1697 }
1698
1699 /**
1700 * Return whether the expression operates on vectors horizontally.
1701 */
1702 bool is_horizontal() const
1703 {
1704 return operation == ir_binop_all_equal ||
1705 operation == ir_binop_any_nequal ||
1706 operation == ir_binop_dot ||
1707 operation == ir_binop_vector_extract ||
1708 operation == ir_triop_vector_insert ||
1709 operation == ir_binop_ubo_load ||
1710 operation == ir_quadop_vector;
1711 }
1712
1713 /**
1714 * Return a string representing this expression's operator.
1715 */
1716 const char *operator_string();
1717
1718 /**
1719 * Return a string representing this expression's operator.
1720 */
1721 static const char *operator_string(ir_expression_operation);
1722
1723
1724 /**
1725 * Do a reverse-lookup to translate the given string into an operator.
1726 */
1727 static ir_expression_operation get_operator(const char *);
1728
1729 virtual void accept(ir_visitor *v)
1730 {
1731 v->visit(this);
1732 }
1733
1734 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1735
1736 virtual ir_variable *variable_referenced() const;
1737
1738 ir_expression_operation operation;
1739 ir_rvalue *operands[4];
1740 };
1741
1742
1743 /**
1744 * HIR instruction representing a high-level function call, containing a list
1745 * of parameters and returning a value in the supplied temporary.
1746 */
1747 class ir_call : public ir_instruction {
1748 public:
1749 ir_call(ir_function_signature *callee,
1750 ir_dereference_variable *return_deref,
1751 exec_list *actual_parameters)
1752 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1753 {
1754 assert(callee->return_type != NULL);
1755 actual_parameters->move_nodes_to(& this->actual_parameters);
1756 this->use_builtin = callee->is_builtin();
1757 }
1758
1759 ir_call(ir_function_signature *callee,
1760 ir_dereference_variable *return_deref,
1761 exec_list *actual_parameters,
1762 ir_variable *var, ir_rvalue *array_idx)
1763 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1764 {
1765 assert(callee->return_type != NULL);
1766 actual_parameters->move_nodes_to(& this->actual_parameters);
1767 this->use_builtin = callee->is_builtin();
1768 }
1769
1770 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1771
1772 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1773
1774 virtual void accept(ir_visitor *v)
1775 {
1776 v->visit(this);
1777 }
1778
1779 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1780
1781 /**
1782 * Get the name of the function being called.
1783 */
1784 const char *callee_name() const
1785 {
1786 return callee->function_name();
1787 }
1788
1789 /**
1790 * Generates an inline version of the function before @ir,
1791 * storing the return value in return_deref.
1792 */
1793 void generate_inline(ir_instruction *ir);
1794
1795 /**
1796 * Storage for the function's return value.
1797 * This must be NULL if the return type is void.
1798 */
1799 ir_dereference_variable *return_deref;
1800
1801 /**
1802 * The specific function signature being called.
1803 */
1804 ir_function_signature *callee;
1805
1806 /* List of ir_rvalue of paramaters passed in this call. */
1807 exec_list actual_parameters;
1808
1809 /** Should this call only bind to a built-in function? */
1810 bool use_builtin;
1811
1812 /*
1813 * ARB_shader_subroutine support -
1814 * the subroutine uniform variable and array index
1815 * rvalue to be used in the lowering pass later.
1816 */
1817 ir_variable *sub_var;
1818 ir_rvalue *array_idx;
1819 };
1820
1821
1822 /**
1823 * \name Jump-like IR instructions.
1824 *
1825 * These include \c break, \c continue, \c return, and \c discard.
1826 */
1827 /*@{*/
1828 class ir_jump : public ir_instruction {
1829 protected:
1830 ir_jump(enum ir_node_type t)
1831 : ir_instruction(t)
1832 {
1833 }
1834 };
1835
1836 class ir_return : public ir_jump {
1837 public:
1838 ir_return()
1839 : ir_jump(ir_type_return), value(NULL)
1840 {
1841 }
1842
1843 ir_return(ir_rvalue *value)
1844 : ir_jump(ir_type_return), value(value)
1845 {
1846 }
1847
1848 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1849
1850 ir_rvalue *get_value() const
1851 {
1852 return value;
1853 }
1854
1855 virtual void accept(ir_visitor *v)
1856 {
1857 v->visit(this);
1858 }
1859
1860 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1861
1862 ir_rvalue *value;
1863 };
1864
1865
1866 /**
1867 * Jump instructions used inside loops
1868 *
1869 * These include \c break and \c continue. The \c break within a loop is
1870 * different from the \c break within a switch-statement.
1871 *
1872 * \sa ir_switch_jump
1873 */
1874 class ir_loop_jump : public ir_jump {
1875 public:
1876 enum jump_mode {
1877 jump_break,
1878 jump_continue
1879 };
1880
1881 ir_loop_jump(jump_mode mode)
1882 : ir_jump(ir_type_loop_jump)
1883 {
1884 this->mode = mode;
1885 }
1886
1887 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1888
1889 virtual void accept(ir_visitor *v)
1890 {
1891 v->visit(this);
1892 }
1893
1894 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1895
1896 bool is_break() const
1897 {
1898 return mode == jump_break;
1899 }
1900
1901 bool is_continue() const
1902 {
1903 return mode == jump_continue;
1904 }
1905
1906 /** Mode selector for the jump instruction. */
1907 enum jump_mode mode;
1908 };
1909
1910 /**
1911 * IR instruction representing discard statements.
1912 */
1913 class ir_discard : public ir_jump {
1914 public:
1915 ir_discard()
1916 : ir_jump(ir_type_discard)
1917 {
1918 this->condition = NULL;
1919 }
1920
1921 ir_discard(ir_rvalue *cond)
1922 : ir_jump(ir_type_discard)
1923 {
1924 this->condition = cond;
1925 }
1926
1927 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1928
1929 virtual void accept(ir_visitor *v)
1930 {
1931 v->visit(this);
1932 }
1933
1934 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1935
1936 ir_rvalue *condition;
1937 };
1938 /*@}*/
1939
1940
1941 /**
1942 * Texture sampling opcodes used in ir_texture
1943 */
1944 enum ir_texture_opcode {
1945 ir_tex, /**< Regular texture look-up */
1946 ir_txb, /**< Texture look-up with LOD bias */
1947 ir_txl, /**< Texture look-up with explicit LOD */
1948 ir_txd, /**< Texture look-up with partial derivatvies */
1949 ir_txf, /**< Texel fetch with explicit LOD */
1950 ir_txf_ms, /**< Multisample texture fetch */
1951 ir_txs, /**< Texture size */
1952 ir_lod, /**< Texture lod query */
1953 ir_tg4, /**< Texture gather */
1954 ir_query_levels, /**< Texture levels query */
1955 ir_texture_samples, /**< Texture samples query */
1956 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1957 };
1958
1959
1960 /**
1961 * IR instruction to sample a texture
1962 *
1963 * The specific form of the IR instruction depends on the \c mode value
1964 * selected from \c ir_texture_opcodes. In the printed IR, these will
1965 * appear as:
1966 *
1967 * Texel offset (0 or an expression)
1968 * | Projection divisor
1969 * | | Shadow comparitor
1970 * | | |
1971 * v v v
1972 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1973 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1974 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1975 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1976 * (txf <type> <sampler> <coordinate> 0 <lod>)
1977 * (txf_ms
1978 * <type> <sampler> <coordinate> <sample_index>)
1979 * (txs <type> <sampler> <lod>)
1980 * (lod <type> <sampler> <coordinate>)
1981 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1982 * (query_levels <type> <sampler>)
1983 * (samples_identical <sampler> <coordinate>)
1984 */
1985 class ir_texture : public ir_rvalue {
1986 public:
1987 ir_texture(enum ir_texture_opcode op)
1988 : ir_rvalue(ir_type_texture),
1989 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1990 shadow_comparitor(NULL), offset(NULL)
1991 {
1992 memset(&lod_info, 0, sizeof(lod_info));
1993 }
1994
1995 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1996
1997 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1998
1999 virtual void accept(ir_visitor *v)
2000 {
2001 v->visit(this);
2002 }
2003
2004 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2005
2006 virtual bool equals(const ir_instruction *ir,
2007 enum ir_node_type ignore = ir_type_unset) const;
2008
2009 /**
2010 * Return a string representing the ir_texture_opcode.
2011 */
2012 const char *opcode_string();
2013
2014 /** Set the sampler and type. */
2015 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2016
2017 /**
2018 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2019 */
2020 static ir_texture_opcode get_opcode(const char *);
2021
2022 enum ir_texture_opcode op;
2023
2024 /** Sampler to use for the texture access. */
2025 ir_dereference *sampler;
2026
2027 /** Texture coordinate to sample */
2028 ir_rvalue *coordinate;
2029
2030 /**
2031 * Value used for projective divide.
2032 *
2033 * If there is no projective divide (the common case), this will be
2034 * \c NULL. Optimization passes should check for this to point to a constant
2035 * of 1.0 and replace that with \c NULL.
2036 */
2037 ir_rvalue *projector;
2038
2039 /**
2040 * Coordinate used for comparison on shadow look-ups.
2041 *
2042 * If there is no shadow comparison, this will be \c NULL. For the
2043 * \c ir_txf opcode, this *must* be \c NULL.
2044 */
2045 ir_rvalue *shadow_comparitor;
2046
2047 /** Texel offset. */
2048 ir_rvalue *offset;
2049
2050 union {
2051 ir_rvalue *lod; /**< Floating point LOD */
2052 ir_rvalue *bias; /**< Floating point LOD bias */
2053 ir_rvalue *sample_index; /**< MSAA sample index */
2054 ir_rvalue *component; /**< Gather component selector */
2055 struct {
2056 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2057 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2058 } grad;
2059 } lod_info;
2060 };
2061
2062
2063 struct ir_swizzle_mask {
2064 unsigned x:2;
2065 unsigned y:2;
2066 unsigned z:2;
2067 unsigned w:2;
2068
2069 /**
2070 * Number of components in the swizzle.
2071 */
2072 unsigned num_components:3;
2073
2074 /**
2075 * Does the swizzle contain duplicate components?
2076 *
2077 * L-value swizzles cannot contain duplicate components.
2078 */
2079 unsigned has_duplicates:1;
2080 };
2081
2082
2083 class ir_swizzle : public ir_rvalue {
2084 public:
2085 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2086 unsigned count);
2087
2088 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2089
2090 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2091
2092 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2093
2094 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2095
2096 /**
2097 * Construct an ir_swizzle from the textual representation. Can fail.
2098 */
2099 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2100
2101 virtual void accept(ir_visitor *v)
2102 {
2103 v->visit(this);
2104 }
2105
2106 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2107
2108 virtual bool equals(const ir_instruction *ir,
2109 enum ir_node_type ignore = ir_type_unset) const;
2110
2111 bool is_lvalue() const
2112 {
2113 return val->is_lvalue() && !mask.has_duplicates;
2114 }
2115
2116 /**
2117 * Get the variable that is ultimately referenced by an r-value
2118 */
2119 virtual ir_variable *variable_referenced() const;
2120
2121 ir_rvalue *val;
2122 ir_swizzle_mask mask;
2123
2124 private:
2125 /**
2126 * Initialize the mask component of a swizzle
2127 *
2128 * This is used by the \c ir_swizzle constructors.
2129 */
2130 void init_mask(const unsigned *components, unsigned count);
2131 };
2132
2133
2134 class ir_dereference : public ir_rvalue {
2135 public:
2136 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2137
2138 bool is_lvalue() const;
2139
2140 /**
2141 * Get the variable that is ultimately referenced by an r-value
2142 */
2143 virtual ir_variable *variable_referenced() const = 0;
2144
2145 protected:
2146 ir_dereference(enum ir_node_type t)
2147 : ir_rvalue(t)
2148 {
2149 }
2150 };
2151
2152
2153 class ir_dereference_variable : public ir_dereference {
2154 public:
2155 ir_dereference_variable(ir_variable *var);
2156
2157 virtual ir_dereference_variable *clone(void *mem_ctx,
2158 struct hash_table *) const;
2159
2160 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2161
2162 virtual bool equals(const ir_instruction *ir,
2163 enum ir_node_type ignore = ir_type_unset) const;
2164
2165 /**
2166 * Get the variable that is ultimately referenced by an r-value
2167 */
2168 virtual ir_variable *variable_referenced() const
2169 {
2170 return this->var;
2171 }
2172
2173 virtual ir_variable *whole_variable_referenced()
2174 {
2175 /* ir_dereference_variable objects always dereference the entire
2176 * variable. However, if this dereference is dereferenced by anything
2177 * else, the complete deferefernce chain is not a whole-variable
2178 * dereference. This method should only be called on the top most
2179 * ir_rvalue in a dereference chain.
2180 */
2181 return this->var;
2182 }
2183
2184 virtual void accept(ir_visitor *v)
2185 {
2186 v->visit(this);
2187 }
2188
2189 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2190
2191 /**
2192 * Object being dereferenced.
2193 */
2194 ir_variable *var;
2195 };
2196
2197
2198 class ir_dereference_array : public ir_dereference {
2199 public:
2200 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2201
2202 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2203
2204 virtual ir_dereference_array *clone(void *mem_ctx,
2205 struct hash_table *) const;
2206
2207 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2208
2209 virtual bool equals(const ir_instruction *ir,
2210 enum ir_node_type ignore = ir_type_unset) const;
2211
2212 /**
2213 * Get the variable that is ultimately referenced by an r-value
2214 */
2215 virtual ir_variable *variable_referenced() const
2216 {
2217 return this->array->variable_referenced();
2218 }
2219
2220 virtual void accept(ir_visitor *v)
2221 {
2222 v->visit(this);
2223 }
2224
2225 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2226
2227 ir_rvalue *array;
2228 ir_rvalue *array_index;
2229
2230 private:
2231 void set_array(ir_rvalue *value);
2232 };
2233
2234
2235 class ir_dereference_record : public ir_dereference {
2236 public:
2237 ir_dereference_record(ir_rvalue *value, const char *field);
2238
2239 ir_dereference_record(ir_variable *var, const char *field);
2240
2241 virtual ir_dereference_record *clone(void *mem_ctx,
2242 struct hash_table *) const;
2243
2244 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2245
2246 /**
2247 * Get the variable that is ultimately referenced by an r-value
2248 */
2249 virtual ir_variable *variable_referenced() const
2250 {
2251 return this->record->variable_referenced();
2252 }
2253
2254 virtual void accept(ir_visitor *v)
2255 {
2256 v->visit(this);
2257 }
2258
2259 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2260
2261 ir_rvalue *record;
2262 const char *field;
2263 };
2264
2265
2266 /**
2267 * Data stored in an ir_constant
2268 */
2269 union ir_constant_data {
2270 unsigned u[16];
2271 int i[16];
2272 float f[16];
2273 bool b[16];
2274 double d[16];
2275 };
2276
2277
2278 class ir_constant : public ir_rvalue {
2279 public:
2280 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2281 ir_constant(bool b, unsigned vector_elements=1);
2282 ir_constant(unsigned int u, unsigned vector_elements=1);
2283 ir_constant(int i, unsigned vector_elements=1);
2284 ir_constant(float f, unsigned vector_elements=1);
2285 ir_constant(double d, unsigned vector_elements=1);
2286
2287 /**
2288 * Construct an ir_constant from a list of ir_constant values
2289 */
2290 ir_constant(const struct glsl_type *type, exec_list *values);
2291
2292 /**
2293 * Construct an ir_constant from a scalar component of another ir_constant
2294 *
2295 * The new \c ir_constant inherits the type of the component from the
2296 * source constant.
2297 *
2298 * \note
2299 * In the case of a matrix constant, the new constant is a scalar, \b not
2300 * a vector.
2301 */
2302 ir_constant(const ir_constant *c, unsigned i);
2303
2304 /**
2305 * Return a new ir_constant of the specified type containing all zeros.
2306 */
2307 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2308
2309 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2310
2311 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2312
2313 virtual void accept(ir_visitor *v)
2314 {
2315 v->visit(this);
2316 }
2317
2318 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2319
2320 virtual bool equals(const ir_instruction *ir,
2321 enum ir_node_type ignore = ir_type_unset) const;
2322
2323 /**
2324 * Get a particular component of a constant as a specific type
2325 *
2326 * This is useful, for example, to get a value from an integer constant
2327 * as a float or bool. This appears frequently when constructors are
2328 * called with all constant parameters.
2329 */
2330 /*@{*/
2331 bool get_bool_component(unsigned i) const;
2332 float get_float_component(unsigned i) const;
2333 double get_double_component(unsigned i) const;
2334 int get_int_component(unsigned i) const;
2335 unsigned get_uint_component(unsigned i) const;
2336 /*@}*/
2337
2338 ir_constant *get_array_element(unsigned i) const;
2339
2340 ir_constant *get_record_field(const char *name);
2341
2342 /**
2343 * Copy the values on another constant at a given offset.
2344 *
2345 * The offset is ignored for array or struct copies, it's only for
2346 * scalars or vectors into vectors or matrices.
2347 *
2348 * With identical types on both sides and zero offset it's clone()
2349 * without creating a new object.
2350 */
2351
2352 void copy_offset(ir_constant *src, int offset);
2353
2354 /**
2355 * Copy the values on another constant at a given offset and
2356 * following an assign-like mask.
2357 *
2358 * The mask is ignored for scalars.
2359 *
2360 * Note that this function only handles what assign can handle,
2361 * i.e. at most a vector as source and a column of a matrix as
2362 * destination.
2363 */
2364
2365 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2366
2367 /**
2368 * Determine whether a constant has the same value as another constant
2369 *
2370 * \sa ir_constant::is_zero, ir_constant::is_one,
2371 * ir_constant::is_negative_one
2372 */
2373 bool has_value(const ir_constant *) const;
2374
2375 /**
2376 * Return true if this ir_constant represents the given value.
2377 *
2378 * For vectors, this checks that each component is the given value.
2379 */
2380 virtual bool is_value(float f, int i) const;
2381 virtual bool is_zero() const;
2382 virtual bool is_one() const;
2383 virtual bool is_negative_one() const;
2384
2385 /**
2386 * Return true for constants that could be stored as 16-bit unsigned values.
2387 *
2388 * Note that this will return true even for signed integer ir_constants, as
2389 * long as the value is non-negative and fits in 16-bits.
2390 */
2391 virtual bool is_uint16_constant() const;
2392
2393 /**
2394 * Value of the constant.
2395 *
2396 * The field used to back the values supplied by the constant is determined
2397 * by the type associated with the \c ir_instruction. Constants may be
2398 * scalars, vectors, or matrices.
2399 */
2400 union ir_constant_data value;
2401
2402 /* Array elements */
2403 ir_constant **array_elements;
2404
2405 /* Structure fields */
2406 exec_list components;
2407
2408 private:
2409 /**
2410 * Parameterless constructor only used by the clone method
2411 */
2412 ir_constant(void);
2413 };
2414
2415 /**
2416 * IR instruction to emit a vertex in a geometry shader.
2417 */
2418 class ir_emit_vertex : public ir_instruction {
2419 public:
2420 ir_emit_vertex(ir_rvalue *stream)
2421 : ir_instruction(ir_type_emit_vertex),
2422 stream(stream)
2423 {
2424 assert(stream);
2425 }
2426
2427 virtual void accept(ir_visitor *v)
2428 {
2429 v->visit(this);
2430 }
2431
2432 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2433 {
2434 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2435 }
2436
2437 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2438
2439 int stream_id() const
2440 {
2441 return stream->as_constant()->value.i[0];
2442 }
2443
2444 ir_rvalue *stream;
2445 };
2446
2447 /**
2448 * IR instruction to complete the current primitive and start a new one in a
2449 * geometry shader.
2450 */
2451 class ir_end_primitive : public ir_instruction {
2452 public:
2453 ir_end_primitive(ir_rvalue *stream)
2454 : ir_instruction(ir_type_end_primitive),
2455 stream(stream)
2456 {
2457 assert(stream);
2458 }
2459
2460 virtual void accept(ir_visitor *v)
2461 {
2462 v->visit(this);
2463 }
2464
2465 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2466 {
2467 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2468 }
2469
2470 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2471
2472 int stream_id() const
2473 {
2474 return stream->as_constant()->value.i[0];
2475 }
2476
2477 ir_rvalue *stream;
2478 };
2479
2480 /**
2481 * IR instruction for tessellation control and compute shader barrier.
2482 */
2483 class ir_barrier : public ir_instruction {
2484 public:
2485 ir_barrier()
2486 : ir_instruction(ir_type_barrier)
2487 {
2488 }
2489
2490 virtual void accept(ir_visitor *v)
2491 {
2492 v->visit(this);
2493 }
2494
2495 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2496 {
2497 return new(mem_ctx) ir_barrier();
2498 }
2499
2500 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2501 };
2502
2503 /*@}*/
2504
2505 /**
2506 * Apply a visitor to each IR node in a list
2507 */
2508 void
2509 visit_exec_list(exec_list *list, ir_visitor *visitor);
2510
2511 /**
2512 * Validate invariants on each IR node in a list
2513 */
2514 void validate_ir_tree(exec_list *instructions);
2515
2516 struct _mesa_glsl_parse_state;
2517 struct gl_shader_program;
2518
2519 /**
2520 * Detect whether an unlinked shader contains static recursion
2521 *
2522 * If the list of instructions is determined to contain static recursion,
2523 * \c _mesa_glsl_error will be called to emit error messages for each function
2524 * that is in the recursion cycle.
2525 */
2526 void
2527 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2528 exec_list *instructions);
2529
2530 /**
2531 * Detect whether a linked shader contains static recursion
2532 *
2533 * If the list of instructions is determined to contain static recursion,
2534 * \c link_error_printf will be called to emit error messages for each function
2535 * that is in the recursion cycle. In addition,
2536 * \c gl_shader_program::LinkStatus will be set to false.
2537 */
2538 void
2539 detect_recursion_linked(struct gl_shader_program *prog,
2540 exec_list *instructions);
2541
2542 /**
2543 * Make a clone of each IR instruction in a list
2544 *
2545 * \param in List of IR instructions that are to be cloned
2546 * \param out List to hold the cloned instructions
2547 */
2548 void
2549 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2550
2551 extern void
2552 _mesa_glsl_initialize_variables(exec_list *instructions,
2553 struct _mesa_glsl_parse_state *state);
2554
2555 extern void
2556 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2557
2558 extern void
2559 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2560
2561 extern void
2562 _mesa_glsl_initialize_builtin_functions();
2563
2564 extern ir_function_signature *
2565 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2566 const char *name, exec_list *actual_parameters);
2567
2568 extern ir_function *
2569 _mesa_glsl_find_builtin_function_by_name(const char *name);
2570
2571 extern gl_shader *
2572 _mesa_glsl_get_builtin_function_shader(void);
2573
2574 extern ir_function_signature *
2575 _mesa_get_main_function_signature(gl_shader *sh);
2576
2577 extern void
2578 _mesa_glsl_release_functions(void);
2579
2580 extern void
2581 _mesa_glsl_release_builtin_functions(void);
2582
2583 extern void
2584 reparent_ir(exec_list *list, void *mem_ctx);
2585
2586 struct glsl_symbol_table;
2587
2588 extern void
2589 import_prototypes(const exec_list *source, exec_list *dest,
2590 struct glsl_symbol_table *symbols, void *mem_ctx);
2591
2592 extern bool
2593 ir_has_call(ir_instruction *ir);
2594
2595 extern void
2596 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2597 gl_shader_stage shader_stage);
2598
2599 extern char *
2600 prototype_string(const glsl_type *return_type, const char *name,
2601 exec_list *parameters);
2602
2603 const char *
2604 mode_string(const ir_variable *var);
2605
2606 /**
2607 * Built-in / reserved GL variables names start with "gl_"
2608 */
2609 static inline bool
2610 is_gl_identifier(const char *s)
2611 {
2612 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2613 }
2614
2615 extern "C" {
2616 #endif /* __cplusplus */
2617
2618 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2619 struct _mesa_glsl_parse_state *state);
2620
2621 extern void
2622 fprint_ir(FILE *f, const void *instruction);
2623
2624 #ifdef __cplusplus
2625 } /* extern "C" */
2626 #endif
2627
2628 unsigned
2629 vertices_per_prim(GLenum prim);
2630
2631 #endif /* IR_H */