glsl: make max array trackers ints and use -1 as base. (v2)
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 /**
541 * Get the max_ifc_array_access pointer
542 *
543 * A "set" function is not needed because the array is dynmically allocated
544 * as necessary.
545 */
546 inline int *get_max_ifc_array_access()
547 {
548 assert(this->data._num_state_slots == 0);
549 return this->u.max_ifc_array_access;
550 }
551
552 inline unsigned get_num_state_slots() const
553 {
554 assert(!this->is_interface_instance()
555 || this->data._num_state_slots == 0);
556 return this->data._num_state_slots;
557 }
558
559 inline void set_num_state_slots(unsigned n)
560 {
561 assert(!this->is_interface_instance()
562 || n == 0);
563 this->data._num_state_slots = n;
564 }
565
566 inline ir_state_slot *get_state_slots()
567 {
568 return this->is_interface_instance() ? NULL : this->u.state_slots;
569 }
570
571 inline const ir_state_slot *get_state_slots() const
572 {
573 return this->is_interface_instance() ? NULL : this->u.state_slots;
574 }
575
576 inline ir_state_slot *allocate_state_slots(unsigned n)
577 {
578 assert(!this->is_interface_instance());
579
580 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
581 this->data._num_state_slots = 0;
582
583 if (this->u.state_slots != NULL)
584 this->data._num_state_slots = n;
585
586 return this->u.state_slots;
587 }
588
589 inline bool is_name_ralloced() const
590 {
591 return this->name != ir_variable::tmp_name;
592 }
593
594 /**
595 * Enable emitting extension warnings for this variable
596 */
597 void enable_extension_warning(const char *extension);
598
599 /**
600 * Get the extension warning string for this variable
601 *
602 * If warnings are not enabled, \c NULL is returned.
603 */
604 const char *get_extension_warning() const;
605
606 /**
607 * Declared type of the variable
608 */
609 const struct glsl_type *type;
610
611 /**
612 * Declared name of the variable
613 */
614 const char *name;
615
616 struct ir_variable_data {
617
618 /**
619 * Is the variable read-only?
620 *
621 * This is set for variables declared as \c const, shader inputs,
622 * and uniforms.
623 */
624 unsigned read_only:1;
625 unsigned centroid:1;
626 unsigned sample:1;
627 unsigned patch:1;
628 unsigned invariant:1;
629 unsigned precise:1;
630
631 /**
632 * Has this variable been used for reading or writing?
633 *
634 * Several GLSL semantic checks require knowledge of whether or not a
635 * variable has been used. For example, it is an error to redeclare a
636 * variable as invariant after it has been used.
637 *
638 * This is only maintained in the ast_to_hir.cpp path, not in
639 * Mesa's fixed function or ARB program paths.
640 */
641 unsigned used:1;
642
643 /**
644 * Has this variable been statically assigned?
645 *
646 * This answers whether the variable was assigned in any path of
647 * the shader during ast_to_hir. This doesn't answer whether it is
648 * still written after dead code removal, nor is it maintained in
649 * non-ast_to_hir.cpp (GLSL parsing) paths.
650 */
651 unsigned assigned:1;
652
653 /**
654 * When separate shader programs are enabled, only input/outputs between
655 * the stages of a multi-stage separate program can be safely removed
656 * from the shader interface. Other input/outputs must remains active.
657 */
658 unsigned always_active_io:1;
659
660 /**
661 * Enum indicating how the variable was declared. See
662 * ir_var_declaration_type.
663 *
664 * This is used to detect certain kinds of illegal variable redeclarations.
665 */
666 unsigned how_declared:2;
667
668 /**
669 * Storage class of the variable.
670 *
671 * \sa ir_variable_mode
672 */
673 unsigned mode:4;
674
675 /**
676 * Interpolation mode for shader inputs / outputs
677 *
678 * \sa ir_variable_interpolation
679 */
680 unsigned interpolation:2;
681
682 /**
683 * \name ARB_fragment_coord_conventions
684 * @{
685 */
686 unsigned origin_upper_left:1;
687 unsigned pixel_center_integer:1;
688 /*@}*/
689
690 /**
691 * Was the location explicitly set in the shader?
692 *
693 * If the location is explicitly set in the shader, it \b cannot be changed
694 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
695 * no effect).
696 */
697 unsigned explicit_location:1;
698 unsigned explicit_index:1;
699
700 /**
701 * Was an initial binding explicitly set in the shader?
702 *
703 * If so, constant_value contains an integer ir_constant representing the
704 * initial binding point.
705 */
706 unsigned explicit_binding:1;
707
708 /**
709 * Was an initial component explicitly set in the shader?
710 */
711 unsigned explicit_component:1;
712
713 /**
714 * Does this variable have an initializer?
715 *
716 * This is used by the linker to cross-validiate initializers of global
717 * variables.
718 */
719 unsigned has_initializer:1;
720
721 /**
722 * Is this variable a generic output or input that has not yet been matched
723 * up to a variable in another stage of the pipeline?
724 *
725 * This is used by the linker as scratch storage while assigning locations
726 * to generic inputs and outputs.
727 */
728 unsigned is_unmatched_generic_inout:1;
729
730 /**
731 * Is this varying used only by transform feedback?
732 *
733 * This is used by the linker to decide if its safe to pack the varying.
734 */
735 unsigned is_xfb_only:1;
736
737 /**
738 * Was a transfor feedback buffer set in the shader?
739 */
740 unsigned explicit_xfb_buffer:1;
741
742 /**
743 * Was a transfor feedback offset set in the shader?
744 */
745 unsigned explicit_xfb_offset:1;
746
747 /**
748 * Was a transfor feedback stride set in the shader?
749 */
750 unsigned explicit_xfb_stride:1;
751
752 /**
753 * If non-zero, then this variable may be packed along with other variables
754 * into a single varying slot, so this offset should be applied when
755 * accessing components. For example, an offset of 1 means that the x
756 * component of this variable is actually stored in component y of the
757 * location specified by \c location.
758 */
759 unsigned location_frac:2;
760
761 /**
762 * Layout of the matrix. Uses glsl_matrix_layout values.
763 */
764 unsigned matrix_layout:2;
765
766 /**
767 * Non-zero if this variable was created by lowering a named interface
768 * block.
769 */
770 unsigned from_named_ifc_block:1;
771
772 /**
773 * Non-zero if the variable must be a shader input. This is useful for
774 * constraints on function parameters.
775 */
776 unsigned must_be_shader_input:1;
777
778 /**
779 * Output index for dual source blending.
780 *
781 * \note
782 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
783 * source blending.
784 */
785 unsigned index:1;
786
787 /**
788 * Precision qualifier.
789 *
790 * In desktop GLSL we do not care about precision qualifiers at all, in
791 * fact, the spec says that precision qualifiers are ignored.
792 *
793 * To make things easy, we make it so that this field is always
794 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
795 * have the same precision value and the checks we add in the compiler
796 * for this field will never break a desktop shader compile.
797 */
798 unsigned precision:2;
799
800 /**
801 * \brief Layout qualifier for gl_FragDepth.
802 *
803 * This is not equal to \c ir_depth_layout_none if and only if this
804 * variable is \c gl_FragDepth and a layout qualifier is specified.
805 */
806 ir_depth_layout depth_layout:3;
807
808 /**
809 * ARB_shader_image_load_store qualifiers.
810 */
811 unsigned image_read_only:1; /**< "readonly" qualifier. */
812 unsigned image_write_only:1; /**< "writeonly" qualifier. */
813 unsigned image_coherent:1;
814 unsigned image_volatile:1;
815 unsigned image_restrict:1;
816
817 /**
818 * ARB_shader_storage_buffer_object
819 */
820 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
821
822 /**
823 * Emit a warning if this variable is accessed.
824 */
825 private:
826 uint8_t warn_extension_index;
827
828 public:
829 /** Image internal format if specified explicitly, otherwise GL_NONE. */
830 uint16_t image_format;
831
832 private:
833 /**
834 * Number of state slots used
835 *
836 * \note
837 * This could be stored in as few as 7-bits, if necessary. If it is made
838 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
839 * be safe.
840 */
841 uint16_t _num_state_slots;
842
843 public:
844 /**
845 * Initial binding point for a sampler, atomic, or UBO.
846 *
847 * For array types, this represents the binding point for the first element.
848 */
849 int16_t binding;
850
851 /**
852 * Storage location of the base of this variable
853 *
854 * The precise meaning of this field depends on the nature of the variable.
855 *
856 * - Vertex shader input: one of the values from \c gl_vert_attrib.
857 * - Vertex shader output: one of the values from \c gl_varying_slot.
858 * - Geometry shader input: one of the values from \c gl_varying_slot.
859 * - Geometry shader output: one of the values from \c gl_varying_slot.
860 * - Fragment shader input: one of the values from \c gl_varying_slot.
861 * - Fragment shader output: one of the values from \c gl_frag_result.
862 * - Uniforms: Per-stage uniform slot number for default uniform block.
863 * - Uniforms: Index within the uniform block definition for UBO members.
864 * - Non-UBO Uniforms: explicit location until linking then reused to
865 * store uniform slot number.
866 * - Other: This field is not currently used.
867 *
868 * If the variable is a uniform, shader input, or shader output, and the
869 * slot has not been assigned, the value will be -1.
870 */
871 int location;
872
873 /**
874 * for glsl->tgsi/mesa IR we need to store the index into the
875 * parameters for uniforms, initially the code overloaded location
876 * but this causes problems with indirect samplers and AoA.
877 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
878 */
879 int param_index;
880
881 /**
882 * Vertex stream output identifier.
883 */
884 unsigned stream;
885
886 /**
887 * Atomic, transform feedback or block member offset.
888 */
889 unsigned offset;
890
891 /**
892 * Highest element accessed with a constant expression array index
893 *
894 * Not used for non-array variables. -1 is never accessed.
895 */
896 int max_array_access;
897
898 /**
899 * Transform feedback buffer.
900 */
901 unsigned xfb_buffer;
902
903 /**
904 * Transform feedback stride.
905 */
906 unsigned xfb_stride;
907
908 /**
909 * Allow (only) ir_variable direct access private members.
910 */
911 friend class ir_variable;
912 } data;
913
914 /**
915 * Value assigned in the initializer of a variable declared "const"
916 */
917 ir_constant *constant_value;
918
919 /**
920 * Constant expression assigned in the initializer of the variable
921 *
922 * \warning
923 * This field and \c ::constant_value are distinct. Even if the two fields
924 * refer to constants with the same value, they must point to separate
925 * objects.
926 */
927 ir_constant *constant_initializer;
928
929 private:
930 static const char *const warn_extension_table[];
931
932 union {
933 /**
934 * For variables which satisfy the is_interface_instance() predicate,
935 * this points to an array of integers such that if the ith member of
936 * the interface block is an array, max_ifc_array_access[i] is the
937 * maximum array element of that member that has been accessed. If the
938 * ith member of the interface block is not an array,
939 * max_ifc_array_access[i] is unused.
940 *
941 * For variables whose type is not an interface block, this pointer is
942 * NULL.
943 */
944 int *max_ifc_array_access;
945
946 /**
947 * Built-in state that backs this uniform
948 *
949 * Once set at variable creation, \c state_slots must remain invariant.
950 *
951 * If the variable is not a uniform, \c _num_state_slots will be zero
952 * and \c state_slots will be \c NULL.
953 */
954 ir_state_slot *state_slots;
955 } u;
956
957 /**
958 * For variables that are in an interface block or are an instance of an
959 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
960 *
961 * \sa ir_variable::location
962 */
963 const glsl_type *interface_type;
964
965 /**
966 * Name used for anonymous compiler temporaries
967 */
968 static const char tmp_name[];
969
970 public:
971 /**
972 * Should the construct keep names for ir_var_temporary variables?
973 *
974 * When this global is false, names passed to the constructor for
975 * \c ir_var_temporary variables will be dropped. Instead, the variable will
976 * be named "compiler_temp". This name will be in static storage.
977 *
978 * \warning
979 * \b NEVER change the mode of an \c ir_var_temporary.
980 *
981 * \warning
982 * This variable is \b not thread-safe. It is global, \b not
983 * per-context. It begins life false. A context can, at some point, make
984 * it true. From that point on, it will be true forever. This should be
985 * okay since it will only be set true while debugging.
986 */
987 static bool temporaries_allocate_names;
988 };
989
990 /**
991 * A function that returns whether a built-in function is available in the
992 * current shading language (based on version, ES or desktop, and extensions).
993 */
994 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
995
996 /*@{*/
997 /**
998 * The representation of a function instance; may be the full definition or
999 * simply a prototype.
1000 */
1001 class ir_function_signature : public ir_instruction {
1002 /* An ir_function_signature will be part of the list of signatures in
1003 * an ir_function.
1004 */
1005 public:
1006 ir_function_signature(const glsl_type *return_type,
1007 builtin_available_predicate builtin_avail = NULL);
1008
1009 virtual ir_function_signature *clone(void *mem_ctx,
1010 struct hash_table *ht) const;
1011 ir_function_signature *clone_prototype(void *mem_ctx,
1012 struct hash_table *ht) const;
1013
1014 virtual void accept(ir_visitor *v)
1015 {
1016 v->visit(this);
1017 }
1018
1019 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1020
1021 /**
1022 * Attempt to evaluate this function as a constant expression,
1023 * given a list of the actual parameters and the variable context.
1024 * Returns NULL for non-built-ins.
1025 */
1026 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1027
1028 /**
1029 * Get the name of the function for which this is a signature
1030 */
1031 const char *function_name() const;
1032
1033 /**
1034 * Get a handle to the function for which this is a signature
1035 *
1036 * There is no setter function, this function returns a \c const pointer,
1037 * and \c ir_function_signature::_function is private for a reason. The
1038 * only way to make a connection between a function and function signature
1039 * is via \c ir_function::add_signature. This helps ensure that certain
1040 * invariants (i.e., a function signature is in the list of signatures for
1041 * its \c _function) are met.
1042 *
1043 * \sa ir_function::add_signature
1044 */
1045 inline const class ir_function *function() const
1046 {
1047 return this->_function;
1048 }
1049
1050 /**
1051 * Check whether the qualifiers match between this signature's parameters
1052 * and the supplied parameter list. If not, returns the name of the first
1053 * parameter with mismatched qualifiers (for use in error messages).
1054 */
1055 const char *qualifiers_match(exec_list *params);
1056
1057 /**
1058 * Replace the current parameter list with the given one. This is useful
1059 * if the current information came from a prototype, and either has invalid
1060 * or missing parameter names.
1061 */
1062 void replace_parameters(exec_list *new_params);
1063
1064 /**
1065 * Function return type.
1066 *
1067 * \note This discards the optional precision qualifier.
1068 */
1069 const struct glsl_type *return_type;
1070
1071 /**
1072 * List of ir_variable of function parameters.
1073 *
1074 * This represents the storage. The paramaters passed in a particular
1075 * call will be in ir_call::actual_paramaters.
1076 */
1077 struct exec_list parameters;
1078
1079 /** Whether or not this function has a body (which may be empty). */
1080 unsigned is_defined:1;
1081
1082 /** Whether or not this function signature is a built-in. */
1083 bool is_builtin() const;
1084
1085 /**
1086 * Whether or not this function is an intrinsic to be implemented
1087 * by the driver.
1088 */
1089 bool is_intrinsic;
1090
1091 /** Whether or not a built-in is available for this shader. */
1092 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1093
1094 /** Body of instructions in the function. */
1095 struct exec_list body;
1096
1097 private:
1098 /**
1099 * A function pointer to a predicate that answers whether a built-in
1100 * function is available in the current shader. NULL if not a built-in.
1101 */
1102 builtin_available_predicate builtin_avail;
1103
1104 /** Function of which this signature is one overload. */
1105 class ir_function *_function;
1106
1107 /** Function signature of which this one is a prototype clone */
1108 const ir_function_signature *origin;
1109
1110 friend class ir_function;
1111
1112 /**
1113 * Helper function to run a list of instructions for constant
1114 * expression evaluation.
1115 *
1116 * The hash table represents the values of the visible variables.
1117 * There are no scoping issues because the table is indexed on
1118 * ir_variable pointers, not variable names.
1119 *
1120 * Returns false if the expression is not constant, true otherwise,
1121 * and the value in *result if result is non-NULL.
1122 */
1123 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1124 struct hash_table *variable_context,
1125 ir_constant **result);
1126 };
1127
1128
1129 /**
1130 * Header for tracking multiple overloaded functions with the same name.
1131 * Contains a list of ir_function_signatures representing each of the
1132 * actual functions.
1133 */
1134 class ir_function : public ir_instruction {
1135 public:
1136 ir_function(const char *name);
1137
1138 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1139
1140 virtual void accept(ir_visitor *v)
1141 {
1142 v->visit(this);
1143 }
1144
1145 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1146
1147 void add_signature(ir_function_signature *sig)
1148 {
1149 sig->_function = this;
1150 this->signatures.push_tail(sig);
1151 }
1152
1153 /**
1154 * Find a signature that matches a set of actual parameters, taking implicit
1155 * conversions into account. Also flags whether the match was exact.
1156 */
1157 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1158 const exec_list *actual_param,
1159 bool allow_builtins,
1160 bool *match_is_exact);
1161
1162 /**
1163 * Find a signature that matches a set of actual parameters, taking implicit
1164 * conversions into account.
1165 */
1166 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1167 const exec_list *actual_param,
1168 bool allow_builtins);
1169
1170 /**
1171 * Find a signature that exactly matches a set of actual parameters without
1172 * any implicit type conversions.
1173 */
1174 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1175 const exec_list *actual_ps);
1176
1177 /**
1178 * Name of the function.
1179 */
1180 const char *name;
1181
1182 /** Whether or not this function has a signature that isn't a built-in. */
1183 bool has_user_signature();
1184
1185 /**
1186 * List of ir_function_signature for each overloaded function with this name.
1187 */
1188 struct exec_list signatures;
1189
1190 /**
1191 * is this function a subroutine type declaration
1192 * e.g. subroutine void type1(float arg1);
1193 */
1194 bool is_subroutine;
1195
1196 /**
1197 * is this function associated to a subroutine type
1198 * e.g. subroutine (type1, type2) function_name { function_body };
1199 * would have num_subroutine_types 2,
1200 * and pointers to the type1 and type2 types.
1201 */
1202 int num_subroutine_types;
1203 const struct glsl_type **subroutine_types;
1204
1205 int subroutine_index;
1206 };
1207
1208 inline const char *ir_function_signature::function_name() const
1209 {
1210 return this->_function->name;
1211 }
1212 /*@}*/
1213
1214
1215 /**
1216 * IR instruction representing high-level if-statements
1217 */
1218 class ir_if : public ir_instruction {
1219 public:
1220 ir_if(ir_rvalue *condition)
1221 : ir_instruction(ir_type_if), condition(condition)
1222 {
1223 }
1224
1225 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1226
1227 virtual void accept(ir_visitor *v)
1228 {
1229 v->visit(this);
1230 }
1231
1232 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1233
1234 ir_rvalue *condition;
1235 /** List of ir_instruction for the body of the then branch */
1236 exec_list then_instructions;
1237 /** List of ir_instruction for the body of the else branch */
1238 exec_list else_instructions;
1239 };
1240
1241
1242 /**
1243 * IR instruction representing a high-level loop structure.
1244 */
1245 class ir_loop : public ir_instruction {
1246 public:
1247 ir_loop();
1248
1249 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1250
1251 virtual void accept(ir_visitor *v)
1252 {
1253 v->visit(this);
1254 }
1255
1256 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1257
1258 /** List of ir_instruction that make up the body of the loop. */
1259 exec_list body_instructions;
1260 };
1261
1262
1263 class ir_assignment : public ir_instruction {
1264 public:
1265 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1266
1267 /**
1268 * Construct an assignment with an explicit write mask
1269 *
1270 * \note
1271 * Since a write mask is supplied, the LHS must already be a bare
1272 * \c ir_dereference. The cannot be any swizzles in the LHS.
1273 */
1274 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1275 unsigned write_mask);
1276
1277 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1278
1279 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1280
1281 virtual void accept(ir_visitor *v)
1282 {
1283 v->visit(this);
1284 }
1285
1286 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1287
1288 /**
1289 * Get a whole variable written by an assignment
1290 *
1291 * If the LHS of the assignment writes a whole variable, the variable is
1292 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1293 * assignment are:
1294 *
1295 * - Assigning to a scalar
1296 * - Assigning to all components of a vector
1297 * - Whole array (or matrix) assignment
1298 * - Whole structure assignment
1299 */
1300 ir_variable *whole_variable_written();
1301
1302 /**
1303 * Set the LHS of an assignment
1304 */
1305 void set_lhs(ir_rvalue *lhs);
1306
1307 /**
1308 * Left-hand side of the assignment.
1309 *
1310 * This should be treated as read only. If you need to set the LHS of an
1311 * assignment, use \c ir_assignment::set_lhs.
1312 */
1313 ir_dereference *lhs;
1314
1315 /**
1316 * Value being assigned
1317 */
1318 ir_rvalue *rhs;
1319
1320 /**
1321 * Optional condition for the assignment.
1322 */
1323 ir_rvalue *condition;
1324
1325
1326 /**
1327 * Component mask written
1328 *
1329 * For non-vector types in the LHS, this field will be zero. For vector
1330 * types, a bit will be set for each component that is written. Note that
1331 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1332 *
1333 * A partially-set write mask means that each enabled channel gets
1334 * the value from a consecutive channel of the rhs. For example,
1335 * to write just .xyw of gl_FrontColor with color:
1336 *
1337 * (assign (constant bool (1)) (xyw)
1338 * (var_ref gl_FragColor)
1339 * (swiz xyw (var_ref color)))
1340 */
1341 unsigned write_mask:4;
1342 };
1343
1344 /* Update ir_expression::get_num_operands() and operator_strs when
1345 * updating this list.
1346 */
1347 enum ir_expression_operation {
1348 ir_unop_bit_not,
1349 ir_unop_logic_not,
1350 ir_unop_neg,
1351 ir_unop_abs,
1352 ir_unop_sign,
1353 ir_unop_rcp,
1354 ir_unop_rsq,
1355 ir_unop_sqrt,
1356 ir_unop_exp, /**< Log base e on gentype */
1357 ir_unop_log, /**< Natural log on gentype */
1358 ir_unop_exp2,
1359 ir_unop_log2,
1360 ir_unop_f2i, /**< Float-to-integer conversion. */
1361 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1362 ir_unop_i2f, /**< Integer-to-float conversion. */
1363 ir_unop_f2b, /**< Float-to-boolean conversion */
1364 ir_unop_b2f, /**< Boolean-to-float conversion */
1365 ir_unop_i2b, /**< int-to-boolean conversion */
1366 ir_unop_b2i, /**< Boolean-to-int conversion */
1367 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1368 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1369 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1370 ir_unop_d2f, /**< Double-to-float conversion. */
1371 ir_unop_f2d, /**< Float-to-double conversion. */
1372 ir_unop_d2i, /**< Double-to-integer conversion. */
1373 ir_unop_i2d, /**< Integer-to-double conversion. */
1374 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1375 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1376 ir_unop_d2b, /**< Double-to-boolean conversion. */
1377 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1378 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1379 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1380 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1381
1382 /**
1383 * \name Unary floating-point rounding operations.
1384 */
1385 /*@{*/
1386 ir_unop_trunc,
1387 ir_unop_ceil,
1388 ir_unop_floor,
1389 ir_unop_fract,
1390 ir_unop_round_even,
1391 /*@}*/
1392
1393 /**
1394 * \name Trigonometric operations.
1395 */
1396 /*@{*/
1397 ir_unop_sin,
1398 ir_unop_cos,
1399 /*@}*/
1400
1401 /**
1402 * \name Partial derivatives.
1403 */
1404 /*@{*/
1405 ir_unop_dFdx,
1406 ir_unop_dFdx_coarse,
1407 ir_unop_dFdx_fine,
1408 ir_unop_dFdy,
1409 ir_unop_dFdy_coarse,
1410 ir_unop_dFdy_fine,
1411 /*@}*/
1412
1413 /**
1414 * \name Floating point pack and unpack operations.
1415 */
1416 /*@{*/
1417 ir_unop_pack_snorm_2x16,
1418 ir_unop_pack_snorm_4x8,
1419 ir_unop_pack_unorm_2x16,
1420 ir_unop_pack_unorm_4x8,
1421 ir_unop_pack_half_2x16,
1422 ir_unop_unpack_snorm_2x16,
1423 ir_unop_unpack_snorm_4x8,
1424 ir_unop_unpack_unorm_2x16,
1425 ir_unop_unpack_unorm_4x8,
1426 ir_unop_unpack_half_2x16,
1427 /*@}*/
1428
1429 /**
1430 * \name Bit operations, part of ARB_gpu_shader5.
1431 */
1432 /*@{*/
1433 ir_unop_bitfield_reverse,
1434 ir_unop_bit_count,
1435 ir_unop_find_msb,
1436 ir_unop_find_lsb,
1437 /*@}*/
1438
1439 ir_unop_saturate,
1440
1441 /**
1442 * \name Double packing, part of ARB_gpu_shader_fp64.
1443 */
1444 /*@{*/
1445 ir_unop_pack_double_2x32,
1446 ir_unop_unpack_double_2x32,
1447 /*@}*/
1448
1449 ir_unop_frexp_sig,
1450 ir_unop_frexp_exp,
1451
1452 ir_unop_noise,
1453
1454 ir_unop_subroutine_to_int,
1455 /**
1456 * Interpolate fs input at centroid
1457 *
1458 * operand0 is the fs input.
1459 */
1460 ir_unop_interpolate_at_centroid,
1461
1462 /**
1463 * Ask the driver for the total size of a buffer block.
1464 *
1465 * operand0 is the ir_constant buffer block index in the linked shader.
1466 */
1467 ir_unop_get_buffer_size,
1468
1469 /**
1470 * Calculate length of an unsized array inside a buffer block.
1471 * This opcode is going to be replaced in a lowering pass inside
1472 * the linker.
1473 *
1474 * operand0 is the unsized array's ir_value for the calculation
1475 * of its length.
1476 */
1477 ir_unop_ssbo_unsized_array_length,
1478
1479 /**
1480 * A sentinel marking the last of the unary operations.
1481 */
1482 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1483
1484 ir_binop_add,
1485 ir_binop_sub,
1486 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1487 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1488 ir_binop_div,
1489
1490 /**
1491 * Returns the carry resulting from the addition of the two arguments.
1492 */
1493 /*@{*/
1494 ir_binop_carry,
1495 /*@}*/
1496
1497 /**
1498 * Returns the borrow resulting from the subtraction of the second argument
1499 * from the first argument.
1500 */
1501 /*@{*/
1502 ir_binop_borrow,
1503 /*@}*/
1504
1505 /**
1506 * Takes one of two combinations of arguments:
1507 *
1508 * - mod(vecN, vecN)
1509 * - mod(vecN, float)
1510 *
1511 * Does not take integer types.
1512 */
1513 ir_binop_mod,
1514
1515 /**
1516 * \name Binary comparison operators which return a boolean vector.
1517 * The type of both operands must be equal.
1518 */
1519 /*@{*/
1520 ir_binop_less,
1521 ir_binop_greater,
1522 ir_binop_lequal,
1523 ir_binop_gequal,
1524 ir_binop_equal,
1525 ir_binop_nequal,
1526 /**
1527 * Returns single boolean for whether all components of operands[0]
1528 * equal the components of operands[1].
1529 */
1530 ir_binop_all_equal,
1531 /**
1532 * Returns single boolean for whether any component of operands[0]
1533 * is not equal to the corresponding component of operands[1].
1534 */
1535 ir_binop_any_nequal,
1536 /*@}*/
1537
1538 /**
1539 * \name Bit-wise binary operations.
1540 */
1541 /*@{*/
1542 ir_binop_lshift,
1543 ir_binop_rshift,
1544 ir_binop_bit_and,
1545 ir_binop_bit_xor,
1546 ir_binop_bit_or,
1547 /*@}*/
1548
1549 ir_binop_logic_and,
1550 ir_binop_logic_xor,
1551 ir_binop_logic_or,
1552
1553 ir_binop_dot,
1554 ir_binop_min,
1555 ir_binop_max,
1556
1557 ir_binop_pow,
1558
1559 /**
1560 * Load a value the size of a given GLSL type from a uniform block.
1561 *
1562 * operand0 is the ir_constant uniform block index in the linked shader.
1563 * operand1 is a byte offset within the uniform block.
1564 */
1565 ir_binop_ubo_load,
1566
1567 /**
1568 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1569 */
1570 /*@{*/
1571 ir_binop_ldexp,
1572 /*@}*/
1573
1574 /**
1575 * Extract a scalar from a vector
1576 *
1577 * operand0 is the vector
1578 * operand1 is the index of the field to read from operand0
1579 */
1580 ir_binop_vector_extract,
1581
1582 /**
1583 * Interpolate fs input at offset
1584 *
1585 * operand0 is the fs input
1586 * operand1 is the offset from the pixel center
1587 */
1588 ir_binop_interpolate_at_offset,
1589
1590 /**
1591 * Interpolate fs input at sample position
1592 *
1593 * operand0 is the fs input
1594 * operand1 is the sample ID
1595 */
1596 ir_binop_interpolate_at_sample,
1597
1598 /**
1599 * A sentinel marking the last of the binary operations.
1600 */
1601 ir_last_binop = ir_binop_interpolate_at_sample,
1602
1603 /**
1604 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1605 */
1606 /*@{*/
1607 ir_triop_fma,
1608 /*@}*/
1609
1610 ir_triop_lrp,
1611
1612 /**
1613 * \name Conditional Select
1614 *
1615 * A vector conditional select instruction (like ?:, but operating per-
1616 * component on vectors).
1617 *
1618 * \see lower_instructions_visitor::ldexp_to_arith
1619 */
1620 /*@{*/
1621 ir_triop_csel,
1622 /*@}*/
1623
1624 ir_triop_bitfield_extract,
1625
1626 /**
1627 * Generate a value with one field of a vector changed
1628 *
1629 * operand0 is the vector
1630 * operand1 is the value to write into the vector result
1631 * operand2 is the index in operand0 to be modified
1632 */
1633 ir_triop_vector_insert,
1634
1635 /**
1636 * A sentinel marking the last of the ternary operations.
1637 */
1638 ir_last_triop = ir_triop_vector_insert,
1639
1640 ir_quadop_bitfield_insert,
1641
1642 ir_quadop_vector,
1643
1644 /**
1645 * A sentinel marking the last of the ternary operations.
1646 */
1647 ir_last_quadop = ir_quadop_vector,
1648
1649 /**
1650 * A sentinel marking the last of all operations.
1651 */
1652 ir_last_opcode = ir_quadop_vector
1653 };
1654
1655 class ir_expression : public ir_rvalue {
1656 public:
1657 ir_expression(int op, const struct glsl_type *type,
1658 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1659 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1660
1661 /**
1662 * Constructor for unary operation expressions
1663 */
1664 ir_expression(int op, ir_rvalue *);
1665
1666 /**
1667 * Constructor for binary operation expressions
1668 */
1669 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1670
1671 /**
1672 * Constructor for ternary operation expressions
1673 */
1674 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1675
1676 virtual bool equals(const ir_instruction *ir,
1677 enum ir_node_type ignore = ir_type_unset) const;
1678
1679 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1680
1681 /**
1682 * Attempt to constant-fold the expression
1683 *
1684 * The "variable_context" hash table links ir_variable * to ir_constant *
1685 * that represent the variables' values. \c NULL represents an empty
1686 * context.
1687 *
1688 * If the expression cannot be constant folded, this method will return
1689 * \c NULL.
1690 */
1691 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1692
1693 /**
1694 * Determine the number of operands used by an expression
1695 */
1696 static unsigned int get_num_operands(ir_expression_operation);
1697
1698 /**
1699 * Determine the number of operands used by an expression
1700 */
1701 unsigned int get_num_operands() const
1702 {
1703 return (this->operation == ir_quadop_vector)
1704 ? this->type->vector_elements : get_num_operands(operation);
1705 }
1706
1707 /**
1708 * Return whether the expression operates on vectors horizontally.
1709 */
1710 bool is_horizontal() const
1711 {
1712 return operation == ir_binop_all_equal ||
1713 operation == ir_binop_any_nequal ||
1714 operation == ir_binop_dot ||
1715 operation == ir_binop_vector_extract ||
1716 operation == ir_triop_vector_insert ||
1717 operation == ir_binop_ubo_load ||
1718 operation == ir_quadop_vector;
1719 }
1720
1721 /**
1722 * Return a string representing this expression's operator.
1723 */
1724 const char *operator_string();
1725
1726 /**
1727 * Return a string representing this expression's operator.
1728 */
1729 static const char *operator_string(ir_expression_operation);
1730
1731
1732 /**
1733 * Do a reverse-lookup to translate the given string into an operator.
1734 */
1735 static ir_expression_operation get_operator(const char *);
1736
1737 virtual void accept(ir_visitor *v)
1738 {
1739 v->visit(this);
1740 }
1741
1742 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1743
1744 virtual ir_variable *variable_referenced() const;
1745
1746 ir_expression_operation operation;
1747 ir_rvalue *operands[4];
1748 };
1749
1750
1751 /**
1752 * HIR instruction representing a high-level function call, containing a list
1753 * of parameters and returning a value in the supplied temporary.
1754 */
1755 class ir_call : public ir_instruction {
1756 public:
1757 ir_call(ir_function_signature *callee,
1758 ir_dereference_variable *return_deref,
1759 exec_list *actual_parameters)
1760 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1761 {
1762 assert(callee->return_type != NULL);
1763 actual_parameters->move_nodes_to(& this->actual_parameters);
1764 this->use_builtin = callee->is_builtin();
1765 }
1766
1767 ir_call(ir_function_signature *callee,
1768 ir_dereference_variable *return_deref,
1769 exec_list *actual_parameters,
1770 ir_variable *var, ir_rvalue *array_idx)
1771 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1772 {
1773 assert(callee->return_type != NULL);
1774 actual_parameters->move_nodes_to(& this->actual_parameters);
1775 this->use_builtin = callee->is_builtin();
1776 }
1777
1778 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1779
1780 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1781
1782 virtual void accept(ir_visitor *v)
1783 {
1784 v->visit(this);
1785 }
1786
1787 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1788
1789 /**
1790 * Get the name of the function being called.
1791 */
1792 const char *callee_name() const
1793 {
1794 return callee->function_name();
1795 }
1796
1797 /**
1798 * Generates an inline version of the function before @ir,
1799 * storing the return value in return_deref.
1800 */
1801 void generate_inline(ir_instruction *ir);
1802
1803 /**
1804 * Storage for the function's return value.
1805 * This must be NULL if the return type is void.
1806 */
1807 ir_dereference_variable *return_deref;
1808
1809 /**
1810 * The specific function signature being called.
1811 */
1812 ir_function_signature *callee;
1813
1814 /* List of ir_rvalue of paramaters passed in this call. */
1815 exec_list actual_parameters;
1816
1817 /** Should this call only bind to a built-in function? */
1818 bool use_builtin;
1819
1820 /*
1821 * ARB_shader_subroutine support -
1822 * the subroutine uniform variable and array index
1823 * rvalue to be used in the lowering pass later.
1824 */
1825 ir_variable *sub_var;
1826 ir_rvalue *array_idx;
1827 };
1828
1829
1830 /**
1831 * \name Jump-like IR instructions.
1832 *
1833 * These include \c break, \c continue, \c return, and \c discard.
1834 */
1835 /*@{*/
1836 class ir_jump : public ir_instruction {
1837 protected:
1838 ir_jump(enum ir_node_type t)
1839 : ir_instruction(t)
1840 {
1841 }
1842 };
1843
1844 class ir_return : public ir_jump {
1845 public:
1846 ir_return()
1847 : ir_jump(ir_type_return), value(NULL)
1848 {
1849 }
1850
1851 ir_return(ir_rvalue *value)
1852 : ir_jump(ir_type_return), value(value)
1853 {
1854 }
1855
1856 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1857
1858 ir_rvalue *get_value() const
1859 {
1860 return value;
1861 }
1862
1863 virtual void accept(ir_visitor *v)
1864 {
1865 v->visit(this);
1866 }
1867
1868 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1869
1870 ir_rvalue *value;
1871 };
1872
1873
1874 /**
1875 * Jump instructions used inside loops
1876 *
1877 * These include \c break and \c continue. The \c break within a loop is
1878 * different from the \c break within a switch-statement.
1879 *
1880 * \sa ir_switch_jump
1881 */
1882 class ir_loop_jump : public ir_jump {
1883 public:
1884 enum jump_mode {
1885 jump_break,
1886 jump_continue
1887 };
1888
1889 ir_loop_jump(jump_mode mode)
1890 : ir_jump(ir_type_loop_jump)
1891 {
1892 this->mode = mode;
1893 }
1894
1895 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1896
1897 virtual void accept(ir_visitor *v)
1898 {
1899 v->visit(this);
1900 }
1901
1902 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1903
1904 bool is_break() const
1905 {
1906 return mode == jump_break;
1907 }
1908
1909 bool is_continue() const
1910 {
1911 return mode == jump_continue;
1912 }
1913
1914 /** Mode selector for the jump instruction. */
1915 enum jump_mode mode;
1916 };
1917
1918 /**
1919 * IR instruction representing discard statements.
1920 */
1921 class ir_discard : public ir_jump {
1922 public:
1923 ir_discard()
1924 : ir_jump(ir_type_discard)
1925 {
1926 this->condition = NULL;
1927 }
1928
1929 ir_discard(ir_rvalue *cond)
1930 : ir_jump(ir_type_discard)
1931 {
1932 this->condition = cond;
1933 }
1934
1935 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1936
1937 virtual void accept(ir_visitor *v)
1938 {
1939 v->visit(this);
1940 }
1941
1942 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1943
1944 ir_rvalue *condition;
1945 };
1946 /*@}*/
1947
1948
1949 /**
1950 * Texture sampling opcodes used in ir_texture
1951 */
1952 enum ir_texture_opcode {
1953 ir_tex, /**< Regular texture look-up */
1954 ir_txb, /**< Texture look-up with LOD bias */
1955 ir_txl, /**< Texture look-up with explicit LOD */
1956 ir_txd, /**< Texture look-up with partial derivatvies */
1957 ir_txf, /**< Texel fetch with explicit LOD */
1958 ir_txf_ms, /**< Multisample texture fetch */
1959 ir_txs, /**< Texture size */
1960 ir_lod, /**< Texture lod query */
1961 ir_tg4, /**< Texture gather */
1962 ir_query_levels, /**< Texture levels query */
1963 ir_texture_samples, /**< Texture samples query */
1964 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1965 };
1966
1967
1968 /**
1969 * IR instruction to sample a texture
1970 *
1971 * The specific form of the IR instruction depends on the \c mode value
1972 * selected from \c ir_texture_opcodes. In the printed IR, these will
1973 * appear as:
1974 *
1975 * Texel offset (0 or an expression)
1976 * | Projection divisor
1977 * | | Shadow comparitor
1978 * | | |
1979 * v v v
1980 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1981 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1982 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1983 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1984 * (txf <type> <sampler> <coordinate> 0 <lod>)
1985 * (txf_ms
1986 * <type> <sampler> <coordinate> <sample_index>)
1987 * (txs <type> <sampler> <lod>)
1988 * (lod <type> <sampler> <coordinate>)
1989 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1990 * (query_levels <type> <sampler>)
1991 * (samples_identical <sampler> <coordinate>)
1992 */
1993 class ir_texture : public ir_rvalue {
1994 public:
1995 ir_texture(enum ir_texture_opcode op)
1996 : ir_rvalue(ir_type_texture),
1997 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1998 shadow_comparitor(NULL), offset(NULL)
1999 {
2000 memset(&lod_info, 0, sizeof(lod_info));
2001 }
2002
2003 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2004
2005 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2006
2007 virtual void accept(ir_visitor *v)
2008 {
2009 v->visit(this);
2010 }
2011
2012 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2013
2014 virtual bool equals(const ir_instruction *ir,
2015 enum ir_node_type ignore = ir_type_unset) const;
2016
2017 /**
2018 * Return a string representing the ir_texture_opcode.
2019 */
2020 const char *opcode_string();
2021
2022 /** Set the sampler and type. */
2023 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2024
2025 /**
2026 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2027 */
2028 static ir_texture_opcode get_opcode(const char *);
2029
2030 enum ir_texture_opcode op;
2031
2032 /** Sampler to use for the texture access. */
2033 ir_dereference *sampler;
2034
2035 /** Texture coordinate to sample */
2036 ir_rvalue *coordinate;
2037
2038 /**
2039 * Value used for projective divide.
2040 *
2041 * If there is no projective divide (the common case), this will be
2042 * \c NULL. Optimization passes should check for this to point to a constant
2043 * of 1.0 and replace that with \c NULL.
2044 */
2045 ir_rvalue *projector;
2046
2047 /**
2048 * Coordinate used for comparison on shadow look-ups.
2049 *
2050 * If there is no shadow comparison, this will be \c NULL. For the
2051 * \c ir_txf opcode, this *must* be \c NULL.
2052 */
2053 ir_rvalue *shadow_comparitor;
2054
2055 /** Texel offset. */
2056 ir_rvalue *offset;
2057
2058 union {
2059 ir_rvalue *lod; /**< Floating point LOD */
2060 ir_rvalue *bias; /**< Floating point LOD bias */
2061 ir_rvalue *sample_index; /**< MSAA sample index */
2062 ir_rvalue *component; /**< Gather component selector */
2063 struct {
2064 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2065 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2066 } grad;
2067 } lod_info;
2068 };
2069
2070
2071 struct ir_swizzle_mask {
2072 unsigned x:2;
2073 unsigned y:2;
2074 unsigned z:2;
2075 unsigned w:2;
2076
2077 /**
2078 * Number of components in the swizzle.
2079 */
2080 unsigned num_components:3;
2081
2082 /**
2083 * Does the swizzle contain duplicate components?
2084 *
2085 * L-value swizzles cannot contain duplicate components.
2086 */
2087 unsigned has_duplicates:1;
2088 };
2089
2090
2091 class ir_swizzle : public ir_rvalue {
2092 public:
2093 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2094 unsigned count);
2095
2096 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2097
2098 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2099
2100 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2101
2102 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2103
2104 /**
2105 * Construct an ir_swizzle from the textual representation. Can fail.
2106 */
2107 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2108
2109 virtual void accept(ir_visitor *v)
2110 {
2111 v->visit(this);
2112 }
2113
2114 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2115
2116 virtual bool equals(const ir_instruction *ir,
2117 enum ir_node_type ignore = ir_type_unset) const;
2118
2119 bool is_lvalue() const
2120 {
2121 return val->is_lvalue() && !mask.has_duplicates;
2122 }
2123
2124 /**
2125 * Get the variable that is ultimately referenced by an r-value
2126 */
2127 virtual ir_variable *variable_referenced() const;
2128
2129 ir_rvalue *val;
2130 ir_swizzle_mask mask;
2131
2132 private:
2133 /**
2134 * Initialize the mask component of a swizzle
2135 *
2136 * This is used by the \c ir_swizzle constructors.
2137 */
2138 void init_mask(const unsigned *components, unsigned count);
2139 };
2140
2141
2142 class ir_dereference : public ir_rvalue {
2143 public:
2144 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2145
2146 bool is_lvalue() const;
2147
2148 /**
2149 * Get the variable that is ultimately referenced by an r-value
2150 */
2151 virtual ir_variable *variable_referenced() const = 0;
2152
2153 protected:
2154 ir_dereference(enum ir_node_type t)
2155 : ir_rvalue(t)
2156 {
2157 }
2158 };
2159
2160
2161 class ir_dereference_variable : public ir_dereference {
2162 public:
2163 ir_dereference_variable(ir_variable *var);
2164
2165 virtual ir_dereference_variable *clone(void *mem_ctx,
2166 struct hash_table *) const;
2167
2168 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2169
2170 virtual bool equals(const ir_instruction *ir,
2171 enum ir_node_type ignore = ir_type_unset) const;
2172
2173 /**
2174 * Get the variable that is ultimately referenced by an r-value
2175 */
2176 virtual ir_variable *variable_referenced() const
2177 {
2178 return this->var;
2179 }
2180
2181 virtual ir_variable *whole_variable_referenced()
2182 {
2183 /* ir_dereference_variable objects always dereference the entire
2184 * variable. However, if this dereference is dereferenced by anything
2185 * else, the complete deferefernce chain is not a whole-variable
2186 * dereference. This method should only be called on the top most
2187 * ir_rvalue in a dereference chain.
2188 */
2189 return this->var;
2190 }
2191
2192 virtual void accept(ir_visitor *v)
2193 {
2194 v->visit(this);
2195 }
2196
2197 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2198
2199 /**
2200 * Object being dereferenced.
2201 */
2202 ir_variable *var;
2203 };
2204
2205
2206 class ir_dereference_array : public ir_dereference {
2207 public:
2208 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2209
2210 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2211
2212 virtual ir_dereference_array *clone(void *mem_ctx,
2213 struct hash_table *) const;
2214
2215 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2216
2217 virtual bool equals(const ir_instruction *ir,
2218 enum ir_node_type ignore = ir_type_unset) const;
2219
2220 /**
2221 * Get the variable that is ultimately referenced by an r-value
2222 */
2223 virtual ir_variable *variable_referenced() const
2224 {
2225 return this->array->variable_referenced();
2226 }
2227
2228 virtual void accept(ir_visitor *v)
2229 {
2230 v->visit(this);
2231 }
2232
2233 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2234
2235 ir_rvalue *array;
2236 ir_rvalue *array_index;
2237
2238 private:
2239 void set_array(ir_rvalue *value);
2240 };
2241
2242
2243 class ir_dereference_record : public ir_dereference {
2244 public:
2245 ir_dereference_record(ir_rvalue *value, const char *field);
2246
2247 ir_dereference_record(ir_variable *var, const char *field);
2248
2249 virtual ir_dereference_record *clone(void *mem_ctx,
2250 struct hash_table *) const;
2251
2252 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2253
2254 /**
2255 * Get the variable that is ultimately referenced by an r-value
2256 */
2257 virtual ir_variable *variable_referenced() const
2258 {
2259 return this->record->variable_referenced();
2260 }
2261
2262 virtual void accept(ir_visitor *v)
2263 {
2264 v->visit(this);
2265 }
2266
2267 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2268
2269 ir_rvalue *record;
2270 const char *field;
2271 };
2272
2273
2274 /**
2275 * Data stored in an ir_constant
2276 */
2277 union ir_constant_data {
2278 unsigned u[16];
2279 int i[16];
2280 float f[16];
2281 bool b[16];
2282 double d[16];
2283 };
2284
2285
2286 class ir_constant : public ir_rvalue {
2287 public:
2288 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2289 ir_constant(bool b, unsigned vector_elements=1);
2290 ir_constant(unsigned int u, unsigned vector_elements=1);
2291 ir_constant(int i, unsigned vector_elements=1);
2292 ir_constant(float f, unsigned vector_elements=1);
2293 ir_constant(double d, unsigned vector_elements=1);
2294
2295 /**
2296 * Construct an ir_constant from a list of ir_constant values
2297 */
2298 ir_constant(const struct glsl_type *type, exec_list *values);
2299
2300 /**
2301 * Construct an ir_constant from a scalar component of another ir_constant
2302 *
2303 * The new \c ir_constant inherits the type of the component from the
2304 * source constant.
2305 *
2306 * \note
2307 * In the case of a matrix constant, the new constant is a scalar, \b not
2308 * a vector.
2309 */
2310 ir_constant(const ir_constant *c, unsigned i);
2311
2312 /**
2313 * Return a new ir_constant of the specified type containing all zeros.
2314 */
2315 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2316
2317 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2318
2319 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2320
2321 virtual void accept(ir_visitor *v)
2322 {
2323 v->visit(this);
2324 }
2325
2326 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2327
2328 virtual bool equals(const ir_instruction *ir,
2329 enum ir_node_type ignore = ir_type_unset) const;
2330
2331 /**
2332 * Get a particular component of a constant as a specific type
2333 *
2334 * This is useful, for example, to get a value from an integer constant
2335 * as a float or bool. This appears frequently when constructors are
2336 * called with all constant parameters.
2337 */
2338 /*@{*/
2339 bool get_bool_component(unsigned i) const;
2340 float get_float_component(unsigned i) const;
2341 double get_double_component(unsigned i) const;
2342 int get_int_component(unsigned i) const;
2343 unsigned get_uint_component(unsigned i) const;
2344 /*@}*/
2345
2346 ir_constant *get_array_element(unsigned i) const;
2347
2348 ir_constant *get_record_field(const char *name);
2349
2350 /**
2351 * Copy the values on another constant at a given offset.
2352 *
2353 * The offset is ignored for array or struct copies, it's only for
2354 * scalars or vectors into vectors or matrices.
2355 *
2356 * With identical types on both sides and zero offset it's clone()
2357 * without creating a new object.
2358 */
2359
2360 void copy_offset(ir_constant *src, int offset);
2361
2362 /**
2363 * Copy the values on another constant at a given offset and
2364 * following an assign-like mask.
2365 *
2366 * The mask is ignored for scalars.
2367 *
2368 * Note that this function only handles what assign can handle,
2369 * i.e. at most a vector as source and a column of a matrix as
2370 * destination.
2371 */
2372
2373 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2374
2375 /**
2376 * Determine whether a constant has the same value as another constant
2377 *
2378 * \sa ir_constant::is_zero, ir_constant::is_one,
2379 * ir_constant::is_negative_one
2380 */
2381 bool has_value(const ir_constant *) const;
2382
2383 /**
2384 * Return true if this ir_constant represents the given value.
2385 *
2386 * For vectors, this checks that each component is the given value.
2387 */
2388 virtual bool is_value(float f, int i) const;
2389 virtual bool is_zero() const;
2390 virtual bool is_one() const;
2391 virtual bool is_negative_one() const;
2392
2393 /**
2394 * Return true for constants that could be stored as 16-bit unsigned values.
2395 *
2396 * Note that this will return true even for signed integer ir_constants, as
2397 * long as the value is non-negative and fits in 16-bits.
2398 */
2399 virtual bool is_uint16_constant() const;
2400
2401 /**
2402 * Value of the constant.
2403 *
2404 * The field used to back the values supplied by the constant is determined
2405 * by the type associated with the \c ir_instruction. Constants may be
2406 * scalars, vectors, or matrices.
2407 */
2408 union ir_constant_data value;
2409
2410 /* Array elements */
2411 ir_constant **array_elements;
2412
2413 /* Structure fields */
2414 exec_list components;
2415
2416 private:
2417 /**
2418 * Parameterless constructor only used by the clone method
2419 */
2420 ir_constant(void);
2421 };
2422
2423 /**
2424 * IR instruction to emit a vertex in a geometry shader.
2425 */
2426 class ir_emit_vertex : public ir_instruction {
2427 public:
2428 ir_emit_vertex(ir_rvalue *stream)
2429 : ir_instruction(ir_type_emit_vertex),
2430 stream(stream)
2431 {
2432 assert(stream);
2433 }
2434
2435 virtual void accept(ir_visitor *v)
2436 {
2437 v->visit(this);
2438 }
2439
2440 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2441 {
2442 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2443 }
2444
2445 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2446
2447 int stream_id() const
2448 {
2449 return stream->as_constant()->value.i[0];
2450 }
2451
2452 ir_rvalue *stream;
2453 };
2454
2455 /**
2456 * IR instruction to complete the current primitive and start a new one in a
2457 * geometry shader.
2458 */
2459 class ir_end_primitive : public ir_instruction {
2460 public:
2461 ir_end_primitive(ir_rvalue *stream)
2462 : ir_instruction(ir_type_end_primitive),
2463 stream(stream)
2464 {
2465 assert(stream);
2466 }
2467
2468 virtual void accept(ir_visitor *v)
2469 {
2470 v->visit(this);
2471 }
2472
2473 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2474 {
2475 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2476 }
2477
2478 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2479
2480 int stream_id() const
2481 {
2482 return stream->as_constant()->value.i[0];
2483 }
2484
2485 ir_rvalue *stream;
2486 };
2487
2488 /**
2489 * IR instruction for tessellation control and compute shader barrier.
2490 */
2491 class ir_barrier : public ir_instruction {
2492 public:
2493 ir_barrier()
2494 : ir_instruction(ir_type_barrier)
2495 {
2496 }
2497
2498 virtual void accept(ir_visitor *v)
2499 {
2500 v->visit(this);
2501 }
2502
2503 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2504 {
2505 return new(mem_ctx) ir_barrier();
2506 }
2507
2508 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2509 };
2510
2511 /*@}*/
2512
2513 /**
2514 * Apply a visitor to each IR node in a list
2515 */
2516 void
2517 visit_exec_list(exec_list *list, ir_visitor *visitor);
2518
2519 /**
2520 * Validate invariants on each IR node in a list
2521 */
2522 void validate_ir_tree(exec_list *instructions);
2523
2524 struct _mesa_glsl_parse_state;
2525 struct gl_shader_program;
2526
2527 /**
2528 * Detect whether an unlinked shader contains static recursion
2529 *
2530 * If the list of instructions is determined to contain static recursion,
2531 * \c _mesa_glsl_error will be called to emit error messages for each function
2532 * that is in the recursion cycle.
2533 */
2534 void
2535 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2536 exec_list *instructions);
2537
2538 /**
2539 * Detect whether a linked shader contains static recursion
2540 *
2541 * If the list of instructions is determined to contain static recursion,
2542 * \c link_error_printf will be called to emit error messages for each function
2543 * that is in the recursion cycle. In addition,
2544 * \c gl_shader_program::LinkStatus will be set to false.
2545 */
2546 void
2547 detect_recursion_linked(struct gl_shader_program *prog,
2548 exec_list *instructions);
2549
2550 /**
2551 * Make a clone of each IR instruction in a list
2552 *
2553 * \param in List of IR instructions that are to be cloned
2554 * \param out List to hold the cloned instructions
2555 */
2556 void
2557 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2558
2559 extern void
2560 _mesa_glsl_initialize_variables(exec_list *instructions,
2561 struct _mesa_glsl_parse_state *state);
2562
2563 extern void
2564 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2565
2566 extern void
2567 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2568
2569 extern void
2570 _mesa_glsl_initialize_builtin_functions();
2571
2572 extern ir_function_signature *
2573 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2574 const char *name, exec_list *actual_parameters);
2575
2576 extern ir_function *
2577 _mesa_glsl_find_builtin_function_by_name(const char *name);
2578
2579 extern gl_shader *
2580 _mesa_glsl_get_builtin_function_shader(void);
2581
2582 extern ir_function_signature *
2583 _mesa_get_main_function_signature(gl_shader *sh);
2584
2585 extern void
2586 _mesa_glsl_release_functions(void);
2587
2588 extern void
2589 _mesa_glsl_release_builtin_functions(void);
2590
2591 extern void
2592 reparent_ir(exec_list *list, void *mem_ctx);
2593
2594 struct glsl_symbol_table;
2595
2596 extern void
2597 import_prototypes(const exec_list *source, exec_list *dest,
2598 struct glsl_symbol_table *symbols, void *mem_ctx);
2599
2600 extern bool
2601 ir_has_call(ir_instruction *ir);
2602
2603 extern void
2604 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2605 gl_shader_stage shader_stage);
2606
2607 extern char *
2608 prototype_string(const glsl_type *return_type, const char *name,
2609 exec_list *parameters);
2610
2611 const char *
2612 mode_string(const ir_variable *var);
2613
2614 /**
2615 * Built-in / reserved GL variables names start with "gl_"
2616 */
2617 static inline bool
2618 is_gl_identifier(const char *s)
2619 {
2620 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2621 }
2622
2623 extern "C" {
2624 #endif /* __cplusplus */
2625
2626 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2627 struct _mesa_glsl_parse_state *state);
2628
2629 extern void
2630 fprint_ir(FILE *f, const void *instruction);
2631
2632 extern const struct gl_builtin_uniform_desc *
2633 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2634
2635 #ifdef __cplusplus
2636 } /* extern "C" */
2637 #endif
2638
2639 unsigned
2640 vertices_per_prim(GLenum prim);
2641
2642 #endif /* IR_H */