Merge commit mesa-public/master into vulkan
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine how this variable should be interpolated based on its
436 * interpolation qualifier (if present), whether it is gl_Color or
437 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
438 * state.
439 *
440 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
441 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
442 */
443 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
444
445 /**
446 * Determine whether or not a variable is part of a uniform or
447 * shader storage block.
448 */
449 inline bool is_in_buffer_block() const
450 {
451 return (this->data.mode == ir_var_uniform ||
452 this->data.mode == ir_var_shader_storage) &&
453 this->interface_type != NULL;
454 }
455
456 /**
457 * Determine whether or not a variable is part of a shader storage block.
458 */
459 inline bool is_in_shader_storage_block() const
460 {
461 return this->data.mode == ir_var_shader_storage &&
462 this->interface_type != NULL;
463 }
464
465 /**
466 * Determine whether or not a variable is the declaration of an interface
467 * block
468 *
469 * For the first declaration below, there will be an \c ir_variable named
470 * "instance" whose type and whose instance_type will be the same
471 * \cglsl_type. For the second declaration, there will be an \c ir_variable
472 * named "f" whose type is float and whose instance_type is B2.
473 *
474 * "instance" is an interface instance variable, but "f" is not.
475 *
476 * uniform B1 {
477 * float f;
478 * } instance;
479 *
480 * uniform B2 {
481 * float f;
482 * };
483 */
484 inline bool is_interface_instance() const
485 {
486 return this->type->without_array() == this->interface_type;
487 }
488
489 /**
490 * Set this->interface_type on a newly created variable.
491 */
492 void init_interface_type(const struct glsl_type *type)
493 {
494 assert(this->interface_type == NULL);
495 this->interface_type = type;
496 if (this->is_interface_instance()) {
497 this->u.max_ifc_array_access =
498 rzalloc_array(this, unsigned, type->length);
499 }
500 }
501
502 /**
503 * Change this->interface_type on a variable that previously had a
504 * different, but compatible, interface_type. This is used during linking
505 * to set the size of arrays in interface blocks.
506 */
507 void change_interface_type(const struct glsl_type *type)
508 {
509 if (this->u.max_ifc_array_access != NULL) {
510 /* max_ifc_array_access has already been allocated, so make sure the
511 * new interface has the same number of fields as the old one.
512 */
513 assert(this->interface_type->length == type->length);
514 }
515 this->interface_type = type;
516 }
517
518 /**
519 * Change this->interface_type on a variable that previously had a
520 * different, and incompatible, interface_type. This is used during
521 * compilation to handle redeclaration of the built-in gl_PerVertex
522 * interface block.
523 */
524 void reinit_interface_type(const struct glsl_type *type)
525 {
526 if (this->u.max_ifc_array_access != NULL) {
527 #ifndef NDEBUG
528 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
529 * it defines have been accessed yet; so it's safe to throw away the
530 * old max_ifc_array_access pointer, since all of its values are
531 * zero.
532 */
533 for (unsigned i = 0; i < this->interface_type->length; i++)
534 assert(this->u.max_ifc_array_access[i] == 0);
535 #endif
536 ralloc_free(this->u.max_ifc_array_access);
537 this->u.max_ifc_array_access = NULL;
538 }
539 this->interface_type = NULL;
540 init_interface_type(type);
541 }
542
543 const glsl_type *get_interface_type() const
544 {
545 return this->interface_type;
546 }
547
548 /**
549 * Get the max_ifc_array_access pointer
550 *
551 * A "set" function is not needed because the array is dynmically allocated
552 * as necessary.
553 */
554 inline unsigned *get_max_ifc_array_access()
555 {
556 assert(this->data._num_state_slots == 0);
557 return this->u.max_ifc_array_access;
558 }
559
560 inline unsigned get_num_state_slots() const
561 {
562 assert(!this->is_interface_instance()
563 || this->data._num_state_slots == 0);
564 return this->data._num_state_slots;
565 }
566
567 inline void set_num_state_slots(unsigned n)
568 {
569 assert(!this->is_interface_instance()
570 || n == 0);
571 this->data._num_state_slots = n;
572 }
573
574 inline ir_state_slot *get_state_slots()
575 {
576 return this->is_interface_instance() ? NULL : this->u.state_slots;
577 }
578
579 inline const ir_state_slot *get_state_slots() const
580 {
581 return this->is_interface_instance() ? NULL : this->u.state_slots;
582 }
583
584 inline ir_state_slot *allocate_state_slots(unsigned n)
585 {
586 assert(!this->is_interface_instance());
587
588 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
589 this->data._num_state_slots = 0;
590
591 if (this->u.state_slots != NULL)
592 this->data._num_state_slots = n;
593
594 return this->u.state_slots;
595 }
596
597 inline bool is_name_ralloced() const
598 {
599 return this->name != ir_variable::tmp_name;
600 }
601
602 /**
603 * Enable emitting extension warnings for this variable
604 */
605 void enable_extension_warning(const char *extension);
606
607 /**
608 * Get the extension warning string for this variable
609 *
610 * If warnings are not enabled, \c NULL is returned.
611 */
612 const char *get_extension_warning() const;
613
614 /**
615 * Declared type of the variable
616 */
617 const struct glsl_type *type;
618
619 /**
620 * Declared name of the variable
621 */
622 const char *name;
623
624 struct ir_variable_data {
625
626 /**
627 * Is the variable read-only?
628 *
629 * This is set for variables declared as \c const, shader inputs,
630 * and uniforms.
631 */
632 unsigned read_only:1;
633 unsigned centroid:1;
634 unsigned sample:1;
635 unsigned patch:1;
636 unsigned invariant:1;
637 unsigned precise:1;
638
639 /**
640 * Has this variable been used for reading or writing?
641 *
642 * Several GLSL semantic checks require knowledge of whether or not a
643 * variable has been used. For example, it is an error to redeclare a
644 * variable as invariant after it has been used.
645 *
646 * This is only maintained in the ast_to_hir.cpp path, not in
647 * Mesa's fixed function or ARB program paths.
648 */
649 unsigned used:1;
650
651 /**
652 * Has this variable been statically assigned?
653 *
654 * This answers whether the variable was assigned in any path of
655 * the shader during ast_to_hir. This doesn't answer whether it is
656 * still written after dead code removal, nor is it maintained in
657 * non-ast_to_hir.cpp (GLSL parsing) paths.
658 */
659 unsigned assigned:1;
660
661 /**
662 * When separate shader programs are enabled, only input/outputs between
663 * the stages of a multi-stage separate program can be safely removed
664 * from the shader interface. Other input/outputs must remains active.
665 */
666 unsigned always_active_io:1;
667
668 /**
669 * Enum indicating how the variable was declared. See
670 * ir_var_declaration_type.
671 *
672 * This is used to detect certain kinds of illegal variable redeclarations.
673 */
674 unsigned how_declared:2;
675
676 /**
677 * Storage class of the variable.
678 *
679 * \sa ir_variable_mode
680 */
681 unsigned mode:4;
682
683 /**
684 * Interpolation mode for shader inputs / outputs
685 *
686 * \sa ir_variable_interpolation
687 */
688 unsigned interpolation:2;
689
690 /**
691 * \name ARB_fragment_coord_conventions
692 * @{
693 */
694 unsigned origin_upper_left:1;
695 unsigned pixel_center_integer:1;
696 /*@}*/
697
698 /**
699 * Was the location explicitly set in the shader?
700 *
701 * If the location is explicitly set in the shader, it \b cannot be changed
702 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
703 * no effect).
704 */
705 unsigned explicit_location:1;
706 unsigned explicit_index:1;
707
708 /**
709 * Was an initial binding explicitly set in the shader?
710 *
711 * If so, constant_value contains an integer ir_constant representing the
712 * initial binding point.
713 */
714 unsigned explicit_binding:1;
715
716 /**
717 * Does this variable have an initializer?
718 *
719 * This is used by the linker to cross-validiate initializers of global
720 * variables.
721 */
722 unsigned has_initializer:1;
723
724 /**
725 * Is this variable a generic output or input that has not yet been matched
726 * up to a variable in another stage of the pipeline?
727 *
728 * This is used by the linker as scratch storage while assigning locations
729 * to generic inputs and outputs.
730 */
731 unsigned is_unmatched_generic_inout:1;
732
733 /**
734 * If non-zero, then this variable may be packed along with other variables
735 * into a single varying slot, so this offset should be applied when
736 * accessing components. For example, an offset of 1 means that the x
737 * component of this variable is actually stored in component y of the
738 * location specified by \c location.
739 */
740 unsigned location_frac:2;
741
742 /**
743 * Layout of the matrix. Uses glsl_matrix_layout values.
744 */
745 unsigned matrix_layout:2;
746
747 /**
748 * Non-zero if this variable was created by lowering a named interface
749 * block which was not an array.
750 *
751 * Note that this variable and \c from_named_ifc_block_array will never
752 * both be non-zero.
753 */
754 unsigned from_named_ifc_block_nonarray:1;
755
756 /**
757 * Non-zero if this variable was created by lowering a named interface
758 * block which was an array.
759 *
760 * Note that this variable and \c from_named_ifc_block_nonarray will never
761 * both be non-zero.
762 */
763 unsigned from_named_ifc_block_array:1;
764
765 /**
766 * Non-zero if the variable must be a shader input. This is useful for
767 * constraints on function parameters.
768 */
769 unsigned must_be_shader_input:1;
770
771 /**
772 * Output index for dual source blending.
773 *
774 * \note
775 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
776 * source blending.
777 */
778 unsigned index:1;
779
780 /**
781 * Precision qualifier.
782 *
783 * In desktop GLSL we do not care about precision qualifiers at all, in
784 * fact, the spec says that precision qualifiers are ignored.
785 *
786 * To make things easy, we make it so that this field is always
787 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
788 * have the same precision value and the checks we add in the compiler
789 * for this field will never break a desktop shader compile.
790 */
791 unsigned precision:2;
792
793 /**
794 * \brief Layout qualifier for gl_FragDepth.
795 *
796 * This is not equal to \c ir_depth_layout_none if and only if this
797 * variable is \c gl_FragDepth and a layout qualifier is specified.
798 */
799 ir_depth_layout depth_layout:3;
800
801 /**
802 * ARB_shader_image_load_store qualifiers.
803 */
804 unsigned image_read_only:1; /**< "readonly" qualifier. */
805 unsigned image_write_only:1; /**< "writeonly" qualifier. */
806 unsigned image_coherent:1;
807 unsigned image_volatile:1;
808 unsigned image_restrict:1;
809
810 /**
811 * ARB_shader_storage_buffer_object
812 */
813 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
814
815 /**
816 * Emit a warning if this variable is accessed.
817 */
818 private:
819 uint8_t warn_extension_index;
820
821 public:
822 /** Image internal format if specified explicitly, otherwise GL_NONE. */
823 uint16_t image_format;
824
825 private:
826 /**
827 * Number of state slots used
828 *
829 * \note
830 * This could be stored in as few as 7-bits, if necessary. If it is made
831 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
832 * be safe.
833 */
834 uint16_t _num_state_slots;
835
836 public:
837 /**
838 * Initial binding point for a sampler, atomic, or UBO.
839 *
840 * For array types, this represents the binding point for the first element.
841 */
842 int16_t binding;
843
844 /**
845 * Storage location of the base of this variable
846 *
847 * The precise meaning of this field depends on the nature of the variable.
848 *
849 * - Vertex shader input: one of the values from \c gl_vert_attrib.
850 * - Vertex shader output: one of the values from \c gl_varying_slot.
851 * - Geometry shader input: one of the values from \c gl_varying_slot.
852 * - Geometry shader output: one of the values from \c gl_varying_slot.
853 * - Fragment shader input: one of the values from \c gl_varying_slot.
854 * - Fragment shader output: one of the values from \c gl_frag_result.
855 * - Uniforms: Per-stage uniform slot number for default uniform block.
856 * - Uniforms: Index within the uniform block definition for UBO members.
857 * - Non-UBO Uniforms: explicit location until linking then reused to
858 * store uniform slot number.
859 * - Other: This field is not currently used.
860 *
861 * If the variable is a uniform, shader input, or shader output, and the
862 * slot has not been assigned, the value will be -1.
863 */
864 int location;
865
866 /**
867 * Vertex stream output identifier.
868 */
869 unsigned stream;
870
871 /**
872 * Location an atomic counter is stored at.
873 */
874 unsigned offset;
875
876 /**
877 * Highest element accessed with a constant expression array index
878 *
879 * Not used for non-array variables.
880 */
881 unsigned max_array_access;
882
883 /**
884 * Allow (only) ir_variable direct access private members.
885 */
886 friend class ir_variable;
887 } data;
888
889 /**
890 * Value assigned in the initializer of a variable declared "const"
891 */
892 ir_constant *constant_value;
893
894 /**
895 * Constant expression assigned in the initializer of the variable
896 *
897 * \warning
898 * This field and \c ::constant_value are distinct. Even if the two fields
899 * refer to constants with the same value, they must point to separate
900 * objects.
901 */
902 ir_constant *constant_initializer;
903
904 private:
905 static const char *const warn_extension_table[];
906
907 union {
908 /**
909 * For variables which satisfy the is_interface_instance() predicate,
910 * this points to an array of integers such that if the ith member of
911 * the interface block is an array, max_ifc_array_access[i] is the
912 * maximum array element of that member that has been accessed. If the
913 * ith member of the interface block is not an array,
914 * max_ifc_array_access[i] is unused.
915 *
916 * For variables whose type is not an interface block, this pointer is
917 * NULL.
918 */
919 unsigned *max_ifc_array_access;
920
921 /**
922 * Built-in state that backs this uniform
923 *
924 * Once set at variable creation, \c state_slots must remain invariant.
925 *
926 * If the variable is not a uniform, \c _num_state_slots will be zero
927 * and \c state_slots will be \c NULL.
928 */
929 ir_state_slot *state_slots;
930 } u;
931
932 /**
933 * For variables that are in an interface block or are an instance of an
934 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
935 *
936 * \sa ir_variable::location
937 */
938 const glsl_type *interface_type;
939
940 /**
941 * Name used for anonymous compiler temporaries
942 */
943 static const char tmp_name[];
944
945 public:
946 /**
947 * Should the construct keep names for ir_var_temporary variables?
948 *
949 * When this global is false, names passed to the constructor for
950 * \c ir_var_temporary variables will be dropped. Instead, the variable will
951 * be named "compiler_temp". This name will be in static storage.
952 *
953 * \warning
954 * \b NEVER change the mode of an \c ir_var_temporary.
955 *
956 * \warning
957 * This variable is \b not thread-safe. It is global, \b not
958 * per-context. It begins life false. A context can, at some point, make
959 * it true. From that point on, it will be true forever. This should be
960 * okay since it will only be set true while debugging.
961 */
962 static bool temporaries_allocate_names;
963 };
964
965 /**
966 * A function that returns whether a built-in function is available in the
967 * current shading language (based on version, ES or desktop, and extensions).
968 */
969 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
970
971 /*@{*/
972 /**
973 * The representation of a function instance; may be the full definition or
974 * simply a prototype.
975 */
976 class ir_function_signature : public ir_instruction {
977 /* An ir_function_signature will be part of the list of signatures in
978 * an ir_function.
979 */
980 public:
981 ir_function_signature(const glsl_type *return_type,
982 builtin_available_predicate builtin_avail = NULL);
983
984 virtual ir_function_signature *clone(void *mem_ctx,
985 struct hash_table *ht) const;
986 ir_function_signature *clone_prototype(void *mem_ctx,
987 struct hash_table *ht) const;
988
989 virtual void accept(ir_visitor *v)
990 {
991 v->visit(this);
992 }
993
994 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
995
996 /**
997 * Attempt to evaluate this function as a constant expression,
998 * given a list of the actual parameters and the variable context.
999 * Returns NULL for non-built-ins.
1000 */
1001 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1002
1003 /**
1004 * Get the name of the function for which this is a signature
1005 */
1006 const char *function_name() const;
1007
1008 /**
1009 * Get a handle to the function for which this is a signature
1010 *
1011 * There is no setter function, this function returns a \c const pointer,
1012 * and \c ir_function_signature::_function is private for a reason. The
1013 * only way to make a connection between a function and function signature
1014 * is via \c ir_function::add_signature. This helps ensure that certain
1015 * invariants (i.e., a function signature is in the list of signatures for
1016 * its \c _function) are met.
1017 *
1018 * \sa ir_function::add_signature
1019 */
1020 inline const class ir_function *function() const
1021 {
1022 return this->_function;
1023 }
1024
1025 /**
1026 * Check whether the qualifiers match between this signature's parameters
1027 * and the supplied parameter list. If not, returns the name of the first
1028 * parameter with mismatched qualifiers (for use in error messages).
1029 */
1030 const char *qualifiers_match(exec_list *params);
1031
1032 /**
1033 * Replace the current parameter list with the given one. This is useful
1034 * if the current information came from a prototype, and either has invalid
1035 * or missing parameter names.
1036 */
1037 void replace_parameters(exec_list *new_params);
1038
1039 /**
1040 * Function return type.
1041 *
1042 * \note This discards the optional precision qualifier.
1043 */
1044 const struct glsl_type *return_type;
1045
1046 /**
1047 * List of ir_variable of function parameters.
1048 *
1049 * This represents the storage. The paramaters passed in a particular
1050 * call will be in ir_call::actual_paramaters.
1051 */
1052 struct exec_list parameters;
1053
1054 /** Whether or not this function has a body (which may be empty). */
1055 unsigned is_defined:1;
1056
1057 /** Whether or not this function signature is a built-in. */
1058 bool is_builtin() const;
1059
1060 /**
1061 * Whether or not this function is an intrinsic to be implemented
1062 * by the driver.
1063 */
1064 bool is_intrinsic;
1065
1066 /** Whether or not a built-in is available for this shader. */
1067 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1068
1069 /** Body of instructions in the function. */
1070 struct exec_list body;
1071
1072 private:
1073 /**
1074 * A function pointer to a predicate that answers whether a built-in
1075 * function is available in the current shader. NULL if not a built-in.
1076 */
1077 builtin_available_predicate builtin_avail;
1078
1079 /** Function of which this signature is one overload. */
1080 class ir_function *_function;
1081
1082 /** Function signature of which this one is a prototype clone */
1083 const ir_function_signature *origin;
1084
1085 friend class ir_function;
1086
1087 /**
1088 * Helper function to run a list of instructions for constant
1089 * expression evaluation.
1090 *
1091 * The hash table represents the values of the visible variables.
1092 * There are no scoping issues because the table is indexed on
1093 * ir_variable pointers, not variable names.
1094 *
1095 * Returns false if the expression is not constant, true otherwise,
1096 * and the value in *result if result is non-NULL.
1097 */
1098 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1099 struct hash_table *variable_context,
1100 ir_constant **result);
1101 };
1102
1103
1104 /**
1105 * Header for tracking multiple overloaded functions with the same name.
1106 * Contains a list of ir_function_signatures representing each of the
1107 * actual functions.
1108 */
1109 class ir_function : public ir_instruction {
1110 public:
1111 ir_function(const char *name);
1112
1113 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1114
1115 virtual void accept(ir_visitor *v)
1116 {
1117 v->visit(this);
1118 }
1119
1120 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1121
1122 void add_signature(ir_function_signature *sig)
1123 {
1124 sig->_function = this;
1125 this->signatures.push_tail(sig);
1126 }
1127
1128 /**
1129 * Find a signature that matches a set of actual parameters, taking implicit
1130 * conversions into account. Also flags whether the match was exact.
1131 */
1132 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1133 const exec_list *actual_param,
1134 bool allow_builtins,
1135 bool *match_is_exact);
1136
1137 /**
1138 * Find a signature that matches a set of actual parameters, taking implicit
1139 * conversions into account.
1140 */
1141 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1142 const exec_list *actual_param,
1143 bool allow_builtins);
1144
1145 /**
1146 * Find a signature that exactly matches a set of actual parameters without
1147 * any implicit type conversions.
1148 */
1149 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1150 const exec_list *actual_ps);
1151
1152 /**
1153 * Name of the function.
1154 */
1155 const char *name;
1156
1157 /** Whether or not this function has a signature that isn't a built-in. */
1158 bool has_user_signature();
1159
1160 /**
1161 * List of ir_function_signature for each overloaded function with this name.
1162 */
1163 struct exec_list signatures;
1164
1165 /**
1166 * is this function a subroutine type declaration
1167 * e.g. subroutine void type1(float arg1);
1168 */
1169 bool is_subroutine;
1170
1171 /**
1172 * is this function associated to a subroutine type
1173 * e.g. subroutine (type1, type2) function_name { function_body };
1174 * would have num_subroutine_types 2,
1175 * and pointers to the type1 and type2 types.
1176 */
1177 int num_subroutine_types;
1178 const struct glsl_type **subroutine_types;
1179
1180 int subroutine_index;
1181 };
1182
1183 inline const char *ir_function_signature::function_name() const
1184 {
1185 return this->_function->name;
1186 }
1187 /*@}*/
1188
1189
1190 /**
1191 * IR instruction representing high-level if-statements
1192 */
1193 class ir_if : public ir_instruction {
1194 public:
1195 ir_if(ir_rvalue *condition)
1196 : ir_instruction(ir_type_if), condition(condition)
1197 {
1198 }
1199
1200 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1201
1202 virtual void accept(ir_visitor *v)
1203 {
1204 v->visit(this);
1205 }
1206
1207 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1208
1209 ir_rvalue *condition;
1210 /** List of ir_instruction for the body of the then branch */
1211 exec_list then_instructions;
1212 /** List of ir_instruction for the body of the else branch */
1213 exec_list else_instructions;
1214 };
1215
1216
1217 /**
1218 * IR instruction representing a high-level loop structure.
1219 */
1220 class ir_loop : public ir_instruction {
1221 public:
1222 ir_loop();
1223
1224 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1225
1226 virtual void accept(ir_visitor *v)
1227 {
1228 v->visit(this);
1229 }
1230
1231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1232
1233 /** List of ir_instruction that make up the body of the loop. */
1234 exec_list body_instructions;
1235 };
1236
1237
1238 class ir_assignment : public ir_instruction {
1239 public:
1240 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1241
1242 /**
1243 * Construct an assignment with an explicit write mask
1244 *
1245 * \note
1246 * Since a write mask is supplied, the LHS must already be a bare
1247 * \c ir_dereference. The cannot be any swizzles in the LHS.
1248 */
1249 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1250 unsigned write_mask);
1251
1252 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1253
1254 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1255
1256 virtual void accept(ir_visitor *v)
1257 {
1258 v->visit(this);
1259 }
1260
1261 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1262
1263 /**
1264 * Get a whole variable written by an assignment
1265 *
1266 * If the LHS of the assignment writes a whole variable, the variable is
1267 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1268 * assignment are:
1269 *
1270 * - Assigning to a scalar
1271 * - Assigning to all components of a vector
1272 * - Whole array (or matrix) assignment
1273 * - Whole structure assignment
1274 */
1275 ir_variable *whole_variable_written();
1276
1277 /**
1278 * Set the LHS of an assignment
1279 */
1280 void set_lhs(ir_rvalue *lhs);
1281
1282 /**
1283 * Left-hand side of the assignment.
1284 *
1285 * This should be treated as read only. If you need to set the LHS of an
1286 * assignment, use \c ir_assignment::set_lhs.
1287 */
1288 ir_dereference *lhs;
1289
1290 /**
1291 * Value being assigned
1292 */
1293 ir_rvalue *rhs;
1294
1295 /**
1296 * Optional condition for the assignment.
1297 */
1298 ir_rvalue *condition;
1299
1300
1301 /**
1302 * Component mask written
1303 *
1304 * For non-vector types in the LHS, this field will be zero. For vector
1305 * types, a bit will be set for each component that is written. Note that
1306 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1307 *
1308 * A partially-set write mask means that each enabled channel gets
1309 * the value from a consecutive channel of the rhs. For example,
1310 * to write just .xyw of gl_FrontColor with color:
1311 *
1312 * (assign (constant bool (1)) (xyw)
1313 * (var_ref gl_FragColor)
1314 * (swiz xyw (var_ref color)))
1315 */
1316 unsigned write_mask:4;
1317 };
1318
1319 /* Update ir_expression::get_num_operands() and operator_strs when
1320 * updating this list.
1321 */
1322 enum ir_expression_operation {
1323 ir_unop_bit_not,
1324 ir_unop_logic_not,
1325 ir_unop_neg,
1326 ir_unop_abs,
1327 ir_unop_sign,
1328 ir_unop_rcp,
1329 ir_unop_rsq,
1330 ir_unop_sqrt,
1331 ir_unop_exp, /**< Log base e on gentype */
1332 ir_unop_log, /**< Natural log on gentype */
1333 ir_unop_exp2,
1334 ir_unop_log2,
1335 ir_unop_f2i, /**< Float-to-integer conversion. */
1336 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1337 ir_unop_i2f, /**< Integer-to-float conversion. */
1338 ir_unop_f2b, /**< Float-to-boolean conversion */
1339 ir_unop_b2f, /**< Boolean-to-float conversion */
1340 ir_unop_i2b, /**< int-to-boolean conversion */
1341 ir_unop_b2i, /**< Boolean-to-int conversion */
1342 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1343 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1344 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1345 ir_unop_d2f, /**< Double-to-float conversion. */
1346 ir_unop_f2d, /**< Float-to-double conversion. */
1347 ir_unop_d2i, /**< Double-to-integer conversion. */
1348 ir_unop_i2d, /**< Integer-to-double conversion. */
1349 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1350 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1351 ir_unop_d2b, /**< Double-to-boolean conversion. */
1352 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1353 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1354 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1355 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1356
1357 /**
1358 * \name Unary floating-point rounding operations.
1359 */
1360 /*@{*/
1361 ir_unop_trunc,
1362 ir_unop_ceil,
1363 ir_unop_floor,
1364 ir_unop_fract,
1365 ir_unop_round_even,
1366 /*@}*/
1367
1368 /**
1369 * \name Trigonometric operations.
1370 */
1371 /*@{*/
1372 ir_unop_sin,
1373 ir_unop_cos,
1374 /*@}*/
1375
1376 /**
1377 * \name Partial derivatives.
1378 */
1379 /*@{*/
1380 ir_unop_dFdx,
1381 ir_unop_dFdx_coarse,
1382 ir_unop_dFdx_fine,
1383 ir_unop_dFdy,
1384 ir_unop_dFdy_coarse,
1385 ir_unop_dFdy_fine,
1386 /*@}*/
1387
1388 /**
1389 * \name Floating point pack and unpack operations.
1390 */
1391 /*@{*/
1392 ir_unop_pack_snorm_2x16,
1393 ir_unop_pack_snorm_4x8,
1394 ir_unop_pack_unorm_2x16,
1395 ir_unop_pack_unorm_4x8,
1396 ir_unop_pack_half_2x16,
1397 ir_unop_unpack_snorm_2x16,
1398 ir_unop_unpack_snorm_4x8,
1399 ir_unop_unpack_unorm_2x16,
1400 ir_unop_unpack_unorm_4x8,
1401 ir_unop_unpack_half_2x16,
1402 /*@}*/
1403
1404 /**
1405 * \name Bit operations, part of ARB_gpu_shader5.
1406 */
1407 /*@{*/
1408 ir_unop_bitfield_reverse,
1409 ir_unop_bit_count,
1410 ir_unop_find_msb,
1411 ir_unop_find_lsb,
1412 /*@}*/
1413
1414 ir_unop_saturate,
1415
1416 /**
1417 * \name Double packing, part of ARB_gpu_shader_fp64.
1418 */
1419 /*@{*/
1420 ir_unop_pack_double_2x32,
1421 ir_unop_unpack_double_2x32,
1422 /*@}*/
1423
1424 ir_unop_frexp_sig,
1425 ir_unop_frexp_exp,
1426
1427 ir_unop_noise,
1428
1429 ir_unop_subroutine_to_int,
1430 /**
1431 * Interpolate fs input at centroid
1432 *
1433 * operand0 is the fs input.
1434 */
1435 ir_unop_interpolate_at_centroid,
1436
1437 /**
1438 * Ask the driver for the total size of a buffer block.
1439 *
1440 * operand0 is the ir_constant buffer block index in the linked shader.
1441 */
1442 ir_unop_get_buffer_size,
1443
1444 /**
1445 * Calculate length of an unsized array inside a buffer block.
1446 * This opcode is going to be replaced in a lowering pass inside
1447 * the linker.
1448 *
1449 * operand0 is the unsized array's ir_value for the calculation
1450 * of its length.
1451 */
1452 ir_unop_ssbo_unsized_array_length,
1453
1454 /**
1455 * A sentinel marking the last of the unary operations.
1456 */
1457 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1458
1459 ir_binop_add,
1460 ir_binop_sub,
1461 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1462 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1463 ir_binop_div,
1464
1465 /**
1466 * Returns the carry resulting from the addition of the two arguments.
1467 */
1468 /*@{*/
1469 ir_binop_carry,
1470 /*@}*/
1471
1472 /**
1473 * Returns the borrow resulting from the subtraction of the second argument
1474 * from the first argument.
1475 */
1476 /*@{*/
1477 ir_binop_borrow,
1478 /*@}*/
1479
1480 /**
1481 * Takes one of two combinations of arguments:
1482 *
1483 * - mod(vecN, vecN)
1484 * - mod(vecN, float)
1485 *
1486 * Does not take integer types.
1487 */
1488 ir_binop_mod,
1489
1490 /**
1491 * \name Binary comparison operators which return a boolean vector.
1492 * The type of both operands must be equal.
1493 */
1494 /*@{*/
1495 ir_binop_less,
1496 ir_binop_greater,
1497 ir_binop_lequal,
1498 ir_binop_gequal,
1499 ir_binop_equal,
1500 ir_binop_nequal,
1501 /**
1502 * Returns single boolean for whether all components of operands[0]
1503 * equal the components of operands[1].
1504 */
1505 ir_binop_all_equal,
1506 /**
1507 * Returns single boolean for whether any component of operands[0]
1508 * is not equal to the corresponding component of operands[1].
1509 */
1510 ir_binop_any_nequal,
1511 /*@}*/
1512
1513 /**
1514 * \name Bit-wise binary operations.
1515 */
1516 /*@{*/
1517 ir_binop_lshift,
1518 ir_binop_rshift,
1519 ir_binop_bit_and,
1520 ir_binop_bit_xor,
1521 ir_binop_bit_or,
1522 /*@}*/
1523
1524 ir_binop_logic_and,
1525 ir_binop_logic_xor,
1526 ir_binop_logic_or,
1527
1528 ir_binop_dot,
1529 ir_binop_min,
1530 ir_binop_max,
1531
1532 ir_binop_pow,
1533
1534 /**
1535 * Load a value the size of a given GLSL type from a uniform block.
1536 *
1537 * operand0 is the ir_constant uniform block index in the linked shader.
1538 * operand1 is a byte offset within the uniform block.
1539 */
1540 ir_binop_ubo_load,
1541
1542 /**
1543 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1544 */
1545 /*@{*/
1546 ir_binop_ldexp,
1547 /*@}*/
1548
1549 /**
1550 * Extract a scalar from a vector
1551 *
1552 * operand0 is the vector
1553 * operand1 is the index of the field to read from operand0
1554 */
1555 ir_binop_vector_extract,
1556
1557 /**
1558 * Interpolate fs input at offset
1559 *
1560 * operand0 is the fs input
1561 * operand1 is the offset from the pixel center
1562 */
1563 ir_binop_interpolate_at_offset,
1564
1565 /**
1566 * Interpolate fs input at sample position
1567 *
1568 * operand0 is the fs input
1569 * operand1 is the sample ID
1570 */
1571 ir_binop_interpolate_at_sample,
1572
1573 /**
1574 * A sentinel marking the last of the binary operations.
1575 */
1576 ir_last_binop = ir_binop_interpolate_at_sample,
1577
1578 /**
1579 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1580 */
1581 /*@{*/
1582 ir_triop_fma,
1583 /*@}*/
1584
1585 ir_triop_lrp,
1586
1587 /**
1588 * \name Conditional Select
1589 *
1590 * A vector conditional select instruction (like ?:, but operating per-
1591 * component on vectors).
1592 *
1593 * \see lower_instructions_visitor::ldexp_to_arith
1594 */
1595 /*@{*/
1596 ir_triop_csel,
1597 /*@}*/
1598
1599 ir_triop_bitfield_extract,
1600
1601 /**
1602 * Generate a value with one field of a vector changed
1603 *
1604 * operand0 is the vector
1605 * operand1 is the value to write into the vector result
1606 * operand2 is the index in operand0 to be modified
1607 */
1608 ir_triop_vector_insert,
1609
1610 /**
1611 * A sentinel marking the last of the ternary operations.
1612 */
1613 ir_last_triop = ir_triop_vector_insert,
1614
1615 ir_quadop_bitfield_insert,
1616
1617 ir_quadop_vector,
1618
1619 /**
1620 * A sentinel marking the last of the ternary operations.
1621 */
1622 ir_last_quadop = ir_quadop_vector,
1623
1624 /**
1625 * A sentinel marking the last of all operations.
1626 */
1627 ir_last_opcode = ir_quadop_vector
1628 };
1629
1630 class ir_expression : public ir_rvalue {
1631 public:
1632 ir_expression(int op, const struct glsl_type *type,
1633 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1634 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1635
1636 /**
1637 * Constructor for unary operation expressions
1638 */
1639 ir_expression(int op, ir_rvalue *);
1640
1641 /**
1642 * Constructor for binary operation expressions
1643 */
1644 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1645
1646 /**
1647 * Constructor for ternary operation expressions
1648 */
1649 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1650
1651 virtual bool equals(const ir_instruction *ir,
1652 enum ir_node_type ignore = ir_type_unset) const;
1653
1654 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1655
1656 /**
1657 * Attempt to constant-fold the expression
1658 *
1659 * The "variable_context" hash table links ir_variable * to ir_constant *
1660 * that represent the variables' values. \c NULL represents an empty
1661 * context.
1662 *
1663 * If the expression cannot be constant folded, this method will return
1664 * \c NULL.
1665 */
1666 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1667
1668 /**
1669 * Determine the number of operands used by an expression
1670 */
1671 static unsigned int get_num_operands(ir_expression_operation);
1672
1673 /**
1674 * Determine the number of operands used by an expression
1675 */
1676 unsigned int get_num_operands() const
1677 {
1678 return (this->operation == ir_quadop_vector)
1679 ? this->type->vector_elements : get_num_operands(operation);
1680 }
1681
1682 /**
1683 * Return whether the expression operates on vectors horizontally.
1684 */
1685 bool is_horizontal() const
1686 {
1687 return operation == ir_binop_all_equal ||
1688 operation == ir_binop_any_nequal ||
1689 operation == ir_binop_dot ||
1690 operation == ir_binop_vector_extract ||
1691 operation == ir_triop_vector_insert ||
1692 operation == ir_quadop_vector;
1693 }
1694
1695 /**
1696 * Return a string representing this expression's operator.
1697 */
1698 const char *operator_string();
1699
1700 /**
1701 * Return a string representing this expression's operator.
1702 */
1703 static const char *operator_string(ir_expression_operation);
1704
1705
1706 /**
1707 * Do a reverse-lookup to translate the given string into an operator.
1708 */
1709 static ir_expression_operation get_operator(const char *);
1710
1711 virtual void accept(ir_visitor *v)
1712 {
1713 v->visit(this);
1714 }
1715
1716 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1717
1718 virtual ir_variable *variable_referenced() const;
1719
1720 ir_expression_operation operation;
1721 ir_rvalue *operands[4];
1722 };
1723
1724
1725 /**
1726 * HIR instruction representing a high-level function call, containing a list
1727 * of parameters and returning a value in the supplied temporary.
1728 */
1729 class ir_call : public ir_instruction {
1730 public:
1731 ir_call(ir_function_signature *callee,
1732 ir_dereference_variable *return_deref,
1733 exec_list *actual_parameters)
1734 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1735 {
1736 assert(callee->return_type != NULL);
1737 actual_parameters->move_nodes_to(& this->actual_parameters);
1738 this->use_builtin = callee->is_builtin();
1739 }
1740
1741 ir_call(ir_function_signature *callee,
1742 ir_dereference_variable *return_deref,
1743 exec_list *actual_parameters,
1744 ir_variable *var, ir_rvalue *array_idx)
1745 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1746 {
1747 assert(callee->return_type != NULL);
1748 actual_parameters->move_nodes_to(& this->actual_parameters);
1749 this->use_builtin = callee->is_builtin();
1750 }
1751
1752 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1753
1754 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1755
1756 virtual void accept(ir_visitor *v)
1757 {
1758 v->visit(this);
1759 }
1760
1761 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1762
1763 /**
1764 * Get the name of the function being called.
1765 */
1766 const char *callee_name() const
1767 {
1768 return callee->function_name();
1769 }
1770
1771 /**
1772 * Generates an inline version of the function before @ir,
1773 * storing the return value in return_deref.
1774 */
1775 void generate_inline(ir_instruction *ir);
1776
1777 /**
1778 * Storage for the function's return value.
1779 * This must be NULL if the return type is void.
1780 */
1781 ir_dereference_variable *return_deref;
1782
1783 /**
1784 * The specific function signature being called.
1785 */
1786 ir_function_signature *callee;
1787
1788 /* List of ir_rvalue of paramaters passed in this call. */
1789 exec_list actual_parameters;
1790
1791 /** Should this call only bind to a built-in function? */
1792 bool use_builtin;
1793
1794 /*
1795 * ARB_shader_subroutine support -
1796 * the subroutine uniform variable and array index
1797 * rvalue to be used in the lowering pass later.
1798 */
1799 ir_variable *sub_var;
1800 ir_rvalue *array_idx;
1801 };
1802
1803
1804 /**
1805 * \name Jump-like IR instructions.
1806 *
1807 * These include \c break, \c continue, \c return, and \c discard.
1808 */
1809 /*@{*/
1810 class ir_jump : public ir_instruction {
1811 protected:
1812 ir_jump(enum ir_node_type t)
1813 : ir_instruction(t)
1814 {
1815 }
1816 };
1817
1818 class ir_return : public ir_jump {
1819 public:
1820 ir_return()
1821 : ir_jump(ir_type_return), value(NULL)
1822 {
1823 }
1824
1825 ir_return(ir_rvalue *value)
1826 : ir_jump(ir_type_return), value(value)
1827 {
1828 }
1829
1830 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1831
1832 ir_rvalue *get_value() const
1833 {
1834 return value;
1835 }
1836
1837 virtual void accept(ir_visitor *v)
1838 {
1839 v->visit(this);
1840 }
1841
1842 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1843
1844 ir_rvalue *value;
1845 };
1846
1847
1848 /**
1849 * Jump instructions used inside loops
1850 *
1851 * These include \c break and \c continue. The \c break within a loop is
1852 * different from the \c break within a switch-statement.
1853 *
1854 * \sa ir_switch_jump
1855 */
1856 class ir_loop_jump : public ir_jump {
1857 public:
1858 enum jump_mode {
1859 jump_break,
1860 jump_continue
1861 };
1862
1863 ir_loop_jump(jump_mode mode)
1864 : ir_jump(ir_type_loop_jump)
1865 {
1866 this->mode = mode;
1867 }
1868
1869 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1870
1871 virtual void accept(ir_visitor *v)
1872 {
1873 v->visit(this);
1874 }
1875
1876 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1877
1878 bool is_break() const
1879 {
1880 return mode == jump_break;
1881 }
1882
1883 bool is_continue() const
1884 {
1885 return mode == jump_continue;
1886 }
1887
1888 /** Mode selector for the jump instruction. */
1889 enum jump_mode mode;
1890 };
1891
1892 /**
1893 * IR instruction representing discard statements.
1894 */
1895 class ir_discard : public ir_jump {
1896 public:
1897 ir_discard()
1898 : ir_jump(ir_type_discard)
1899 {
1900 this->condition = NULL;
1901 }
1902
1903 ir_discard(ir_rvalue *cond)
1904 : ir_jump(ir_type_discard)
1905 {
1906 this->condition = cond;
1907 }
1908
1909 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1910
1911 virtual void accept(ir_visitor *v)
1912 {
1913 v->visit(this);
1914 }
1915
1916 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1917
1918 ir_rvalue *condition;
1919 };
1920 /*@}*/
1921
1922
1923 /**
1924 * Texture sampling opcodes used in ir_texture
1925 */
1926 enum ir_texture_opcode {
1927 ir_tex, /**< Regular texture look-up */
1928 ir_txb, /**< Texture look-up with LOD bias */
1929 ir_txl, /**< Texture look-up with explicit LOD */
1930 ir_txd, /**< Texture look-up with partial derivatvies */
1931 ir_txf, /**< Texel fetch with explicit LOD */
1932 ir_txf_ms, /**< Multisample texture fetch */
1933 ir_txs, /**< Texture size */
1934 ir_lod, /**< Texture lod query */
1935 ir_tg4, /**< Texture gather */
1936 ir_query_levels, /**< Texture levels query */
1937 ir_texture_samples, /**< Texture samples query */
1938 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1939 };
1940
1941
1942 /**
1943 * IR instruction to sample a texture
1944 *
1945 * The specific form of the IR instruction depends on the \c mode value
1946 * selected from \c ir_texture_opcodes. In the printed IR, these will
1947 * appear as:
1948 *
1949 * Texel offset (0 or an expression)
1950 * | Projection divisor
1951 * | | Shadow comparitor
1952 * | | |
1953 * v v v
1954 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1955 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1956 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1957 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1958 * (txf <type> <sampler> <coordinate> 0 <lod>)
1959 * (txf_ms
1960 * <type> <sampler> <coordinate> <sample_index>)
1961 * (txs <type> <sampler> <lod>)
1962 * (lod <type> <sampler> <coordinate>)
1963 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1964 * (query_levels <type> <sampler>)
1965 * (samples_identical <sampler> <coordinate>)
1966 */
1967 class ir_texture : public ir_rvalue {
1968 public:
1969 ir_texture(enum ir_texture_opcode op)
1970 : ir_rvalue(ir_type_texture),
1971 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1972 shadow_comparitor(NULL), offset(NULL)
1973 {
1974 memset(&lod_info, 0, sizeof(lod_info));
1975 }
1976
1977 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1978
1979 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1980
1981 virtual void accept(ir_visitor *v)
1982 {
1983 v->visit(this);
1984 }
1985
1986 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1987
1988 virtual bool equals(const ir_instruction *ir,
1989 enum ir_node_type ignore = ir_type_unset) const;
1990
1991 /**
1992 * Return a string representing the ir_texture_opcode.
1993 */
1994 const char *opcode_string();
1995
1996 /** Set the sampler and type. */
1997 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1998
1999 /**
2000 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2001 */
2002 static ir_texture_opcode get_opcode(const char *);
2003
2004 enum ir_texture_opcode op;
2005
2006 /** Sampler to use for the texture access. */
2007 ir_dereference *sampler;
2008
2009 /** Texture coordinate to sample */
2010 ir_rvalue *coordinate;
2011
2012 /**
2013 * Value used for projective divide.
2014 *
2015 * If there is no projective divide (the common case), this will be
2016 * \c NULL. Optimization passes should check for this to point to a constant
2017 * of 1.0 and replace that with \c NULL.
2018 */
2019 ir_rvalue *projector;
2020
2021 /**
2022 * Coordinate used for comparison on shadow look-ups.
2023 *
2024 * If there is no shadow comparison, this will be \c NULL. For the
2025 * \c ir_txf opcode, this *must* be \c NULL.
2026 */
2027 ir_rvalue *shadow_comparitor;
2028
2029 /** Texel offset. */
2030 ir_rvalue *offset;
2031
2032 union {
2033 ir_rvalue *lod; /**< Floating point LOD */
2034 ir_rvalue *bias; /**< Floating point LOD bias */
2035 ir_rvalue *sample_index; /**< MSAA sample index */
2036 ir_rvalue *component; /**< Gather component selector */
2037 struct {
2038 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2039 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2040 } grad;
2041 } lod_info;
2042 };
2043
2044
2045 struct ir_swizzle_mask {
2046 unsigned x:2;
2047 unsigned y:2;
2048 unsigned z:2;
2049 unsigned w:2;
2050
2051 /**
2052 * Number of components in the swizzle.
2053 */
2054 unsigned num_components:3;
2055
2056 /**
2057 * Does the swizzle contain duplicate components?
2058 *
2059 * L-value swizzles cannot contain duplicate components.
2060 */
2061 unsigned has_duplicates:1;
2062 };
2063
2064
2065 class ir_swizzle : public ir_rvalue {
2066 public:
2067 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2068 unsigned count);
2069
2070 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2071
2072 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2073
2074 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2075
2076 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2077
2078 /**
2079 * Construct an ir_swizzle from the textual representation. Can fail.
2080 */
2081 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2082
2083 virtual void accept(ir_visitor *v)
2084 {
2085 v->visit(this);
2086 }
2087
2088 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2089
2090 virtual bool equals(const ir_instruction *ir,
2091 enum ir_node_type ignore = ir_type_unset) const;
2092
2093 bool is_lvalue() const
2094 {
2095 return val->is_lvalue() && !mask.has_duplicates;
2096 }
2097
2098 /**
2099 * Get the variable that is ultimately referenced by an r-value
2100 */
2101 virtual ir_variable *variable_referenced() const;
2102
2103 ir_rvalue *val;
2104 ir_swizzle_mask mask;
2105
2106 private:
2107 /**
2108 * Initialize the mask component of a swizzle
2109 *
2110 * This is used by the \c ir_swizzle constructors.
2111 */
2112 void init_mask(const unsigned *components, unsigned count);
2113 };
2114
2115
2116 class ir_dereference : public ir_rvalue {
2117 public:
2118 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2119
2120 bool is_lvalue() const;
2121
2122 /**
2123 * Get the variable that is ultimately referenced by an r-value
2124 */
2125 virtual ir_variable *variable_referenced() const = 0;
2126
2127 protected:
2128 ir_dereference(enum ir_node_type t)
2129 : ir_rvalue(t)
2130 {
2131 }
2132 };
2133
2134
2135 class ir_dereference_variable : public ir_dereference {
2136 public:
2137 ir_dereference_variable(ir_variable *var);
2138
2139 virtual ir_dereference_variable *clone(void *mem_ctx,
2140 struct hash_table *) const;
2141
2142 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2143
2144 virtual bool equals(const ir_instruction *ir,
2145 enum ir_node_type ignore = ir_type_unset) const;
2146
2147 /**
2148 * Get the variable that is ultimately referenced by an r-value
2149 */
2150 virtual ir_variable *variable_referenced() const
2151 {
2152 return this->var;
2153 }
2154
2155 virtual ir_variable *whole_variable_referenced()
2156 {
2157 /* ir_dereference_variable objects always dereference the entire
2158 * variable. However, if this dereference is dereferenced by anything
2159 * else, the complete deferefernce chain is not a whole-variable
2160 * dereference. This method should only be called on the top most
2161 * ir_rvalue in a dereference chain.
2162 */
2163 return this->var;
2164 }
2165
2166 virtual void accept(ir_visitor *v)
2167 {
2168 v->visit(this);
2169 }
2170
2171 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2172
2173 /**
2174 * Object being dereferenced.
2175 */
2176 ir_variable *var;
2177 };
2178
2179
2180 class ir_dereference_array : public ir_dereference {
2181 public:
2182 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2183
2184 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2185
2186 virtual ir_dereference_array *clone(void *mem_ctx,
2187 struct hash_table *) const;
2188
2189 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2190
2191 virtual bool equals(const ir_instruction *ir,
2192 enum ir_node_type ignore = ir_type_unset) const;
2193
2194 /**
2195 * Get the variable that is ultimately referenced by an r-value
2196 */
2197 virtual ir_variable *variable_referenced() const
2198 {
2199 return this->array->variable_referenced();
2200 }
2201
2202 virtual void accept(ir_visitor *v)
2203 {
2204 v->visit(this);
2205 }
2206
2207 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2208
2209 ir_rvalue *array;
2210 ir_rvalue *array_index;
2211
2212 private:
2213 void set_array(ir_rvalue *value);
2214 };
2215
2216
2217 class ir_dereference_record : public ir_dereference {
2218 public:
2219 ir_dereference_record(ir_rvalue *value, const char *field);
2220
2221 ir_dereference_record(ir_variable *var, const char *field);
2222
2223 virtual ir_dereference_record *clone(void *mem_ctx,
2224 struct hash_table *) const;
2225
2226 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2227
2228 /**
2229 * Get the variable that is ultimately referenced by an r-value
2230 */
2231 virtual ir_variable *variable_referenced() const
2232 {
2233 return this->record->variable_referenced();
2234 }
2235
2236 virtual void accept(ir_visitor *v)
2237 {
2238 v->visit(this);
2239 }
2240
2241 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2242
2243 ir_rvalue *record;
2244 const char *field;
2245 };
2246
2247
2248 /**
2249 * Data stored in an ir_constant
2250 */
2251 union ir_constant_data {
2252 unsigned u[16];
2253 int i[16];
2254 float f[16];
2255 bool b[16];
2256 double d[16];
2257 };
2258
2259
2260 class ir_constant : public ir_rvalue {
2261 public:
2262 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2263 ir_constant(bool b, unsigned vector_elements=1);
2264 ir_constant(unsigned int u, unsigned vector_elements=1);
2265 ir_constant(int i, unsigned vector_elements=1);
2266 ir_constant(float f, unsigned vector_elements=1);
2267 ir_constant(double d, unsigned vector_elements=1);
2268
2269 /**
2270 * Construct an ir_constant from a list of ir_constant values
2271 */
2272 ir_constant(const struct glsl_type *type, exec_list *values);
2273
2274 /**
2275 * Construct an ir_constant from a scalar component of another ir_constant
2276 *
2277 * The new \c ir_constant inherits the type of the component from the
2278 * source constant.
2279 *
2280 * \note
2281 * In the case of a matrix constant, the new constant is a scalar, \b not
2282 * a vector.
2283 */
2284 ir_constant(const ir_constant *c, unsigned i);
2285
2286 /**
2287 * Return a new ir_constant of the specified type containing all zeros.
2288 */
2289 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2290
2291 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2292
2293 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2294
2295 virtual void accept(ir_visitor *v)
2296 {
2297 v->visit(this);
2298 }
2299
2300 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2301
2302 virtual bool equals(const ir_instruction *ir,
2303 enum ir_node_type ignore = ir_type_unset) const;
2304
2305 /**
2306 * Get a particular component of a constant as a specific type
2307 *
2308 * This is useful, for example, to get a value from an integer constant
2309 * as a float or bool. This appears frequently when constructors are
2310 * called with all constant parameters.
2311 */
2312 /*@{*/
2313 bool get_bool_component(unsigned i) const;
2314 float get_float_component(unsigned i) const;
2315 double get_double_component(unsigned i) const;
2316 int get_int_component(unsigned i) const;
2317 unsigned get_uint_component(unsigned i) const;
2318 /*@}*/
2319
2320 ir_constant *get_array_element(unsigned i) const;
2321
2322 ir_constant *get_record_field(const char *name);
2323
2324 /**
2325 * Copy the values on another constant at a given offset.
2326 *
2327 * The offset is ignored for array or struct copies, it's only for
2328 * scalars or vectors into vectors or matrices.
2329 *
2330 * With identical types on both sides and zero offset it's clone()
2331 * without creating a new object.
2332 */
2333
2334 void copy_offset(ir_constant *src, int offset);
2335
2336 /**
2337 * Copy the values on another constant at a given offset and
2338 * following an assign-like mask.
2339 *
2340 * The mask is ignored for scalars.
2341 *
2342 * Note that this function only handles what assign can handle,
2343 * i.e. at most a vector as source and a column of a matrix as
2344 * destination.
2345 */
2346
2347 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2348
2349 /**
2350 * Determine whether a constant has the same value as another constant
2351 *
2352 * \sa ir_constant::is_zero, ir_constant::is_one,
2353 * ir_constant::is_negative_one
2354 */
2355 bool has_value(const ir_constant *) const;
2356
2357 /**
2358 * Return true if this ir_constant represents the given value.
2359 *
2360 * For vectors, this checks that each component is the given value.
2361 */
2362 virtual bool is_value(float f, int i) const;
2363 virtual bool is_zero() const;
2364 virtual bool is_one() const;
2365 virtual bool is_negative_one() const;
2366
2367 /**
2368 * Return true for constants that could be stored as 16-bit unsigned values.
2369 *
2370 * Note that this will return true even for signed integer ir_constants, as
2371 * long as the value is non-negative and fits in 16-bits.
2372 */
2373 virtual bool is_uint16_constant() const;
2374
2375 /**
2376 * Value of the constant.
2377 *
2378 * The field used to back the values supplied by the constant is determined
2379 * by the type associated with the \c ir_instruction. Constants may be
2380 * scalars, vectors, or matrices.
2381 */
2382 union ir_constant_data value;
2383
2384 /* Array elements */
2385 ir_constant **array_elements;
2386
2387 /* Structure fields */
2388 exec_list components;
2389
2390 private:
2391 /**
2392 * Parameterless constructor only used by the clone method
2393 */
2394 ir_constant(void);
2395 };
2396
2397 /**
2398 * IR instruction to emit a vertex in a geometry shader.
2399 */
2400 class ir_emit_vertex : public ir_instruction {
2401 public:
2402 ir_emit_vertex(ir_rvalue *stream)
2403 : ir_instruction(ir_type_emit_vertex),
2404 stream(stream)
2405 {
2406 assert(stream);
2407 }
2408
2409 virtual void accept(ir_visitor *v)
2410 {
2411 v->visit(this);
2412 }
2413
2414 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2415 {
2416 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2417 }
2418
2419 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2420
2421 int stream_id() const
2422 {
2423 return stream->as_constant()->value.i[0];
2424 }
2425
2426 ir_rvalue *stream;
2427 };
2428
2429 /**
2430 * IR instruction to complete the current primitive and start a new one in a
2431 * geometry shader.
2432 */
2433 class ir_end_primitive : public ir_instruction {
2434 public:
2435 ir_end_primitive(ir_rvalue *stream)
2436 : ir_instruction(ir_type_end_primitive),
2437 stream(stream)
2438 {
2439 assert(stream);
2440 }
2441
2442 virtual void accept(ir_visitor *v)
2443 {
2444 v->visit(this);
2445 }
2446
2447 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2448 {
2449 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2450 }
2451
2452 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2453
2454 int stream_id() const
2455 {
2456 return stream->as_constant()->value.i[0];
2457 }
2458
2459 ir_rvalue *stream;
2460 };
2461
2462 /**
2463 * IR instruction for tessellation control and compute shader barrier.
2464 */
2465 class ir_barrier : public ir_instruction {
2466 public:
2467 ir_barrier()
2468 : ir_instruction(ir_type_barrier)
2469 {
2470 }
2471
2472 virtual void accept(ir_visitor *v)
2473 {
2474 v->visit(this);
2475 }
2476
2477 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2478 {
2479 return new(mem_ctx) ir_barrier();
2480 }
2481
2482 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2483 };
2484
2485 /*@}*/
2486
2487 /**
2488 * Apply a visitor to each IR node in a list
2489 */
2490 void
2491 visit_exec_list(exec_list *list, ir_visitor *visitor);
2492
2493 /**
2494 * Validate invariants on each IR node in a list
2495 */
2496 void validate_ir_tree(exec_list *instructions);
2497
2498 struct _mesa_glsl_parse_state;
2499 struct gl_shader_program;
2500
2501 /**
2502 * Detect whether an unlinked shader contains static recursion
2503 *
2504 * If the list of instructions is determined to contain static recursion,
2505 * \c _mesa_glsl_error will be called to emit error messages for each function
2506 * that is in the recursion cycle.
2507 */
2508 void
2509 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2510 exec_list *instructions);
2511
2512 /**
2513 * Detect whether a linked shader contains static recursion
2514 *
2515 * If the list of instructions is determined to contain static recursion,
2516 * \c link_error_printf will be called to emit error messages for each function
2517 * that is in the recursion cycle. In addition,
2518 * \c gl_shader_program::LinkStatus will be set to false.
2519 */
2520 void
2521 detect_recursion_linked(struct gl_shader_program *prog,
2522 exec_list *instructions);
2523
2524 /**
2525 * Make a clone of each IR instruction in a list
2526 *
2527 * \param in List of IR instructions that are to be cloned
2528 * \param out List to hold the cloned instructions
2529 */
2530 void
2531 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2532
2533 extern void
2534 _mesa_glsl_initialize_variables(exec_list *instructions,
2535 struct _mesa_glsl_parse_state *state);
2536
2537 extern void
2538 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2539
2540 extern void
2541 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2542
2543 extern void
2544 _mesa_glsl_initialize_builtin_functions();
2545
2546 extern ir_function_signature *
2547 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2548 const char *name, exec_list *actual_parameters);
2549
2550 extern ir_function *
2551 _mesa_glsl_find_builtin_function_by_name(const char *name);
2552
2553 extern gl_shader *
2554 _mesa_glsl_get_builtin_function_shader(void);
2555
2556 extern ir_function_signature *
2557 _mesa_get_main_function_signature(gl_shader *sh);
2558
2559 extern void
2560 _mesa_glsl_release_functions(void);
2561
2562 extern void
2563 _mesa_glsl_release_builtin_functions(void);
2564
2565 extern void
2566 reparent_ir(exec_list *list, void *mem_ctx);
2567
2568 struct glsl_symbol_table;
2569
2570 extern void
2571 import_prototypes(const exec_list *source, exec_list *dest,
2572 struct glsl_symbol_table *symbols, void *mem_ctx);
2573
2574 extern bool
2575 ir_has_call(ir_instruction *ir);
2576
2577 extern void
2578 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2579 gl_shader_stage shader_stage);
2580
2581 extern char *
2582 prototype_string(const glsl_type *return_type, const char *name,
2583 exec_list *parameters);
2584
2585 const char *
2586 mode_string(const ir_variable *var);
2587
2588 /**
2589 * Built-in / reserved GL variables names start with "gl_"
2590 */
2591 static inline bool
2592 is_gl_identifier(const char *s)
2593 {
2594 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2595 }
2596
2597 extern "C" {
2598 #endif /* __cplusplus */
2599
2600 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2601 struct _mesa_glsl_parse_state *state);
2602
2603 extern void
2604 fprint_ir(FILE *f, const void *instruction);
2605
2606 #ifdef __cplusplus
2607 } /* extern "C" */
2608 #endif
2609
2610 unsigned
2611 vertices_per_prim(GLenum prim);
2612
2613 #endif /* IR_H */