glsl: Add glsl LowerCsDerivedVariables option
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 /**
541 * Get the max_ifc_array_access pointer
542 *
543 * A "set" function is not needed because the array is dynmically allocated
544 * as necessary.
545 */
546 inline int *get_max_ifc_array_access()
547 {
548 assert(this->data._num_state_slots == 0);
549 return this->u.max_ifc_array_access;
550 }
551
552 inline unsigned get_num_state_slots() const
553 {
554 assert(!this->is_interface_instance()
555 || this->data._num_state_slots == 0);
556 return this->data._num_state_slots;
557 }
558
559 inline void set_num_state_slots(unsigned n)
560 {
561 assert(!this->is_interface_instance()
562 || n == 0);
563 this->data._num_state_slots = n;
564 }
565
566 inline ir_state_slot *get_state_slots()
567 {
568 return this->is_interface_instance() ? NULL : this->u.state_slots;
569 }
570
571 inline const ir_state_slot *get_state_slots() const
572 {
573 return this->is_interface_instance() ? NULL : this->u.state_slots;
574 }
575
576 inline ir_state_slot *allocate_state_slots(unsigned n)
577 {
578 assert(!this->is_interface_instance());
579
580 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
581 this->data._num_state_slots = 0;
582
583 if (this->u.state_slots != NULL)
584 this->data._num_state_slots = n;
585
586 return this->u.state_slots;
587 }
588
589 inline bool is_name_ralloced() const
590 {
591 return this->name != ir_variable::tmp_name;
592 }
593
594 /**
595 * Enable emitting extension warnings for this variable
596 */
597 void enable_extension_warning(const char *extension);
598
599 /**
600 * Get the extension warning string for this variable
601 *
602 * If warnings are not enabled, \c NULL is returned.
603 */
604 const char *get_extension_warning() const;
605
606 /**
607 * Declared type of the variable
608 */
609 const struct glsl_type *type;
610
611 /**
612 * Declared name of the variable
613 */
614 const char *name;
615
616 struct ir_variable_data {
617
618 /**
619 * Is the variable read-only?
620 *
621 * This is set for variables declared as \c const, shader inputs,
622 * and uniforms.
623 */
624 unsigned read_only:1;
625 unsigned centroid:1;
626 unsigned sample:1;
627 unsigned patch:1;
628 unsigned invariant:1;
629 unsigned precise:1;
630
631 /**
632 * Has this variable been used for reading or writing?
633 *
634 * Several GLSL semantic checks require knowledge of whether or not a
635 * variable has been used. For example, it is an error to redeclare a
636 * variable as invariant after it has been used.
637 *
638 * This is only maintained in the ast_to_hir.cpp path, not in
639 * Mesa's fixed function or ARB program paths.
640 */
641 unsigned used:1;
642
643 /**
644 * Has this variable been statically assigned?
645 *
646 * This answers whether the variable was assigned in any path of
647 * the shader during ast_to_hir. This doesn't answer whether it is
648 * still written after dead code removal, nor is it maintained in
649 * non-ast_to_hir.cpp (GLSL parsing) paths.
650 */
651 unsigned assigned:1;
652
653 /**
654 * When separate shader programs are enabled, only input/outputs between
655 * the stages of a multi-stage separate program can be safely removed
656 * from the shader interface. Other input/outputs must remains active.
657 */
658 unsigned always_active_io:1;
659
660 /**
661 * Enum indicating how the variable was declared. See
662 * ir_var_declaration_type.
663 *
664 * This is used to detect certain kinds of illegal variable redeclarations.
665 */
666 unsigned how_declared:2;
667
668 /**
669 * Storage class of the variable.
670 *
671 * \sa ir_variable_mode
672 */
673 unsigned mode:4;
674
675 /**
676 * Interpolation mode for shader inputs / outputs
677 *
678 * \sa ir_variable_interpolation
679 */
680 unsigned interpolation:2;
681
682 /**
683 * \name ARB_fragment_coord_conventions
684 * @{
685 */
686 unsigned origin_upper_left:1;
687 unsigned pixel_center_integer:1;
688 /*@}*/
689
690 /**
691 * Was the location explicitly set in the shader?
692 *
693 * If the location is explicitly set in the shader, it \b cannot be changed
694 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
695 * no effect).
696 */
697 unsigned explicit_location:1;
698 unsigned explicit_index:1;
699
700 /**
701 * Was an initial binding explicitly set in the shader?
702 *
703 * If so, constant_value contains an integer ir_constant representing the
704 * initial binding point.
705 */
706 unsigned explicit_binding:1;
707
708 /**
709 * Was an initial component explicitly set in the shader?
710 */
711 unsigned explicit_component:1;
712
713 /**
714 * Does this variable have an initializer?
715 *
716 * This is used by the linker to cross-validiate initializers of global
717 * variables.
718 */
719 unsigned has_initializer:1;
720
721 /**
722 * Is this variable a generic output or input that has not yet been matched
723 * up to a variable in another stage of the pipeline?
724 *
725 * This is used by the linker as scratch storage while assigning locations
726 * to generic inputs and outputs.
727 */
728 unsigned is_unmatched_generic_inout:1;
729
730 /**
731 * Is this varying used only by transform feedback?
732 *
733 * This is used by the linker to decide if its safe to pack the varying.
734 */
735 unsigned is_xfb_only:1;
736
737 /**
738 * Was a transfor feedback buffer set in the shader?
739 */
740 unsigned explicit_xfb_buffer:1;
741
742 /**
743 * Was a transfor feedback offset set in the shader?
744 */
745 unsigned explicit_xfb_offset:1;
746
747 /**
748 * Was a transfor feedback stride set in the shader?
749 */
750 unsigned explicit_xfb_stride:1;
751
752 /**
753 * If non-zero, then this variable may be packed along with other variables
754 * into a single varying slot, so this offset should be applied when
755 * accessing components. For example, an offset of 1 means that the x
756 * component of this variable is actually stored in component y of the
757 * location specified by \c location.
758 */
759 unsigned location_frac:2;
760
761 /**
762 * Layout of the matrix. Uses glsl_matrix_layout values.
763 */
764 unsigned matrix_layout:2;
765
766 /**
767 * Non-zero if this variable was created by lowering a named interface
768 * block.
769 */
770 unsigned from_named_ifc_block:1;
771
772 /**
773 * Non-zero if the variable must be a shader input. This is useful for
774 * constraints on function parameters.
775 */
776 unsigned must_be_shader_input:1;
777
778 /**
779 * Output index for dual source blending.
780 *
781 * \note
782 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
783 * source blending.
784 */
785 unsigned index:1;
786
787 /**
788 * Precision qualifier.
789 *
790 * In desktop GLSL we do not care about precision qualifiers at all, in
791 * fact, the spec says that precision qualifiers are ignored.
792 *
793 * To make things easy, we make it so that this field is always
794 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
795 * have the same precision value and the checks we add in the compiler
796 * for this field will never break a desktop shader compile.
797 */
798 unsigned precision:2;
799
800 /**
801 * \brief Layout qualifier for gl_FragDepth.
802 *
803 * This is not equal to \c ir_depth_layout_none if and only if this
804 * variable is \c gl_FragDepth and a layout qualifier is specified.
805 */
806 ir_depth_layout depth_layout:3;
807
808 /**
809 * ARB_shader_image_load_store qualifiers.
810 */
811 unsigned image_read_only:1; /**< "readonly" qualifier. */
812 unsigned image_write_only:1; /**< "writeonly" qualifier. */
813 unsigned image_coherent:1;
814 unsigned image_volatile:1;
815 unsigned image_restrict:1;
816
817 /**
818 * ARB_shader_storage_buffer_object
819 */
820 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
821
822 unsigned implicit_sized_array:1;
823 /**
824 * Emit a warning if this variable is accessed.
825 */
826 private:
827 uint8_t warn_extension_index;
828
829 public:
830 /** Image internal format if specified explicitly, otherwise GL_NONE. */
831 uint16_t image_format;
832
833 private:
834 /**
835 * Number of state slots used
836 *
837 * \note
838 * This could be stored in as few as 7-bits, if necessary. If it is made
839 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
840 * be safe.
841 */
842 uint16_t _num_state_slots;
843
844 public:
845 /**
846 * Initial binding point for a sampler, atomic, or UBO.
847 *
848 * For array types, this represents the binding point for the first element.
849 */
850 int16_t binding;
851
852 /**
853 * Storage location of the base of this variable
854 *
855 * The precise meaning of this field depends on the nature of the variable.
856 *
857 * - Vertex shader input: one of the values from \c gl_vert_attrib.
858 * - Vertex shader output: one of the values from \c gl_varying_slot.
859 * - Geometry shader input: one of the values from \c gl_varying_slot.
860 * - Geometry shader output: one of the values from \c gl_varying_slot.
861 * - Fragment shader input: one of the values from \c gl_varying_slot.
862 * - Fragment shader output: one of the values from \c gl_frag_result.
863 * - Uniforms: Per-stage uniform slot number for default uniform block.
864 * - Uniforms: Index within the uniform block definition for UBO members.
865 * - Non-UBO Uniforms: explicit location until linking then reused to
866 * store uniform slot number.
867 * - Other: This field is not currently used.
868 *
869 * If the variable is a uniform, shader input, or shader output, and the
870 * slot has not been assigned, the value will be -1.
871 */
872 int location;
873
874 /**
875 * for glsl->tgsi/mesa IR we need to store the index into the
876 * parameters for uniforms, initially the code overloaded location
877 * but this causes problems with indirect samplers and AoA.
878 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
879 */
880 int param_index;
881
882 /**
883 * Vertex stream output identifier.
884 */
885 unsigned stream;
886
887 /**
888 * Atomic, transform feedback or block member offset.
889 */
890 unsigned offset;
891
892 /**
893 * Highest element accessed with a constant expression array index
894 *
895 * Not used for non-array variables. -1 is never accessed.
896 */
897 int max_array_access;
898
899 /**
900 * Transform feedback buffer.
901 */
902 unsigned xfb_buffer;
903
904 /**
905 * Transform feedback stride.
906 */
907 unsigned xfb_stride;
908
909 /**
910 * Allow (only) ir_variable direct access private members.
911 */
912 friend class ir_variable;
913 } data;
914
915 /**
916 * Value assigned in the initializer of a variable declared "const"
917 */
918 ir_constant *constant_value;
919
920 /**
921 * Constant expression assigned in the initializer of the variable
922 *
923 * \warning
924 * This field and \c ::constant_value are distinct. Even if the two fields
925 * refer to constants with the same value, they must point to separate
926 * objects.
927 */
928 ir_constant *constant_initializer;
929
930 private:
931 static const char *const warn_extension_table[];
932
933 union {
934 /**
935 * For variables which satisfy the is_interface_instance() predicate,
936 * this points to an array of integers such that if the ith member of
937 * the interface block is an array, max_ifc_array_access[i] is the
938 * maximum array element of that member that has been accessed. If the
939 * ith member of the interface block is not an array,
940 * max_ifc_array_access[i] is unused.
941 *
942 * For variables whose type is not an interface block, this pointer is
943 * NULL.
944 */
945 int *max_ifc_array_access;
946
947 /**
948 * Built-in state that backs this uniform
949 *
950 * Once set at variable creation, \c state_slots must remain invariant.
951 *
952 * If the variable is not a uniform, \c _num_state_slots will be zero
953 * and \c state_slots will be \c NULL.
954 */
955 ir_state_slot *state_slots;
956 } u;
957
958 /**
959 * For variables that are in an interface block or are an instance of an
960 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
961 *
962 * \sa ir_variable::location
963 */
964 const glsl_type *interface_type;
965
966 /**
967 * Name used for anonymous compiler temporaries
968 */
969 static const char tmp_name[];
970
971 public:
972 /**
973 * Should the construct keep names for ir_var_temporary variables?
974 *
975 * When this global is false, names passed to the constructor for
976 * \c ir_var_temporary variables will be dropped. Instead, the variable will
977 * be named "compiler_temp". This name will be in static storage.
978 *
979 * \warning
980 * \b NEVER change the mode of an \c ir_var_temporary.
981 *
982 * \warning
983 * This variable is \b not thread-safe. It is global, \b not
984 * per-context. It begins life false. A context can, at some point, make
985 * it true. From that point on, it will be true forever. This should be
986 * okay since it will only be set true while debugging.
987 */
988 static bool temporaries_allocate_names;
989 };
990
991 /**
992 * A function that returns whether a built-in function is available in the
993 * current shading language (based on version, ES or desktop, and extensions).
994 */
995 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
996
997 /*@{*/
998 /**
999 * The representation of a function instance; may be the full definition or
1000 * simply a prototype.
1001 */
1002 class ir_function_signature : public ir_instruction {
1003 /* An ir_function_signature will be part of the list of signatures in
1004 * an ir_function.
1005 */
1006 public:
1007 ir_function_signature(const glsl_type *return_type,
1008 builtin_available_predicate builtin_avail = NULL);
1009
1010 virtual ir_function_signature *clone(void *mem_ctx,
1011 struct hash_table *ht) const;
1012 ir_function_signature *clone_prototype(void *mem_ctx,
1013 struct hash_table *ht) const;
1014
1015 virtual void accept(ir_visitor *v)
1016 {
1017 v->visit(this);
1018 }
1019
1020 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1021
1022 /**
1023 * Attempt to evaluate this function as a constant expression,
1024 * given a list of the actual parameters and the variable context.
1025 * Returns NULL for non-built-ins.
1026 */
1027 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1028
1029 /**
1030 * Get the name of the function for which this is a signature
1031 */
1032 const char *function_name() const;
1033
1034 /**
1035 * Get a handle to the function for which this is a signature
1036 *
1037 * There is no setter function, this function returns a \c const pointer,
1038 * and \c ir_function_signature::_function is private for a reason. The
1039 * only way to make a connection between a function and function signature
1040 * is via \c ir_function::add_signature. This helps ensure that certain
1041 * invariants (i.e., a function signature is in the list of signatures for
1042 * its \c _function) are met.
1043 *
1044 * \sa ir_function::add_signature
1045 */
1046 inline const class ir_function *function() const
1047 {
1048 return this->_function;
1049 }
1050
1051 /**
1052 * Check whether the qualifiers match between this signature's parameters
1053 * and the supplied parameter list. If not, returns the name of the first
1054 * parameter with mismatched qualifiers (for use in error messages).
1055 */
1056 const char *qualifiers_match(exec_list *params);
1057
1058 /**
1059 * Replace the current parameter list with the given one. This is useful
1060 * if the current information came from a prototype, and either has invalid
1061 * or missing parameter names.
1062 */
1063 void replace_parameters(exec_list *new_params);
1064
1065 /**
1066 * Function return type.
1067 *
1068 * \note This discards the optional precision qualifier.
1069 */
1070 const struct glsl_type *return_type;
1071
1072 /**
1073 * List of ir_variable of function parameters.
1074 *
1075 * This represents the storage. The paramaters passed in a particular
1076 * call will be in ir_call::actual_paramaters.
1077 */
1078 struct exec_list parameters;
1079
1080 /** Whether or not this function has a body (which may be empty). */
1081 unsigned is_defined:1;
1082
1083 /** Whether or not this function signature is a built-in. */
1084 bool is_builtin() const;
1085
1086 /**
1087 * Whether or not this function is an intrinsic to be implemented
1088 * by the driver.
1089 */
1090 bool is_intrinsic;
1091
1092 /** Whether or not a built-in is available for this shader. */
1093 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1094
1095 /** Body of instructions in the function. */
1096 struct exec_list body;
1097
1098 private:
1099 /**
1100 * A function pointer to a predicate that answers whether a built-in
1101 * function is available in the current shader. NULL if not a built-in.
1102 */
1103 builtin_available_predicate builtin_avail;
1104
1105 /** Function of which this signature is one overload. */
1106 class ir_function *_function;
1107
1108 /** Function signature of which this one is a prototype clone */
1109 const ir_function_signature *origin;
1110
1111 friend class ir_function;
1112
1113 /**
1114 * Helper function to run a list of instructions for constant
1115 * expression evaluation.
1116 *
1117 * The hash table represents the values of the visible variables.
1118 * There are no scoping issues because the table is indexed on
1119 * ir_variable pointers, not variable names.
1120 *
1121 * Returns false if the expression is not constant, true otherwise,
1122 * and the value in *result if result is non-NULL.
1123 */
1124 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1125 struct hash_table *variable_context,
1126 ir_constant **result);
1127 };
1128
1129
1130 /**
1131 * Header for tracking multiple overloaded functions with the same name.
1132 * Contains a list of ir_function_signatures representing each of the
1133 * actual functions.
1134 */
1135 class ir_function : public ir_instruction {
1136 public:
1137 ir_function(const char *name);
1138
1139 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1140
1141 virtual void accept(ir_visitor *v)
1142 {
1143 v->visit(this);
1144 }
1145
1146 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1147
1148 void add_signature(ir_function_signature *sig)
1149 {
1150 sig->_function = this;
1151 this->signatures.push_tail(sig);
1152 }
1153
1154 /**
1155 * Find a signature that matches a set of actual parameters, taking implicit
1156 * conversions into account. Also flags whether the match was exact.
1157 */
1158 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1159 const exec_list *actual_param,
1160 bool allow_builtins,
1161 bool *match_is_exact);
1162
1163 /**
1164 * Find a signature that matches a set of actual parameters, taking implicit
1165 * conversions into account.
1166 */
1167 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1168 const exec_list *actual_param,
1169 bool allow_builtins);
1170
1171 /**
1172 * Find a signature that exactly matches a set of actual parameters without
1173 * any implicit type conversions.
1174 */
1175 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1176 const exec_list *actual_ps);
1177
1178 /**
1179 * Name of the function.
1180 */
1181 const char *name;
1182
1183 /** Whether or not this function has a signature that isn't a built-in. */
1184 bool has_user_signature();
1185
1186 /**
1187 * List of ir_function_signature for each overloaded function with this name.
1188 */
1189 struct exec_list signatures;
1190
1191 /**
1192 * is this function a subroutine type declaration
1193 * e.g. subroutine void type1(float arg1);
1194 */
1195 bool is_subroutine;
1196
1197 /**
1198 * is this function associated to a subroutine type
1199 * e.g. subroutine (type1, type2) function_name { function_body };
1200 * would have num_subroutine_types 2,
1201 * and pointers to the type1 and type2 types.
1202 */
1203 int num_subroutine_types;
1204 const struct glsl_type **subroutine_types;
1205
1206 int subroutine_index;
1207 };
1208
1209 inline const char *ir_function_signature::function_name() const
1210 {
1211 return this->_function->name;
1212 }
1213 /*@}*/
1214
1215
1216 /**
1217 * IR instruction representing high-level if-statements
1218 */
1219 class ir_if : public ir_instruction {
1220 public:
1221 ir_if(ir_rvalue *condition)
1222 : ir_instruction(ir_type_if), condition(condition)
1223 {
1224 }
1225
1226 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1227
1228 virtual void accept(ir_visitor *v)
1229 {
1230 v->visit(this);
1231 }
1232
1233 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1234
1235 ir_rvalue *condition;
1236 /** List of ir_instruction for the body of the then branch */
1237 exec_list then_instructions;
1238 /** List of ir_instruction for the body of the else branch */
1239 exec_list else_instructions;
1240 };
1241
1242
1243 /**
1244 * IR instruction representing a high-level loop structure.
1245 */
1246 class ir_loop : public ir_instruction {
1247 public:
1248 ir_loop();
1249
1250 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1251
1252 virtual void accept(ir_visitor *v)
1253 {
1254 v->visit(this);
1255 }
1256
1257 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1258
1259 /** List of ir_instruction that make up the body of the loop. */
1260 exec_list body_instructions;
1261 };
1262
1263
1264 class ir_assignment : public ir_instruction {
1265 public:
1266 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1267
1268 /**
1269 * Construct an assignment with an explicit write mask
1270 *
1271 * \note
1272 * Since a write mask is supplied, the LHS must already be a bare
1273 * \c ir_dereference. The cannot be any swizzles in the LHS.
1274 */
1275 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1276 unsigned write_mask);
1277
1278 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1279
1280 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1281
1282 virtual void accept(ir_visitor *v)
1283 {
1284 v->visit(this);
1285 }
1286
1287 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1288
1289 /**
1290 * Get a whole variable written by an assignment
1291 *
1292 * If the LHS of the assignment writes a whole variable, the variable is
1293 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1294 * assignment are:
1295 *
1296 * - Assigning to a scalar
1297 * - Assigning to all components of a vector
1298 * - Whole array (or matrix) assignment
1299 * - Whole structure assignment
1300 */
1301 ir_variable *whole_variable_written();
1302
1303 /**
1304 * Set the LHS of an assignment
1305 */
1306 void set_lhs(ir_rvalue *lhs);
1307
1308 /**
1309 * Left-hand side of the assignment.
1310 *
1311 * This should be treated as read only. If you need to set the LHS of an
1312 * assignment, use \c ir_assignment::set_lhs.
1313 */
1314 ir_dereference *lhs;
1315
1316 /**
1317 * Value being assigned
1318 */
1319 ir_rvalue *rhs;
1320
1321 /**
1322 * Optional condition for the assignment.
1323 */
1324 ir_rvalue *condition;
1325
1326
1327 /**
1328 * Component mask written
1329 *
1330 * For non-vector types in the LHS, this field will be zero. For vector
1331 * types, a bit will be set for each component that is written. Note that
1332 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1333 *
1334 * A partially-set write mask means that each enabled channel gets
1335 * the value from a consecutive channel of the rhs. For example,
1336 * to write just .xyw of gl_FrontColor with color:
1337 *
1338 * (assign (constant bool (1)) (xyw)
1339 * (var_ref gl_FragColor)
1340 * (swiz xyw (var_ref color)))
1341 */
1342 unsigned write_mask:4;
1343 };
1344
1345 /* Update ir_expression::get_num_operands() and operator_strs when
1346 * updating this list.
1347 */
1348 enum ir_expression_operation {
1349 ir_unop_bit_not,
1350 ir_unop_logic_not,
1351 ir_unop_neg,
1352 ir_unop_abs,
1353 ir_unop_sign,
1354 ir_unop_rcp,
1355 ir_unop_rsq,
1356 ir_unop_sqrt,
1357 ir_unop_exp, /**< Log base e on gentype */
1358 ir_unop_log, /**< Natural log on gentype */
1359 ir_unop_exp2,
1360 ir_unop_log2,
1361 ir_unop_f2i, /**< Float-to-integer conversion. */
1362 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1363 ir_unop_i2f, /**< Integer-to-float conversion. */
1364 ir_unop_f2b, /**< Float-to-boolean conversion */
1365 ir_unop_b2f, /**< Boolean-to-float conversion */
1366 ir_unop_i2b, /**< int-to-boolean conversion */
1367 ir_unop_b2i, /**< Boolean-to-int conversion */
1368 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1369 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1370 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1371 ir_unop_d2f, /**< Double-to-float conversion. */
1372 ir_unop_f2d, /**< Float-to-double conversion. */
1373 ir_unop_d2i, /**< Double-to-integer conversion. */
1374 ir_unop_i2d, /**< Integer-to-double conversion. */
1375 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1376 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1377 ir_unop_d2b, /**< Double-to-boolean conversion. */
1378 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1379 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1380 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1381 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1382
1383 /**
1384 * \name Unary floating-point rounding operations.
1385 */
1386 /*@{*/
1387 ir_unop_trunc,
1388 ir_unop_ceil,
1389 ir_unop_floor,
1390 ir_unop_fract,
1391 ir_unop_round_even,
1392 /*@}*/
1393
1394 /**
1395 * \name Trigonometric operations.
1396 */
1397 /*@{*/
1398 ir_unop_sin,
1399 ir_unop_cos,
1400 /*@}*/
1401
1402 /**
1403 * \name Partial derivatives.
1404 */
1405 /*@{*/
1406 ir_unop_dFdx,
1407 ir_unop_dFdx_coarse,
1408 ir_unop_dFdx_fine,
1409 ir_unop_dFdy,
1410 ir_unop_dFdy_coarse,
1411 ir_unop_dFdy_fine,
1412 /*@}*/
1413
1414 /**
1415 * \name Floating point pack and unpack operations.
1416 */
1417 /*@{*/
1418 ir_unop_pack_snorm_2x16,
1419 ir_unop_pack_snorm_4x8,
1420 ir_unop_pack_unorm_2x16,
1421 ir_unop_pack_unorm_4x8,
1422 ir_unop_pack_half_2x16,
1423 ir_unop_unpack_snorm_2x16,
1424 ir_unop_unpack_snorm_4x8,
1425 ir_unop_unpack_unorm_2x16,
1426 ir_unop_unpack_unorm_4x8,
1427 ir_unop_unpack_half_2x16,
1428 /*@}*/
1429
1430 /**
1431 * \name Bit operations, part of ARB_gpu_shader5.
1432 */
1433 /*@{*/
1434 ir_unop_bitfield_reverse,
1435 ir_unop_bit_count,
1436 ir_unop_find_msb,
1437 ir_unop_find_lsb,
1438 /*@}*/
1439
1440 ir_unop_saturate,
1441
1442 /**
1443 * \name Double packing, part of ARB_gpu_shader_fp64.
1444 */
1445 /*@{*/
1446 ir_unop_pack_double_2x32,
1447 ir_unop_unpack_double_2x32,
1448 /*@}*/
1449
1450 ir_unop_frexp_sig,
1451 ir_unop_frexp_exp,
1452
1453 ir_unop_noise,
1454
1455 ir_unop_subroutine_to_int,
1456 /**
1457 * Interpolate fs input at centroid
1458 *
1459 * operand0 is the fs input.
1460 */
1461 ir_unop_interpolate_at_centroid,
1462
1463 /**
1464 * Ask the driver for the total size of a buffer block.
1465 *
1466 * operand0 is the ir_constant buffer block index in the linked shader.
1467 */
1468 ir_unop_get_buffer_size,
1469
1470 /**
1471 * Calculate length of an unsized array inside a buffer block.
1472 * This opcode is going to be replaced in a lowering pass inside
1473 * the linker.
1474 *
1475 * operand0 is the unsized array's ir_value for the calculation
1476 * of its length.
1477 */
1478 ir_unop_ssbo_unsized_array_length,
1479
1480 /**
1481 * A sentinel marking the last of the unary operations.
1482 */
1483 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1484
1485 ir_binop_add,
1486 ir_binop_sub,
1487 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1488 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1489 ir_binop_div,
1490
1491 /**
1492 * Returns the carry resulting from the addition of the two arguments.
1493 */
1494 /*@{*/
1495 ir_binop_carry,
1496 /*@}*/
1497
1498 /**
1499 * Returns the borrow resulting from the subtraction of the second argument
1500 * from the first argument.
1501 */
1502 /*@{*/
1503 ir_binop_borrow,
1504 /*@}*/
1505
1506 /**
1507 * Takes one of two combinations of arguments:
1508 *
1509 * - mod(vecN, vecN)
1510 * - mod(vecN, float)
1511 *
1512 * Does not take integer types.
1513 */
1514 ir_binop_mod,
1515
1516 /**
1517 * \name Binary comparison operators which return a boolean vector.
1518 * The type of both operands must be equal.
1519 */
1520 /*@{*/
1521 ir_binop_less,
1522 ir_binop_greater,
1523 ir_binop_lequal,
1524 ir_binop_gequal,
1525 ir_binop_equal,
1526 ir_binop_nequal,
1527 /**
1528 * Returns single boolean for whether all components of operands[0]
1529 * equal the components of operands[1].
1530 */
1531 ir_binop_all_equal,
1532 /**
1533 * Returns single boolean for whether any component of operands[0]
1534 * is not equal to the corresponding component of operands[1].
1535 */
1536 ir_binop_any_nequal,
1537 /*@}*/
1538
1539 /**
1540 * \name Bit-wise binary operations.
1541 */
1542 /*@{*/
1543 ir_binop_lshift,
1544 ir_binop_rshift,
1545 ir_binop_bit_and,
1546 ir_binop_bit_xor,
1547 ir_binop_bit_or,
1548 /*@}*/
1549
1550 ir_binop_logic_and,
1551 ir_binop_logic_xor,
1552 ir_binop_logic_or,
1553
1554 ir_binop_dot,
1555 ir_binop_min,
1556 ir_binop_max,
1557
1558 ir_binop_pow,
1559
1560 /**
1561 * Load a value the size of a given GLSL type from a uniform block.
1562 *
1563 * operand0 is the ir_constant uniform block index in the linked shader.
1564 * operand1 is a byte offset within the uniform block.
1565 */
1566 ir_binop_ubo_load,
1567
1568 /**
1569 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1570 */
1571 /*@{*/
1572 ir_binop_ldexp,
1573 /*@}*/
1574
1575 /**
1576 * Extract a scalar from a vector
1577 *
1578 * operand0 is the vector
1579 * operand1 is the index of the field to read from operand0
1580 */
1581 ir_binop_vector_extract,
1582
1583 /**
1584 * Interpolate fs input at offset
1585 *
1586 * operand0 is the fs input
1587 * operand1 is the offset from the pixel center
1588 */
1589 ir_binop_interpolate_at_offset,
1590
1591 /**
1592 * Interpolate fs input at sample position
1593 *
1594 * operand0 is the fs input
1595 * operand1 is the sample ID
1596 */
1597 ir_binop_interpolate_at_sample,
1598
1599 /**
1600 * A sentinel marking the last of the binary operations.
1601 */
1602 ir_last_binop = ir_binop_interpolate_at_sample,
1603
1604 /**
1605 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1606 */
1607 /*@{*/
1608 ir_triop_fma,
1609 /*@}*/
1610
1611 ir_triop_lrp,
1612
1613 /**
1614 * \name Conditional Select
1615 *
1616 * A vector conditional select instruction (like ?:, but operating per-
1617 * component on vectors).
1618 *
1619 * \see lower_instructions_visitor::ldexp_to_arith
1620 */
1621 /*@{*/
1622 ir_triop_csel,
1623 /*@}*/
1624
1625 ir_triop_bitfield_extract,
1626
1627 /**
1628 * Generate a value with one field of a vector changed
1629 *
1630 * operand0 is the vector
1631 * operand1 is the value to write into the vector result
1632 * operand2 is the index in operand0 to be modified
1633 */
1634 ir_triop_vector_insert,
1635
1636 /**
1637 * A sentinel marking the last of the ternary operations.
1638 */
1639 ir_last_triop = ir_triop_vector_insert,
1640
1641 ir_quadop_bitfield_insert,
1642
1643 ir_quadop_vector,
1644
1645 /**
1646 * A sentinel marking the last of the ternary operations.
1647 */
1648 ir_last_quadop = ir_quadop_vector,
1649
1650 /**
1651 * A sentinel marking the last of all operations.
1652 */
1653 ir_last_opcode = ir_quadop_vector
1654 };
1655
1656 class ir_expression : public ir_rvalue {
1657 public:
1658 ir_expression(int op, const struct glsl_type *type,
1659 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1660 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1661
1662 /**
1663 * Constructor for unary operation expressions
1664 */
1665 ir_expression(int op, ir_rvalue *);
1666
1667 /**
1668 * Constructor for binary operation expressions
1669 */
1670 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1671
1672 /**
1673 * Constructor for ternary operation expressions
1674 */
1675 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1676
1677 virtual bool equals(const ir_instruction *ir,
1678 enum ir_node_type ignore = ir_type_unset) const;
1679
1680 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1681
1682 /**
1683 * Attempt to constant-fold the expression
1684 *
1685 * The "variable_context" hash table links ir_variable * to ir_constant *
1686 * that represent the variables' values. \c NULL represents an empty
1687 * context.
1688 *
1689 * If the expression cannot be constant folded, this method will return
1690 * \c NULL.
1691 */
1692 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1693
1694 /**
1695 * Determine the number of operands used by an expression
1696 */
1697 static unsigned int get_num_operands(ir_expression_operation);
1698
1699 /**
1700 * Determine the number of operands used by an expression
1701 */
1702 unsigned int get_num_operands() const
1703 {
1704 return (this->operation == ir_quadop_vector)
1705 ? this->type->vector_elements : get_num_operands(operation);
1706 }
1707
1708 /**
1709 * Return whether the expression operates on vectors horizontally.
1710 */
1711 bool is_horizontal() const
1712 {
1713 return operation == ir_binop_all_equal ||
1714 operation == ir_binop_any_nequal ||
1715 operation == ir_binop_dot ||
1716 operation == ir_binop_vector_extract ||
1717 operation == ir_triop_vector_insert ||
1718 operation == ir_binop_ubo_load ||
1719 operation == ir_quadop_vector;
1720 }
1721
1722 /**
1723 * Return a string representing this expression's operator.
1724 */
1725 const char *operator_string();
1726
1727 /**
1728 * Return a string representing this expression's operator.
1729 */
1730 static const char *operator_string(ir_expression_operation);
1731
1732
1733 /**
1734 * Do a reverse-lookup to translate the given string into an operator.
1735 */
1736 static ir_expression_operation get_operator(const char *);
1737
1738 virtual void accept(ir_visitor *v)
1739 {
1740 v->visit(this);
1741 }
1742
1743 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1744
1745 virtual ir_variable *variable_referenced() const;
1746
1747 ir_expression_operation operation;
1748 ir_rvalue *operands[4];
1749 };
1750
1751
1752 /**
1753 * HIR instruction representing a high-level function call, containing a list
1754 * of parameters and returning a value in the supplied temporary.
1755 */
1756 class ir_call : public ir_instruction {
1757 public:
1758 ir_call(ir_function_signature *callee,
1759 ir_dereference_variable *return_deref,
1760 exec_list *actual_parameters)
1761 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1762 {
1763 assert(callee->return_type != NULL);
1764 actual_parameters->move_nodes_to(& this->actual_parameters);
1765 this->use_builtin = callee->is_builtin();
1766 }
1767
1768 ir_call(ir_function_signature *callee,
1769 ir_dereference_variable *return_deref,
1770 exec_list *actual_parameters,
1771 ir_variable *var, ir_rvalue *array_idx)
1772 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1773 {
1774 assert(callee->return_type != NULL);
1775 actual_parameters->move_nodes_to(& this->actual_parameters);
1776 this->use_builtin = callee->is_builtin();
1777 }
1778
1779 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1780
1781 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1782
1783 virtual void accept(ir_visitor *v)
1784 {
1785 v->visit(this);
1786 }
1787
1788 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1789
1790 /**
1791 * Get the name of the function being called.
1792 */
1793 const char *callee_name() const
1794 {
1795 return callee->function_name();
1796 }
1797
1798 /**
1799 * Generates an inline version of the function before @ir,
1800 * storing the return value in return_deref.
1801 */
1802 void generate_inline(ir_instruction *ir);
1803
1804 /**
1805 * Storage for the function's return value.
1806 * This must be NULL if the return type is void.
1807 */
1808 ir_dereference_variable *return_deref;
1809
1810 /**
1811 * The specific function signature being called.
1812 */
1813 ir_function_signature *callee;
1814
1815 /* List of ir_rvalue of paramaters passed in this call. */
1816 exec_list actual_parameters;
1817
1818 /** Should this call only bind to a built-in function? */
1819 bool use_builtin;
1820
1821 /*
1822 * ARB_shader_subroutine support -
1823 * the subroutine uniform variable and array index
1824 * rvalue to be used in the lowering pass later.
1825 */
1826 ir_variable *sub_var;
1827 ir_rvalue *array_idx;
1828 };
1829
1830
1831 /**
1832 * \name Jump-like IR instructions.
1833 *
1834 * These include \c break, \c continue, \c return, and \c discard.
1835 */
1836 /*@{*/
1837 class ir_jump : public ir_instruction {
1838 protected:
1839 ir_jump(enum ir_node_type t)
1840 : ir_instruction(t)
1841 {
1842 }
1843 };
1844
1845 class ir_return : public ir_jump {
1846 public:
1847 ir_return()
1848 : ir_jump(ir_type_return), value(NULL)
1849 {
1850 }
1851
1852 ir_return(ir_rvalue *value)
1853 : ir_jump(ir_type_return), value(value)
1854 {
1855 }
1856
1857 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1858
1859 ir_rvalue *get_value() const
1860 {
1861 return value;
1862 }
1863
1864 virtual void accept(ir_visitor *v)
1865 {
1866 v->visit(this);
1867 }
1868
1869 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1870
1871 ir_rvalue *value;
1872 };
1873
1874
1875 /**
1876 * Jump instructions used inside loops
1877 *
1878 * These include \c break and \c continue. The \c break within a loop is
1879 * different from the \c break within a switch-statement.
1880 *
1881 * \sa ir_switch_jump
1882 */
1883 class ir_loop_jump : public ir_jump {
1884 public:
1885 enum jump_mode {
1886 jump_break,
1887 jump_continue
1888 };
1889
1890 ir_loop_jump(jump_mode mode)
1891 : ir_jump(ir_type_loop_jump)
1892 {
1893 this->mode = mode;
1894 }
1895
1896 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1897
1898 virtual void accept(ir_visitor *v)
1899 {
1900 v->visit(this);
1901 }
1902
1903 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1904
1905 bool is_break() const
1906 {
1907 return mode == jump_break;
1908 }
1909
1910 bool is_continue() const
1911 {
1912 return mode == jump_continue;
1913 }
1914
1915 /** Mode selector for the jump instruction. */
1916 enum jump_mode mode;
1917 };
1918
1919 /**
1920 * IR instruction representing discard statements.
1921 */
1922 class ir_discard : public ir_jump {
1923 public:
1924 ir_discard()
1925 : ir_jump(ir_type_discard)
1926 {
1927 this->condition = NULL;
1928 }
1929
1930 ir_discard(ir_rvalue *cond)
1931 : ir_jump(ir_type_discard)
1932 {
1933 this->condition = cond;
1934 }
1935
1936 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1937
1938 virtual void accept(ir_visitor *v)
1939 {
1940 v->visit(this);
1941 }
1942
1943 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1944
1945 ir_rvalue *condition;
1946 };
1947 /*@}*/
1948
1949
1950 /**
1951 * Texture sampling opcodes used in ir_texture
1952 */
1953 enum ir_texture_opcode {
1954 ir_tex, /**< Regular texture look-up */
1955 ir_txb, /**< Texture look-up with LOD bias */
1956 ir_txl, /**< Texture look-up with explicit LOD */
1957 ir_txd, /**< Texture look-up with partial derivatvies */
1958 ir_txf, /**< Texel fetch with explicit LOD */
1959 ir_txf_ms, /**< Multisample texture fetch */
1960 ir_txs, /**< Texture size */
1961 ir_lod, /**< Texture lod query */
1962 ir_tg4, /**< Texture gather */
1963 ir_query_levels, /**< Texture levels query */
1964 ir_texture_samples, /**< Texture samples query */
1965 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1966 };
1967
1968
1969 /**
1970 * IR instruction to sample a texture
1971 *
1972 * The specific form of the IR instruction depends on the \c mode value
1973 * selected from \c ir_texture_opcodes. In the printed IR, these will
1974 * appear as:
1975 *
1976 * Texel offset (0 or an expression)
1977 * | Projection divisor
1978 * | | Shadow comparitor
1979 * | | |
1980 * v v v
1981 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1982 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1983 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1984 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1985 * (txf <type> <sampler> <coordinate> 0 <lod>)
1986 * (txf_ms
1987 * <type> <sampler> <coordinate> <sample_index>)
1988 * (txs <type> <sampler> <lod>)
1989 * (lod <type> <sampler> <coordinate>)
1990 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1991 * (query_levels <type> <sampler>)
1992 * (samples_identical <sampler> <coordinate>)
1993 */
1994 class ir_texture : public ir_rvalue {
1995 public:
1996 ir_texture(enum ir_texture_opcode op)
1997 : ir_rvalue(ir_type_texture),
1998 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1999 shadow_comparitor(NULL), offset(NULL)
2000 {
2001 memset(&lod_info, 0, sizeof(lod_info));
2002 }
2003
2004 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2005
2006 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2007
2008 virtual void accept(ir_visitor *v)
2009 {
2010 v->visit(this);
2011 }
2012
2013 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2014
2015 virtual bool equals(const ir_instruction *ir,
2016 enum ir_node_type ignore = ir_type_unset) const;
2017
2018 /**
2019 * Return a string representing the ir_texture_opcode.
2020 */
2021 const char *opcode_string();
2022
2023 /** Set the sampler and type. */
2024 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2025
2026 /**
2027 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2028 */
2029 static ir_texture_opcode get_opcode(const char *);
2030
2031 enum ir_texture_opcode op;
2032
2033 /** Sampler to use for the texture access. */
2034 ir_dereference *sampler;
2035
2036 /** Texture coordinate to sample */
2037 ir_rvalue *coordinate;
2038
2039 /**
2040 * Value used for projective divide.
2041 *
2042 * If there is no projective divide (the common case), this will be
2043 * \c NULL. Optimization passes should check for this to point to a constant
2044 * of 1.0 and replace that with \c NULL.
2045 */
2046 ir_rvalue *projector;
2047
2048 /**
2049 * Coordinate used for comparison on shadow look-ups.
2050 *
2051 * If there is no shadow comparison, this will be \c NULL. For the
2052 * \c ir_txf opcode, this *must* be \c NULL.
2053 */
2054 ir_rvalue *shadow_comparitor;
2055
2056 /** Texel offset. */
2057 ir_rvalue *offset;
2058
2059 union {
2060 ir_rvalue *lod; /**< Floating point LOD */
2061 ir_rvalue *bias; /**< Floating point LOD bias */
2062 ir_rvalue *sample_index; /**< MSAA sample index */
2063 ir_rvalue *component; /**< Gather component selector */
2064 struct {
2065 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2066 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2067 } grad;
2068 } lod_info;
2069 };
2070
2071
2072 struct ir_swizzle_mask {
2073 unsigned x:2;
2074 unsigned y:2;
2075 unsigned z:2;
2076 unsigned w:2;
2077
2078 /**
2079 * Number of components in the swizzle.
2080 */
2081 unsigned num_components:3;
2082
2083 /**
2084 * Does the swizzle contain duplicate components?
2085 *
2086 * L-value swizzles cannot contain duplicate components.
2087 */
2088 unsigned has_duplicates:1;
2089 };
2090
2091
2092 class ir_swizzle : public ir_rvalue {
2093 public:
2094 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2095 unsigned count);
2096
2097 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2098
2099 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2100
2101 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2102
2103 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2104
2105 /**
2106 * Construct an ir_swizzle from the textual representation. Can fail.
2107 */
2108 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2109
2110 virtual void accept(ir_visitor *v)
2111 {
2112 v->visit(this);
2113 }
2114
2115 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2116
2117 virtual bool equals(const ir_instruction *ir,
2118 enum ir_node_type ignore = ir_type_unset) const;
2119
2120 bool is_lvalue() const
2121 {
2122 return val->is_lvalue() && !mask.has_duplicates;
2123 }
2124
2125 /**
2126 * Get the variable that is ultimately referenced by an r-value
2127 */
2128 virtual ir_variable *variable_referenced() const;
2129
2130 ir_rvalue *val;
2131 ir_swizzle_mask mask;
2132
2133 private:
2134 /**
2135 * Initialize the mask component of a swizzle
2136 *
2137 * This is used by the \c ir_swizzle constructors.
2138 */
2139 void init_mask(const unsigned *components, unsigned count);
2140 };
2141
2142
2143 class ir_dereference : public ir_rvalue {
2144 public:
2145 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2146
2147 bool is_lvalue() const;
2148
2149 /**
2150 * Get the variable that is ultimately referenced by an r-value
2151 */
2152 virtual ir_variable *variable_referenced() const = 0;
2153
2154 protected:
2155 ir_dereference(enum ir_node_type t)
2156 : ir_rvalue(t)
2157 {
2158 }
2159 };
2160
2161
2162 class ir_dereference_variable : public ir_dereference {
2163 public:
2164 ir_dereference_variable(ir_variable *var);
2165
2166 virtual ir_dereference_variable *clone(void *mem_ctx,
2167 struct hash_table *) const;
2168
2169 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2170
2171 virtual bool equals(const ir_instruction *ir,
2172 enum ir_node_type ignore = ir_type_unset) const;
2173
2174 /**
2175 * Get the variable that is ultimately referenced by an r-value
2176 */
2177 virtual ir_variable *variable_referenced() const
2178 {
2179 return this->var;
2180 }
2181
2182 virtual ir_variable *whole_variable_referenced()
2183 {
2184 /* ir_dereference_variable objects always dereference the entire
2185 * variable. However, if this dereference is dereferenced by anything
2186 * else, the complete deferefernce chain is not a whole-variable
2187 * dereference. This method should only be called on the top most
2188 * ir_rvalue in a dereference chain.
2189 */
2190 return this->var;
2191 }
2192
2193 virtual void accept(ir_visitor *v)
2194 {
2195 v->visit(this);
2196 }
2197
2198 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2199
2200 /**
2201 * Object being dereferenced.
2202 */
2203 ir_variable *var;
2204 };
2205
2206
2207 class ir_dereference_array : public ir_dereference {
2208 public:
2209 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2210
2211 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2212
2213 virtual ir_dereference_array *clone(void *mem_ctx,
2214 struct hash_table *) const;
2215
2216 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2217
2218 virtual bool equals(const ir_instruction *ir,
2219 enum ir_node_type ignore = ir_type_unset) const;
2220
2221 /**
2222 * Get the variable that is ultimately referenced by an r-value
2223 */
2224 virtual ir_variable *variable_referenced() const
2225 {
2226 return this->array->variable_referenced();
2227 }
2228
2229 virtual void accept(ir_visitor *v)
2230 {
2231 v->visit(this);
2232 }
2233
2234 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2235
2236 ir_rvalue *array;
2237 ir_rvalue *array_index;
2238
2239 private:
2240 void set_array(ir_rvalue *value);
2241 };
2242
2243
2244 class ir_dereference_record : public ir_dereference {
2245 public:
2246 ir_dereference_record(ir_rvalue *value, const char *field);
2247
2248 ir_dereference_record(ir_variable *var, const char *field);
2249
2250 virtual ir_dereference_record *clone(void *mem_ctx,
2251 struct hash_table *) const;
2252
2253 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2254
2255 /**
2256 * Get the variable that is ultimately referenced by an r-value
2257 */
2258 virtual ir_variable *variable_referenced() const
2259 {
2260 return this->record->variable_referenced();
2261 }
2262
2263 virtual void accept(ir_visitor *v)
2264 {
2265 v->visit(this);
2266 }
2267
2268 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2269
2270 ir_rvalue *record;
2271 const char *field;
2272 };
2273
2274
2275 /**
2276 * Data stored in an ir_constant
2277 */
2278 union ir_constant_data {
2279 unsigned u[16];
2280 int i[16];
2281 float f[16];
2282 bool b[16];
2283 double d[16];
2284 };
2285
2286
2287 class ir_constant : public ir_rvalue {
2288 public:
2289 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2290 ir_constant(bool b, unsigned vector_elements=1);
2291 ir_constant(unsigned int u, unsigned vector_elements=1);
2292 ir_constant(int i, unsigned vector_elements=1);
2293 ir_constant(float f, unsigned vector_elements=1);
2294 ir_constant(double d, unsigned vector_elements=1);
2295
2296 /**
2297 * Construct an ir_constant from a list of ir_constant values
2298 */
2299 ir_constant(const struct glsl_type *type, exec_list *values);
2300
2301 /**
2302 * Construct an ir_constant from a scalar component of another ir_constant
2303 *
2304 * The new \c ir_constant inherits the type of the component from the
2305 * source constant.
2306 *
2307 * \note
2308 * In the case of a matrix constant, the new constant is a scalar, \b not
2309 * a vector.
2310 */
2311 ir_constant(const ir_constant *c, unsigned i);
2312
2313 /**
2314 * Return a new ir_constant of the specified type containing all zeros.
2315 */
2316 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2317
2318 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2319
2320 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2321
2322 virtual void accept(ir_visitor *v)
2323 {
2324 v->visit(this);
2325 }
2326
2327 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2328
2329 virtual bool equals(const ir_instruction *ir,
2330 enum ir_node_type ignore = ir_type_unset) const;
2331
2332 /**
2333 * Get a particular component of a constant as a specific type
2334 *
2335 * This is useful, for example, to get a value from an integer constant
2336 * as a float or bool. This appears frequently when constructors are
2337 * called with all constant parameters.
2338 */
2339 /*@{*/
2340 bool get_bool_component(unsigned i) const;
2341 float get_float_component(unsigned i) const;
2342 double get_double_component(unsigned i) const;
2343 int get_int_component(unsigned i) const;
2344 unsigned get_uint_component(unsigned i) const;
2345 /*@}*/
2346
2347 ir_constant *get_array_element(unsigned i) const;
2348
2349 ir_constant *get_record_field(const char *name);
2350
2351 /**
2352 * Copy the values on another constant at a given offset.
2353 *
2354 * The offset is ignored for array or struct copies, it's only for
2355 * scalars or vectors into vectors or matrices.
2356 *
2357 * With identical types on both sides and zero offset it's clone()
2358 * without creating a new object.
2359 */
2360
2361 void copy_offset(ir_constant *src, int offset);
2362
2363 /**
2364 * Copy the values on another constant at a given offset and
2365 * following an assign-like mask.
2366 *
2367 * The mask is ignored for scalars.
2368 *
2369 * Note that this function only handles what assign can handle,
2370 * i.e. at most a vector as source and a column of a matrix as
2371 * destination.
2372 */
2373
2374 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2375
2376 /**
2377 * Determine whether a constant has the same value as another constant
2378 *
2379 * \sa ir_constant::is_zero, ir_constant::is_one,
2380 * ir_constant::is_negative_one
2381 */
2382 bool has_value(const ir_constant *) const;
2383
2384 /**
2385 * Return true if this ir_constant represents the given value.
2386 *
2387 * For vectors, this checks that each component is the given value.
2388 */
2389 virtual bool is_value(float f, int i) const;
2390 virtual bool is_zero() const;
2391 virtual bool is_one() const;
2392 virtual bool is_negative_one() const;
2393
2394 /**
2395 * Return true for constants that could be stored as 16-bit unsigned values.
2396 *
2397 * Note that this will return true even for signed integer ir_constants, as
2398 * long as the value is non-negative and fits in 16-bits.
2399 */
2400 virtual bool is_uint16_constant() const;
2401
2402 /**
2403 * Value of the constant.
2404 *
2405 * The field used to back the values supplied by the constant is determined
2406 * by the type associated with the \c ir_instruction. Constants may be
2407 * scalars, vectors, or matrices.
2408 */
2409 union ir_constant_data value;
2410
2411 /* Array elements */
2412 ir_constant **array_elements;
2413
2414 /* Structure fields */
2415 exec_list components;
2416
2417 private:
2418 /**
2419 * Parameterless constructor only used by the clone method
2420 */
2421 ir_constant(void);
2422 };
2423
2424 /**
2425 * IR instruction to emit a vertex in a geometry shader.
2426 */
2427 class ir_emit_vertex : public ir_instruction {
2428 public:
2429 ir_emit_vertex(ir_rvalue *stream)
2430 : ir_instruction(ir_type_emit_vertex),
2431 stream(stream)
2432 {
2433 assert(stream);
2434 }
2435
2436 virtual void accept(ir_visitor *v)
2437 {
2438 v->visit(this);
2439 }
2440
2441 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2442 {
2443 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2444 }
2445
2446 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2447
2448 int stream_id() const
2449 {
2450 return stream->as_constant()->value.i[0];
2451 }
2452
2453 ir_rvalue *stream;
2454 };
2455
2456 /**
2457 * IR instruction to complete the current primitive and start a new one in a
2458 * geometry shader.
2459 */
2460 class ir_end_primitive : public ir_instruction {
2461 public:
2462 ir_end_primitive(ir_rvalue *stream)
2463 : ir_instruction(ir_type_end_primitive),
2464 stream(stream)
2465 {
2466 assert(stream);
2467 }
2468
2469 virtual void accept(ir_visitor *v)
2470 {
2471 v->visit(this);
2472 }
2473
2474 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2475 {
2476 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2477 }
2478
2479 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2480
2481 int stream_id() const
2482 {
2483 return stream->as_constant()->value.i[0];
2484 }
2485
2486 ir_rvalue *stream;
2487 };
2488
2489 /**
2490 * IR instruction for tessellation control and compute shader barrier.
2491 */
2492 class ir_barrier : public ir_instruction {
2493 public:
2494 ir_barrier()
2495 : ir_instruction(ir_type_barrier)
2496 {
2497 }
2498
2499 virtual void accept(ir_visitor *v)
2500 {
2501 v->visit(this);
2502 }
2503
2504 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2505 {
2506 return new(mem_ctx) ir_barrier();
2507 }
2508
2509 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2510 };
2511
2512 /*@}*/
2513
2514 /**
2515 * Apply a visitor to each IR node in a list
2516 */
2517 void
2518 visit_exec_list(exec_list *list, ir_visitor *visitor);
2519
2520 /**
2521 * Validate invariants on each IR node in a list
2522 */
2523 void validate_ir_tree(exec_list *instructions);
2524
2525 struct _mesa_glsl_parse_state;
2526 struct gl_shader_program;
2527
2528 /**
2529 * Detect whether an unlinked shader contains static recursion
2530 *
2531 * If the list of instructions is determined to contain static recursion,
2532 * \c _mesa_glsl_error will be called to emit error messages for each function
2533 * that is in the recursion cycle.
2534 */
2535 void
2536 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2537 exec_list *instructions);
2538
2539 /**
2540 * Detect whether a linked shader contains static recursion
2541 *
2542 * If the list of instructions is determined to contain static recursion,
2543 * \c link_error_printf will be called to emit error messages for each function
2544 * that is in the recursion cycle. In addition,
2545 * \c gl_shader_program::LinkStatus will be set to false.
2546 */
2547 void
2548 detect_recursion_linked(struct gl_shader_program *prog,
2549 exec_list *instructions);
2550
2551 /**
2552 * Make a clone of each IR instruction in a list
2553 *
2554 * \param in List of IR instructions that are to be cloned
2555 * \param out List to hold the cloned instructions
2556 */
2557 void
2558 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2559
2560 extern void
2561 _mesa_glsl_initialize_variables(exec_list *instructions,
2562 struct _mesa_glsl_parse_state *state);
2563
2564 extern void
2565 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2566 gl_shader *shader);
2567
2568 extern void
2569 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2570
2571 extern void
2572 _mesa_glsl_initialize_builtin_functions();
2573
2574 extern ir_function_signature *
2575 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2576 const char *name, exec_list *actual_parameters);
2577
2578 extern ir_function *
2579 _mesa_glsl_find_builtin_function_by_name(const char *name);
2580
2581 extern gl_shader *
2582 _mesa_glsl_get_builtin_function_shader(void);
2583
2584 extern ir_function_signature *
2585 _mesa_get_main_function_signature(gl_shader *sh);
2586
2587 extern void
2588 _mesa_glsl_release_functions(void);
2589
2590 extern void
2591 _mesa_glsl_release_builtin_functions(void);
2592
2593 extern void
2594 reparent_ir(exec_list *list, void *mem_ctx);
2595
2596 struct glsl_symbol_table;
2597
2598 extern void
2599 import_prototypes(const exec_list *source, exec_list *dest,
2600 struct glsl_symbol_table *symbols, void *mem_ctx);
2601
2602 extern bool
2603 ir_has_call(ir_instruction *ir);
2604
2605 extern void
2606 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2607 gl_shader_stage shader_stage);
2608
2609 extern char *
2610 prototype_string(const glsl_type *return_type, const char *name,
2611 exec_list *parameters);
2612
2613 const char *
2614 mode_string(const ir_variable *var);
2615
2616 /**
2617 * Built-in / reserved GL variables names start with "gl_"
2618 */
2619 static inline bool
2620 is_gl_identifier(const char *s)
2621 {
2622 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2623 }
2624
2625 extern "C" {
2626 #endif /* __cplusplus */
2627
2628 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2629 struct _mesa_glsl_parse_state *state);
2630
2631 extern void
2632 fprint_ir(FILE *f, const void *instruction);
2633
2634 extern const struct gl_builtin_uniform_desc *
2635 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2636
2637 #ifdef __cplusplus
2638 } /* extern "C" */
2639 #endif
2640
2641 unsigned
2642 vertices_per_prim(GLenum prim);
2643
2644 #endif /* IR_H */