glsl: Create and use a new ir_variable::count_attribute_slots() wrapper.
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 unsigned count_attribute_slots(bool is_vertex_stage) const;
557
558 inline unsigned get_num_state_slots() const
559 {
560 assert(!this->is_interface_instance()
561 || this->data._num_state_slots == 0);
562 return this->data._num_state_slots;
563 }
564
565 inline void set_num_state_slots(unsigned n)
566 {
567 assert(!this->is_interface_instance()
568 || n == 0);
569 this->data._num_state_slots = n;
570 }
571
572 inline ir_state_slot *get_state_slots()
573 {
574 return this->is_interface_instance() ? NULL : this->u.state_slots;
575 }
576
577 inline const ir_state_slot *get_state_slots() const
578 {
579 return this->is_interface_instance() ? NULL : this->u.state_slots;
580 }
581
582 inline ir_state_slot *allocate_state_slots(unsigned n)
583 {
584 assert(!this->is_interface_instance());
585
586 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
587 this->data._num_state_slots = 0;
588
589 if (this->u.state_slots != NULL)
590 this->data._num_state_slots = n;
591
592 return this->u.state_slots;
593 }
594
595 inline bool is_interpolation_flat() const
596 {
597 return this->data.interpolation == INTERP_MODE_FLAT ||
598 this->type->contains_integer() ||
599 this->type->contains_double();
600 }
601
602 inline bool is_name_ralloced() const
603 {
604 return this->name != ir_variable::tmp_name &&
605 this->name != this->name_storage;
606 }
607
608 /**
609 * Enable emitting extension warnings for this variable
610 */
611 void enable_extension_warning(const char *extension);
612
613 /**
614 * Get the extension warning string for this variable
615 *
616 * If warnings are not enabled, \c NULL is returned.
617 */
618 const char *get_extension_warning() const;
619
620 /**
621 * Declared type of the variable
622 */
623 const struct glsl_type *type;
624
625 /**
626 * Declared name of the variable
627 */
628 const char *name;
629
630 private:
631 /**
632 * If the name length fits into name_storage, it's used, otherwise
633 * the name is ralloc'd. shader-db mining showed that 70% of variables
634 * fit here. This is a win over ralloc where only ralloc_header has
635 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
636 */
637 char name_storage[16];
638
639 public:
640 struct ir_variable_data {
641
642 /**
643 * Is the variable read-only?
644 *
645 * This is set for variables declared as \c const, shader inputs,
646 * and uniforms.
647 */
648 unsigned read_only:1;
649 unsigned centroid:1;
650 unsigned sample:1;
651 unsigned patch:1;
652 unsigned invariant:1;
653 unsigned precise:1;
654
655 /**
656 * Has this variable been used for reading or writing?
657 *
658 * Several GLSL semantic checks require knowledge of whether or not a
659 * variable has been used. For example, it is an error to redeclare a
660 * variable as invariant after it has been used.
661 *
662 * This is only maintained in the ast_to_hir.cpp path, not in
663 * Mesa's fixed function or ARB program paths.
664 */
665 unsigned used:1;
666
667 /**
668 * Has this variable been statically assigned?
669 *
670 * This answers whether the variable was assigned in any path of
671 * the shader during ast_to_hir. This doesn't answer whether it is
672 * still written after dead code removal, nor is it maintained in
673 * non-ast_to_hir.cpp (GLSL parsing) paths.
674 */
675 unsigned assigned:1;
676
677 /**
678 * When separate shader programs are enabled, only input/outputs between
679 * the stages of a multi-stage separate program can be safely removed
680 * from the shader interface. Other input/outputs must remains active.
681 */
682 unsigned always_active_io:1;
683
684 /**
685 * Enum indicating how the variable was declared. See
686 * ir_var_declaration_type.
687 *
688 * This is used to detect certain kinds of illegal variable redeclarations.
689 */
690 unsigned how_declared:2;
691
692 /**
693 * Storage class of the variable.
694 *
695 * \sa ir_variable_mode
696 */
697 unsigned mode:4;
698
699 /**
700 * Interpolation mode for shader inputs / outputs
701 *
702 * \sa glsl_interp_mode
703 */
704 unsigned interpolation:2;
705
706 /**
707 * \name ARB_fragment_coord_conventions
708 * @{
709 */
710 unsigned origin_upper_left:1;
711 unsigned pixel_center_integer:1;
712 /*@}*/
713
714 /**
715 * Was the location explicitly set in the shader?
716 *
717 * If the location is explicitly set in the shader, it \b cannot be changed
718 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
719 * no effect).
720 */
721 unsigned explicit_location:1;
722 unsigned explicit_index:1;
723
724 /**
725 * Was an initial binding explicitly set in the shader?
726 *
727 * If so, constant_value contains an integer ir_constant representing the
728 * initial binding point.
729 */
730 unsigned explicit_binding:1;
731
732 /**
733 * Was an initial component explicitly set in the shader?
734 */
735 unsigned explicit_component:1;
736
737 /**
738 * Does this variable have an initializer?
739 *
740 * This is used by the linker to cross-validiate initializers of global
741 * variables.
742 */
743 unsigned has_initializer:1;
744
745 /**
746 * Is this variable a generic output or input that has not yet been matched
747 * up to a variable in another stage of the pipeline?
748 *
749 * This is used by the linker as scratch storage while assigning locations
750 * to generic inputs and outputs.
751 */
752 unsigned is_unmatched_generic_inout:1;
753
754 /**
755 * Is this varying used only by transform feedback?
756 *
757 * This is used by the linker to decide if its safe to pack the varying.
758 */
759 unsigned is_xfb_only:1;
760
761 /**
762 * Was a transfor feedback buffer set in the shader?
763 */
764 unsigned explicit_xfb_buffer:1;
765
766 /**
767 * Was a transfor feedback offset set in the shader?
768 */
769 unsigned explicit_xfb_offset:1;
770
771 /**
772 * Was a transfor feedback stride set in the shader?
773 */
774 unsigned explicit_xfb_stride:1;
775
776 /**
777 * If non-zero, then this variable may be packed along with other variables
778 * into a single varying slot, so this offset should be applied when
779 * accessing components. For example, an offset of 1 means that the x
780 * component of this variable is actually stored in component y of the
781 * location specified by \c location.
782 */
783 unsigned location_frac:2;
784
785 /**
786 * Layout of the matrix. Uses glsl_matrix_layout values.
787 */
788 unsigned matrix_layout:2;
789
790 /**
791 * Non-zero if this variable was created by lowering a named interface
792 * block.
793 */
794 unsigned from_named_ifc_block:1;
795
796 /**
797 * Non-zero if the variable must be a shader input. This is useful for
798 * constraints on function parameters.
799 */
800 unsigned must_be_shader_input:1;
801
802 /**
803 * Output index for dual source blending.
804 *
805 * \note
806 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
807 * source blending.
808 */
809 unsigned index:1;
810
811 /**
812 * Precision qualifier.
813 *
814 * In desktop GLSL we do not care about precision qualifiers at all, in
815 * fact, the spec says that precision qualifiers are ignored.
816 *
817 * To make things easy, we make it so that this field is always
818 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
819 * have the same precision value and the checks we add in the compiler
820 * for this field will never break a desktop shader compile.
821 */
822 unsigned precision:2;
823
824 /**
825 * \brief Layout qualifier for gl_FragDepth.
826 *
827 * This is not equal to \c ir_depth_layout_none if and only if this
828 * variable is \c gl_FragDepth and a layout qualifier is specified.
829 */
830 ir_depth_layout depth_layout:3;
831
832 /**
833 * ARB_shader_image_load_store qualifiers.
834 */
835 unsigned image_read_only:1; /**< "readonly" qualifier. */
836 unsigned image_write_only:1; /**< "writeonly" qualifier. */
837 unsigned image_coherent:1;
838 unsigned image_volatile:1;
839 unsigned image_restrict:1;
840
841 /**
842 * ARB_shader_storage_buffer_object
843 */
844 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
845
846 unsigned implicit_sized_array:1;
847
848 /**
849 * Is this a non-patch TCS output / TES input array that was implicitly
850 * sized to gl_MaxPatchVertices?
851 */
852 unsigned tess_varying_implicit_sized_array:1;
853
854 /**
855 * Whether this is a fragment shader output implicitly initialized with
856 * the previous contents of the specified render target at the
857 * framebuffer location corresponding to this shader invocation.
858 */
859 unsigned fb_fetch_output:1;
860
861 /**
862 * Emit a warning if this variable is accessed.
863 */
864 private:
865 uint8_t warn_extension_index;
866
867 public:
868 /** Image internal format if specified explicitly, otherwise GL_NONE. */
869 uint16_t image_format;
870
871 private:
872 /**
873 * Number of state slots used
874 *
875 * \note
876 * This could be stored in as few as 7-bits, if necessary. If it is made
877 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
878 * be safe.
879 */
880 uint16_t _num_state_slots;
881
882 public:
883 /**
884 * Initial binding point for a sampler, atomic, or UBO.
885 *
886 * For array types, this represents the binding point for the first element.
887 */
888 int16_t binding;
889
890 /**
891 * Storage location of the base of this variable
892 *
893 * The precise meaning of this field depends on the nature of the variable.
894 *
895 * - Vertex shader input: one of the values from \c gl_vert_attrib.
896 * - Vertex shader output: one of the values from \c gl_varying_slot.
897 * - Geometry shader input: one of the values from \c gl_varying_slot.
898 * - Geometry shader output: one of the values from \c gl_varying_slot.
899 * - Fragment shader input: one of the values from \c gl_varying_slot.
900 * - Fragment shader output: one of the values from \c gl_frag_result.
901 * - Uniforms: Per-stage uniform slot number for default uniform block.
902 * - Uniforms: Index within the uniform block definition for UBO members.
903 * - Non-UBO Uniforms: explicit location until linking then reused to
904 * store uniform slot number.
905 * - Other: This field is not currently used.
906 *
907 * If the variable is a uniform, shader input, or shader output, and the
908 * slot has not been assigned, the value will be -1.
909 */
910 int location;
911
912 /**
913 * for glsl->tgsi/mesa IR we need to store the index into the
914 * parameters for uniforms, initially the code overloaded location
915 * but this causes problems with indirect samplers and AoA.
916 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
917 */
918 int param_index;
919
920 /**
921 * Vertex stream output identifier.
922 *
923 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
924 * stream of the i-th component.
925 */
926 unsigned stream;
927
928 /**
929 * Atomic, transform feedback or block member offset.
930 */
931 unsigned offset;
932
933 /**
934 * Highest element accessed with a constant expression array index
935 *
936 * Not used for non-array variables. -1 is never accessed.
937 */
938 int max_array_access;
939
940 /**
941 * Transform feedback buffer.
942 */
943 unsigned xfb_buffer;
944
945 /**
946 * Transform feedback stride.
947 */
948 unsigned xfb_stride;
949
950 /**
951 * Allow (only) ir_variable direct access private members.
952 */
953 friend class ir_variable;
954 } data;
955
956 /**
957 * Value assigned in the initializer of a variable declared "const"
958 */
959 ir_constant *constant_value;
960
961 /**
962 * Constant expression assigned in the initializer of the variable
963 *
964 * \warning
965 * This field and \c ::constant_value are distinct. Even if the two fields
966 * refer to constants with the same value, they must point to separate
967 * objects.
968 */
969 ir_constant *constant_initializer;
970
971 private:
972 static const char *const warn_extension_table[];
973
974 union {
975 /**
976 * For variables which satisfy the is_interface_instance() predicate,
977 * this points to an array of integers such that if the ith member of
978 * the interface block is an array, max_ifc_array_access[i] is the
979 * maximum array element of that member that has been accessed. If the
980 * ith member of the interface block is not an array,
981 * max_ifc_array_access[i] is unused.
982 *
983 * For variables whose type is not an interface block, this pointer is
984 * NULL.
985 */
986 int *max_ifc_array_access;
987
988 /**
989 * Built-in state that backs this uniform
990 *
991 * Once set at variable creation, \c state_slots must remain invariant.
992 *
993 * If the variable is not a uniform, \c _num_state_slots will be zero
994 * and \c state_slots will be \c NULL.
995 */
996 ir_state_slot *state_slots;
997 } u;
998
999 /**
1000 * For variables that are in an interface block or are an instance of an
1001 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1002 *
1003 * \sa ir_variable::location
1004 */
1005 const glsl_type *interface_type;
1006
1007 /**
1008 * Name used for anonymous compiler temporaries
1009 */
1010 static const char tmp_name[];
1011
1012 public:
1013 /**
1014 * Should the construct keep names for ir_var_temporary variables?
1015 *
1016 * When this global is false, names passed to the constructor for
1017 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1018 * be named "compiler_temp". This name will be in static storage.
1019 *
1020 * \warning
1021 * \b NEVER change the mode of an \c ir_var_temporary.
1022 *
1023 * \warning
1024 * This variable is \b not thread-safe. It is global, \b not
1025 * per-context. It begins life false. A context can, at some point, make
1026 * it true. From that point on, it will be true forever. This should be
1027 * okay since it will only be set true while debugging.
1028 */
1029 static bool temporaries_allocate_names;
1030 };
1031
1032 /**
1033 * A function that returns whether a built-in function is available in the
1034 * current shading language (based on version, ES or desktop, and extensions).
1035 */
1036 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1037
1038 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1039 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1040
1041 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1042 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1043
1044 enum ir_intrinsic_id {
1045 ir_intrinsic_invalid = 0,
1046
1047 /**
1048 * \name Generic intrinsics
1049 *
1050 * Each of these intrinsics has a specific version for shared variables and
1051 * SSBOs.
1052 */
1053 /*@{*/
1054 ir_intrinsic_generic_load,
1055 ir_intrinsic_generic_store,
1056 ir_intrinsic_generic_atomic_add,
1057 ir_intrinsic_generic_atomic_and,
1058 ir_intrinsic_generic_atomic_or,
1059 ir_intrinsic_generic_atomic_xor,
1060 ir_intrinsic_generic_atomic_min,
1061 ir_intrinsic_generic_atomic_max,
1062 ir_intrinsic_generic_atomic_exchange,
1063 ir_intrinsic_generic_atomic_comp_swap,
1064 /*@}*/
1065
1066 ir_intrinsic_atomic_counter_read,
1067 ir_intrinsic_atomic_counter_increment,
1068 ir_intrinsic_atomic_counter_predecrement,
1069 ir_intrinsic_atomic_counter_add,
1070 ir_intrinsic_atomic_counter_and,
1071 ir_intrinsic_atomic_counter_or,
1072 ir_intrinsic_atomic_counter_xor,
1073 ir_intrinsic_atomic_counter_min,
1074 ir_intrinsic_atomic_counter_max,
1075 ir_intrinsic_atomic_counter_exchange,
1076 ir_intrinsic_atomic_counter_comp_swap,
1077
1078 ir_intrinsic_image_load,
1079 ir_intrinsic_image_store,
1080 ir_intrinsic_image_atomic_add,
1081 ir_intrinsic_image_atomic_and,
1082 ir_intrinsic_image_atomic_or,
1083 ir_intrinsic_image_atomic_xor,
1084 ir_intrinsic_image_atomic_min,
1085 ir_intrinsic_image_atomic_max,
1086 ir_intrinsic_image_atomic_exchange,
1087 ir_intrinsic_image_atomic_comp_swap,
1088 ir_intrinsic_image_size,
1089 ir_intrinsic_image_samples,
1090
1091 ir_intrinsic_ssbo_load,
1092 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1093 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1094 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1095 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1096 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1097 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1098 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1099 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1100 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1101
1102 ir_intrinsic_memory_barrier,
1103 ir_intrinsic_shader_clock,
1104 ir_intrinsic_group_memory_barrier,
1105 ir_intrinsic_memory_barrier_atomic_counter,
1106 ir_intrinsic_memory_barrier_buffer,
1107 ir_intrinsic_memory_barrier_image,
1108 ir_intrinsic_memory_barrier_shared,
1109
1110 ir_intrinsic_shared_load,
1111 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1112 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1113 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1114 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1115 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1116 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1117 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1118 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1119 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1120 };
1121
1122 /*@{*/
1123 /**
1124 * The representation of a function instance; may be the full definition or
1125 * simply a prototype.
1126 */
1127 class ir_function_signature : public ir_instruction {
1128 /* An ir_function_signature will be part of the list of signatures in
1129 * an ir_function.
1130 */
1131 public:
1132 ir_function_signature(const glsl_type *return_type,
1133 builtin_available_predicate builtin_avail = NULL);
1134
1135 virtual ir_function_signature *clone(void *mem_ctx,
1136 struct hash_table *ht) const;
1137 ir_function_signature *clone_prototype(void *mem_ctx,
1138 struct hash_table *ht) const;
1139
1140 virtual void accept(ir_visitor *v)
1141 {
1142 v->visit(this);
1143 }
1144
1145 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1146
1147 /**
1148 * Attempt to evaluate this function as a constant expression,
1149 * given a list of the actual parameters and the variable context.
1150 * Returns NULL for non-built-ins.
1151 */
1152 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1153
1154 /**
1155 * Get the name of the function for which this is a signature
1156 */
1157 const char *function_name() const;
1158
1159 /**
1160 * Get a handle to the function for which this is a signature
1161 *
1162 * There is no setter function, this function returns a \c const pointer,
1163 * and \c ir_function_signature::_function is private for a reason. The
1164 * only way to make a connection between a function and function signature
1165 * is via \c ir_function::add_signature. This helps ensure that certain
1166 * invariants (i.e., a function signature is in the list of signatures for
1167 * its \c _function) are met.
1168 *
1169 * \sa ir_function::add_signature
1170 */
1171 inline const class ir_function *function() const
1172 {
1173 return this->_function;
1174 }
1175
1176 /**
1177 * Check whether the qualifiers match between this signature's parameters
1178 * and the supplied parameter list. If not, returns the name of the first
1179 * parameter with mismatched qualifiers (for use in error messages).
1180 */
1181 const char *qualifiers_match(exec_list *params);
1182
1183 /**
1184 * Replace the current parameter list with the given one. This is useful
1185 * if the current information came from a prototype, and either has invalid
1186 * or missing parameter names.
1187 */
1188 void replace_parameters(exec_list *new_params);
1189
1190 /**
1191 * Function return type.
1192 *
1193 * \note This discards the optional precision qualifier.
1194 */
1195 const struct glsl_type *return_type;
1196
1197 /**
1198 * List of ir_variable of function parameters.
1199 *
1200 * This represents the storage. The paramaters passed in a particular
1201 * call will be in ir_call::actual_paramaters.
1202 */
1203 struct exec_list parameters;
1204
1205 /** Whether or not this function has a body (which may be empty). */
1206 unsigned is_defined:1;
1207
1208 /** Whether or not this function signature is a built-in. */
1209 bool is_builtin() const;
1210
1211 /**
1212 * Whether or not this function is an intrinsic to be implemented
1213 * by the driver.
1214 */
1215 inline bool is_intrinsic() const
1216 {
1217 return intrinsic_id != ir_intrinsic_invalid;
1218 }
1219
1220 /** Indentifier for this intrinsic. */
1221 enum ir_intrinsic_id intrinsic_id;
1222
1223 /** Whether or not a built-in is available for this shader. */
1224 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1225
1226 /** Body of instructions in the function. */
1227 struct exec_list body;
1228
1229 private:
1230 /**
1231 * A function pointer to a predicate that answers whether a built-in
1232 * function is available in the current shader. NULL if not a built-in.
1233 */
1234 builtin_available_predicate builtin_avail;
1235
1236 /** Function of which this signature is one overload. */
1237 class ir_function *_function;
1238
1239 /** Function signature of which this one is a prototype clone */
1240 const ir_function_signature *origin;
1241
1242 friend class ir_function;
1243
1244 /**
1245 * Helper function to run a list of instructions for constant
1246 * expression evaluation.
1247 *
1248 * The hash table represents the values of the visible variables.
1249 * There are no scoping issues because the table is indexed on
1250 * ir_variable pointers, not variable names.
1251 *
1252 * Returns false if the expression is not constant, true otherwise,
1253 * and the value in *result if result is non-NULL.
1254 */
1255 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1256 struct hash_table *variable_context,
1257 ir_constant **result);
1258 };
1259
1260
1261 /**
1262 * Header for tracking multiple overloaded functions with the same name.
1263 * Contains a list of ir_function_signatures representing each of the
1264 * actual functions.
1265 */
1266 class ir_function : public ir_instruction {
1267 public:
1268 ir_function(const char *name);
1269
1270 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1271
1272 virtual void accept(ir_visitor *v)
1273 {
1274 v->visit(this);
1275 }
1276
1277 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1278
1279 void add_signature(ir_function_signature *sig)
1280 {
1281 sig->_function = this;
1282 this->signatures.push_tail(sig);
1283 }
1284
1285 /**
1286 * Find a signature that matches a set of actual parameters, taking implicit
1287 * conversions into account. Also flags whether the match was exact.
1288 */
1289 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1290 const exec_list *actual_param,
1291 bool allow_builtins,
1292 bool *match_is_exact);
1293
1294 /**
1295 * Find a signature that matches a set of actual parameters, taking implicit
1296 * conversions into account.
1297 */
1298 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1299 const exec_list *actual_param,
1300 bool allow_builtins);
1301
1302 /**
1303 * Find a signature that exactly matches a set of actual parameters without
1304 * any implicit type conversions.
1305 */
1306 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1307 const exec_list *actual_ps);
1308
1309 /**
1310 * Name of the function.
1311 */
1312 const char *name;
1313
1314 /** Whether or not this function has a signature that isn't a built-in. */
1315 bool has_user_signature();
1316
1317 /**
1318 * List of ir_function_signature for each overloaded function with this name.
1319 */
1320 struct exec_list signatures;
1321
1322 /**
1323 * is this function a subroutine type declaration
1324 * e.g. subroutine void type1(float arg1);
1325 */
1326 bool is_subroutine;
1327
1328 /**
1329 * is this function associated to a subroutine type
1330 * e.g. subroutine (type1, type2) function_name { function_body };
1331 * would have num_subroutine_types 2,
1332 * and pointers to the type1 and type2 types.
1333 */
1334 int num_subroutine_types;
1335 const struct glsl_type **subroutine_types;
1336
1337 int subroutine_index;
1338 };
1339
1340 inline const char *ir_function_signature::function_name() const
1341 {
1342 return this->_function->name;
1343 }
1344 /*@}*/
1345
1346
1347 /**
1348 * IR instruction representing high-level if-statements
1349 */
1350 class ir_if : public ir_instruction {
1351 public:
1352 ir_if(ir_rvalue *condition)
1353 : ir_instruction(ir_type_if), condition(condition)
1354 {
1355 }
1356
1357 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1358
1359 virtual void accept(ir_visitor *v)
1360 {
1361 v->visit(this);
1362 }
1363
1364 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1365
1366 ir_rvalue *condition;
1367 /** List of ir_instruction for the body of the then branch */
1368 exec_list then_instructions;
1369 /** List of ir_instruction for the body of the else branch */
1370 exec_list else_instructions;
1371 };
1372
1373
1374 /**
1375 * IR instruction representing a high-level loop structure.
1376 */
1377 class ir_loop : public ir_instruction {
1378 public:
1379 ir_loop();
1380
1381 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1382
1383 virtual void accept(ir_visitor *v)
1384 {
1385 v->visit(this);
1386 }
1387
1388 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1389
1390 /** List of ir_instruction that make up the body of the loop. */
1391 exec_list body_instructions;
1392 };
1393
1394
1395 class ir_assignment : public ir_instruction {
1396 public:
1397 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1398
1399 /**
1400 * Construct an assignment with an explicit write mask
1401 *
1402 * \note
1403 * Since a write mask is supplied, the LHS must already be a bare
1404 * \c ir_dereference. The cannot be any swizzles in the LHS.
1405 */
1406 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1407 unsigned write_mask);
1408
1409 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1410
1411 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1412
1413 virtual void accept(ir_visitor *v)
1414 {
1415 v->visit(this);
1416 }
1417
1418 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1419
1420 /**
1421 * Get a whole variable written by an assignment
1422 *
1423 * If the LHS of the assignment writes a whole variable, the variable is
1424 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1425 * assignment are:
1426 *
1427 * - Assigning to a scalar
1428 * - Assigning to all components of a vector
1429 * - Whole array (or matrix) assignment
1430 * - Whole structure assignment
1431 */
1432 ir_variable *whole_variable_written();
1433
1434 /**
1435 * Set the LHS of an assignment
1436 */
1437 void set_lhs(ir_rvalue *lhs);
1438
1439 /**
1440 * Left-hand side of the assignment.
1441 *
1442 * This should be treated as read only. If you need to set the LHS of an
1443 * assignment, use \c ir_assignment::set_lhs.
1444 */
1445 ir_dereference *lhs;
1446
1447 /**
1448 * Value being assigned
1449 */
1450 ir_rvalue *rhs;
1451
1452 /**
1453 * Optional condition for the assignment.
1454 */
1455 ir_rvalue *condition;
1456
1457
1458 /**
1459 * Component mask written
1460 *
1461 * For non-vector types in the LHS, this field will be zero. For vector
1462 * types, a bit will be set for each component that is written. Note that
1463 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1464 *
1465 * A partially-set write mask means that each enabled channel gets
1466 * the value from a consecutive channel of the rhs. For example,
1467 * to write just .xyw of gl_FrontColor with color:
1468 *
1469 * (assign (constant bool (1)) (xyw)
1470 * (var_ref gl_FragColor)
1471 * (swiz xyw (var_ref color)))
1472 */
1473 unsigned write_mask:4;
1474 };
1475
1476 #include "ir_expression_operation.h"
1477
1478 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1479 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1480
1481 class ir_expression : public ir_rvalue {
1482 public:
1483 ir_expression(int op, const struct glsl_type *type,
1484 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1485 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1486
1487 /**
1488 * Constructor for unary operation expressions
1489 */
1490 ir_expression(int op, ir_rvalue *);
1491
1492 /**
1493 * Constructor for binary operation expressions
1494 */
1495 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1496
1497 /**
1498 * Constructor for ternary operation expressions
1499 */
1500 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1501
1502 virtual bool equals(const ir_instruction *ir,
1503 enum ir_node_type ignore = ir_type_unset) const;
1504
1505 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1506
1507 /**
1508 * Attempt to constant-fold the expression
1509 *
1510 * The "variable_context" hash table links ir_variable * to ir_constant *
1511 * that represent the variables' values. \c NULL represents an empty
1512 * context.
1513 *
1514 * If the expression cannot be constant folded, this method will return
1515 * \c NULL.
1516 */
1517 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1518
1519 /**
1520 * Determine the number of operands used by an expression
1521 */
1522 static unsigned int get_num_operands(ir_expression_operation);
1523
1524 /**
1525 * Determine the number of operands used by an expression
1526 */
1527 unsigned int get_num_operands() const
1528 {
1529 return (this->operation == ir_quadop_vector)
1530 ? this->type->vector_elements : get_num_operands(operation);
1531 }
1532
1533 /**
1534 * Return whether the expression operates on vectors horizontally.
1535 */
1536 bool is_horizontal() const
1537 {
1538 return operation == ir_binop_all_equal ||
1539 operation == ir_binop_any_nequal ||
1540 operation == ir_binop_dot ||
1541 operation == ir_binop_vector_extract ||
1542 operation == ir_triop_vector_insert ||
1543 operation == ir_binop_ubo_load ||
1544 operation == ir_quadop_vector;
1545 }
1546
1547 /**
1548 * Do a reverse-lookup to translate the given string into an operator.
1549 */
1550 static ir_expression_operation get_operator(const char *);
1551
1552 virtual void accept(ir_visitor *v)
1553 {
1554 v->visit(this);
1555 }
1556
1557 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1558
1559 virtual ir_variable *variable_referenced() const;
1560
1561 ir_expression_operation operation;
1562 ir_rvalue *operands[4];
1563 };
1564
1565
1566 /**
1567 * HIR instruction representing a high-level function call, containing a list
1568 * of parameters and returning a value in the supplied temporary.
1569 */
1570 class ir_call : public ir_instruction {
1571 public:
1572 ir_call(ir_function_signature *callee,
1573 ir_dereference_variable *return_deref,
1574 exec_list *actual_parameters)
1575 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1576 {
1577 assert(callee->return_type != NULL);
1578 actual_parameters->move_nodes_to(& this->actual_parameters);
1579 this->use_builtin = callee->is_builtin();
1580 }
1581
1582 ir_call(ir_function_signature *callee,
1583 ir_dereference_variable *return_deref,
1584 exec_list *actual_parameters,
1585 ir_variable *var, ir_rvalue *array_idx)
1586 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1587 {
1588 assert(callee->return_type != NULL);
1589 actual_parameters->move_nodes_to(& this->actual_parameters);
1590 this->use_builtin = callee->is_builtin();
1591 }
1592
1593 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1594
1595 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1596
1597 virtual void accept(ir_visitor *v)
1598 {
1599 v->visit(this);
1600 }
1601
1602 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1603
1604 /**
1605 * Get the name of the function being called.
1606 */
1607 const char *callee_name() const
1608 {
1609 return callee->function_name();
1610 }
1611
1612 /**
1613 * Generates an inline version of the function before @ir,
1614 * storing the return value in return_deref.
1615 */
1616 void generate_inline(ir_instruction *ir);
1617
1618 /**
1619 * Storage for the function's return value.
1620 * This must be NULL if the return type is void.
1621 */
1622 ir_dereference_variable *return_deref;
1623
1624 /**
1625 * The specific function signature being called.
1626 */
1627 ir_function_signature *callee;
1628
1629 /* List of ir_rvalue of paramaters passed in this call. */
1630 exec_list actual_parameters;
1631
1632 /** Should this call only bind to a built-in function? */
1633 bool use_builtin;
1634
1635 /*
1636 * ARB_shader_subroutine support -
1637 * the subroutine uniform variable and array index
1638 * rvalue to be used in the lowering pass later.
1639 */
1640 ir_variable *sub_var;
1641 ir_rvalue *array_idx;
1642 };
1643
1644
1645 /**
1646 * \name Jump-like IR instructions.
1647 *
1648 * These include \c break, \c continue, \c return, and \c discard.
1649 */
1650 /*@{*/
1651 class ir_jump : public ir_instruction {
1652 protected:
1653 ir_jump(enum ir_node_type t)
1654 : ir_instruction(t)
1655 {
1656 }
1657 };
1658
1659 class ir_return : public ir_jump {
1660 public:
1661 ir_return()
1662 : ir_jump(ir_type_return), value(NULL)
1663 {
1664 }
1665
1666 ir_return(ir_rvalue *value)
1667 : ir_jump(ir_type_return), value(value)
1668 {
1669 }
1670
1671 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1672
1673 ir_rvalue *get_value() const
1674 {
1675 return value;
1676 }
1677
1678 virtual void accept(ir_visitor *v)
1679 {
1680 v->visit(this);
1681 }
1682
1683 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1684
1685 ir_rvalue *value;
1686 };
1687
1688
1689 /**
1690 * Jump instructions used inside loops
1691 *
1692 * These include \c break and \c continue. The \c break within a loop is
1693 * different from the \c break within a switch-statement.
1694 *
1695 * \sa ir_switch_jump
1696 */
1697 class ir_loop_jump : public ir_jump {
1698 public:
1699 enum jump_mode {
1700 jump_break,
1701 jump_continue
1702 };
1703
1704 ir_loop_jump(jump_mode mode)
1705 : ir_jump(ir_type_loop_jump)
1706 {
1707 this->mode = mode;
1708 }
1709
1710 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1711
1712 virtual void accept(ir_visitor *v)
1713 {
1714 v->visit(this);
1715 }
1716
1717 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1718
1719 bool is_break() const
1720 {
1721 return mode == jump_break;
1722 }
1723
1724 bool is_continue() const
1725 {
1726 return mode == jump_continue;
1727 }
1728
1729 /** Mode selector for the jump instruction. */
1730 enum jump_mode mode;
1731 };
1732
1733 /**
1734 * IR instruction representing discard statements.
1735 */
1736 class ir_discard : public ir_jump {
1737 public:
1738 ir_discard()
1739 : ir_jump(ir_type_discard)
1740 {
1741 this->condition = NULL;
1742 }
1743
1744 ir_discard(ir_rvalue *cond)
1745 : ir_jump(ir_type_discard)
1746 {
1747 this->condition = cond;
1748 }
1749
1750 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1751
1752 virtual void accept(ir_visitor *v)
1753 {
1754 v->visit(this);
1755 }
1756
1757 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1758
1759 ir_rvalue *condition;
1760 };
1761 /*@}*/
1762
1763
1764 /**
1765 * Texture sampling opcodes used in ir_texture
1766 */
1767 enum ir_texture_opcode {
1768 ir_tex, /**< Regular texture look-up */
1769 ir_txb, /**< Texture look-up with LOD bias */
1770 ir_txl, /**< Texture look-up with explicit LOD */
1771 ir_txd, /**< Texture look-up with partial derivatvies */
1772 ir_txf, /**< Texel fetch with explicit LOD */
1773 ir_txf_ms, /**< Multisample texture fetch */
1774 ir_txs, /**< Texture size */
1775 ir_lod, /**< Texture lod query */
1776 ir_tg4, /**< Texture gather */
1777 ir_query_levels, /**< Texture levels query */
1778 ir_texture_samples, /**< Texture samples query */
1779 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1780 };
1781
1782
1783 /**
1784 * IR instruction to sample a texture
1785 *
1786 * The specific form of the IR instruction depends on the \c mode value
1787 * selected from \c ir_texture_opcodes. In the printed IR, these will
1788 * appear as:
1789 *
1790 * Texel offset (0 or an expression)
1791 * | Projection divisor
1792 * | | Shadow comparator
1793 * | | |
1794 * v v v
1795 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1796 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1797 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1798 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1799 * (txf <type> <sampler> <coordinate> 0 <lod>)
1800 * (txf_ms
1801 * <type> <sampler> <coordinate> <sample_index>)
1802 * (txs <type> <sampler> <lod>)
1803 * (lod <type> <sampler> <coordinate>)
1804 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1805 * (query_levels <type> <sampler>)
1806 * (samples_identical <sampler> <coordinate>)
1807 */
1808 class ir_texture : public ir_rvalue {
1809 public:
1810 ir_texture(enum ir_texture_opcode op)
1811 : ir_rvalue(ir_type_texture),
1812 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1813 shadow_comparator(NULL), offset(NULL)
1814 {
1815 memset(&lod_info, 0, sizeof(lod_info));
1816 }
1817
1818 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1819
1820 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1821
1822 virtual void accept(ir_visitor *v)
1823 {
1824 v->visit(this);
1825 }
1826
1827 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1828
1829 virtual bool equals(const ir_instruction *ir,
1830 enum ir_node_type ignore = ir_type_unset) const;
1831
1832 /**
1833 * Return a string representing the ir_texture_opcode.
1834 */
1835 const char *opcode_string();
1836
1837 /** Set the sampler and type. */
1838 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1839
1840 /**
1841 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1842 */
1843 static ir_texture_opcode get_opcode(const char *);
1844
1845 enum ir_texture_opcode op;
1846
1847 /** Sampler to use for the texture access. */
1848 ir_dereference *sampler;
1849
1850 /** Texture coordinate to sample */
1851 ir_rvalue *coordinate;
1852
1853 /**
1854 * Value used for projective divide.
1855 *
1856 * If there is no projective divide (the common case), this will be
1857 * \c NULL. Optimization passes should check for this to point to a constant
1858 * of 1.0 and replace that with \c NULL.
1859 */
1860 ir_rvalue *projector;
1861
1862 /**
1863 * Coordinate used for comparison on shadow look-ups.
1864 *
1865 * If there is no shadow comparison, this will be \c NULL. For the
1866 * \c ir_txf opcode, this *must* be \c NULL.
1867 */
1868 ir_rvalue *shadow_comparator;
1869
1870 /** Texel offset. */
1871 ir_rvalue *offset;
1872
1873 union {
1874 ir_rvalue *lod; /**< Floating point LOD */
1875 ir_rvalue *bias; /**< Floating point LOD bias */
1876 ir_rvalue *sample_index; /**< MSAA sample index */
1877 ir_rvalue *component; /**< Gather component selector */
1878 struct {
1879 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1880 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1881 } grad;
1882 } lod_info;
1883 };
1884
1885
1886 struct ir_swizzle_mask {
1887 unsigned x:2;
1888 unsigned y:2;
1889 unsigned z:2;
1890 unsigned w:2;
1891
1892 /**
1893 * Number of components in the swizzle.
1894 */
1895 unsigned num_components:3;
1896
1897 /**
1898 * Does the swizzle contain duplicate components?
1899 *
1900 * L-value swizzles cannot contain duplicate components.
1901 */
1902 unsigned has_duplicates:1;
1903 };
1904
1905
1906 class ir_swizzle : public ir_rvalue {
1907 public:
1908 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1909 unsigned count);
1910
1911 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1912
1913 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1914
1915 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1916
1917 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1918
1919 /**
1920 * Construct an ir_swizzle from the textual representation. Can fail.
1921 */
1922 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1923
1924 virtual void accept(ir_visitor *v)
1925 {
1926 v->visit(this);
1927 }
1928
1929 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1930
1931 virtual bool equals(const ir_instruction *ir,
1932 enum ir_node_type ignore = ir_type_unset) const;
1933
1934 bool is_lvalue() const
1935 {
1936 return val->is_lvalue() && !mask.has_duplicates;
1937 }
1938
1939 /**
1940 * Get the variable that is ultimately referenced by an r-value
1941 */
1942 virtual ir_variable *variable_referenced() const;
1943
1944 ir_rvalue *val;
1945 ir_swizzle_mask mask;
1946
1947 private:
1948 /**
1949 * Initialize the mask component of a swizzle
1950 *
1951 * This is used by the \c ir_swizzle constructors.
1952 */
1953 void init_mask(const unsigned *components, unsigned count);
1954 };
1955
1956
1957 class ir_dereference : public ir_rvalue {
1958 public:
1959 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1960
1961 bool is_lvalue() const;
1962
1963 /**
1964 * Get the variable that is ultimately referenced by an r-value
1965 */
1966 virtual ir_variable *variable_referenced() const = 0;
1967
1968 protected:
1969 ir_dereference(enum ir_node_type t)
1970 : ir_rvalue(t)
1971 {
1972 }
1973 };
1974
1975
1976 class ir_dereference_variable : public ir_dereference {
1977 public:
1978 ir_dereference_variable(ir_variable *var);
1979
1980 virtual ir_dereference_variable *clone(void *mem_ctx,
1981 struct hash_table *) const;
1982
1983 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1984
1985 virtual bool equals(const ir_instruction *ir,
1986 enum ir_node_type ignore = ir_type_unset) const;
1987
1988 /**
1989 * Get the variable that is ultimately referenced by an r-value
1990 */
1991 virtual ir_variable *variable_referenced() const
1992 {
1993 return this->var;
1994 }
1995
1996 virtual ir_variable *whole_variable_referenced()
1997 {
1998 /* ir_dereference_variable objects always dereference the entire
1999 * variable. However, if this dereference is dereferenced by anything
2000 * else, the complete deferefernce chain is not a whole-variable
2001 * dereference. This method should only be called on the top most
2002 * ir_rvalue in a dereference chain.
2003 */
2004 return this->var;
2005 }
2006
2007 virtual void accept(ir_visitor *v)
2008 {
2009 v->visit(this);
2010 }
2011
2012 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2013
2014 /**
2015 * Object being dereferenced.
2016 */
2017 ir_variable *var;
2018 };
2019
2020
2021 class ir_dereference_array : public ir_dereference {
2022 public:
2023 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2024
2025 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2026
2027 virtual ir_dereference_array *clone(void *mem_ctx,
2028 struct hash_table *) const;
2029
2030 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2031
2032 virtual bool equals(const ir_instruction *ir,
2033 enum ir_node_type ignore = ir_type_unset) const;
2034
2035 /**
2036 * Get the variable that is ultimately referenced by an r-value
2037 */
2038 virtual ir_variable *variable_referenced() const
2039 {
2040 return this->array->variable_referenced();
2041 }
2042
2043 virtual void accept(ir_visitor *v)
2044 {
2045 v->visit(this);
2046 }
2047
2048 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2049
2050 ir_rvalue *array;
2051 ir_rvalue *array_index;
2052
2053 private:
2054 void set_array(ir_rvalue *value);
2055 };
2056
2057
2058 class ir_dereference_record : public ir_dereference {
2059 public:
2060 ir_dereference_record(ir_rvalue *value, const char *field);
2061
2062 ir_dereference_record(ir_variable *var, const char *field);
2063
2064 virtual ir_dereference_record *clone(void *mem_ctx,
2065 struct hash_table *) const;
2066
2067 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2068
2069 /**
2070 * Get the variable that is ultimately referenced by an r-value
2071 */
2072 virtual ir_variable *variable_referenced() const
2073 {
2074 return this->record->variable_referenced();
2075 }
2076
2077 virtual void accept(ir_visitor *v)
2078 {
2079 v->visit(this);
2080 }
2081
2082 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2083
2084 ir_rvalue *record;
2085 const char *field;
2086 };
2087
2088
2089 /**
2090 * Data stored in an ir_constant
2091 */
2092 union ir_constant_data {
2093 unsigned u[16];
2094 int i[16];
2095 float f[16];
2096 bool b[16];
2097 double d[16];
2098 };
2099
2100
2101 class ir_constant : public ir_rvalue {
2102 public:
2103 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2104 ir_constant(bool b, unsigned vector_elements=1);
2105 ir_constant(unsigned int u, unsigned vector_elements=1);
2106 ir_constant(int i, unsigned vector_elements=1);
2107 ir_constant(float f, unsigned vector_elements=1);
2108 ir_constant(double d, unsigned vector_elements=1);
2109
2110 /**
2111 * Construct an ir_constant from a list of ir_constant values
2112 */
2113 ir_constant(const struct glsl_type *type, exec_list *values);
2114
2115 /**
2116 * Construct an ir_constant from a scalar component of another ir_constant
2117 *
2118 * The new \c ir_constant inherits the type of the component from the
2119 * source constant.
2120 *
2121 * \note
2122 * In the case of a matrix constant, the new constant is a scalar, \b not
2123 * a vector.
2124 */
2125 ir_constant(const ir_constant *c, unsigned i);
2126
2127 /**
2128 * Return a new ir_constant of the specified type containing all zeros.
2129 */
2130 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2131
2132 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2133
2134 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2135
2136 virtual void accept(ir_visitor *v)
2137 {
2138 v->visit(this);
2139 }
2140
2141 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2142
2143 virtual bool equals(const ir_instruction *ir,
2144 enum ir_node_type ignore = ir_type_unset) const;
2145
2146 /**
2147 * Get a particular component of a constant as a specific type
2148 *
2149 * This is useful, for example, to get a value from an integer constant
2150 * as a float or bool. This appears frequently when constructors are
2151 * called with all constant parameters.
2152 */
2153 /*@{*/
2154 bool get_bool_component(unsigned i) const;
2155 float get_float_component(unsigned i) const;
2156 double get_double_component(unsigned i) const;
2157 int get_int_component(unsigned i) const;
2158 unsigned get_uint_component(unsigned i) const;
2159 /*@}*/
2160
2161 ir_constant *get_array_element(unsigned i) const;
2162
2163 ir_constant *get_record_field(const char *name);
2164
2165 /**
2166 * Copy the values on another constant at a given offset.
2167 *
2168 * The offset is ignored for array or struct copies, it's only for
2169 * scalars or vectors into vectors or matrices.
2170 *
2171 * With identical types on both sides and zero offset it's clone()
2172 * without creating a new object.
2173 */
2174
2175 void copy_offset(ir_constant *src, int offset);
2176
2177 /**
2178 * Copy the values on another constant at a given offset and
2179 * following an assign-like mask.
2180 *
2181 * The mask is ignored for scalars.
2182 *
2183 * Note that this function only handles what assign can handle,
2184 * i.e. at most a vector as source and a column of a matrix as
2185 * destination.
2186 */
2187
2188 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2189
2190 /**
2191 * Determine whether a constant has the same value as another constant
2192 *
2193 * \sa ir_constant::is_zero, ir_constant::is_one,
2194 * ir_constant::is_negative_one
2195 */
2196 bool has_value(const ir_constant *) const;
2197
2198 /**
2199 * Return true if this ir_constant represents the given value.
2200 *
2201 * For vectors, this checks that each component is the given value.
2202 */
2203 virtual bool is_value(float f, int i) const;
2204 virtual bool is_zero() const;
2205 virtual bool is_one() const;
2206 virtual bool is_negative_one() const;
2207
2208 /**
2209 * Return true for constants that could be stored as 16-bit unsigned values.
2210 *
2211 * Note that this will return true even for signed integer ir_constants, as
2212 * long as the value is non-negative and fits in 16-bits.
2213 */
2214 virtual bool is_uint16_constant() const;
2215
2216 /**
2217 * Value of the constant.
2218 *
2219 * The field used to back the values supplied by the constant is determined
2220 * by the type associated with the \c ir_instruction. Constants may be
2221 * scalars, vectors, or matrices.
2222 */
2223 union ir_constant_data value;
2224
2225 /* Array elements */
2226 ir_constant **array_elements;
2227
2228 /* Structure fields */
2229 exec_list components;
2230
2231 private:
2232 /**
2233 * Parameterless constructor only used by the clone method
2234 */
2235 ir_constant(void);
2236 };
2237
2238 /**
2239 * IR instruction to emit a vertex in a geometry shader.
2240 */
2241 class ir_emit_vertex : public ir_instruction {
2242 public:
2243 ir_emit_vertex(ir_rvalue *stream)
2244 : ir_instruction(ir_type_emit_vertex),
2245 stream(stream)
2246 {
2247 assert(stream);
2248 }
2249
2250 virtual void accept(ir_visitor *v)
2251 {
2252 v->visit(this);
2253 }
2254
2255 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2256 {
2257 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2258 }
2259
2260 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2261
2262 int stream_id() const
2263 {
2264 return stream->as_constant()->value.i[0];
2265 }
2266
2267 ir_rvalue *stream;
2268 };
2269
2270 /**
2271 * IR instruction to complete the current primitive and start a new one in a
2272 * geometry shader.
2273 */
2274 class ir_end_primitive : public ir_instruction {
2275 public:
2276 ir_end_primitive(ir_rvalue *stream)
2277 : ir_instruction(ir_type_end_primitive),
2278 stream(stream)
2279 {
2280 assert(stream);
2281 }
2282
2283 virtual void accept(ir_visitor *v)
2284 {
2285 v->visit(this);
2286 }
2287
2288 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2289 {
2290 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2291 }
2292
2293 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2294
2295 int stream_id() const
2296 {
2297 return stream->as_constant()->value.i[0];
2298 }
2299
2300 ir_rvalue *stream;
2301 };
2302
2303 /**
2304 * IR instruction for tessellation control and compute shader barrier.
2305 */
2306 class ir_barrier : public ir_instruction {
2307 public:
2308 ir_barrier()
2309 : ir_instruction(ir_type_barrier)
2310 {
2311 }
2312
2313 virtual void accept(ir_visitor *v)
2314 {
2315 v->visit(this);
2316 }
2317
2318 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2319 {
2320 return new(mem_ctx) ir_barrier();
2321 }
2322
2323 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2324 };
2325
2326 /*@}*/
2327
2328 /**
2329 * Apply a visitor to each IR node in a list
2330 */
2331 void
2332 visit_exec_list(exec_list *list, ir_visitor *visitor);
2333
2334 /**
2335 * Validate invariants on each IR node in a list
2336 */
2337 void validate_ir_tree(exec_list *instructions);
2338
2339 struct _mesa_glsl_parse_state;
2340 struct gl_shader_program;
2341
2342 /**
2343 * Detect whether an unlinked shader contains static recursion
2344 *
2345 * If the list of instructions is determined to contain static recursion,
2346 * \c _mesa_glsl_error will be called to emit error messages for each function
2347 * that is in the recursion cycle.
2348 */
2349 void
2350 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2351 exec_list *instructions);
2352
2353 /**
2354 * Detect whether a linked shader contains static recursion
2355 *
2356 * If the list of instructions is determined to contain static recursion,
2357 * \c link_error_printf will be called to emit error messages for each function
2358 * that is in the recursion cycle. In addition,
2359 * \c gl_shader_program::LinkStatus will be set to false.
2360 */
2361 void
2362 detect_recursion_linked(struct gl_shader_program *prog,
2363 exec_list *instructions);
2364
2365 /**
2366 * Make a clone of each IR instruction in a list
2367 *
2368 * \param in List of IR instructions that are to be cloned
2369 * \param out List to hold the cloned instructions
2370 */
2371 void
2372 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2373
2374 extern void
2375 _mesa_glsl_initialize_variables(exec_list *instructions,
2376 struct _mesa_glsl_parse_state *state);
2377
2378 extern void
2379 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2380 gl_shader *shader);
2381
2382 extern void
2383 _mesa_glsl_initialize_builtin_functions();
2384
2385 extern ir_function_signature *
2386 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2387 const char *name, exec_list *actual_parameters);
2388
2389 extern ir_function *
2390 _mesa_glsl_find_builtin_function_by_name(const char *name);
2391
2392 extern gl_shader *
2393 _mesa_glsl_get_builtin_function_shader(void);
2394
2395 extern ir_function_signature *
2396 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2397
2398 extern void
2399 _mesa_glsl_release_builtin_functions(void);
2400
2401 extern void
2402 reparent_ir(exec_list *list, void *mem_ctx);
2403
2404 extern void
2405 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2406 gl_shader_stage shader_stage);
2407
2408 extern char *
2409 prototype_string(const glsl_type *return_type, const char *name,
2410 exec_list *parameters);
2411
2412 const char *
2413 mode_string(const ir_variable *var);
2414
2415 /**
2416 * Built-in / reserved GL variables names start with "gl_"
2417 */
2418 static inline bool
2419 is_gl_identifier(const char *s)
2420 {
2421 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2422 }
2423
2424 extern "C" {
2425 #endif /* __cplusplus */
2426
2427 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2428 struct _mesa_glsl_parse_state *state);
2429
2430 extern void
2431 fprint_ir(FILE *f, const void *instruction);
2432
2433 extern const struct gl_builtin_uniform_desc *
2434 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2435
2436 #ifdef __cplusplus
2437 } /* extern "C" */
2438 #endif
2439
2440 unsigned
2441 vertices_per_prim(GLenum prim);
2442
2443 #endif /* IR_H */