glsl: validate and store component layout qualifier in GLSL IR
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 rzalloc_array(this, unsigned, type->length);
488 }
489 }
490
491 /**
492 * Change this->interface_type on a variable that previously had a
493 * different, but compatible, interface_type. This is used during linking
494 * to set the size of arrays in interface blocks.
495 */
496 void change_interface_type(const struct glsl_type *type)
497 {
498 if (this->u.max_ifc_array_access != NULL) {
499 /* max_ifc_array_access has already been allocated, so make sure the
500 * new interface has the same number of fields as the old one.
501 */
502 assert(this->interface_type->length == type->length);
503 }
504 this->interface_type = type;
505 }
506
507 /**
508 * Change this->interface_type on a variable that previously had a
509 * different, and incompatible, interface_type. This is used during
510 * compilation to handle redeclaration of the built-in gl_PerVertex
511 * interface block.
512 */
513 void reinit_interface_type(const struct glsl_type *type)
514 {
515 if (this->u.max_ifc_array_access != NULL) {
516 #ifndef NDEBUG
517 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
518 * it defines have been accessed yet; so it's safe to throw away the
519 * old max_ifc_array_access pointer, since all of its values are
520 * zero.
521 */
522 for (unsigned i = 0; i < this->interface_type->length; i++)
523 assert(this->u.max_ifc_array_access[i] == 0);
524 #endif
525 ralloc_free(this->u.max_ifc_array_access);
526 this->u.max_ifc_array_access = NULL;
527 }
528 this->interface_type = NULL;
529 init_interface_type(type);
530 }
531
532 const glsl_type *get_interface_type() const
533 {
534 return this->interface_type;
535 }
536
537 /**
538 * Get the max_ifc_array_access pointer
539 *
540 * A "set" function is not needed because the array is dynmically allocated
541 * as necessary.
542 */
543 inline unsigned *get_max_ifc_array_access()
544 {
545 assert(this->data._num_state_slots == 0);
546 return this->u.max_ifc_array_access;
547 }
548
549 inline unsigned get_num_state_slots() const
550 {
551 assert(!this->is_interface_instance()
552 || this->data._num_state_slots == 0);
553 return this->data._num_state_slots;
554 }
555
556 inline void set_num_state_slots(unsigned n)
557 {
558 assert(!this->is_interface_instance()
559 || n == 0);
560 this->data._num_state_slots = n;
561 }
562
563 inline ir_state_slot *get_state_slots()
564 {
565 return this->is_interface_instance() ? NULL : this->u.state_slots;
566 }
567
568 inline const ir_state_slot *get_state_slots() const
569 {
570 return this->is_interface_instance() ? NULL : this->u.state_slots;
571 }
572
573 inline ir_state_slot *allocate_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance());
576
577 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
578 this->data._num_state_slots = 0;
579
580 if (this->u.state_slots != NULL)
581 this->data._num_state_slots = n;
582
583 return this->u.state_slots;
584 }
585
586 inline bool is_name_ralloced() const
587 {
588 return this->name != ir_variable::tmp_name;
589 }
590
591 /**
592 * Enable emitting extension warnings for this variable
593 */
594 void enable_extension_warning(const char *extension);
595
596 /**
597 * Get the extension warning string for this variable
598 *
599 * If warnings are not enabled, \c NULL is returned.
600 */
601 const char *get_extension_warning() const;
602
603 /**
604 * Declared type of the variable
605 */
606 const struct glsl_type *type;
607
608 /**
609 * Declared name of the variable
610 */
611 const char *name;
612
613 struct ir_variable_data {
614
615 /**
616 * Is the variable read-only?
617 *
618 * This is set for variables declared as \c const, shader inputs,
619 * and uniforms.
620 */
621 unsigned read_only:1;
622 unsigned centroid:1;
623 unsigned sample:1;
624 unsigned patch:1;
625 unsigned invariant:1;
626 unsigned precise:1;
627
628 /**
629 * Has this variable been used for reading or writing?
630 *
631 * Several GLSL semantic checks require knowledge of whether or not a
632 * variable has been used. For example, it is an error to redeclare a
633 * variable as invariant after it has been used.
634 *
635 * This is only maintained in the ast_to_hir.cpp path, not in
636 * Mesa's fixed function or ARB program paths.
637 */
638 unsigned used:1;
639
640 /**
641 * Has this variable been statically assigned?
642 *
643 * This answers whether the variable was assigned in any path of
644 * the shader during ast_to_hir. This doesn't answer whether it is
645 * still written after dead code removal, nor is it maintained in
646 * non-ast_to_hir.cpp (GLSL parsing) paths.
647 */
648 unsigned assigned:1;
649
650 /**
651 * When separate shader programs are enabled, only input/outputs between
652 * the stages of a multi-stage separate program can be safely removed
653 * from the shader interface. Other input/outputs must remains active.
654 */
655 unsigned always_active_io:1;
656
657 /**
658 * Enum indicating how the variable was declared. See
659 * ir_var_declaration_type.
660 *
661 * This is used to detect certain kinds of illegal variable redeclarations.
662 */
663 unsigned how_declared:2;
664
665 /**
666 * Storage class of the variable.
667 *
668 * \sa ir_variable_mode
669 */
670 unsigned mode:4;
671
672 /**
673 * Interpolation mode for shader inputs / outputs
674 *
675 * \sa ir_variable_interpolation
676 */
677 unsigned interpolation:2;
678
679 /**
680 * \name ARB_fragment_coord_conventions
681 * @{
682 */
683 unsigned origin_upper_left:1;
684 unsigned pixel_center_integer:1;
685 /*@}*/
686
687 /**
688 * Was the location explicitly set in the shader?
689 *
690 * If the location is explicitly set in the shader, it \b cannot be changed
691 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
692 * no effect).
693 */
694 unsigned explicit_location:1;
695 unsigned explicit_index:1;
696
697 /**
698 * Was an initial binding explicitly set in the shader?
699 *
700 * If so, constant_value contains an integer ir_constant representing the
701 * initial binding point.
702 */
703 unsigned explicit_binding:1;
704
705 /**
706 * Was an initial component explicitly set in the shader?
707 */
708 unsigned explicit_component:1;
709
710 /**
711 * Does this variable have an initializer?
712 *
713 * This is used by the linker to cross-validiate initializers of global
714 * variables.
715 */
716 unsigned has_initializer:1;
717
718 /**
719 * Is this variable a generic output or input that has not yet been matched
720 * up to a variable in another stage of the pipeline?
721 *
722 * This is used by the linker as scratch storage while assigning locations
723 * to generic inputs and outputs.
724 */
725 unsigned is_unmatched_generic_inout:1;
726
727 /**
728 * Is this varying used only by transform feedback?
729 *
730 * This is used by the linker to decide if its safe to pack the varying.
731 */
732 unsigned is_xfb_only:1;
733
734 /**
735 * Was a transfor feedback buffer set in the shader?
736 */
737 unsigned explicit_xfb_buffer:1;
738
739 /**
740 * Was a transfor feedback offset set in the shader?
741 */
742 unsigned explicit_xfb_offset:1;
743
744 /**
745 * Was a transfor feedback stride set in the shader?
746 */
747 unsigned explicit_xfb_stride:1;
748
749 /**
750 * If non-zero, then this variable may be packed along with other variables
751 * into a single varying slot, so this offset should be applied when
752 * accessing components. For example, an offset of 1 means that the x
753 * component of this variable is actually stored in component y of the
754 * location specified by \c location.
755 */
756 unsigned location_frac:2;
757
758 /**
759 * Layout of the matrix. Uses glsl_matrix_layout values.
760 */
761 unsigned matrix_layout:2;
762
763 /**
764 * Non-zero if this variable was created by lowering a named interface
765 * block.
766 */
767 unsigned from_named_ifc_block:1;
768
769 /**
770 * Non-zero if the variable must be a shader input. This is useful for
771 * constraints on function parameters.
772 */
773 unsigned must_be_shader_input:1;
774
775 /**
776 * Output index for dual source blending.
777 *
778 * \note
779 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
780 * source blending.
781 */
782 unsigned index:1;
783
784 /**
785 * Precision qualifier.
786 *
787 * In desktop GLSL we do not care about precision qualifiers at all, in
788 * fact, the spec says that precision qualifiers are ignored.
789 *
790 * To make things easy, we make it so that this field is always
791 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
792 * have the same precision value and the checks we add in the compiler
793 * for this field will never break a desktop shader compile.
794 */
795 unsigned precision:2;
796
797 /**
798 * \brief Layout qualifier for gl_FragDepth.
799 *
800 * This is not equal to \c ir_depth_layout_none if and only if this
801 * variable is \c gl_FragDepth and a layout qualifier is specified.
802 */
803 ir_depth_layout depth_layout:3;
804
805 /**
806 * ARB_shader_image_load_store qualifiers.
807 */
808 unsigned image_read_only:1; /**< "readonly" qualifier. */
809 unsigned image_write_only:1; /**< "writeonly" qualifier. */
810 unsigned image_coherent:1;
811 unsigned image_volatile:1;
812 unsigned image_restrict:1;
813
814 /**
815 * ARB_shader_storage_buffer_object
816 */
817 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
818
819 /**
820 * Emit a warning if this variable is accessed.
821 */
822 private:
823 uint8_t warn_extension_index;
824
825 public:
826 /** Image internal format if specified explicitly, otherwise GL_NONE. */
827 uint16_t image_format;
828
829 private:
830 /**
831 * Number of state slots used
832 *
833 * \note
834 * This could be stored in as few as 7-bits, if necessary. If it is made
835 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
836 * be safe.
837 */
838 uint16_t _num_state_slots;
839
840 public:
841 /**
842 * Initial binding point for a sampler, atomic, or UBO.
843 *
844 * For array types, this represents the binding point for the first element.
845 */
846 int16_t binding;
847
848 /**
849 * Storage location of the base of this variable
850 *
851 * The precise meaning of this field depends on the nature of the variable.
852 *
853 * - Vertex shader input: one of the values from \c gl_vert_attrib.
854 * - Vertex shader output: one of the values from \c gl_varying_slot.
855 * - Geometry shader input: one of the values from \c gl_varying_slot.
856 * - Geometry shader output: one of the values from \c gl_varying_slot.
857 * - Fragment shader input: one of the values from \c gl_varying_slot.
858 * - Fragment shader output: one of the values from \c gl_frag_result.
859 * - Uniforms: Per-stage uniform slot number for default uniform block.
860 * - Uniforms: Index within the uniform block definition for UBO members.
861 * - Non-UBO Uniforms: explicit location until linking then reused to
862 * store uniform slot number.
863 * - Other: This field is not currently used.
864 *
865 * If the variable is a uniform, shader input, or shader output, and the
866 * slot has not been assigned, the value will be -1.
867 */
868 int location;
869
870 /**
871 * for glsl->tgsi/mesa IR we need to store the index into the
872 * parameters for uniforms, initially the code overloaded location
873 * but this causes problems with indirect samplers and AoA.
874 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
875 */
876 int param_index;
877
878 /**
879 * Vertex stream output identifier.
880 */
881 unsigned stream;
882
883 /**
884 * Atomic, transform feedback or block member offset.
885 */
886 unsigned offset;
887
888 /**
889 * Highest element accessed with a constant expression array index
890 *
891 * Not used for non-array variables.
892 */
893 unsigned max_array_access;
894
895 /**
896 * Transform feedback buffer.
897 */
898 unsigned xfb_buffer;
899
900 /**
901 * Transform feedback stride.
902 */
903 unsigned xfb_stride;
904
905 /**
906 * Allow (only) ir_variable direct access private members.
907 */
908 friend class ir_variable;
909 } data;
910
911 /**
912 * Value assigned in the initializer of a variable declared "const"
913 */
914 ir_constant *constant_value;
915
916 /**
917 * Constant expression assigned in the initializer of the variable
918 *
919 * \warning
920 * This field and \c ::constant_value are distinct. Even if the two fields
921 * refer to constants with the same value, they must point to separate
922 * objects.
923 */
924 ir_constant *constant_initializer;
925
926 private:
927 static const char *const warn_extension_table[];
928
929 union {
930 /**
931 * For variables which satisfy the is_interface_instance() predicate,
932 * this points to an array of integers such that if the ith member of
933 * the interface block is an array, max_ifc_array_access[i] is the
934 * maximum array element of that member that has been accessed. If the
935 * ith member of the interface block is not an array,
936 * max_ifc_array_access[i] is unused.
937 *
938 * For variables whose type is not an interface block, this pointer is
939 * NULL.
940 */
941 unsigned *max_ifc_array_access;
942
943 /**
944 * Built-in state that backs this uniform
945 *
946 * Once set at variable creation, \c state_slots must remain invariant.
947 *
948 * If the variable is not a uniform, \c _num_state_slots will be zero
949 * and \c state_slots will be \c NULL.
950 */
951 ir_state_slot *state_slots;
952 } u;
953
954 /**
955 * For variables that are in an interface block or are an instance of an
956 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
957 *
958 * \sa ir_variable::location
959 */
960 const glsl_type *interface_type;
961
962 /**
963 * Name used for anonymous compiler temporaries
964 */
965 static const char tmp_name[];
966
967 public:
968 /**
969 * Should the construct keep names for ir_var_temporary variables?
970 *
971 * When this global is false, names passed to the constructor for
972 * \c ir_var_temporary variables will be dropped. Instead, the variable will
973 * be named "compiler_temp". This name will be in static storage.
974 *
975 * \warning
976 * \b NEVER change the mode of an \c ir_var_temporary.
977 *
978 * \warning
979 * This variable is \b not thread-safe. It is global, \b not
980 * per-context. It begins life false. A context can, at some point, make
981 * it true. From that point on, it will be true forever. This should be
982 * okay since it will only be set true while debugging.
983 */
984 static bool temporaries_allocate_names;
985 };
986
987 /**
988 * A function that returns whether a built-in function is available in the
989 * current shading language (based on version, ES or desktop, and extensions).
990 */
991 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
992
993 /*@{*/
994 /**
995 * The representation of a function instance; may be the full definition or
996 * simply a prototype.
997 */
998 class ir_function_signature : public ir_instruction {
999 /* An ir_function_signature will be part of the list of signatures in
1000 * an ir_function.
1001 */
1002 public:
1003 ir_function_signature(const glsl_type *return_type,
1004 builtin_available_predicate builtin_avail = NULL);
1005
1006 virtual ir_function_signature *clone(void *mem_ctx,
1007 struct hash_table *ht) const;
1008 ir_function_signature *clone_prototype(void *mem_ctx,
1009 struct hash_table *ht) const;
1010
1011 virtual void accept(ir_visitor *v)
1012 {
1013 v->visit(this);
1014 }
1015
1016 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1017
1018 /**
1019 * Attempt to evaluate this function as a constant expression,
1020 * given a list of the actual parameters and the variable context.
1021 * Returns NULL for non-built-ins.
1022 */
1023 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1024
1025 /**
1026 * Get the name of the function for which this is a signature
1027 */
1028 const char *function_name() const;
1029
1030 /**
1031 * Get a handle to the function for which this is a signature
1032 *
1033 * There is no setter function, this function returns a \c const pointer,
1034 * and \c ir_function_signature::_function is private for a reason. The
1035 * only way to make a connection between a function and function signature
1036 * is via \c ir_function::add_signature. This helps ensure that certain
1037 * invariants (i.e., a function signature is in the list of signatures for
1038 * its \c _function) are met.
1039 *
1040 * \sa ir_function::add_signature
1041 */
1042 inline const class ir_function *function() const
1043 {
1044 return this->_function;
1045 }
1046
1047 /**
1048 * Check whether the qualifiers match between this signature's parameters
1049 * and the supplied parameter list. If not, returns the name of the first
1050 * parameter with mismatched qualifiers (for use in error messages).
1051 */
1052 const char *qualifiers_match(exec_list *params);
1053
1054 /**
1055 * Replace the current parameter list with the given one. This is useful
1056 * if the current information came from a prototype, and either has invalid
1057 * or missing parameter names.
1058 */
1059 void replace_parameters(exec_list *new_params);
1060
1061 /**
1062 * Function return type.
1063 *
1064 * \note This discards the optional precision qualifier.
1065 */
1066 const struct glsl_type *return_type;
1067
1068 /**
1069 * List of ir_variable of function parameters.
1070 *
1071 * This represents the storage. The paramaters passed in a particular
1072 * call will be in ir_call::actual_paramaters.
1073 */
1074 struct exec_list parameters;
1075
1076 /** Whether or not this function has a body (which may be empty). */
1077 unsigned is_defined:1;
1078
1079 /** Whether or not this function signature is a built-in. */
1080 bool is_builtin() const;
1081
1082 /**
1083 * Whether or not this function is an intrinsic to be implemented
1084 * by the driver.
1085 */
1086 bool is_intrinsic;
1087
1088 /** Whether or not a built-in is available for this shader. */
1089 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1090
1091 /** Body of instructions in the function. */
1092 struct exec_list body;
1093
1094 private:
1095 /**
1096 * A function pointer to a predicate that answers whether a built-in
1097 * function is available in the current shader. NULL if not a built-in.
1098 */
1099 builtin_available_predicate builtin_avail;
1100
1101 /** Function of which this signature is one overload. */
1102 class ir_function *_function;
1103
1104 /** Function signature of which this one is a prototype clone */
1105 const ir_function_signature *origin;
1106
1107 friend class ir_function;
1108
1109 /**
1110 * Helper function to run a list of instructions for constant
1111 * expression evaluation.
1112 *
1113 * The hash table represents the values of the visible variables.
1114 * There are no scoping issues because the table is indexed on
1115 * ir_variable pointers, not variable names.
1116 *
1117 * Returns false if the expression is not constant, true otherwise,
1118 * and the value in *result if result is non-NULL.
1119 */
1120 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1121 struct hash_table *variable_context,
1122 ir_constant **result);
1123 };
1124
1125
1126 /**
1127 * Header for tracking multiple overloaded functions with the same name.
1128 * Contains a list of ir_function_signatures representing each of the
1129 * actual functions.
1130 */
1131 class ir_function : public ir_instruction {
1132 public:
1133 ir_function(const char *name);
1134
1135 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1136
1137 virtual void accept(ir_visitor *v)
1138 {
1139 v->visit(this);
1140 }
1141
1142 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1143
1144 void add_signature(ir_function_signature *sig)
1145 {
1146 sig->_function = this;
1147 this->signatures.push_tail(sig);
1148 }
1149
1150 /**
1151 * Find a signature that matches a set of actual parameters, taking implicit
1152 * conversions into account. Also flags whether the match was exact.
1153 */
1154 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1155 const exec_list *actual_param,
1156 bool allow_builtins,
1157 bool *match_is_exact);
1158
1159 /**
1160 * Find a signature that matches a set of actual parameters, taking implicit
1161 * conversions into account.
1162 */
1163 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1164 const exec_list *actual_param,
1165 bool allow_builtins);
1166
1167 /**
1168 * Find a signature that exactly matches a set of actual parameters without
1169 * any implicit type conversions.
1170 */
1171 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1172 const exec_list *actual_ps);
1173
1174 /**
1175 * Name of the function.
1176 */
1177 const char *name;
1178
1179 /** Whether or not this function has a signature that isn't a built-in. */
1180 bool has_user_signature();
1181
1182 /**
1183 * List of ir_function_signature for each overloaded function with this name.
1184 */
1185 struct exec_list signatures;
1186
1187 /**
1188 * is this function a subroutine type declaration
1189 * e.g. subroutine void type1(float arg1);
1190 */
1191 bool is_subroutine;
1192
1193 /**
1194 * is this function associated to a subroutine type
1195 * e.g. subroutine (type1, type2) function_name { function_body };
1196 * would have num_subroutine_types 2,
1197 * and pointers to the type1 and type2 types.
1198 */
1199 int num_subroutine_types;
1200 const struct glsl_type **subroutine_types;
1201
1202 int subroutine_index;
1203 };
1204
1205 inline const char *ir_function_signature::function_name() const
1206 {
1207 return this->_function->name;
1208 }
1209 /*@}*/
1210
1211
1212 /**
1213 * IR instruction representing high-level if-statements
1214 */
1215 class ir_if : public ir_instruction {
1216 public:
1217 ir_if(ir_rvalue *condition)
1218 : ir_instruction(ir_type_if), condition(condition)
1219 {
1220 }
1221
1222 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1223
1224 virtual void accept(ir_visitor *v)
1225 {
1226 v->visit(this);
1227 }
1228
1229 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1230
1231 ir_rvalue *condition;
1232 /** List of ir_instruction for the body of the then branch */
1233 exec_list then_instructions;
1234 /** List of ir_instruction for the body of the else branch */
1235 exec_list else_instructions;
1236 };
1237
1238
1239 /**
1240 * IR instruction representing a high-level loop structure.
1241 */
1242 class ir_loop : public ir_instruction {
1243 public:
1244 ir_loop();
1245
1246 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1247
1248 virtual void accept(ir_visitor *v)
1249 {
1250 v->visit(this);
1251 }
1252
1253 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1254
1255 /** List of ir_instruction that make up the body of the loop. */
1256 exec_list body_instructions;
1257 };
1258
1259
1260 class ir_assignment : public ir_instruction {
1261 public:
1262 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1263
1264 /**
1265 * Construct an assignment with an explicit write mask
1266 *
1267 * \note
1268 * Since a write mask is supplied, the LHS must already be a bare
1269 * \c ir_dereference. The cannot be any swizzles in the LHS.
1270 */
1271 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1272 unsigned write_mask);
1273
1274 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1275
1276 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1277
1278 virtual void accept(ir_visitor *v)
1279 {
1280 v->visit(this);
1281 }
1282
1283 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1284
1285 /**
1286 * Get a whole variable written by an assignment
1287 *
1288 * If the LHS of the assignment writes a whole variable, the variable is
1289 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1290 * assignment are:
1291 *
1292 * - Assigning to a scalar
1293 * - Assigning to all components of a vector
1294 * - Whole array (or matrix) assignment
1295 * - Whole structure assignment
1296 */
1297 ir_variable *whole_variable_written();
1298
1299 /**
1300 * Set the LHS of an assignment
1301 */
1302 void set_lhs(ir_rvalue *lhs);
1303
1304 /**
1305 * Left-hand side of the assignment.
1306 *
1307 * This should be treated as read only. If you need to set the LHS of an
1308 * assignment, use \c ir_assignment::set_lhs.
1309 */
1310 ir_dereference *lhs;
1311
1312 /**
1313 * Value being assigned
1314 */
1315 ir_rvalue *rhs;
1316
1317 /**
1318 * Optional condition for the assignment.
1319 */
1320 ir_rvalue *condition;
1321
1322
1323 /**
1324 * Component mask written
1325 *
1326 * For non-vector types in the LHS, this field will be zero. For vector
1327 * types, a bit will be set for each component that is written. Note that
1328 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1329 *
1330 * A partially-set write mask means that each enabled channel gets
1331 * the value from a consecutive channel of the rhs. For example,
1332 * to write just .xyw of gl_FrontColor with color:
1333 *
1334 * (assign (constant bool (1)) (xyw)
1335 * (var_ref gl_FragColor)
1336 * (swiz xyw (var_ref color)))
1337 */
1338 unsigned write_mask:4;
1339 };
1340
1341 /* Update ir_expression::get_num_operands() and operator_strs when
1342 * updating this list.
1343 */
1344 enum ir_expression_operation {
1345 ir_unop_bit_not,
1346 ir_unop_logic_not,
1347 ir_unop_neg,
1348 ir_unop_abs,
1349 ir_unop_sign,
1350 ir_unop_rcp,
1351 ir_unop_rsq,
1352 ir_unop_sqrt,
1353 ir_unop_exp, /**< Log base e on gentype */
1354 ir_unop_log, /**< Natural log on gentype */
1355 ir_unop_exp2,
1356 ir_unop_log2,
1357 ir_unop_f2i, /**< Float-to-integer conversion. */
1358 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1359 ir_unop_i2f, /**< Integer-to-float conversion. */
1360 ir_unop_f2b, /**< Float-to-boolean conversion */
1361 ir_unop_b2f, /**< Boolean-to-float conversion */
1362 ir_unop_i2b, /**< int-to-boolean conversion */
1363 ir_unop_b2i, /**< Boolean-to-int conversion */
1364 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1365 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1366 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1367 ir_unop_d2f, /**< Double-to-float conversion. */
1368 ir_unop_f2d, /**< Float-to-double conversion. */
1369 ir_unop_d2i, /**< Double-to-integer conversion. */
1370 ir_unop_i2d, /**< Integer-to-double conversion. */
1371 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1372 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1373 ir_unop_d2b, /**< Double-to-boolean conversion. */
1374 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1375 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1376 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1377 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1378
1379 /**
1380 * \name Unary floating-point rounding operations.
1381 */
1382 /*@{*/
1383 ir_unop_trunc,
1384 ir_unop_ceil,
1385 ir_unop_floor,
1386 ir_unop_fract,
1387 ir_unop_round_even,
1388 /*@}*/
1389
1390 /**
1391 * \name Trigonometric operations.
1392 */
1393 /*@{*/
1394 ir_unop_sin,
1395 ir_unop_cos,
1396 /*@}*/
1397
1398 /**
1399 * \name Partial derivatives.
1400 */
1401 /*@{*/
1402 ir_unop_dFdx,
1403 ir_unop_dFdx_coarse,
1404 ir_unop_dFdx_fine,
1405 ir_unop_dFdy,
1406 ir_unop_dFdy_coarse,
1407 ir_unop_dFdy_fine,
1408 /*@}*/
1409
1410 /**
1411 * \name Floating point pack and unpack operations.
1412 */
1413 /*@{*/
1414 ir_unop_pack_snorm_2x16,
1415 ir_unop_pack_snorm_4x8,
1416 ir_unop_pack_unorm_2x16,
1417 ir_unop_pack_unorm_4x8,
1418 ir_unop_pack_half_2x16,
1419 ir_unop_unpack_snorm_2x16,
1420 ir_unop_unpack_snorm_4x8,
1421 ir_unop_unpack_unorm_2x16,
1422 ir_unop_unpack_unorm_4x8,
1423 ir_unop_unpack_half_2x16,
1424 /*@}*/
1425
1426 /**
1427 * \name Bit operations, part of ARB_gpu_shader5.
1428 */
1429 /*@{*/
1430 ir_unop_bitfield_reverse,
1431 ir_unop_bit_count,
1432 ir_unop_find_msb,
1433 ir_unop_find_lsb,
1434 /*@}*/
1435
1436 ir_unop_saturate,
1437
1438 /**
1439 * \name Double packing, part of ARB_gpu_shader_fp64.
1440 */
1441 /*@{*/
1442 ir_unop_pack_double_2x32,
1443 ir_unop_unpack_double_2x32,
1444 /*@}*/
1445
1446 ir_unop_frexp_sig,
1447 ir_unop_frexp_exp,
1448
1449 ir_unop_noise,
1450
1451 ir_unop_subroutine_to_int,
1452 /**
1453 * Interpolate fs input at centroid
1454 *
1455 * operand0 is the fs input.
1456 */
1457 ir_unop_interpolate_at_centroid,
1458
1459 /**
1460 * Ask the driver for the total size of a buffer block.
1461 *
1462 * operand0 is the ir_constant buffer block index in the linked shader.
1463 */
1464 ir_unop_get_buffer_size,
1465
1466 /**
1467 * Calculate length of an unsized array inside a buffer block.
1468 * This opcode is going to be replaced in a lowering pass inside
1469 * the linker.
1470 *
1471 * operand0 is the unsized array's ir_value for the calculation
1472 * of its length.
1473 */
1474 ir_unop_ssbo_unsized_array_length,
1475
1476 /**
1477 * A sentinel marking the last of the unary operations.
1478 */
1479 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1480
1481 ir_binop_add,
1482 ir_binop_sub,
1483 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1484 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1485 ir_binop_div,
1486
1487 /**
1488 * Returns the carry resulting from the addition of the two arguments.
1489 */
1490 /*@{*/
1491 ir_binop_carry,
1492 /*@}*/
1493
1494 /**
1495 * Returns the borrow resulting from the subtraction of the second argument
1496 * from the first argument.
1497 */
1498 /*@{*/
1499 ir_binop_borrow,
1500 /*@}*/
1501
1502 /**
1503 * Takes one of two combinations of arguments:
1504 *
1505 * - mod(vecN, vecN)
1506 * - mod(vecN, float)
1507 *
1508 * Does not take integer types.
1509 */
1510 ir_binop_mod,
1511
1512 /**
1513 * \name Binary comparison operators which return a boolean vector.
1514 * The type of both operands must be equal.
1515 */
1516 /*@{*/
1517 ir_binop_less,
1518 ir_binop_greater,
1519 ir_binop_lequal,
1520 ir_binop_gequal,
1521 ir_binop_equal,
1522 ir_binop_nequal,
1523 /**
1524 * Returns single boolean for whether all components of operands[0]
1525 * equal the components of operands[1].
1526 */
1527 ir_binop_all_equal,
1528 /**
1529 * Returns single boolean for whether any component of operands[0]
1530 * is not equal to the corresponding component of operands[1].
1531 */
1532 ir_binop_any_nequal,
1533 /*@}*/
1534
1535 /**
1536 * \name Bit-wise binary operations.
1537 */
1538 /*@{*/
1539 ir_binop_lshift,
1540 ir_binop_rshift,
1541 ir_binop_bit_and,
1542 ir_binop_bit_xor,
1543 ir_binop_bit_or,
1544 /*@}*/
1545
1546 ir_binop_logic_and,
1547 ir_binop_logic_xor,
1548 ir_binop_logic_or,
1549
1550 ir_binop_dot,
1551 ir_binop_min,
1552 ir_binop_max,
1553
1554 ir_binop_pow,
1555
1556 /**
1557 * Load a value the size of a given GLSL type from a uniform block.
1558 *
1559 * operand0 is the ir_constant uniform block index in the linked shader.
1560 * operand1 is a byte offset within the uniform block.
1561 */
1562 ir_binop_ubo_load,
1563
1564 /**
1565 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1566 */
1567 /*@{*/
1568 ir_binop_ldexp,
1569 /*@}*/
1570
1571 /**
1572 * Extract a scalar from a vector
1573 *
1574 * operand0 is the vector
1575 * operand1 is the index of the field to read from operand0
1576 */
1577 ir_binop_vector_extract,
1578
1579 /**
1580 * Interpolate fs input at offset
1581 *
1582 * operand0 is the fs input
1583 * operand1 is the offset from the pixel center
1584 */
1585 ir_binop_interpolate_at_offset,
1586
1587 /**
1588 * Interpolate fs input at sample position
1589 *
1590 * operand0 is the fs input
1591 * operand1 is the sample ID
1592 */
1593 ir_binop_interpolate_at_sample,
1594
1595 /**
1596 * A sentinel marking the last of the binary operations.
1597 */
1598 ir_last_binop = ir_binop_interpolate_at_sample,
1599
1600 /**
1601 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1602 */
1603 /*@{*/
1604 ir_triop_fma,
1605 /*@}*/
1606
1607 ir_triop_lrp,
1608
1609 /**
1610 * \name Conditional Select
1611 *
1612 * A vector conditional select instruction (like ?:, but operating per-
1613 * component on vectors).
1614 *
1615 * \see lower_instructions_visitor::ldexp_to_arith
1616 */
1617 /*@{*/
1618 ir_triop_csel,
1619 /*@}*/
1620
1621 ir_triop_bitfield_extract,
1622
1623 /**
1624 * Generate a value with one field of a vector changed
1625 *
1626 * operand0 is the vector
1627 * operand1 is the value to write into the vector result
1628 * operand2 is the index in operand0 to be modified
1629 */
1630 ir_triop_vector_insert,
1631
1632 /**
1633 * A sentinel marking the last of the ternary operations.
1634 */
1635 ir_last_triop = ir_triop_vector_insert,
1636
1637 ir_quadop_bitfield_insert,
1638
1639 ir_quadop_vector,
1640
1641 /**
1642 * A sentinel marking the last of the ternary operations.
1643 */
1644 ir_last_quadop = ir_quadop_vector,
1645
1646 /**
1647 * A sentinel marking the last of all operations.
1648 */
1649 ir_last_opcode = ir_quadop_vector
1650 };
1651
1652 class ir_expression : public ir_rvalue {
1653 public:
1654 ir_expression(int op, const struct glsl_type *type,
1655 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1656 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1657
1658 /**
1659 * Constructor for unary operation expressions
1660 */
1661 ir_expression(int op, ir_rvalue *);
1662
1663 /**
1664 * Constructor for binary operation expressions
1665 */
1666 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1667
1668 /**
1669 * Constructor for ternary operation expressions
1670 */
1671 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1672
1673 virtual bool equals(const ir_instruction *ir,
1674 enum ir_node_type ignore = ir_type_unset) const;
1675
1676 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1677
1678 /**
1679 * Attempt to constant-fold the expression
1680 *
1681 * The "variable_context" hash table links ir_variable * to ir_constant *
1682 * that represent the variables' values. \c NULL represents an empty
1683 * context.
1684 *
1685 * If the expression cannot be constant folded, this method will return
1686 * \c NULL.
1687 */
1688 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1689
1690 /**
1691 * Determine the number of operands used by an expression
1692 */
1693 static unsigned int get_num_operands(ir_expression_operation);
1694
1695 /**
1696 * Determine the number of operands used by an expression
1697 */
1698 unsigned int get_num_operands() const
1699 {
1700 return (this->operation == ir_quadop_vector)
1701 ? this->type->vector_elements : get_num_operands(operation);
1702 }
1703
1704 /**
1705 * Return whether the expression operates on vectors horizontally.
1706 */
1707 bool is_horizontal() const
1708 {
1709 return operation == ir_binop_all_equal ||
1710 operation == ir_binop_any_nequal ||
1711 operation == ir_binop_dot ||
1712 operation == ir_binop_vector_extract ||
1713 operation == ir_triop_vector_insert ||
1714 operation == ir_binop_ubo_load ||
1715 operation == ir_quadop_vector;
1716 }
1717
1718 /**
1719 * Return a string representing this expression's operator.
1720 */
1721 const char *operator_string();
1722
1723 /**
1724 * Return a string representing this expression's operator.
1725 */
1726 static const char *operator_string(ir_expression_operation);
1727
1728
1729 /**
1730 * Do a reverse-lookup to translate the given string into an operator.
1731 */
1732 static ir_expression_operation get_operator(const char *);
1733
1734 virtual void accept(ir_visitor *v)
1735 {
1736 v->visit(this);
1737 }
1738
1739 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1740
1741 virtual ir_variable *variable_referenced() const;
1742
1743 ir_expression_operation operation;
1744 ir_rvalue *operands[4];
1745 };
1746
1747
1748 /**
1749 * HIR instruction representing a high-level function call, containing a list
1750 * of parameters and returning a value in the supplied temporary.
1751 */
1752 class ir_call : public ir_instruction {
1753 public:
1754 ir_call(ir_function_signature *callee,
1755 ir_dereference_variable *return_deref,
1756 exec_list *actual_parameters)
1757 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1758 {
1759 assert(callee->return_type != NULL);
1760 actual_parameters->move_nodes_to(& this->actual_parameters);
1761 this->use_builtin = callee->is_builtin();
1762 }
1763
1764 ir_call(ir_function_signature *callee,
1765 ir_dereference_variable *return_deref,
1766 exec_list *actual_parameters,
1767 ir_variable *var, ir_rvalue *array_idx)
1768 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1769 {
1770 assert(callee->return_type != NULL);
1771 actual_parameters->move_nodes_to(& this->actual_parameters);
1772 this->use_builtin = callee->is_builtin();
1773 }
1774
1775 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1776
1777 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1778
1779 virtual void accept(ir_visitor *v)
1780 {
1781 v->visit(this);
1782 }
1783
1784 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1785
1786 /**
1787 * Get the name of the function being called.
1788 */
1789 const char *callee_name() const
1790 {
1791 return callee->function_name();
1792 }
1793
1794 /**
1795 * Generates an inline version of the function before @ir,
1796 * storing the return value in return_deref.
1797 */
1798 void generate_inline(ir_instruction *ir);
1799
1800 /**
1801 * Storage for the function's return value.
1802 * This must be NULL if the return type is void.
1803 */
1804 ir_dereference_variable *return_deref;
1805
1806 /**
1807 * The specific function signature being called.
1808 */
1809 ir_function_signature *callee;
1810
1811 /* List of ir_rvalue of paramaters passed in this call. */
1812 exec_list actual_parameters;
1813
1814 /** Should this call only bind to a built-in function? */
1815 bool use_builtin;
1816
1817 /*
1818 * ARB_shader_subroutine support -
1819 * the subroutine uniform variable and array index
1820 * rvalue to be used in the lowering pass later.
1821 */
1822 ir_variable *sub_var;
1823 ir_rvalue *array_idx;
1824 };
1825
1826
1827 /**
1828 * \name Jump-like IR instructions.
1829 *
1830 * These include \c break, \c continue, \c return, and \c discard.
1831 */
1832 /*@{*/
1833 class ir_jump : public ir_instruction {
1834 protected:
1835 ir_jump(enum ir_node_type t)
1836 : ir_instruction(t)
1837 {
1838 }
1839 };
1840
1841 class ir_return : public ir_jump {
1842 public:
1843 ir_return()
1844 : ir_jump(ir_type_return), value(NULL)
1845 {
1846 }
1847
1848 ir_return(ir_rvalue *value)
1849 : ir_jump(ir_type_return), value(value)
1850 {
1851 }
1852
1853 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1854
1855 ir_rvalue *get_value() const
1856 {
1857 return value;
1858 }
1859
1860 virtual void accept(ir_visitor *v)
1861 {
1862 v->visit(this);
1863 }
1864
1865 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1866
1867 ir_rvalue *value;
1868 };
1869
1870
1871 /**
1872 * Jump instructions used inside loops
1873 *
1874 * These include \c break and \c continue. The \c break within a loop is
1875 * different from the \c break within a switch-statement.
1876 *
1877 * \sa ir_switch_jump
1878 */
1879 class ir_loop_jump : public ir_jump {
1880 public:
1881 enum jump_mode {
1882 jump_break,
1883 jump_continue
1884 };
1885
1886 ir_loop_jump(jump_mode mode)
1887 : ir_jump(ir_type_loop_jump)
1888 {
1889 this->mode = mode;
1890 }
1891
1892 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1893
1894 virtual void accept(ir_visitor *v)
1895 {
1896 v->visit(this);
1897 }
1898
1899 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1900
1901 bool is_break() const
1902 {
1903 return mode == jump_break;
1904 }
1905
1906 bool is_continue() const
1907 {
1908 return mode == jump_continue;
1909 }
1910
1911 /** Mode selector for the jump instruction. */
1912 enum jump_mode mode;
1913 };
1914
1915 /**
1916 * IR instruction representing discard statements.
1917 */
1918 class ir_discard : public ir_jump {
1919 public:
1920 ir_discard()
1921 : ir_jump(ir_type_discard)
1922 {
1923 this->condition = NULL;
1924 }
1925
1926 ir_discard(ir_rvalue *cond)
1927 : ir_jump(ir_type_discard)
1928 {
1929 this->condition = cond;
1930 }
1931
1932 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1933
1934 virtual void accept(ir_visitor *v)
1935 {
1936 v->visit(this);
1937 }
1938
1939 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1940
1941 ir_rvalue *condition;
1942 };
1943 /*@}*/
1944
1945
1946 /**
1947 * Texture sampling opcodes used in ir_texture
1948 */
1949 enum ir_texture_opcode {
1950 ir_tex, /**< Regular texture look-up */
1951 ir_txb, /**< Texture look-up with LOD bias */
1952 ir_txl, /**< Texture look-up with explicit LOD */
1953 ir_txd, /**< Texture look-up with partial derivatvies */
1954 ir_txf, /**< Texel fetch with explicit LOD */
1955 ir_txf_ms, /**< Multisample texture fetch */
1956 ir_txs, /**< Texture size */
1957 ir_lod, /**< Texture lod query */
1958 ir_tg4, /**< Texture gather */
1959 ir_query_levels, /**< Texture levels query */
1960 ir_texture_samples, /**< Texture samples query */
1961 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1962 };
1963
1964
1965 /**
1966 * IR instruction to sample a texture
1967 *
1968 * The specific form of the IR instruction depends on the \c mode value
1969 * selected from \c ir_texture_opcodes. In the printed IR, these will
1970 * appear as:
1971 *
1972 * Texel offset (0 or an expression)
1973 * | Projection divisor
1974 * | | Shadow comparitor
1975 * | | |
1976 * v v v
1977 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1978 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1979 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1980 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1981 * (txf <type> <sampler> <coordinate> 0 <lod>)
1982 * (txf_ms
1983 * <type> <sampler> <coordinate> <sample_index>)
1984 * (txs <type> <sampler> <lod>)
1985 * (lod <type> <sampler> <coordinate>)
1986 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1987 * (query_levels <type> <sampler>)
1988 * (samples_identical <sampler> <coordinate>)
1989 */
1990 class ir_texture : public ir_rvalue {
1991 public:
1992 ir_texture(enum ir_texture_opcode op)
1993 : ir_rvalue(ir_type_texture),
1994 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1995 shadow_comparitor(NULL), offset(NULL)
1996 {
1997 memset(&lod_info, 0, sizeof(lod_info));
1998 }
1999
2000 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2001
2002 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2003
2004 virtual void accept(ir_visitor *v)
2005 {
2006 v->visit(this);
2007 }
2008
2009 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2010
2011 virtual bool equals(const ir_instruction *ir,
2012 enum ir_node_type ignore = ir_type_unset) const;
2013
2014 /**
2015 * Return a string representing the ir_texture_opcode.
2016 */
2017 const char *opcode_string();
2018
2019 /** Set the sampler and type. */
2020 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2021
2022 /**
2023 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2024 */
2025 static ir_texture_opcode get_opcode(const char *);
2026
2027 enum ir_texture_opcode op;
2028
2029 /** Sampler to use for the texture access. */
2030 ir_dereference *sampler;
2031
2032 /** Texture coordinate to sample */
2033 ir_rvalue *coordinate;
2034
2035 /**
2036 * Value used for projective divide.
2037 *
2038 * If there is no projective divide (the common case), this will be
2039 * \c NULL. Optimization passes should check for this to point to a constant
2040 * of 1.0 and replace that with \c NULL.
2041 */
2042 ir_rvalue *projector;
2043
2044 /**
2045 * Coordinate used for comparison on shadow look-ups.
2046 *
2047 * If there is no shadow comparison, this will be \c NULL. For the
2048 * \c ir_txf opcode, this *must* be \c NULL.
2049 */
2050 ir_rvalue *shadow_comparitor;
2051
2052 /** Texel offset. */
2053 ir_rvalue *offset;
2054
2055 union {
2056 ir_rvalue *lod; /**< Floating point LOD */
2057 ir_rvalue *bias; /**< Floating point LOD bias */
2058 ir_rvalue *sample_index; /**< MSAA sample index */
2059 ir_rvalue *component; /**< Gather component selector */
2060 struct {
2061 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2062 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2063 } grad;
2064 } lod_info;
2065 };
2066
2067
2068 struct ir_swizzle_mask {
2069 unsigned x:2;
2070 unsigned y:2;
2071 unsigned z:2;
2072 unsigned w:2;
2073
2074 /**
2075 * Number of components in the swizzle.
2076 */
2077 unsigned num_components:3;
2078
2079 /**
2080 * Does the swizzle contain duplicate components?
2081 *
2082 * L-value swizzles cannot contain duplicate components.
2083 */
2084 unsigned has_duplicates:1;
2085 };
2086
2087
2088 class ir_swizzle : public ir_rvalue {
2089 public:
2090 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2091 unsigned count);
2092
2093 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2094
2095 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2096
2097 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2098
2099 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2100
2101 /**
2102 * Construct an ir_swizzle from the textual representation. Can fail.
2103 */
2104 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2105
2106 virtual void accept(ir_visitor *v)
2107 {
2108 v->visit(this);
2109 }
2110
2111 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2112
2113 virtual bool equals(const ir_instruction *ir,
2114 enum ir_node_type ignore = ir_type_unset) const;
2115
2116 bool is_lvalue() const
2117 {
2118 return val->is_lvalue() && !mask.has_duplicates;
2119 }
2120
2121 /**
2122 * Get the variable that is ultimately referenced by an r-value
2123 */
2124 virtual ir_variable *variable_referenced() const;
2125
2126 ir_rvalue *val;
2127 ir_swizzle_mask mask;
2128
2129 private:
2130 /**
2131 * Initialize the mask component of a swizzle
2132 *
2133 * This is used by the \c ir_swizzle constructors.
2134 */
2135 void init_mask(const unsigned *components, unsigned count);
2136 };
2137
2138
2139 class ir_dereference : public ir_rvalue {
2140 public:
2141 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2142
2143 bool is_lvalue() const;
2144
2145 /**
2146 * Get the variable that is ultimately referenced by an r-value
2147 */
2148 virtual ir_variable *variable_referenced() const = 0;
2149
2150 protected:
2151 ir_dereference(enum ir_node_type t)
2152 : ir_rvalue(t)
2153 {
2154 }
2155 };
2156
2157
2158 class ir_dereference_variable : public ir_dereference {
2159 public:
2160 ir_dereference_variable(ir_variable *var);
2161
2162 virtual ir_dereference_variable *clone(void *mem_ctx,
2163 struct hash_table *) const;
2164
2165 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2166
2167 virtual bool equals(const ir_instruction *ir,
2168 enum ir_node_type ignore = ir_type_unset) const;
2169
2170 /**
2171 * Get the variable that is ultimately referenced by an r-value
2172 */
2173 virtual ir_variable *variable_referenced() const
2174 {
2175 return this->var;
2176 }
2177
2178 virtual ir_variable *whole_variable_referenced()
2179 {
2180 /* ir_dereference_variable objects always dereference the entire
2181 * variable. However, if this dereference is dereferenced by anything
2182 * else, the complete deferefernce chain is not a whole-variable
2183 * dereference. This method should only be called on the top most
2184 * ir_rvalue in a dereference chain.
2185 */
2186 return this->var;
2187 }
2188
2189 virtual void accept(ir_visitor *v)
2190 {
2191 v->visit(this);
2192 }
2193
2194 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2195
2196 /**
2197 * Object being dereferenced.
2198 */
2199 ir_variable *var;
2200 };
2201
2202
2203 class ir_dereference_array : public ir_dereference {
2204 public:
2205 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2206
2207 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2208
2209 virtual ir_dereference_array *clone(void *mem_ctx,
2210 struct hash_table *) const;
2211
2212 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2213
2214 virtual bool equals(const ir_instruction *ir,
2215 enum ir_node_type ignore = ir_type_unset) const;
2216
2217 /**
2218 * Get the variable that is ultimately referenced by an r-value
2219 */
2220 virtual ir_variable *variable_referenced() const
2221 {
2222 return this->array->variable_referenced();
2223 }
2224
2225 virtual void accept(ir_visitor *v)
2226 {
2227 v->visit(this);
2228 }
2229
2230 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2231
2232 ir_rvalue *array;
2233 ir_rvalue *array_index;
2234
2235 private:
2236 void set_array(ir_rvalue *value);
2237 };
2238
2239
2240 class ir_dereference_record : public ir_dereference {
2241 public:
2242 ir_dereference_record(ir_rvalue *value, const char *field);
2243
2244 ir_dereference_record(ir_variable *var, const char *field);
2245
2246 virtual ir_dereference_record *clone(void *mem_ctx,
2247 struct hash_table *) const;
2248
2249 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2250
2251 /**
2252 * Get the variable that is ultimately referenced by an r-value
2253 */
2254 virtual ir_variable *variable_referenced() const
2255 {
2256 return this->record->variable_referenced();
2257 }
2258
2259 virtual void accept(ir_visitor *v)
2260 {
2261 v->visit(this);
2262 }
2263
2264 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2265
2266 ir_rvalue *record;
2267 const char *field;
2268 };
2269
2270
2271 /**
2272 * Data stored in an ir_constant
2273 */
2274 union ir_constant_data {
2275 unsigned u[16];
2276 int i[16];
2277 float f[16];
2278 bool b[16];
2279 double d[16];
2280 };
2281
2282
2283 class ir_constant : public ir_rvalue {
2284 public:
2285 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2286 ir_constant(bool b, unsigned vector_elements=1);
2287 ir_constant(unsigned int u, unsigned vector_elements=1);
2288 ir_constant(int i, unsigned vector_elements=1);
2289 ir_constant(float f, unsigned vector_elements=1);
2290 ir_constant(double d, unsigned vector_elements=1);
2291
2292 /**
2293 * Construct an ir_constant from a list of ir_constant values
2294 */
2295 ir_constant(const struct glsl_type *type, exec_list *values);
2296
2297 /**
2298 * Construct an ir_constant from a scalar component of another ir_constant
2299 *
2300 * The new \c ir_constant inherits the type of the component from the
2301 * source constant.
2302 *
2303 * \note
2304 * In the case of a matrix constant, the new constant is a scalar, \b not
2305 * a vector.
2306 */
2307 ir_constant(const ir_constant *c, unsigned i);
2308
2309 /**
2310 * Return a new ir_constant of the specified type containing all zeros.
2311 */
2312 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2313
2314 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2315
2316 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2317
2318 virtual void accept(ir_visitor *v)
2319 {
2320 v->visit(this);
2321 }
2322
2323 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2324
2325 virtual bool equals(const ir_instruction *ir,
2326 enum ir_node_type ignore = ir_type_unset) const;
2327
2328 /**
2329 * Get a particular component of a constant as a specific type
2330 *
2331 * This is useful, for example, to get a value from an integer constant
2332 * as a float or bool. This appears frequently when constructors are
2333 * called with all constant parameters.
2334 */
2335 /*@{*/
2336 bool get_bool_component(unsigned i) const;
2337 float get_float_component(unsigned i) const;
2338 double get_double_component(unsigned i) const;
2339 int get_int_component(unsigned i) const;
2340 unsigned get_uint_component(unsigned i) const;
2341 /*@}*/
2342
2343 ir_constant *get_array_element(unsigned i) const;
2344
2345 ir_constant *get_record_field(const char *name);
2346
2347 /**
2348 * Copy the values on another constant at a given offset.
2349 *
2350 * The offset is ignored for array or struct copies, it's only for
2351 * scalars or vectors into vectors or matrices.
2352 *
2353 * With identical types on both sides and zero offset it's clone()
2354 * without creating a new object.
2355 */
2356
2357 void copy_offset(ir_constant *src, int offset);
2358
2359 /**
2360 * Copy the values on another constant at a given offset and
2361 * following an assign-like mask.
2362 *
2363 * The mask is ignored for scalars.
2364 *
2365 * Note that this function only handles what assign can handle,
2366 * i.e. at most a vector as source and a column of a matrix as
2367 * destination.
2368 */
2369
2370 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2371
2372 /**
2373 * Determine whether a constant has the same value as another constant
2374 *
2375 * \sa ir_constant::is_zero, ir_constant::is_one,
2376 * ir_constant::is_negative_one
2377 */
2378 bool has_value(const ir_constant *) const;
2379
2380 /**
2381 * Return true if this ir_constant represents the given value.
2382 *
2383 * For vectors, this checks that each component is the given value.
2384 */
2385 virtual bool is_value(float f, int i) const;
2386 virtual bool is_zero() const;
2387 virtual bool is_one() const;
2388 virtual bool is_negative_one() const;
2389
2390 /**
2391 * Return true for constants that could be stored as 16-bit unsigned values.
2392 *
2393 * Note that this will return true even for signed integer ir_constants, as
2394 * long as the value is non-negative and fits in 16-bits.
2395 */
2396 virtual bool is_uint16_constant() const;
2397
2398 /**
2399 * Value of the constant.
2400 *
2401 * The field used to back the values supplied by the constant is determined
2402 * by the type associated with the \c ir_instruction. Constants may be
2403 * scalars, vectors, or matrices.
2404 */
2405 union ir_constant_data value;
2406
2407 /* Array elements */
2408 ir_constant **array_elements;
2409
2410 /* Structure fields */
2411 exec_list components;
2412
2413 private:
2414 /**
2415 * Parameterless constructor only used by the clone method
2416 */
2417 ir_constant(void);
2418 };
2419
2420 /**
2421 * IR instruction to emit a vertex in a geometry shader.
2422 */
2423 class ir_emit_vertex : public ir_instruction {
2424 public:
2425 ir_emit_vertex(ir_rvalue *stream)
2426 : ir_instruction(ir_type_emit_vertex),
2427 stream(stream)
2428 {
2429 assert(stream);
2430 }
2431
2432 virtual void accept(ir_visitor *v)
2433 {
2434 v->visit(this);
2435 }
2436
2437 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2438 {
2439 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2440 }
2441
2442 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2443
2444 int stream_id() const
2445 {
2446 return stream->as_constant()->value.i[0];
2447 }
2448
2449 ir_rvalue *stream;
2450 };
2451
2452 /**
2453 * IR instruction to complete the current primitive and start a new one in a
2454 * geometry shader.
2455 */
2456 class ir_end_primitive : public ir_instruction {
2457 public:
2458 ir_end_primitive(ir_rvalue *stream)
2459 : ir_instruction(ir_type_end_primitive),
2460 stream(stream)
2461 {
2462 assert(stream);
2463 }
2464
2465 virtual void accept(ir_visitor *v)
2466 {
2467 v->visit(this);
2468 }
2469
2470 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2471 {
2472 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2473 }
2474
2475 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2476
2477 int stream_id() const
2478 {
2479 return stream->as_constant()->value.i[0];
2480 }
2481
2482 ir_rvalue *stream;
2483 };
2484
2485 /**
2486 * IR instruction for tessellation control and compute shader barrier.
2487 */
2488 class ir_barrier : public ir_instruction {
2489 public:
2490 ir_barrier()
2491 : ir_instruction(ir_type_barrier)
2492 {
2493 }
2494
2495 virtual void accept(ir_visitor *v)
2496 {
2497 v->visit(this);
2498 }
2499
2500 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2501 {
2502 return new(mem_ctx) ir_barrier();
2503 }
2504
2505 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2506 };
2507
2508 /*@}*/
2509
2510 /**
2511 * Apply a visitor to each IR node in a list
2512 */
2513 void
2514 visit_exec_list(exec_list *list, ir_visitor *visitor);
2515
2516 /**
2517 * Validate invariants on each IR node in a list
2518 */
2519 void validate_ir_tree(exec_list *instructions);
2520
2521 struct _mesa_glsl_parse_state;
2522 struct gl_shader_program;
2523
2524 /**
2525 * Detect whether an unlinked shader contains static recursion
2526 *
2527 * If the list of instructions is determined to contain static recursion,
2528 * \c _mesa_glsl_error will be called to emit error messages for each function
2529 * that is in the recursion cycle.
2530 */
2531 void
2532 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2533 exec_list *instructions);
2534
2535 /**
2536 * Detect whether a linked shader contains static recursion
2537 *
2538 * If the list of instructions is determined to contain static recursion,
2539 * \c link_error_printf will be called to emit error messages for each function
2540 * that is in the recursion cycle. In addition,
2541 * \c gl_shader_program::LinkStatus will be set to false.
2542 */
2543 void
2544 detect_recursion_linked(struct gl_shader_program *prog,
2545 exec_list *instructions);
2546
2547 /**
2548 * Make a clone of each IR instruction in a list
2549 *
2550 * \param in List of IR instructions that are to be cloned
2551 * \param out List to hold the cloned instructions
2552 */
2553 void
2554 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2555
2556 extern void
2557 _mesa_glsl_initialize_variables(exec_list *instructions,
2558 struct _mesa_glsl_parse_state *state);
2559
2560 extern void
2561 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2562
2563 extern void
2564 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2565
2566 extern void
2567 _mesa_glsl_initialize_builtin_functions();
2568
2569 extern ir_function_signature *
2570 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2571 const char *name, exec_list *actual_parameters);
2572
2573 extern ir_function *
2574 _mesa_glsl_find_builtin_function_by_name(const char *name);
2575
2576 extern gl_shader *
2577 _mesa_glsl_get_builtin_function_shader(void);
2578
2579 extern ir_function_signature *
2580 _mesa_get_main_function_signature(gl_shader *sh);
2581
2582 extern void
2583 _mesa_glsl_release_functions(void);
2584
2585 extern void
2586 _mesa_glsl_release_builtin_functions(void);
2587
2588 extern void
2589 reparent_ir(exec_list *list, void *mem_ctx);
2590
2591 struct glsl_symbol_table;
2592
2593 extern void
2594 import_prototypes(const exec_list *source, exec_list *dest,
2595 struct glsl_symbol_table *symbols, void *mem_ctx);
2596
2597 extern bool
2598 ir_has_call(ir_instruction *ir);
2599
2600 extern void
2601 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2602 gl_shader_stage shader_stage);
2603
2604 extern char *
2605 prototype_string(const glsl_type *return_type, const char *name,
2606 exec_list *parameters);
2607
2608 const char *
2609 mode_string(const ir_variable *var);
2610
2611 /**
2612 * Built-in / reserved GL variables names start with "gl_"
2613 */
2614 static inline bool
2615 is_gl_identifier(const char *s)
2616 {
2617 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2618 }
2619
2620 extern "C" {
2621 #endif /* __cplusplus */
2622
2623 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2624 struct _mesa_glsl_parse_state *state);
2625
2626 extern void
2627 fprint_ir(FILE *f, const void *instruction);
2628
2629 #ifdef __cplusplus
2630 } /* extern "C" */
2631 #endif
2632
2633 unsigned
2634 vertices_per_prim(GLenum prim);
2635
2636 #endif /* IR_H */