glsl: use a non-malloc'd storage for short ir_variable names
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_interpolation_flat() const
594 {
595 return this->data.interpolation == INTERP_MODE_FLAT ||
596 this->type->contains_integer() ||
597 this->type->contains_double();
598 }
599
600 inline bool is_name_ralloced() const
601 {
602 return this->name != ir_variable::tmp_name &&
603 this->name != this->name_storage;
604 }
605
606 /**
607 * Enable emitting extension warnings for this variable
608 */
609 void enable_extension_warning(const char *extension);
610
611 /**
612 * Get the extension warning string for this variable
613 *
614 * If warnings are not enabled, \c NULL is returned.
615 */
616 const char *get_extension_warning() const;
617
618 /**
619 * Declared type of the variable
620 */
621 const struct glsl_type *type;
622
623 /**
624 * Declared name of the variable
625 */
626 const char *name;
627
628 private:
629 /**
630 * If the name length fits into name_storage, it's used, otherwise
631 * the name is ralloc'd. shader-db mining showed that 70% of variables
632 * fit here. This is a win over ralloc where only ralloc_header has
633 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
634 */
635 char name_storage[16];
636
637 public:
638 struct ir_variable_data {
639
640 /**
641 * Is the variable read-only?
642 *
643 * This is set for variables declared as \c const, shader inputs,
644 * and uniforms.
645 */
646 unsigned read_only:1;
647 unsigned centroid:1;
648 unsigned sample:1;
649 unsigned patch:1;
650 unsigned invariant:1;
651 unsigned precise:1;
652
653 /**
654 * Has this variable been used for reading or writing?
655 *
656 * Several GLSL semantic checks require knowledge of whether or not a
657 * variable has been used. For example, it is an error to redeclare a
658 * variable as invariant after it has been used.
659 *
660 * This is only maintained in the ast_to_hir.cpp path, not in
661 * Mesa's fixed function or ARB program paths.
662 */
663 unsigned used:1;
664
665 /**
666 * Has this variable been statically assigned?
667 *
668 * This answers whether the variable was assigned in any path of
669 * the shader during ast_to_hir. This doesn't answer whether it is
670 * still written after dead code removal, nor is it maintained in
671 * non-ast_to_hir.cpp (GLSL parsing) paths.
672 */
673 unsigned assigned:1;
674
675 /**
676 * When separate shader programs are enabled, only input/outputs between
677 * the stages of a multi-stage separate program can be safely removed
678 * from the shader interface. Other input/outputs must remains active.
679 */
680 unsigned always_active_io:1;
681
682 /**
683 * Enum indicating how the variable was declared. See
684 * ir_var_declaration_type.
685 *
686 * This is used to detect certain kinds of illegal variable redeclarations.
687 */
688 unsigned how_declared:2;
689
690 /**
691 * Storage class of the variable.
692 *
693 * \sa ir_variable_mode
694 */
695 unsigned mode:4;
696
697 /**
698 * Interpolation mode for shader inputs / outputs
699 *
700 * \sa glsl_interp_mode
701 */
702 unsigned interpolation:2;
703
704 /**
705 * \name ARB_fragment_coord_conventions
706 * @{
707 */
708 unsigned origin_upper_left:1;
709 unsigned pixel_center_integer:1;
710 /*@}*/
711
712 /**
713 * Was the location explicitly set in the shader?
714 *
715 * If the location is explicitly set in the shader, it \b cannot be changed
716 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
717 * no effect).
718 */
719 unsigned explicit_location:1;
720 unsigned explicit_index:1;
721
722 /**
723 * Was an initial binding explicitly set in the shader?
724 *
725 * If so, constant_value contains an integer ir_constant representing the
726 * initial binding point.
727 */
728 unsigned explicit_binding:1;
729
730 /**
731 * Was an initial component explicitly set in the shader?
732 */
733 unsigned explicit_component:1;
734
735 /**
736 * Does this variable have an initializer?
737 *
738 * This is used by the linker to cross-validiate initializers of global
739 * variables.
740 */
741 unsigned has_initializer:1;
742
743 /**
744 * Is this variable a generic output or input that has not yet been matched
745 * up to a variable in another stage of the pipeline?
746 *
747 * This is used by the linker as scratch storage while assigning locations
748 * to generic inputs and outputs.
749 */
750 unsigned is_unmatched_generic_inout:1;
751
752 /**
753 * Is this varying used only by transform feedback?
754 *
755 * This is used by the linker to decide if its safe to pack the varying.
756 */
757 unsigned is_xfb_only:1;
758
759 /**
760 * Was a transfor feedback buffer set in the shader?
761 */
762 unsigned explicit_xfb_buffer:1;
763
764 /**
765 * Was a transfor feedback offset set in the shader?
766 */
767 unsigned explicit_xfb_offset:1;
768
769 /**
770 * Was a transfor feedback stride set in the shader?
771 */
772 unsigned explicit_xfb_stride:1;
773
774 /**
775 * If non-zero, then this variable may be packed along with other variables
776 * into a single varying slot, so this offset should be applied when
777 * accessing components. For example, an offset of 1 means that the x
778 * component of this variable is actually stored in component y of the
779 * location specified by \c location.
780 */
781 unsigned location_frac:2;
782
783 /**
784 * Layout of the matrix. Uses glsl_matrix_layout values.
785 */
786 unsigned matrix_layout:2;
787
788 /**
789 * Non-zero if this variable was created by lowering a named interface
790 * block.
791 */
792 unsigned from_named_ifc_block:1;
793
794 /**
795 * Non-zero if the variable must be a shader input. This is useful for
796 * constraints on function parameters.
797 */
798 unsigned must_be_shader_input:1;
799
800 /**
801 * Output index for dual source blending.
802 *
803 * \note
804 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
805 * source blending.
806 */
807 unsigned index:1;
808
809 /**
810 * Precision qualifier.
811 *
812 * In desktop GLSL we do not care about precision qualifiers at all, in
813 * fact, the spec says that precision qualifiers are ignored.
814 *
815 * To make things easy, we make it so that this field is always
816 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
817 * have the same precision value and the checks we add in the compiler
818 * for this field will never break a desktop shader compile.
819 */
820 unsigned precision:2;
821
822 /**
823 * \brief Layout qualifier for gl_FragDepth.
824 *
825 * This is not equal to \c ir_depth_layout_none if and only if this
826 * variable is \c gl_FragDepth and a layout qualifier is specified.
827 */
828 ir_depth_layout depth_layout:3;
829
830 /**
831 * ARB_shader_image_load_store qualifiers.
832 */
833 unsigned image_read_only:1; /**< "readonly" qualifier. */
834 unsigned image_write_only:1; /**< "writeonly" qualifier. */
835 unsigned image_coherent:1;
836 unsigned image_volatile:1;
837 unsigned image_restrict:1;
838
839 /**
840 * ARB_shader_storage_buffer_object
841 */
842 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
843
844 unsigned implicit_sized_array:1;
845
846 /**
847 * Is this a non-patch TCS output / TES input array that was implicitly
848 * sized to gl_MaxPatchVertices?
849 */
850 unsigned tess_varying_implicit_sized_array:1;
851
852 /**
853 * Whether this is a fragment shader output implicitly initialized with
854 * the previous contents of the specified render target at the
855 * framebuffer location corresponding to this shader invocation.
856 */
857 unsigned fb_fetch_output:1;
858
859 /**
860 * Emit a warning if this variable is accessed.
861 */
862 private:
863 uint8_t warn_extension_index;
864
865 public:
866 /** Image internal format if specified explicitly, otherwise GL_NONE. */
867 uint16_t image_format;
868
869 private:
870 /**
871 * Number of state slots used
872 *
873 * \note
874 * This could be stored in as few as 7-bits, if necessary. If it is made
875 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
876 * be safe.
877 */
878 uint16_t _num_state_slots;
879
880 public:
881 /**
882 * Initial binding point for a sampler, atomic, or UBO.
883 *
884 * For array types, this represents the binding point for the first element.
885 */
886 int16_t binding;
887
888 /**
889 * Storage location of the base of this variable
890 *
891 * The precise meaning of this field depends on the nature of the variable.
892 *
893 * - Vertex shader input: one of the values from \c gl_vert_attrib.
894 * - Vertex shader output: one of the values from \c gl_varying_slot.
895 * - Geometry shader input: one of the values from \c gl_varying_slot.
896 * - Geometry shader output: one of the values from \c gl_varying_slot.
897 * - Fragment shader input: one of the values from \c gl_varying_slot.
898 * - Fragment shader output: one of the values from \c gl_frag_result.
899 * - Uniforms: Per-stage uniform slot number for default uniform block.
900 * - Uniforms: Index within the uniform block definition for UBO members.
901 * - Non-UBO Uniforms: explicit location until linking then reused to
902 * store uniform slot number.
903 * - Other: This field is not currently used.
904 *
905 * If the variable is a uniform, shader input, or shader output, and the
906 * slot has not been assigned, the value will be -1.
907 */
908 int location;
909
910 /**
911 * for glsl->tgsi/mesa IR we need to store the index into the
912 * parameters for uniforms, initially the code overloaded location
913 * but this causes problems with indirect samplers and AoA.
914 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
915 */
916 int param_index;
917
918 /**
919 * Vertex stream output identifier.
920 */
921 unsigned stream;
922
923 /**
924 * Atomic, transform feedback or block member offset.
925 */
926 unsigned offset;
927
928 /**
929 * Highest element accessed with a constant expression array index
930 *
931 * Not used for non-array variables. -1 is never accessed.
932 */
933 int max_array_access;
934
935 /**
936 * Transform feedback buffer.
937 */
938 unsigned xfb_buffer;
939
940 /**
941 * Transform feedback stride.
942 */
943 unsigned xfb_stride;
944
945 /**
946 * Allow (only) ir_variable direct access private members.
947 */
948 friend class ir_variable;
949 } data;
950
951 /**
952 * Value assigned in the initializer of a variable declared "const"
953 */
954 ir_constant *constant_value;
955
956 /**
957 * Constant expression assigned in the initializer of the variable
958 *
959 * \warning
960 * This field and \c ::constant_value are distinct. Even if the two fields
961 * refer to constants with the same value, they must point to separate
962 * objects.
963 */
964 ir_constant *constant_initializer;
965
966 private:
967 static const char *const warn_extension_table[];
968
969 union {
970 /**
971 * For variables which satisfy the is_interface_instance() predicate,
972 * this points to an array of integers such that if the ith member of
973 * the interface block is an array, max_ifc_array_access[i] is the
974 * maximum array element of that member that has been accessed. If the
975 * ith member of the interface block is not an array,
976 * max_ifc_array_access[i] is unused.
977 *
978 * For variables whose type is not an interface block, this pointer is
979 * NULL.
980 */
981 int *max_ifc_array_access;
982
983 /**
984 * Built-in state that backs this uniform
985 *
986 * Once set at variable creation, \c state_slots must remain invariant.
987 *
988 * If the variable is not a uniform, \c _num_state_slots will be zero
989 * and \c state_slots will be \c NULL.
990 */
991 ir_state_slot *state_slots;
992 } u;
993
994 /**
995 * For variables that are in an interface block or are an instance of an
996 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
997 *
998 * \sa ir_variable::location
999 */
1000 const glsl_type *interface_type;
1001
1002 /**
1003 * Name used for anonymous compiler temporaries
1004 */
1005 static const char tmp_name[];
1006
1007 public:
1008 /**
1009 * Should the construct keep names for ir_var_temporary variables?
1010 *
1011 * When this global is false, names passed to the constructor for
1012 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1013 * be named "compiler_temp". This name will be in static storage.
1014 *
1015 * \warning
1016 * \b NEVER change the mode of an \c ir_var_temporary.
1017 *
1018 * \warning
1019 * This variable is \b not thread-safe. It is global, \b not
1020 * per-context. It begins life false. A context can, at some point, make
1021 * it true. From that point on, it will be true forever. This should be
1022 * okay since it will only be set true while debugging.
1023 */
1024 static bool temporaries_allocate_names;
1025 };
1026
1027 /**
1028 * A function that returns whether a built-in function is available in the
1029 * current shading language (based on version, ES or desktop, and extensions).
1030 */
1031 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1032
1033 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1034 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1035
1036 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1037 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1038
1039 enum ir_intrinsic_id {
1040 ir_intrinsic_invalid = 0,
1041
1042 /**
1043 * \name Generic intrinsics
1044 *
1045 * Each of these intrinsics has a specific version for shared variables and
1046 * SSBOs.
1047 */
1048 /*@{*/
1049 ir_intrinsic_generic_load,
1050 ir_intrinsic_generic_store,
1051 ir_intrinsic_generic_atomic_add,
1052 ir_intrinsic_generic_atomic_and,
1053 ir_intrinsic_generic_atomic_or,
1054 ir_intrinsic_generic_atomic_xor,
1055 ir_intrinsic_generic_atomic_min,
1056 ir_intrinsic_generic_atomic_max,
1057 ir_intrinsic_generic_atomic_exchange,
1058 ir_intrinsic_generic_atomic_comp_swap,
1059 /*@}*/
1060
1061 ir_intrinsic_atomic_counter_read,
1062 ir_intrinsic_atomic_counter_increment,
1063 ir_intrinsic_atomic_counter_predecrement,
1064 ir_intrinsic_atomic_counter_add,
1065 ir_intrinsic_atomic_counter_and,
1066 ir_intrinsic_atomic_counter_or,
1067 ir_intrinsic_atomic_counter_xor,
1068 ir_intrinsic_atomic_counter_min,
1069 ir_intrinsic_atomic_counter_max,
1070 ir_intrinsic_atomic_counter_exchange,
1071 ir_intrinsic_atomic_counter_comp_swap,
1072
1073 ir_intrinsic_image_load,
1074 ir_intrinsic_image_store,
1075 ir_intrinsic_image_atomic_add,
1076 ir_intrinsic_image_atomic_and,
1077 ir_intrinsic_image_atomic_or,
1078 ir_intrinsic_image_atomic_xor,
1079 ir_intrinsic_image_atomic_min,
1080 ir_intrinsic_image_atomic_max,
1081 ir_intrinsic_image_atomic_exchange,
1082 ir_intrinsic_image_atomic_comp_swap,
1083 ir_intrinsic_image_size,
1084 ir_intrinsic_image_samples,
1085
1086 ir_intrinsic_ssbo_load,
1087 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1088 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1089 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1090 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1091 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1092 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1093 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1094 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1095 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1096
1097 ir_intrinsic_memory_barrier,
1098 ir_intrinsic_shader_clock,
1099 ir_intrinsic_group_memory_barrier,
1100 ir_intrinsic_memory_barrier_atomic_counter,
1101 ir_intrinsic_memory_barrier_buffer,
1102 ir_intrinsic_memory_barrier_image,
1103 ir_intrinsic_memory_barrier_shared,
1104
1105 ir_intrinsic_shared_load,
1106 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1107 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1108 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1109 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1110 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1111 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1112 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1113 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1114 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1115 };
1116
1117 /*@{*/
1118 /**
1119 * The representation of a function instance; may be the full definition or
1120 * simply a prototype.
1121 */
1122 class ir_function_signature : public ir_instruction {
1123 /* An ir_function_signature will be part of the list of signatures in
1124 * an ir_function.
1125 */
1126 public:
1127 ir_function_signature(const glsl_type *return_type,
1128 builtin_available_predicate builtin_avail = NULL);
1129
1130 virtual ir_function_signature *clone(void *mem_ctx,
1131 struct hash_table *ht) const;
1132 ir_function_signature *clone_prototype(void *mem_ctx,
1133 struct hash_table *ht) const;
1134
1135 virtual void accept(ir_visitor *v)
1136 {
1137 v->visit(this);
1138 }
1139
1140 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1141
1142 /**
1143 * Attempt to evaluate this function as a constant expression,
1144 * given a list of the actual parameters and the variable context.
1145 * Returns NULL for non-built-ins.
1146 */
1147 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1148
1149 /**
1150 * Get the name of the function for which this is a signature
1151 */
1152 const char *function_name() const;
1153
1154 /**
1155 * Get a handle to the function for which this is a signature
1156 *
1157 * There is no setter function, this function returns a \c const pointer,
1158 * and \c ir_function_signature::_function is private for a reason. The
1159 * only way to make a connection between a function and function signature
1160 * is via \c ir_function::add_signature. This helps ensure that certain
1161 * invariants (i.e., a function signature is in the list of signatures for
1162 * its \c _function) are met.
1163 *
1164 * \sa ir_function::add_signature
1165 */
1166 inline const class ir_function *function() const
1167 {
1168 return this->_function;
1169 }
1170
1171 /**
1172 * Check whether the qualifiers match between this signature's parameters
1173 * and the supplied parameter list. If not, returns the name of the first
1174 * parameter with mismatched qualifiers (for use in error messages).
1175 */
1176 const char *qualifiers_match(exec_list *params);
1177
1178 /**
1179 * Replace the current parameter list with the given one. This is useful
1180 * if the current information came from a prototype, and either has invalid
1181 * or missing parameter names.
1182 */
1183 void replace_parameters(exec_list *new_params);
1184
1185 /**
1186 * Function return type.
1187 *
1188 * \note This discards the optional precision qualifier.
1189 */
1190 const struct glsl_type *return_type;
1191
1192 /**
1193 * List of ir_variable of function parameters.
1194 *
1195 * This represents the storage. The paramaters passed in a particular
1196 * call will be in ir_call::actual_paramaters.
1197 */
1198 struct exec_list parameters;
1199
1200 /** Whether or not this function has a body (which may be empty). */
1201 unsigned is_defined:1;
1202
1203 /** Whether or not this function signature is a built-in. */
1204 bool is_builtin() const;
1205
1206 /**
1207 * Whether or not this function is an intrinsic to be implemented
1208 * by the driver.
1209 */
1210 inline bool is_intrinsic() const
1211 {
1212 return intrinsic_id != ir_intrinsic_invalid;
1213 }
1214
1215 /** Indentifier for this intrinsic. */
1216 enum ir_intrinsic_id intrinsic_id;
1217
1218 /** Whether or not a built-in is available for this shader. */
1219 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1220
1221 /** Body of instructions in the function. */
1222 struct exec_list body;
1223
1224 private:
1225 /**
1226 * A function pointer to a predicate that answers whether a built-in
1227 * function is available in the current shader. NULL if not a built-in.
1228 */
1229 builtin_available_predicate builtin_avail;
1230
1231 /** Function of which this signature is one overload. */
1232 class ir_function *_function;
1233
1234 /** Function signature of which this one is a prototype clone */
1235 const ir_function_signature *origin;
1236
1237 friend class ir_function;
1238
1239 /**
1240 * Helper function to run a list of instructions for constant
1241 * expression evaluation.
1242 *
1243 * The hash table represents the values of the visible variables.
1244 * There are no scoping issues because the table is indexed on
1245 * ir_variable pointers, not variable names.
1246 *
1247 * Returns false if the expression is not constant, true otherwise,
1248 * and the value in *result if result is non-NULL.
1249 */
1250 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1251 struct hash_table *variable_context,
1252 ir_constant **result);
1253 };
1254
1255
1256 /**
1257 * Header for tracking multiple overloaded functions with the same name.
1258 * Contains a list of ir_function_signatures representing each of the
1259 * actual functions.
1260 */
1261 class ir_function : public ir_instruction {
1262 public:
1263 ir_function(const char *name);
1264
1265 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1266
1267 virtual void accept(ir_visitor *v)
1268 {
1269 v->visit(this);
1270 }
1271
1272 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1273
1274 void add_signature(ir_function_signature *sig)
1275 {
1276 sig->_function = this;
1277 this->signatures.push_tail(sig);
1278 }
1279
1280 /**
1281 * Find a signature that matches a set of actual parameters, taking implicit
1282 * conversions into account. Also flags whether the match was exact.
1283 */
1284 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1285 const exec_list *actual_param,
1286 bool allow_builtins,
1287 bool *match_is_exact);
1288
1289 /**
1290 * Find a signature that matches a set of actual parameters, taking implicit
1291 * conversions into account.
1292 */
1293 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1294 const exec_list *actual_param,
1295 bool allow_builtins);
1296
1297 /**
1298 * Find a signature that exactly matches a set of actual parameters without
1299 * any implicit type conversions.
1300 */
1301 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1302 const exec_list *actual_ps);
1303
1304 /**
1305 * Name of the function.
1306 */
1307 const char *name;
1308
1309 /** Whether or not this function has a signature that isn't a built-in. */
1310 bool has_user_signature();
1311
1312 /**
1313 * List of ir_function_signature for each overloaded function with this name.
1314 */
1315 struct exec_list signatures;
1316
1317 /**
1318 * is this function a subroutine type declaration
1319 * e.g. subroutine void type1(float arg1);
1320 */
1321 bool is_subroutine;
1322
1323 /**
1324 * is this function associated to a subroutine type
1325 * e.g. subroutine (type1, type2) function_name { function_body };
1326 * would have num_subroutine_types 2,
1327 * and pointers to the type1 and type2 types.
1328 */
1329 int num_subroutine_types;
1330 const struct glsl_type **subroutine_types;
1331
1332 int subroutine_index;
1333 };
1334
1335 inline const char *ir_function_signature::function_name() const
1336 {
1337 return this->_function->name;
1338 }
1339 /*@}*/
1340
1341
1342 /**
1343 * IR instruction representing high-level if-statements
1344 */
1345 class ir_if : public ir_instruction {
1346 public:
1347 ir_if(ir_rvalue *condition)
1348 : ir_instruction(ir_type_if), condition(condition)
1349 {
1350 }
1351
1352 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1353
1354 virtual void accept(ir_visitor *v)
1355 {
1356 v->visit(this);
1357 }
1358
1359 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1360
1361 ir_rvalue *condition;
1362 /** List of ir_instruction for the body of the then branch */
1363 exec_list then_instructions;
1364 /** List of ir_instruction for the body of the else branch */
1365 exec_list else_instructions;
1366 };
1367
1368
1369 /**
1370 * IR instruction representing a high-level loop structure.
1371 */
1372 class ir_loop : public ir_instruction {
1373 public:
1374 ir_loop();
1375
1376 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1377
1378 virtual void accept(ir_visitor *v)
1379 {
1380 v->visit(this);
1381 }
1382
1383 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1384
1385 /** List of ir_instruction that make up the body of the loop. */
1386 exec_list body_instructions;
1387 };
1388
1389
1390 class ir_assignment : public ir_instruction {
1391 public:
1392 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1393
1394 /**
1395 * Construct an assignment with an explicit write mask
1396 *
1397 * \note
1398 * Since a write mask is supplied, the LHS must already be a bare
1399 * \c ir_dereference. The cannot be any swizzles in the LHS.
1400 */
1401 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1402 unsigned write_mask);
1403
1404 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1405
1406 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1407
1408 virtual void accept(ir_visitor *v)
1409 {
1410 v->visit(this);
1411 }
1412
1413 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1414
1415 /**
1416 * Get a whole variable written by an assignment
1417 *
1418 * If the LHS of the assignment writes a whole variable, the variable is
1419 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1420 * assignment are:
1421 *
1422 * - Assigning to a scalar
1423 * - Assigning to all components of a vector
1424 * - Whole array (or matrix) assignment
1425 * - Whole structure assignment
1426 */
1427 ir_variable *whole_variable_written();
1428
1429 /**
1430 * Set the LHS of an assignment
1431 */
1432 void set_lhs(ir_rvalue *lhs);
1433
1434 /**
1435 * Left-hand side of the assignment.
1436 *
1437 * This should be treated as read only. If you need to set the LHS of an
1438 * assignment, use \c ir_assignment::set_lhs.
1439 */
1440 ir_dereference *lhs;
1441
1442 /**
1443 * Value being assigned
1444 */
1445 ir_rvalue *rhs;
1446
1447 /**
1448 * Optional condition for the assignment.
1449 */
1450 ir_rvalue *condition;
1451
1452
1453 /**
1454 * Component mask written
1455 *
1456 * For non-vector types in the LHS, this field will be zero. For vector
1457 * types, a bit will be set for each component that is written. Note that
1458 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1459 *
1460 * A partially-set write mask means that each enabled channel gets
1461 * the value from a consecutive channel of the rhs. For example,
1462 * to write just .xyw of gl_FrontColor with color:
1463 *
1464 * (assign (constant bool (1)) (xyw)
1465 * (var_ref gl_FragColor)
1466 * (swiz xyw (var_ref color)))
1467 */
1468 unsigned write_mask:4;
1469 };
1470
1471 #include "ir_expression_operation.h"
1472
1473 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1474
1475 class ir_expression : public ir_rvalue {
1476 public:
1477 ir_expression(int op, const struct glsl_type *type,
1478 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1479 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1480
1481 /**
1482 * Constructor for unary operation expressions
1483 */
1484 ir_expression(int op, ir_rvalue *);
1485
1486 /**
1487 * Constructor for binary operation expressions
1488 */
1489 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1490
1491 /**
1492 * Constructor for ternary operation expressions
1493 */
1494 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1495
1496 virtual bool equals(const ir_instruction *ir,
1497 enum ir_node_type ignore = ir_type_unset) const;
1498
1499 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1500
1501 /**
1502 * Attempt to constant-fold the expression
1503 *
1504 * The "variable_context" hash table links ir_variable * to ir_constant *
1505 * that represent the variables' values. \c NULL represents an empty
1506 * context.
1507 *
1508 * If the expression cannot be constant folded, this method will return
1509 * \c NULL.
1510 */
1511 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1512
1513 /**
1514 * Determine the number of operands used by an expression
1515 */
1516 static unsigned int get_num_operands(ir_expression_operation);
1517
1518 /**
1519 * Determine the number of operands used by an expression
1520 */
1521 unsigned int get_num_operands() const
1522 {
1523 return (this->operation == ir_quadop_vector)
1524 ? this->type->vector_elements : get_num_operands(operation);
1525 }
1526
1527 /**
1528 * Return whether the expression operates on vectors horizontally.
1529 */
1530 bool is_horizontal() const
1531 {
1532 return operation == ir_binop_all_equal ||
1533 operation == ir_binop_any_nequal ||
1534 operation == ir_binop_dot ||
1535 operation == ir_binop_vector_extract ||
1536 operation == ir_triop_vector_insert ||
1537 operation == ir_binop_ubo_load ||
1538 operation == ir_quadop_vector;
1539 }
1540
1541 /**
1542 * Do a reverse-lookup to translate the given string into an operator.
1543 */
1544 static ir_expression_operation get_operator(const char *);
1545
1546 virtual void accept(ir_visitor *v)
1547 {
1548 v->visit(this);
1549 }
1550
1551 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1552
1553 virtual ir_variable *variable_referenced() const;
1554
1555 ir_expression_operation operation;
1556 ir_rvalue *operands[4];
1557 };
1558
1559
1560 /**
1561 * HIR instruction representing a high-level function call, containing a list
1562 * of parameters and returning a value in the supplied temporary.
1563 */
1564 class ir_call : public ir_instruction {
1565 public:
1566 ir_call(ir_function_signature *callee,
1567 ir_dereference_variable *return_deref,
1568 exec_list *actual_parameters)
1569 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1570 {
1571 assert(callee->return_type != NULL);
1572 actual_parameters->move_nodes_to(& this->actual_parameters);
1573 this->use_builtin = callee->is_builtin();
1574 }
1575
1576 ir_call(ir_function_signature *callee,
1577 ir_dereference_variable *return_deref,
1578 exec_list *actual_parameters,
1579 ir_variable *var, ir_rvalue *array_idx)
1580 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1581 {
1582 assert(callee->return_type != NULL);
1583 actual_parameters->move_nodes_to(& this->actual_parameters);
1584 this->use_builtin = callee->is_builtin();
1585 }
1586
1587 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1588
1589 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1590
1591 virtual void accept(ir_visitor *v)
1592 {
1593 v->visit(this);
1594 }
1595
1596 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1597
1598 /**
1599 * Get the name of the function being called.
1600 */
1601 const char *callee_name() const
1602 {
1603 return callee->function_name();
1604 }
1605
1606 /**
1607 * Generates an inline version of the function before @ir,
1608 * storing the return value in return_deref.
1609 */
1610 void generate_inline(ir_instruction *ir);
1611
1612 /**
1613 * Storage for the function's return value.
1614 * This must be NULL if the return type is void.
1615 */
1616 ir_dereference_variable *return_deref;
1617
1618 /**
1619 * The specific function signature being called.
1620 */
1621 ir_function_signature *callee;
1622
1623 /* List of ir_rvalue of paramaters passed in this call. */
1624 exec_list actual_parameters;
1625
1626 /** Should this call only bind to a built-in function? */
1627 bool use_builtin;
1628
1629 /*
1630 * ARB_shader_subroutine support -
1631 * the subroutine uniform variable and array index
1632 * rvalue to be used in the lowering pass later.
1633 */
1634 ir_variable *sub_var;
1635 ir_rvalue *array_idx;
1636 };
1637
1638
1639 /**
1640 * \name Jump-like IR instructions.
1641 *
1642 * These include \c break, \c continue, \c return, and \c discard.
1643 */
1644 /*@{*/
1645 class ir_jump : public ir_instruction {
1646 protected:
1647 ir_jump(enum ir_node_type t)
1648 : ir_instruction(t)
1649 {
1650 }
1651 };
1652
1653 class ir_return : public ir_jump {
1654 public:
1655 ir_return()
1656 : ir_jump(ir_type_return), value(NULL)
1657 {
1658 }
1659
1660 ir_return(ir_rvalue *value)
1661 : ir_jump(ir_type_return), value(value)
1662 {
1663 }
1664
1665 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1666
1667 ir_rvalue *get_value() const
1668 {
1669 return value;
1670 }
1671
1672 virtual void accept(ir_visitor *v)
1673 {
1674 v->visit(this);
1675 }
1676
1677 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1678
1679 ir_rvalue *value;
1680 };
1681
1682
1683 /**
1684 * Jump instructions used inside loops
1685 *
1686 * These include \c break and \c continue. The \c break within a loop is
1687 * different from the \c break within a switch-statement.
1688 *
1689 * \sa ir_switch_jump
1690 */
1691 class ir_loop_jump : public ir_jump {
1692 public:
1693 enum jump_mode {
1694 jump_break,
1695 jump_continue
1696 };
1697
1698 ir_loop_jump(jump_mode mode)
1699 : ir_jump(ir_type_loop_jump)
1700 {
1701 this->mode = mode;
1702 }
1703
1704 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1705
1706 virtual void accept(ir_visitor *v)
1707 {
1708 v->visit(this);
1709 }
1710
1711 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1712
1713 bool is_break() const
1714 {
1715 return mode == jump_break;
1716 }
1717
1718 bool is_continue() const
1719 {
1720 return mode == jump_continue;
1721 }
1722
1723 /** Mode selector for the jump instruction. */
1724 enum jump_mode mode;
1725 };
1726
1727 /**
1728 * IR instruction representing discard statements.
1729 */
1730 class ir_discard : public ir_jump {
1731 public:
1732 ir_discard()
1733 : ir_jump(ir_type_discard)
1734 {
1735 this->condition = NULL;
1736 }
1737
1738 ir_discard(ir_rvalue *cond)
1739 : ir_jump(ir_type_discard)
1740 {
1741 this->condition = cond;
1742 }
1743
1744 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1745
1746 virtual void accept(ir_visitor *v)
1747 {
1748 v->visit(this);
1749 }
1750
1751 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1752
1753 ir_rvalue *condition;
1754 };
1755 /*@}*/
1756
1757
1758 /**
1759 * Texture sampling opcodes used in ir_texture
1760 */
1761 enum ir_texture_opcode {
1762 ir_tex, /**< Regular texture look-up */
1763 ir_txb, /**< Texture look-up with LOD bias */
1764 ir_txl, /**< Texture look-up with explicit LOD */
1765 ir_txd, /**< Texture look-up with partial derivatvies */
1766 ir_txf, /**< Texel fetch with explicit LOD */
1767 ir_txf_ms, /**< Multisample texture fetch */
1768 ir_txs, /**< Texture size */
1769 ir_lod, /**< Texture lod query */
1770 ir_tg4, /**< Texture gather */
1771 ir_query_levels, /**< Texture levels query */
1772 ir_texture_samples, /**< Texture samples query */
1773 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1774 };
1775
1776
1777 /**
1778 * IR instruction to sample a texture
1779 *
1780 * The specific form of the IR instruction depends on the \c mode value
1781 * selected from \c ir_texture_opcodes. In the printed IR, these will
1782 * appear as:
1783 *
1784 * Texel offset (0 or an expression)
1785 * | Projection divisor
1786 * | | Shadow comparitor
1787 * | | |
1788 * v v v
1789 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1790 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1791 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1792 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1793 * (txf <type> <sampler> <coordinate> 0 <lod>)
1794 * (txf_ms
1795 * <type> <sampler> <coordinate> <sample_index>)
1796 * (txs <type> <sampler> <lod>)
1797 * (lod <type> <sampler> <coordinate>)
1798 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1799 * (query_levels <type> <sampler>)
1800 * (samples_identical <sampler> <coordinate>)
1801 */
1802 class ir_texture : public ir_rvalue {
1803 public:
1804 ir_texture(enum ir_texture_opcode op)
1805 : ir_rvalue(ir_type_texture),
1806 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1807 shadow_comparitor(NULL), offset(NULL)
1808 {
1809 memset(&lod_info, 0, sizeof(lod_info));
1810 }
1811
1812 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1813
1814 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1815
1816 virtual void accept(ir_visitor *v)
1817 {
1818 v->visit(this);
1819 }
1820
1821 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1822
1823 virtual bool equals(const ir_instruction *ir,
1824 enum ir_node_type ignore = ir_type_unset) const;
1825
1826 /**
1827 * Return a string representing the ir_texture_opcode.
1828 */
1829 const char *opcode_string();
1830
1831 /** Set the sampler and type. */
1832 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1833
1834 /**
1835 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1836 */
1837 static ir_texture_opcode get_opcode(const char *);
1838
1839 enum ir_texture_opcode op;
1840
1841 /** Sampler to use for the texture access. */
1842 ir_dereference *sampler;
1843
1844 /** Texture coordinate to sample */
1845 ir_rvalue *coordinate;
1846
1847 /**
1848 * Value used for projective divide.
1849 *
1850 * If there is no projective divide (the common case), this will be
1851 * \c NULL. Optimization passes should check for this to point to a constant
1852 * of 1.0 and replace that with \c NULL.
1853 */
1854 ir_rvalue *projector;
1855
1856 /**
1857 * Coordinate used for comparison on shadow look-ups.
1858 *
1859 * If there is no shadow comparison, this will be \c NULL. For the
1860 * \c ir_txf opcode, this *must* be \c NULL.
1861 */
1862 ir_rvalue *shadow_comparitor;
1863
1864 /** Texel offset. */
1865 ir_rvalue *offset;
1866
1867 union {
1868 ir_rvalue *lod; /**< Floating point LOD */
1869 ir_rvalue *bias; /**< Floating point LOD bias */
1870 ir_rvalue *sample_index; /**< MSAA sample index */
1871 ir_rvalue *component; /**< Gather component selector */
1872 struct {
1873 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1874 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1875 } grad;
1876 } lod_info;
1877 };
1878
1879
1880 struct ir_swizzle_mask {
1881 unsigned x:2;
1882 unsigned y:2;
1883 unsigned z:2;
1884 unsigned w:2;
1885
1886 /**
1887 * Number of components in the swizzle.
1888 */
1889 unsigned num_components:3;
1890
1891 /**
1892 * Does the swizzle contain duplicate components?
1893 *
1894 * L-value swizzles cannot contain duplicate components.
1895 */
1896 unsigned has_duplicates:1;
1897 };
1898
1899
1900 class ir_swizzle : public ir_rvalue {
1901 public:
1902 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1903 unsigned count);
1904
1905 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1906
1907 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1908
1909 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1910
1911 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1912
1913 /**
1914 * Construct an ir_swizzle from the textual representation. Can fail.
1915 */
1916 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1917
1918 virtual void accept(ir_visitor *v)
1919 {
1920 v->visit(this);
1921 }
1922
1923 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1924
1925 virtual bool equals(const ir_instruction *ir,
1926 enum ir_node_type ignore = ir_type_unset) const;
1927
1928 bool is_lvalue() const
1929 {
1930 return val->is_lvalue() && !mask.has_duplicates;
1931 }
1932
1933 /**
1934 * Get the variable that is ultimately referenced by an r-value
1935 */
1936 virtual ir_variable *variable_referenced() const;
1937
1938 ir_rvalue *val;
1939 ir_swizzle_mask mask;
1940
1941 private:
1942 /**
1943 * Initialize the mask component of a swizzle
1944 *
1945 * This is used by the \c ir_swizzle constructors.
1946 */
1947 void init_mask(const unsigned *components, unsigned count);
1948 };
1949
1950
1951 class ir_dereference : public ir_rvalue {
1952 public:
1953 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1954
1955 bool is_lvalue() const;
1956
1957 /**
1958 * Get the variable that is ultimately referenced by an r-value
1959 */
1960 virtual ir_variable *variable_referenced() const = 0;
1961
1962 protected:
1963 ir_dereference(enum ir_node_type t)
1964 : ir_rvalue(t)
1965 {
1966 }
1967 };
1968
1969
1970 class ir_dereference_variable : public ir_dereference {
1971 public:
1972 ir_dereference_variable(ir_variable *var);
1973
1974 virtual ir_dereference_variable *clone(void *mem_ctx,
1975 struct hash_table *) const;
1976
1977 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1978
1979 virtual bool equals(const ir_instruction *ir,
1980 enum ir_node_type ignore = ir_type_unset) const;
1981
1982 /**
1983 * Get the variable that is ultimately referenced by an r-value
1984 */
1985 virtual ir_variable *variable_referenced() const
1986 {
1987 return this->var;
1988 }
1989
1990 virtual ir_variable *whole_variable_referenced()
1991 {
1992 /* ir_dereference_variable objects always dereference the entire
1993 * variable. However, if this dereference is dereferenced by anything
1994 * else, the complete deferefernce chain is not a whole-variable
1995 * dereference. This method should only be called on the top most
1996 * ir_rvalue in a dereference chain.
1997 */
1998 return this->var;
1999 }
2000
2001 virtual void accept(ir_visitor *v)
2002 {
2003 v->visit(this);
2004 }
2005
2006 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2007
2008 /**
2009 * Object being dereferenced.
2010 */
2011 ir_variable *var;
2012 };
2013
2014
2015 class ir_dereference_array : public ir_dereference {
2016 public:
2017 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2018
2019 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2020
2021 virtual ir_dereference_array *clone(void *mem_ctx,
2022 struct hash_table *) const;
2023
2024 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2025
2026 virtual bool equals(const ir_instruction *ir,
2027 enum ir_node_type ignore = ir_type_unset) const;
2028
2029 /**
2030 * Get the variable that is ultimately referenced by an r-value
2031 */
2032 virtual ir_variable *variable_referenced() const
2033 {
2034 return this->array->variable_referenced();
2035 }
2036
2037 virtual void accept(ir_visitor *v)
2038 {
2039 v->visit(this);
2040 }
2041
2042 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2043
2044 ir_rvalue *array;
2045 ir_rvalue *array_index;
2046
2047 private:
2048 void set_array(ir_rvalue *value);
2049 };
2050
2051
2052 class ir_dereference_record : public ir_dereference {
2053 public:
2054 ir_dereference_record(ir_rvalue *value, const char *field);
2055
2056 ir_dereference_record(ir_variable *var, const char *field);
2057
2058 virtual ir_dereference_record *clone(void *mem_ctx,
2059 struct hash_table *) const;
2060
2061 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2062
2063 /**
2064 * Get the variable that is ultimately referenced by an r-value
2065 */
2066 virtual ir_variable *variable_referenced() const
2067 {
2068 return this->record->variable_referenced();
2069 }
2070
2071 virtual void accept(ir_visitor *v)
2072 {
2073 v->visit(this);
2074 }
2075
2076 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2077
2078 ir_rvalue *record;
2079 const char *field;
2080 };
2081
2082
2083 /**
2084 * Data stored in an ir_constant
2085 */
2086 union ir_constant_data {
2087 unsigned u[16];
2088 int i[16];
2089 float f[16];
2090 bool b[16];
2091 double d[16];
2092 };
2093
2094
2095 class ir_constant : public ir_rvalue {
2096 public:
2097 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2098 ir_constant(bool b, unsigned vector_elements=1);
2099 ir_constant(unsigned int u, unsigned vector_elements=1);
2100 ir_constant(int i, unsigned vector_elements=1);
2101 ir_constant(float f, unsigned vector_elements=1);
2102 ir_constant(double d, unsigned vector_elements=1);
2103
2104 /**
2105 * Construct an ir_constant from a list of ir_constant values
2106 */
2107 ir_constant(const struct glsl_type *type, exec_list *values);
2108
2109 /**
2110 * Construct an ir_constant from a scalar component of another ir_constant
2111 *
2112 * The new \c ir_constant inherits the type of the component from the
2113 * source constant.
2114 *
2115 * \note
2116 * In the case of a matrix constant, the new constant is a scalar, \b not
2117 * a vector.
2118 */
2119 ir_constant(const ir_constant *c, unsigned i);
2120
2121 /**
2122 * Return a new ir_constant of the specified type containing all zeros.
2123 */
2124 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2125
2126 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2127
2128 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2129
2130 virtual void accept(ir_visitor *v)
2131 {
2132 v->visit(this);
2133 }
2134
2135 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2136
2137 virtual bool equals(const ir_instruction *ir,
2138 enum ir_node_type ignore = ir_type_unset) const;
2139
2140 /**
2141 * Get a particular component of a constant as a specific type
2142 *
2143 * This is useful, for example, to get a value from an integer constant
2144 * as a float or bool. This appears frequently when constructors are
2145 * called with all constant parameters.
2146 */
2147 /*@{*/
2148 bool get_bool_component(unsigned i) const;
2149 float get_float_component(unsigned i) const;
2150 double get_double_component(unsigned i) const;
2151 int get_int_component(unsigned i) const;
2152 unsigned get_uint_component(unsigned i) const;
2153 /*@}*/
2154
2155 ir_constant *get_array_element(unsigned i) const;
2156
2157 ir_constant *get_record_field(const char *name);
2158
2159 /**
2160 * Copy the values on another constant at a given offset.
2161 *
2162 * The offset is ignored for array or struct copies, it's only for
2163 * scalars or vectors into vectors or matrices.
2164 *
2165 * With identical types on both sides and zero offset it's clone()
2166 * without creating a new object.
2167 */
2168
2169 void copy_offset(ir_constant *src, int offset);
2170
2171 /**
2172 * Copy the values on another constant at a given offset and
2173 * following an assign-like mask.
2174 *
2175 * The mask is ignored for scalars.
2176 *
2177 * Note that this function only handles what assign can handle,
2178 * i.e. at most a vector as source and a column of a matrix as
2179 * destination.
2180 */
2181
2182 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2183
2184 /**
2185 * Determine whether a constant has the same value as another constant
2186 *
2187 * \sa ir_constant::is_zero, ir_constant::is_one,
2188 * ir_constant::is_negative_one
2189 */
2190 bool has_value(const ir_constant *) const;
2191
2192 /**
2193 * Return true if this ir_constant represents the given value.
2194 *
2195 * For vectors, this checks that each component is the given value.
2196 */
2197 virtual bool is_value(float f, int i) const;
2198 virtual bool is_zero() const;
2199 virtual bool is_one() const;
2200 virtual bool is_negative_one() const;
2201
2202 /**
2203 * Return true for constants that could be stored as 16-bit unsigned values.
2204 *
2205 * Note that this will return true even for signed integer ir_constants, as
2206 * long as the value is non-negative and fits in 16-bits.
2207 */
2208 virtual bool is_uint16_constant() const;
2209
2210 /**
2211 * Value of the constant.
2212 *
2213 * The field used to back the values supplied by the constant is determined
2214 * by the type associated with the \c ir_instruction. Constants may be
2215 * scalars, vectors, or matrices.
2216 */
2217 union ir_constant_data value;
2218
2219 /* Array elements */
2220 ir_constant **array_elements;
2221
2222 /* Structure fields */
2223 exec_list components;
2224
2225 private:
2226 /**
2227 * Parameterless constructor only used by the clone method
2228 */
2229 ir_constant(void);
2230 };
2231
2232 /**
2233 * IR instruction to emit a vertex in a geometry shader.
2234 */
2235 class ir_emit_vertex : public ir_instruction {
2236 public:
2237 ir_emit_vertex(ir_rvalue *stream)
2238 : ir_instruction(ir_type_emit_vertex),
2239 stream(stream)
2240 {
2241 assert(stream);
2242 }
2243
2244 virtual void accept(ir_visitor *v)
2245 {
2246 v->visit(this);
2247 }
2248
2249 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2250 {
2251 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2252 }
2253
2254 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2255
2256 int stream_id() const
2257 {
2258 return stream->as_constant()->value.i[0];
2259 }
2260
2261 ir_rvalue *stream;
2262 };
2263
2264 /**
2265 * IR instruction to complete the current primitive and start a new one in a
2266 * geometry shader.
2267 */
2268 class ir_end_primitive : public ir_instruction {
2269 public:
2270 ir_end_primitive(ir_rvalue *stream)
2271 : ir_instruction(ir_type_end_primitive),
2272 stream(stream)
2273 {
2274 assert(stream);
2275 }
2276
2277 virtual void accept(ir_visitor *v)
2278 {
2279 v->visit(this);
2280 }
2281
2282 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2283 {
2284 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2285 }
2286
2287 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2288
2289 int stream_id() const
2290 {
2291 return stream->as_constant()->value.i[0];
2292 }
2293
2294 ir_rvalue *stream;
2295 };
2296
2297 /**
2298 * IR instruction for tessellation control and compute shader barrier.
2299 */
2300 class ir_barrier : public ir_instruction {
2301 public:
2302 ir_barrier()
2303 : ir_instruction(ir_type_barrier)
2304 {
2305 }
2306
2307 virtual void accept(ir_visitor *v)
2308 {
2309 v->visit(this);
2310 }
2311
2312 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2313 {
2314 return new(mem_ctx) ir_barrier();
2315 }
2316
2317 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2318 };
2319
2320 /*@}*/
2321
2322 /**
2323 * Apply a visitor to each IR node in a list
2324 */
2325 void
2326 visit_exec_list(exec_list *list, ir_visitor *visitor);
2327
2328 /**
2329 * Validate invariants on each IR node in a list
2330 */
2331 void validate_ir_tree(exec_list *instructions);
2332
2333 struct _mesa_glsl_parse_state;
2334 struct gl_shader_program;
2335
2336 /**
2337 * Detect whether an unlinked shader contains static recursion
2338 *
2339 * If the list of instructions is determined to contain static recursion,
2340 * \c _mesa_glsl_error will be called to emit error messages for each function
2341 * that is in the recursion cycle.
2342 */
2343 void
2344 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2345 exec_list *instructions);
2346
2347 /**
2348 * Detect whether a linked shader contains static recursion
2349 *
2350 * If the list of instructions is determined to contain static recursion,
2351 * \c link_error_printf will be called to emit error messages for each function
2352 * that is in the recursion cycle. In addition,
2353 * \c gl_shader_program::LinkStatus will be set to false.
2354 */
2355 void
2356 detect_recursion_linked(struct gl_shader_program *prog,
2357 exec_list *instructions);
2358
2359 /**
2360 * Make a clone of each IR instruction in a list
2361 *
2362 * \param in List of IR instructions that are to be cloned
2363 * \param out List to hold the cloned instructions
2364 */
2365 void
2366 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2367
2368 extern void
2369 _mesa_glsl_initialize_variables(exec_list *instructions,
2370 struct _mesa_glsl_parse_state *state);
2371
2372 extern void
2373 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2374 gl_shader *shader);
2375
2376 extern void
2377 _mesa_glsl_initialize_builtin_functions();
2378
2379 extern ir_function_signature *
2380 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2381 const char *name, exec_list *actual_parameters);
2382
2383 extern ir_function *
2384 _mesa_glsl_find_builtin_function_by_name(const char *name);
2385
2386 extern gl_shader *
2387 _mesa_glsl_get_builtin_function_shader(void);
2388
2389 extern ir_function_signature *
2390 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2391
2392 extern void
2393 _mesa_glsl_release_builtin_functions(void);
2394
2395 extern void
2396 reparent_ir(exec_list *list, void *mem_ctx);
2397
2398 extern void
2399 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2400 gl_shader_stage shader_stage);
2401
2402 extern char *
2403 prototype_string(const glsl_type *return_type, const char *name,
2404 exec_list *parameters);
2405
2406 const char *
2407 mode_string(const ir_variable *var);
2408
2409 /**
2410 * Built-in / reserved GL variables names start with "gl_"
2411 */
2412 static inline bool
2413 is_gl_identifier(const char *s)
2414 {
2415 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2416 }
2417
2418 extern "C" {
2419 #endif /* __cplusplus */
2420
2421 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2422 struct _mesa_glsl_parse_state *state);
2423
2424 extern void
2425 fprint_ir(FILE *f, const void *instruction);
2426
2427 extern const struct gl_builtin_uniform_desc *
2428 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2429
2430 #ifdef __cplusplus
2431 } /* extern "C" */
2432 #endif
2433
2434 unsigned
2435 vertices_per_prim(GLenum prim);
2436
2437 #endif /* IR_H */