Revert recent GLSL slot counting fiasco.
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_interpolation_flat() const
594 {
595 return this->data.interpolation == INTERP_MODE_FLAT ||
596 this->type->contains_integer() ||
597 this->type->contains_double();
598 }
599
600 inline bool is_name_ralloced() const
601 {
602 return this->name != ir_variable::tmp_name &&
603 this->name != this->name_storage;
604 }
605
606 /**
607 * Enable emitting extension warnings for this variable
608 */
609 void enable_extension_warning(const char *extension);
610
611 /**
612 * Get the extension warning string for this variable
613 *
614 * If warnings are not enabled, \c NULL is returned.
615 */
616 const char *get_extension_warning() const;
617
618 /**
619 * Declared type of the variable
620 */
621 const struct glsl_type *type;
622
623 /**
624 * Declared name of the variable
625 */
626 const char *name;
627
628 private:
629 /**
630 * If the name length fits into name_storage, it's used, otherwise
631 * the name is ralloc'd. shader-db mining showed that 70% of variables
632 * fit here. This is a win over ralloc where only ralloc_header has
633 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
634 */
635 char name_storage[16];
636
637 public:
638 struct ir_variable_data {
639
640 /**
641 * Is the variable read-only?
642 *
643 * This is set for variables declared as \c const, shader inputs,
644 * and uniforms.
645 */
646 unsigned read_only:1;
647 unsigned centroid:1;
648 unsigned sample:1;
649 unsigned patch:1;
650 unsigned invariant:1;
651 unsigned precise:1;
652
653 /**
654 * Has this variable been used for reading or writing?
655 *
656 * Several GLSL semantic checks require knowledge of whether or not a
657 * variable has been used. For example, it is an error to redeclare a
658 * variable as invariant after it has been used.
659 *
660 * This is only maintained in the ast_to_hir.cpp path, not in
661 * Mesa's fixed function or ARB program paths.
662 */
663 unsigned used:1;
664
665 /**
666 * Has this variable been statically assigned?
667 *
668 * This answers whether the variable was assigned in any path of
669 * the shader during ast_to_hir. This doesn't answer whether it is
670 * still written after dead code removal, nor is it maintained in
671 * non-ast_to_hir.cpp (GLSL parsing) paths.
672 */
673 unsigned assigned:1;
674
675 /**
676 * When separate shader programs are enabled, only input/outputs between
677 * the stages of a multi-stage separate program can be safely removed
678 * from the shader interface. Other input/outputs must remains active.
679 */
680 unsigned always_active_io:1;
681
682 /**
683 * Enum indicating how the variable was declared. See
684 * ir_var_declaration_type.
685 *
686 * This is used to detect certain kinds of illegal variable redeclarations.
687 */
688 unsigned how_declared:2;
689
690 /**
691 * Storage class of the variable.
692 *
693 * \sa ir_variable_mode
694 */
695 unsigned mode:4;
696
697 /**
698 * Interpolation mode for shader inputs / outputs
699 *
700 * \sa glsl_interp_mode
701 */
702 unsigned interpolation:2;
703
704 /**
705 * \name ARB_fragment_coord_conventions
706 * @{
707 */
708 unsigned origin_upper_left:1;
709 unsigned pixel_center_integer:1;
710 /*@}*/
711
712 /**
713 * Was the location explicitly set in the shader?
714 *
715 * If the location is explicitly set in the shader, it \b cannot be changed
716 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
717 * no effect).
718 */
719 unsigned explicit_location:1;
720 unsigned explicit_index:1;
721
722 /**
723 * Was an initial binding explicitly set in the shader?
724 *
725 * If so, constant_value contains an integer ir_constant representing the
726 * initial binding point.
727 */
728 unsigned explicit_binding:1;
729
730 /**
731 * Was an initial component explicitly set in the shader?
732 */
733 unsigned explicit_component:1;
734
735 /**
736 * Does this variable have an initializer?
737 *
738 * This is used by the linker to cross-validiate initializers of global
739 * variables.
740 */
741 unsigned has_initializer:1;
742
743 /**
744 * Is this variable a generic output or input that has not yet been matched
745 * up to a variable in another stage of the pipeline?
746 *
747 * This is used by the linker as scratch storage while assigning locations
748 * to generic inputs and outputs.
749 */
750 unsigned is_unmatched_generic_inout:1;
751
752 /**
753 * Is this varying used only by transform feedback?
754 *
755 * This is used by the linker to decide if its safe to pack the varying.
756 */
757 unsigned is_xfb_only:1;
758
759 /**
760 * Was a transfor feedback buffer set in the shader?
761 */
762 unsigned explicit_xfb_buffer:1;
763
764 /**
765 * Was a transfor feedback offset set in the shader?
766 */
767 unsigned explicit_xfb_offset:1;
768
769 /**
770 * Was a transfor feedback stride set in the shader?
771 */
772 unsigned explicit_xfb_stride:1;
773
774 /**
775 * If non-zero, then this variable may be packed along with other variables
776 * into a single varying slot, so this offset should be applied when
777 * accessing components. For example, an offset of 1 means that the x
778 * component of this variable is actually stored in component y of the
779 * location specified by \c location.
780 */
781 unsigned location_frac:2;
782
783 /**
784 * Layout of the matrix. Uses glsl_matrix_layout values.
785 */
786 unsigned matrix_layout:2;
787
788 /**
789 * Non-zero if this variable was created by lowering a named interface
790 * block.
791 */
792 unsigned from_named_ifc_block:1;
793
794 /**
795 * Non-zero if the variable must be a shader input. This is useful for
796 * constraints on function parameters.
797 */
798 unsigned must_be_shader_input:1;
799
800 /**
801 * Output index for dual source blending.
802 *
803 * \note
804 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
805 * source blending.
806 */
807 unsigned index:1;
808
809 /**
810 * Precision qualifier.
811 *
812 * In desktop GLSL we do not care about precision qualifiers at all, in
813 * fact, the spec says that precision qualifiers are ignored.
814 *
815 * To make things easy, we make it so that this field is always
816 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
817 * have the same precision value and the checks we add in the compiler
818 * for this field will never break a desktop shader compile.
819 */
820 unsigned precision:2;
821
822 /**
823 * \brief Layout qualifier for gl_FragDepth.
824 *
825 * This is not equal to \c ir_depth_layout_none if and only if this
826 * variable is \c gl_FragDepth and a layout qualifier is specified.
827 */
828 ir_depth_layout depth_layout:3;
829
830 /**
831 * ARB_shader_image_load_store qualifiers.
832 */
833 unsigned image_read_only:1; /**< "readonly" qualifier. */
834 unsigned image_write_only:1; /**< "writeonly" qualifier. */
835 unsigned image_coherent:1;
836 unsigned image_volatile:1;
837 unsigned image_restrict:1;
838
839 /**
840 * ARB_shader_storage_buffer_object
841 */
842 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
843
844 unsigned implicit_sized_array:1;
845
846 /**
847 * Is this a non-patch TCS output / TES input array that was implicitly
848 * sized to gl_MaxPatchVertices?
849 */
850 unsigned tess_varying_implicit_sized_array:1;
851
852 /**
853 * Whether this is a fragment shader output implicitly initialized with
854 * the previous contents of the specified render target at the
855 * framebuffer location corresponding to this shader invocation.
856 */
857 unsigned fb_fetch_output:1;
858
859 /**
860 * Emit a warning if this variable is accessed.
861 */
862 private:
863 uint8_t warn_extension_index;
864
865 public:
866 /** Image internal format if specified explicitly, otherwise GL_NONE. */
867 uint16_t image_format;
868
869 private:
870 /**
871 * Number of state slots used
872 *
873 * \note
874 * This could be stored in as few as 7-bits, if necessary. If it is made
875 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
876 * be safe.
877 */
878 uint16_t _num_state_slots;
879
880 public:
881 /**
882 * Initial binding point for a sampler, atomic, or UBO.
883 *
884 * For array types, this represents the binding point for the first element.
885 */
886 int16_t binding;
887
888 /**
889 * Storage location of the base of this variable
890 *
891 * The precise meaning of this field depends on the nature of the variable.
892 *
893 * - Vertex shader input: one of the values from \c gl_vert_attrib.
894 * - Vertex shader output: one of the values from \c gl_varying_slot.
895 * - Geometry shader input: one of the values from \c gl_varying_slot.
896 * - Geometry shader output: one of the values from \c gl_varying_slot.
897 * - Fragment shader input: one of the values from \c gl_varying_slot.
898 * - Fragment shader output: one of the values from \c gl_frag_result.
899 * - Uniforms: Per-stage uniform slot number for default uniform block.
900 * - Uniforms: Index within the uniform block definition for UBO members.
901 * - Non-UBO Uniforms: explicit location until linking then reused to
902 * store uniform slot number.
903 * - Other: This field is not currently used.
904 *
905 * If the variable is a uniform, shader input, or shader output, and the
906 * slot has not been assigned, the value will be -1.
907 */
908 int location;
909
910 /**
911 * for glsl->tgsi/mesa IR we need to store the index into the
912 * parameters for uniforms, initially the code overloaded location
913 * but this causes problems with indirect samplers and AoA.
914 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
915 */
916 int param_index;
917
918 /**
919 * Vertex stream output identifier.
920 *
921 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
922 * stream of the i-th component.
923 */
924 unsigned stream;
925
926 /**
927 * Atomic, transform feedback or block member offset.
928 */
929 unsigned offset;
930
931 /**
932 * Highest element accessed with a constant expression array index
933 *
934 * Not used for non-array variables. -1 is never accessed.
935 */
936 int max_array_access;
937
938 /**
939 * Transform feedback buffer.
940 */
941 unsigned xfb_buffer;
942
943 /**
944 * Transform feedback stride.
945 */
946 unsigned xfb_stride;
947
948 /**
949 * Allow (only) ir_variable direct access private members.
950 */
951 friend class ir_variable;
952 } data;
953
954 /**
955 * Value assigned in the initializer of a variable declared "const"
956 */
957 ir_constant *constant_value;
958
959 /**
960 * Constant expression assigned in the initializer of the variable
961 *
962 * \warning
963 * This field and \c ::constant_value are distinct. Even if the two fields
964 * refer to constants with the same value, they must point to separate
965 * objects.
966 */
967 ir_constant *constant_initializer;
968
969 private:
970 static const char *const warn_extension_table[];
971
972 union {
973 /**
974 * For variables which satisfy the is_interface_instance() predicate,
975 * this points to an array of integers such that if the ith member of
976 * the interface block is an array, max_ifc_array_access[i] is the
977 * maximum array element of that member that has been accessed. If the
978 * ith member of the interface block is not an array,
979 * max_ifc_array_access[i] is unused.
980 *
981 * For variables whose type is not an interface block, this pointer is
982 * NULL.
983 */
984 int *max_ifc_array_access;
985
986 /**
987 * Built-in state that backs this uniform
988 *
989 * Once set at variable creation, \c state_slots must remain invariant.
990 *
991 * If the variable is not a uniform, \c _num_state_slots will be zero
992 * and \c state_slots will be \c NULL.
993 */
994 ir_state_slot *state_slots;
995 } u;
996
997 /**
998 * For variables that are in an interface block or are an instance of an
999 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1000 *
1001 * \sa ir_variable::location
1002 */
1003 const glsl_type *interface_type;
1004
1005 /**
1006 * Name used for anonymous compiler temporaries
1007 */
1008 static const char tmp_name[];
1009
1010 public:
1011 /**
1012 * Should the construct keep names for ir_var_temporary variables?
1013 *
1014 * When this global is false, names passed to the constructor for
1015 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1016 * be named "compiler_temp". This name will be in static storage.
1017 *
1018 * \warning
1019 * \b NEVER change the mode of an \c ir_var_temporary.
1020 *
1021 * \warning
1022 * This variable is \b not thread-safe. It is global, \b not
1023 * per-context. It begins life false. A context can, at some point, make
1024 * it true. From that point on, it will be true forever. This should be
1025 * okay since it will only be set true while debugging.
1026 */
1027 static bool temporaries_allocate_names;
1028 };
1029
1030 /**
1031 * A function that returns whether a built-in function is available in the
1032 * current shading language (based on version, ES or desktop, and extensions).
1033 */
1034 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1035
1036 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1037 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1038
1039 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1040 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1041
1042 enum ir_intrinsic_id {
1043 ir_intrinsic_invalid = 0,
1044
1045 /**
1046 * \name Generic intrinsics
1047 *
1048 * Each of these intrinsics has a specific version for shared variables and
1049 * SSBOs.
1050 */
1051 /*@{*/
1052 ir_intrinsic_generic_load,
1053 ir_intrinsic_generic_store,
1054 ir_intrinsic_generic_atomic_add,
1055 ir_intrinsic_generic_atomic_and,
1056 ir_intrinsic_generic_atomic_or,
1057 ir_intrinsic_generic_atomic_xor,
1058 ir_intrinsic_generic_atomic_min,
1059 ir_intrinsic_generic_atomic_max,
1060 ir_intrinsic_generic_atomic_exchange,
1061 ir_intrinsic_generic_atomic_comp_swap,
1062 /*@}*/
1063
1064 ir_intrinsic_atomic_counter_read,
1065 ir_intrinsic_atomic_counter_increment,
1066 ir_intrinsic_atomic_counter_predecrement,
1067 ir_intrinsic_atomic_counter_add,
1068 ir_intrinsic_atomic_counter_and,
1069 ir_intrinsic_atomic_counter_or,
1070 ir_intrinsic_atomic_counter_xor,
1071 ir_intrinsic_atomic_counter_min,
1072 ir_intrinsic_atomic_counter_max,
1073 ir_intrinsic_atomic_counter_exchange,
1074 ir_intrinsic_atomic_counter_comp_swap,
1075
1076 ir_intrinsic_image_load,
1077 ir_intrinsic_image_store,
1078 ir_intrinsic_image_atomic_add,
1079 ir_intrinsic_image_atomic_and,
1080 ir_intrinsic_image_atomic_or,
1081 ir_intrinsic_image_atomic_xor,
1082 ir_intrinsic_image_atomic_min,
1083 ir_intrinsic_image_atomic_max,
1084 ir_intrinsic_image_atomic_exchange,
1085 ir_intrinsic_image_atomic_comp_swap,
1086 ir_intrinsic_image_size,
1087 ir_intrinsic_image_samples,
1088
1089 ir_intrinsic_ssbo_load,
1090 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1091 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1092 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1093 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1094 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1095 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1096 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1097 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1098 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1099
1100 ir_intrinsic_memory_barrier,
1101 ir_intrinsic_shader_clock,
1102 ir_intrinsic_group_memory_barrier,
1103 ir_intrinsic_memory_barrier_atomic_counter,
1104 ir_intrinsic_memory_barrier_buffer,
1105 ir_intrinsic_memory_barrier_image,
1106 ir_intrinsic_memory_barrier_shared,
1107
1108 ir_intrinsic_shared_load,
1109 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1110 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1111 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1112 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1113 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1114 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1115 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1116 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1117 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1118 };
1119
1120 /*@{*/
1121 /**
1122 * The representation of a function instance; may be the full definition or
1123 * simply a prototype.
1124 */
1125 class ir_function_signature : public ir_instruction {
1126 /* An ir_function_signature will be part of the list of signatures in
1127 * an ir_function.
1128 */
1129 public:
1130 ir_function_signature(const glsl_type *return_type,
1131 builtin_available_predicate builtin_avail = NULL);
1132
1133 virtual ir_function_signature *clone(void *mem_ctx,
1134 struct hash_table *ht) const;
1135 ir_function_signature *clone_prototype(void *mem_ctx,
1136 struct hash_table *ht) const;
1137
1138 virtual void accept(ir_visitor *v)
1139 {
1140 v->visit(this);
1141 }
1142
1143 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1144
1145 /**
1146 * Attempt to evaluate this function as a constant expression,
1147 * given a list of the actual parameters and the variable context.
1148 * Returns NULL for non-built-ins.
1149 */
1150 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1151
1152 /**
1153 * Get the name of the function for which this is a signature
1154 */
1155 const char *function_name() const;
1156
1157 /**
1158 * Get a handle to the function for which this is a signature
1159 *
1160 * There is no setter function, this function returns a \c const pointer,
1161 * and \c ir_function_signature::_function is private for a reason. The
1162 * only way to make a connection between a function and function signature
1163 * is via \c ir_function::add_signature. This helps ensure that certain
1164 * invariants (i.e., a function signature is in the list of signatures for
1165 * its \c _function) are met.
1166 *
1167 * \sa ir_function::add_signature
1168 */
1169 inline const class ir_function *function() const
1170 {
1171 return this->_function;
1172 }
1173
1174 /**
1175 * Check whether the qualifiers match between this signature's parameters
1176 * and the supplied parameter list. If not, returns the name of the first
1177 * parameter with mismatched qualifiers (for use in error messages).
1178 */
1179 const char *qualifiers_match(exec_list *params);
1180
1181 /**
1182 * Replace the current parameter list with the given one. This is useful
1183 * if the current information came from a prototype, and either has invalid
1184 * or missing parameter names.
1185 */
1186 void replace_parameters(exec_list *new_params);
1187
1188 /**
1189 * Function return type.
1190 *
1191 * \note This discards the optional precision qualifier.
1192 */
1193 const struct glsl_type *return_type;
1194
1195 /**
1196 * List of ir_variable of function parameters.
1197 *
1198 * This represents the storage. The paramaters passed in a particular
1199 * call will be in ir_call::actual_paramaters.
1200 */
1201 struct exec_list parameters;
1202
1203 /** Whether or not this function has a body (which may be empty). */
1204 unsigned is_defined:1;
1205
1206 /** Whether or not this function signature is a built-in. */
1207 bool is_builtin() const;
1208
1209 /**
1210 * Whether or not this function is an intrinsic to be implemented
1211 * by the driver.
1212 */
1213 inline bool is_intrinsic() const
1214 {
1215 return intrinsic_id != ir_intrinsic_invalid;
1216 }
1217
1218 /** Indentifier for this intrinsic. */
1219 enum ir_intrinsic_id intrinsic_id;
1220
1221 /** Whether or not a built-in is available for this shader. */
1222 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1223
1224 /** Body of instructions in the function. */
1225 struct exec_list body;
1226
1227 private:
1228 /**
1229 * A function pointer to a predicate that answers whether a built-in
1230 * function is available in the current shader. NULL if not a built-in.
1231 */
1232 builtin_available_predicate builtin_avail;
1233
1234 /** Function of which this signature is one overload. */
1235 class ir_function *_function;
1236
1237 /** Function signature of which this one is a prototype clone */
1238 const ir_function_signature *origin;
1239
1240 friend class ir_function;
1241
1242 /**
1243 * Helper function to run a list of instructions for constant
1244 * expression evaluation.
1245 *
1246 * The hash table represents the values of the visible variables.
1247 * There are no scoping issues because the table is indexed on
1248 * ir_variable pointers, not variable names.
1249 *
1250 * Returns false if the expression is not constant, true otherwise,
1251 * and the value in *result if result is non-NULL.
1252 */
1253 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1254 struct hash_table *variable_context,
1255 ir_constant **result);
1256 };
1257
1258
1259 /**
1260 * Header for tracking multiple overloaded functions with the same name.
1261 * Contains a list of ir_function_signatures representing each of the
1262 * actual functions.
1263 */
1264 class ir_function : public ir_instruction {
1265 public:
1266 ir_function(const char *name);
1267
1268 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1269
1270 virtual void accept(ir_visitor *v)
1271 {
1272 v->visit(this);
1273 }
1274
1275 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1276
1277 void add_signature(ir_function_signature *sig)
1278 {
1279 sig->_function = this;
1280 this->signatures.push_tail(sig);
1281 }
1282
1283 /**
1284 * Find a signature that matches a set of actual parameters, taking implicit
1285 * conversions into account. Also flags whether the match was exact.
1286 */
1287 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1288 const exec_list *actual_param,
1289 bool allow_builtins,
1290 bool *match_is_exact);
1291
1292 /**
1293 * Find a signature that matches a set of actual parameters, taking implicit
1294 * conversions into account.
1295 */
1296 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1297 const exec_list *actual_param,
1298 bool allow_builtins);
1299
1300 /**
1301 * Find a signature that exactly matches a set of actual parameters without
1302 * any implicit type conversions.
1303 */
1304 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1305 const exec_list *actual_ps);
1306
1307 /**
1308 * Name of the function.
1309 */
1310 const char *name;
1311
1312 /** Whether or not this function has a signature that isn't a built-in. */
1313 bool has_user_signature();
1314
1315 /**
1316 * List of ir_function_signature for each overloaded function with this name.
1317 */
1318 struct exec_list signatures;
1319
1320 /**
1321 * is this function a subroutine type declaration
1322 * e.g. subroutine void type1(float arg1);
1323 */
1324 bool is_subroutine;
1325
1326 /**
1327 * is this function associated to a subroutine type
1328 * e.g. subroutine (type1, type2) function_name { function_body };
1329 * would have num_subroutine_types 2,
1330 * and pointers to the type1 and type2 types.
1331 */
1332 int num_subroutine_types;
1333 const struct glsl_type **subroutine_types;
1334
1335 int subroutine_index;
1336 };
1337
1338 inline const char *ir_function_signature::function_name() const
1339 {
1340 return this->_function->name;
1341 }
1342 /*@}*/
1343
1344
1345 /**
1346 * IR instruction representing high-level if-statements
1347 */
1348 class ir_if : public ir_instruction {
1349 public:
1350 ir_if(ir_rvalue *condition)
1351 : ir_instruction(ir_type_if), condition(condition)
1352 {
1353 }
1354
1355 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1356
1357 virtual void accept(ir_visitor *v)
1358 {
1359 v->visit(this);
1360 }
1361
1362 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1363
1364 ir_rvalue *condition;
1365 /** List of ir_instruction for the body of the then branch */
1366 exec_list then_instructions;
1367 /** List of ir_instruction for the body of the else branch */
1368 exec_list else_instructions;
1369 };
1370
1371
1372 /**
1373 * IR instruction representing a high-level loop structure.
1374 */
1375 class ir_loop : public ir_instruction {
1376 public:
1377 ir_loop();
1378
1379 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1380
1381 virtual void accept(ir_visitor *v)
1382 {
1383 v->visit(this);
1384 }
1385
1386 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1387
1388 /** List of ir_instruction that make up the body of the loop. */
1389 exec_list body_instructions;
1390 };
1391
1392
1393 class ir_assignment : public ir_instruction {
1394 public:
1395 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1396
1397 /**
1398 * Construct an assignment with an explicit write mask
1399 *
1400 * \note
1401 * Since a write mask is supplied, the LHS must already be a bare
1402 * \c ir_dereference. The cannot be any swizzles in the LHS.
1403 */
1404 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1405 unsigned write_mask);
1406
1407 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1408
1409 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1410
1411 virtual void accept(ir_visitor *v)
1412 {
1413 v->visit(this);
1414 }
1415
1416 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1417
1418 /**
1419 * Get a whole variable written by an assignment
1420 *
1421 * If the LHS of the assignment writes a whole variable, the variable is
1422 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1423 * assignment are:
1424 *
1425 * - Assigning to a scalar
1426 * - Assigning to all components of a vector
1427 * - Whole array (or matrix) assignment
1428 * - Whole structure assignment
1429 */
1430 ir_variable *whole_variable_written();
1431
1432 /**
1433 * Set the LHS of an assignment
1434 */
1435 void set_lhs(ir_rvalue *lhs);
1436
1437 /**
1438 * Left-hand side of the assignment.
1439 *
1440 * This should be treated as read only. If you need to set the LHS of an
1441 * assignment, use \c ir_assignment::set_lhs.
1442 */
1443 ir_dereference *lhs;
1444
1445 /**
1446 * Value being assigned
1447 */
1448 ir_rvalue *rhs;
1449
1450 /**
1451 * Optional condition for the assignment.
1452 */
1453 ir_rvalue *condition;
1454
1455
1456 /**
1457 * Component mask written
1458 *
1459 * For non-vector types in the LHS, this field will be zero. For vector
1460 * types, a bit will be set for each component that is written. Note that
1461 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1462 *
1463 * A partially-set write mask means that each enabled channel gets
1464 * the value from a consecutive channel of the rhs. For example,
1465 * to write just .xyw of gl_FrontColor with color:
1466 *
1467 * (assign (constant bool (1)) (xyw)
1468 * (var_ref gl_FragColor)
1469 * (swiz xyw (var_ref color)))
1470 */
1471 unsigned write_mask:4;
1472 };
1473
1474 #include "ir_expression_operation.h"
1475
1476 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1477 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1478
1479 class ir_expression : public ir_rvalue {
1480 public:
1481 ir_expression(int op, const struct glsl_type *type,
1482 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1483 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1484
1485 /**
1486 * Constructor for unary operation expressions
1487 */
1488 ir_expression(int op, ir_rvalue *);
1489
1490 /**
1491 * Constructor for binary operation expressions
1492 */
1493 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1494
1495 /**
1496 * Constructor for ternary operation expressions
1497 */
1498 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1499
1500 virtual bool equals(const ir_instruction *ir,
1501 enum ir_node_type ignore = ir_type_unset) const;
1502
1503 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1504
1505 /**
1506 * Attempt to constant-fold the expression
1507 *
1508 * The "variable_context" hash table links ir_variable * to ir_constant *
1509 * that represent the variables' values. \c NULL represents an empty
1510 * context.
1511 *
1512 * If the expression cannot be constant folded, this method will return
1513 * \c NULL.
1514 */
1515 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1516
1517 /**
1518 * Determine the number of operands used by an expression
1519 */
1520 static unsigned int get_num_operands(ir_expression_operation);
1521
1522 /**
1523 * Determine the number of operands used by an expression
1524 */
1525 unsigned int get_num_operands() const
1526 {
1527 return (this->operation == ir_quadop_vector)
1528 ? this->type->vector_elements : get_num_operands(operation);
1529 }
1530
1531 /**
1532 * Return whether the expression operates on vectors horizontally.
1533 */
1534 bool is_horizontal() const
1535 {
1536 return operation == ir_binop_all_equal ||
1537 operation == ir_binop_any_nequal ||
1538 operation == ir_binop_dot ||
1539 operation == ir_binop_vector_extract ||
1540 operation == ir_triop_vector_insert ||
1541 operation == ir_binop_ubo_load ||
1542 operation == ir_quadop_vector;
1543 }
1544
1545 /**
1546 * Do a reverse-lookup to translate the given string into an operator.
1547 */
1548 static ir_expression_operation get_operator(const char *);
1549
1550 virtual void accept(ir_visitor *v)
1551 {
1552 v->visit(this);
1553 }
1554
1555 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1556
1557 virtual ir_variable *variable_referenced() const;
1558
1559 ir_expression_operation operation;
1560 ir_rvalue *operands[4];
1561 };
1562
1563
1564 /**
1565 * HIR instruction representing a high-level function call, containing a list
1566 * of parameters and returning a value in the supplied temporary.
1567 */
1568 class ir_call : public ir_instruction {
1569 public:
1570 ir_call(ir_function_signature *callee,
1571 ir_dereference_variable *return_deref,
1572 exec_list *actual_parameters)
1573 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1574 {
1575 assert(callee->return_type != NULL);
1576 actual_parameters->move_nodes_to(& this->actual_parameters);
1577 this->use_builtin = callee->is_builtin();
1578 }
1579
1580 ir_call(ir_function_signature *callee,
1581 ir_dereference_variable *return_deref,
1582 exec_list *actual_parameters,
1583 ir_variable *var, ir_rvalue *array_idx)
1584 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1585 {
1586 assert(callee->return_type != NULL);
1587 actual_parameters->move_nodes_to(& this->actual_parameters);
1588 this->use_builtin = callee->is_builtin();
1589 }
1590
1591 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1592
1593 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1594
1595 virtual void accept(ir_visitor *v)
1596 {
1597 v->visit(this);
1598 }
1599
1600 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1601
1602 /**
1603 * Get the name of the function being called.
1604 */
1605 const char *callee_name() const
1606 {
1607 return callee->function_name();
1608 }
1609
1610 /**
1611 * Generates an inline version of the function before @ir,
1612 * storing the return value in return_deref.
1613 */
1614 void generate_inline(ir_instruction *ir);
1615
1616 /**
1617 * Storage for the function's return value.
1618 * This must be NULL if the return type is void.
1619 */
1620 ir_dereference_variable *return_deref;
1621
1622 /**
1623 * The specific function signature being called.
1624 */
1625 ir_function_signature *callee;
1626
1627 /* List of ir_rvalue of paramaters passed in this call. */
1628 exec_list actual_parameters;
1629
1630 /** Should this call only bind to a built-in function? */
1631 bool use_builtin;
1632
1633 /*
1634 * ARB_shader_subroutine support -
1635 * the subroutine uniform variable and array index
1636 * rvalue to be used in the lowering pass later.
1637 */
1638 ir_variable *sub_var;
1639 ir_rvalue *array_idx;
1640 };
1641
1642
1643 /**
1644 * \name Jump-like IR instructions.
1645 *
1646 * These include \c break, \c continue, \c return, and \c discard.
1647 */
1648 /*@{*/
1649 class ir_jump : public ir_instruction {
1650 protected:
1651 ir_jump(enum ir_node_type t)
1652 : ir_instruction(t)
1653 {
1654 }
1655 };
1656
1657 class ir_return : public ir_jump {
1658 public:
1659 ir_return()
1660 : ir_jump(ir_type_return), value(NULL)
1661 {
1662 }
1663
1664 ir_return(ir_rvalue *value)
1665 : ir_jump(ir_type_return), value(value)
1666 {
1667 }
1668
1669 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1670
1671 ir_rvalue *get_value() const
1672 {
1673 return value;
1674 }
1675
1676 virtual void accept(ir_visitor *v)
1677 {
1678 v->visit(this);
1679 }
1680
1681 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1682
1683 ir_rvalue *value;
1684 };
1685
1686
1687 /**
1688 * Jump instructions used inside loops
1689 *
1690 * These include \c break and \c continue. The \c break within a loop is
1691 * different from the \c break within a switch-statement.
1692 *
1693 * \sa ir_switch_jump
1694 */
1695 class ir_loop_jump : public ir_jump {
1696 public:
1697 enum jump_mode {
1698 jump_break,
1699 jump_continue
1700 };
1701
1702 ir_loop_jump(jump_mode mode)
1703 : ir_jump(ir_type_loop_jump)
1704 {
1705 this->mode = mode;
1706 }
1707
1708 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1709
1710 virtual void accept(ir_visitor *v)
1711 {
1712 v->visit(this);
1713 }
1714
1715 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1716
1717 bool is_break() const
1718 {
1719 return mode == jump_break;
1720 }
1721
1722 bool is_continue() const
1723 {
1724 return mode == jump_continue;
1725 }
1726
1727 /** Mode selector for the jump instruction. */
1728 enum jump_mode mode;
1729 };
1730
1731 /**
1732 * IR instruction representing discard statements.
1733 */
1734 class ir_discard : public ir_jump {
1735 public:
1736 ir_discard()
1737 : ir_jump(ir_type_discard)
1738 {
1739 this->condition = NULL;
1740 }
1741
1742 ir_discard(ir_rvalue *cond)
1743 : ir_jump(ir_type_discard)
1744 {
1745 this->condition = cond;
1746 }
1747
1748 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1749
1750 virtual void accept(ir_visitor *v)
1751 {
1752 v->visit(this);
1753 }
1754
1755 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1756
1757 ir_rvalue *condition;
1758 };
1759 /*@}*/
1760
1761
1762 /**
1763 * Texture sampling opcodes used in ir_texture
1764 */
1765 enum ir_texture_opcode {
1766 ir_tex, /**< Regular texture look-up */
1767 ir_txb, /**< Texture look-up with LOD bias */
1768 ir_txl, /**< Texture look-up with explicit LOD */
1769 ir_txd, /**< Texture look-up with partial derivatvies */
1770 ir_txf, /**< Texel fetch with explicit LOD */
1771 ir_txf_ms, /**< Multisample texture fetch */
1772 ir_txs, /**< Texture size */
1773 ir_lod, /**< Texture lod query */
1774 ir_tg4, /**< Texture gather */
1775 ir_query_levels, /**< Texture levels query */
1776 ir_texture_samples, /**< Texture samples query */
1777 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1778 };
1779
1780
1781 /**
1782 * IR instruction to sample a texture
1783 *
1784 * The specific form of the IR instruction depends on the \c mode value
1785 * selected from \c ir_texture_opcodes. In the printed IR, these will
1786 * appear as:
1787 *
1788 * Texel offset (0 or an expression)
1789 * | Projection divisor
1790 * | | Shadow comparator
1791 * | | |
1792 * v v v
1793 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1794 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1795 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1796 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1797 * (txf <type> <sampler> <coordinate> 0 <lod>)
1798 * (txf_ms
1799 * <type> <sampler> <coordinate> <sample_index>)
1800 * (txs <type> <sampler> <lod>)
1801 * (lod <type> <sampler> <coordinate>)
1802 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1803 * (query_levels <type> <sampler>)
1804 * (samples_identical <sampler> <coordinate>)
1805 */
1806 class ir_texture : public ir_rvalue {
1807 public:
1808 ir_texture(enum ir_texture_opcode op)
1809 : ir_rvalue(ir_type_texture),
1810 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1811 shadow_comparator(NULL), offset(NULL)
1812 {
1813 memset(&lod_info, 0, sizeof(lod_info));
1814 }
1815
1816 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1817
1818 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1819
1820 virtual void accept(ir_visitor *v)
1821 {
1822 v->visit(this);
1823 }
1824
1825 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1826
1827 virtual bool equals(const ir_instruction *ir,
1828 enum ir_node_type ignore = ir_type_unset) const;
1829
1830 /**
1831 * Return a string representing the ir_texture_opcode.
1832 */
1833 const char *opcode_string();
1834
1835 /** Set the sampler and type. */
1836 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1837
1838 /**
1839 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1840 */
1841 static ir_texture_opcode get_opcode(const char *);
1842
1843 enum ir_texture_opcode op;
1844
1845 /** Sampler to use for the texture access. */
1846 ir_dereference *sampler;
1847
1848 /** Texture coordinate to sample */
1849 ir_rvalue *coordinate;
1850
1851 /**
1852 * Value used for projective divide.
1853 *
1854 * If there is no projective divide (the common case), this will be
1855 * \c NULL. Optimization passes should check for this to point to a constant
1856 * of 1.0 and replace that with \c NULL.
1857 */
1858 ir_rvalue *projector;
1859
1860 /**
1861 * Coordinate used for comparison on shadow look-ups.
1862 *
1863 * If there is no shadow comparison, this will be \c NULL. For the
1864 * \c ir_txf opcode, this *must* be \c NULL.
1865 */
1866 ir_rvalue *shadow_comparator;
1867
1868 /** Texel offset. */
1869 ir_rvalue *offset;
1870
1871 union {
1872 ir_rvalue *lod; /**< Floating point LOD */
1873 ir_rvalue *bias; /**< Floating point LOD bias */
1874 ir_rvalue *sample_index; /**< MSAA sample index */
1875 ir_rvalue *component; /**< Gather component selector */
1876 struct {
1877 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1878 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1879 } grad;
1880 } lod_info;
1881 };
1882
1883
1884 struct ir_swizzle_mask {
1885 unsigned x:2;
1886 unsigned y:2;
1887 unsigned z:2;
1888 unsigned w:2;
1889
1890 /**
1891 * Number of components in the swizzle.
1892 */
1893 unsigned num_components:3;
1894
1895 /**
1896 * Does the swizzle contain duplicate components?
1897 *
1898 * L-value swizzles cannot contain duplicate components.
1899 */
1900 unsigned has_duplicates:1;
1901 };
1902
1903
1904 class ir_swizzle : public ir_rvalue {
1905 public:
1906 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1907 unsigned count);
1908
1909 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1910
1911 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1912
1913 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1914
1915 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1916
1917 /**
1918 * Construct an ir_swizzle from the textual representation. Can fail.
1919 */
1920 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1921
1922 virtual void accept(ir_visitor *v)
1923 {
1924 v->visit(this);
1925 }
1926
1927 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1928
1929 virtual bool equals(const ir_instruction *ir,
1930 enum ir_node_type ignore = ir_type_unset) const;
1931
1932 bool is_lvalue() const
1933 {
1934 return val->is_lvalue() && !mask.has_duplicates;
1935 }
1936
1937 /**
1938 * Get the variable that is ultimately referenced by an r-value
1939 */
1940 virtual ir_variable *variable_referenced() const;
1941
1942 ir_rvalue *val;
1943 ir_swizzle_mask mask;
1944
1945 private:
1946 /**
1947 * Initialize the mask component of a swizzle
1948 *
1949 * This is used by the \c ir_swizzle constructors.
1950 */
1951 void init_mask(const unsigned *components, unsigned count);
1952 };
1953
1954
1955 class ir_dereference : public ir_rvalue {
1956 public:
1957 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1958
1959 bool is_lvalue() const;
1960
1961 /**
1962 * Get the variable that is ultimately referenced by an r-value
1963 */
1964 virtual ir_variable *variable_referenced() const = 0;
1965
1966 protected:
1967 ir_dereference(enum ir_node_type t)
1968 : ir_rvalue(t)
1969 {
1970 }
1971 };
1972
1973
1974 class ir_dereference_variable : public ir_dereference {
1975 public:
1976 ir_dereference_variable(ir_variable *var);
1977
1978 virtual ir_dereference_variable *clone(void *mem_ctx,
1979 struct hash_table *) const;
1980
1981 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1982
1983 virtual bool equals(const ir_instruction *ir,
1984 enum ir_node_type ignore = ir_type_unset) const;
1985
1986 /**
1987 * Get the variable that is ultimately referenced by an r-value
1988 */
1989 virtual ir_variable *variable_referenced() const
1990 {
1991 return this->var;
1992 }
1993
1994 virtual ir_variable *whole_variable_referenced()
1995 {
1996 /* ir_dereference_variable objects always dereference the entire
1997 * variable. However, if this dereference is dereferenced by anything
1998 * else, the complete deferefernce chain is not a whole-variable
1999 * dereference. This method should only be called on the top most
2000 * ir_rvalue in a dereference chain.
2001 */
2002 return this->var;
2003 }
2004
2005 virtual void accept(ir_visitor *v)
2006 {
2007 v->visit(this);
2008 }
2009
2010 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2011
2012 /**
2013 * Object being dereferenced.
2014 */
2015 ir_variable *var;
2016 };
2017
2018
2019 class ir_dereference_array : public ir_dereference {
2020 public:
2021 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2022
2023 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2024
2025 virtual ir_dereference_array *clone(void *mem_ctx,
2026 struct hash_table *) const;
2027
2028 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2029
2030 virtual bool equals(const ir_instruction *ir,
2031 enum ir_node_type ignore = ir_type_unset) const;
2032
2033 /**
2034 * Get the variable that is ultimately referenced by an r-value
2035 */
2036 virtual ir_variable *variable_referenced() const
2037 {
2038 return this->array->variable_referenced();
2039 }
2040
2041 virtual void accept(ir_visitor *v)
2042 {
2043 v->visit(this);
2044 }
2045
2046 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2047
2048 ir_rvalue *array;
2049 ir_rvalue *array_index;
2050
2051 private:
2052 void set_array(ir_rvalue *value);
2053 };
2054
2055
2056 class ir_dereference_record : public ir_dereference {
2057 public:
2058 ir_dereference_record(ir_rvalue *value, const char *field);
2059
2060 ir_dereference_record(ir_variable *var, const char *field);
2061
2062 virtual ir_dereference_record *clone(void *mem_ctx,
2063 struct hash_table *) const;
2064
2065 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2066
2067 /**
2068 * Get the variable that is ultimately referenced by an r-value
2069 */
2070 virtual ir_variable *variable_referenced() const
2071 {
2072 return this->record->variable_referenced();
2073 }
2074
2075 virtual void accept(ir_visitor *v)
2076 {
2077 v->visit(this);
2078 }
2079
2080 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2081
2082 ir_rvalue *record;
2083 const char *field;
2084 };
2085
2086
2087 /**
2088 * Data stored in an ir_constant
2089 */
2090 union ir_constant_data {
2091 unsigned u[16];
2092 int i[16];
2093 float f[16];
2094 bool b[16];
2095 double d[16];
2096 };
2097
2098
2099 class ir_constant : public ir_rvalue {
2100 public:
2101 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2102 ir_constant(bool b, unsigned vector_elements=1);
2103 ir_constant(unsigned int u, unsigned vector_elements=1);
2104 ir_constant(int i, unsigned vector_elements=1);
2105 ir_constant(float f, unsigned vector_elements=1);
2106 ir_constant(double d, unsigned vector_elements=1);
2107
2108 /**
2109 * Construct an ir_constant from a list of ir_constant values
2110 */
2111 ir_constant(const struct glsl_type *type, exec_list *values);
2112
2113 /**
2114 * Construct an ir_constant from a scalar component of another ir_constant
2115 *
2116 * The new \c ir_constant inherits the type of the component from the
2117 * source constant.
2118 *
2119 * \note
2120 * In the case of a matrix constant, the new constant is a scalar, \b not
2121 * a vector.
2122 */
2123 ir_constant(const ir_constant *c, unsigned i);
2124
2125 /**
2126 * Return a new ir_constant of the specified type containing all zeros.
2127 */
2128 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2129
2130 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2131
2132 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2133
2134 virtual void accept(ir_visitor *v)
2135 {
2136 v->visit(this);
2137 }
2138
2139 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2140
2141 virtual bool equals(const ir_instruction *ir,
2142 enum ir_node_type ignore = ir_type_unset) const;
2143
2144 /**
2145 * Get a particular component of a constant as a specific type
2146 *
2147 * This is useful, for example, to get a value from an integer constant
2148 * as a float or bool. This appears frequently when constructors are
2149 * called with all constant parameters.
2150 */
2151 /*@{*/
2152 bool get_bool_component(unsigned i) const;
2153 float get_float_component(unsigned i) const;
2154 double get_double_component(unsigned i) const;
2155 int get_int_component(unsigned i) const;
2156 unsigned get_uint_component(unsigned i) const;
2157 /*@}*/
2158
2159 ir_constant *get_array_element(unsigned i) const;
2160
2161 ir_constant *get_record_field(const char *name);
2162
2163 /**
2164 * Copy the values on another constant at a given offset.
2165 *
2166 * The offset is ignored for array or struct copies, it's only for
2167 * scalars or vectors into vectors or matrices.
2168 *
2169 * With identical types on both sides and zero offset it's clone()
2170 * without creating a new object.
2171 */
2172
2173 void copy_offset(ir_constant *src, int offset);
2174
2175 /**
2176 * Copy the values on another constant at a given offset and
2177 * following an assign-like mask.
2178 *
2179 * The mask is ignored for scalars.
2180 *
2181 * Note that this function only handles what assign can handle,
2182 * i.e. at most a vector as source and a column of a matrix as
2183 * destination.
2184 */
2185
2186 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2187
2188 /**
2189 * Determine whether a constant has the same value as another constant
2190 *
2191 * \sa ir_constant::is_zero, ir_constant::is_one,
2192 * ir_constant::is_negative_one
2193 */
2194 bool has_value(const ir_constant *) const;
2195
2196 /**
2197 * Return true if this ir_constant represents the given value.
2198 *
2199 * For vectors, this checks that each component is the given value.
2200 */
2201 virtual bool is_value(float f, int i) const;
2202 virtual bool is_zero() const;
2203 virtual bool is_one() const;
2204 virtual bool is_negative_one() const;
2205
2206 /**
2207 * Return true for constants that could be stored as 16-bit unsigned values.
2208 *
2209 * Note that this will return true even for signed integer ir_constants, as
2210 * long as the value is non-negative and fits in 16-bits.
2211 */
2212 virtual bool is_uint16_constant() const;
2213
2214 /**
2215 * Value of the constant.
2216 *
2217 * The field used to back the values supplied by the constant is determined
2218 * by the type associated with the \c ir_instruction. Constants may be
2219 * scalars, vectors, or matrices.
2220 */
2221 union ir_constant_data value;
2222
2223 /* Array elements */
2224 ir_constant **array_elements;
2225
2226 /* Structure fields */
2227 exec_list components;
2228
2229 private:
2230 /**
2231 * Parameterless constructor only used by the clone method
2232 */
2233 ir_constant(void);
2234 };
2235
2236 /**
2237 * IR instruction to emit a vertex in a geometry shader.
2238 */
2239 class ir_emit_vertex : public ir_instruction {
2240 public:
2241 ir_emit_vertex(ir_rvalue *stream)
2242 : ir_instruction(ir_type_emit_vertex),
2243 stream(stream)
2244 {
2245 assert(stream);
2246 }
2247
2248 virtual void accept(ir_visitor *v)
2249 {
2250 v->visit(this);
2251 }
2252
2253 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2254 {
2255 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2256 }
2257
2258 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2259
2260 int stream_id() const
2261 {
2262 return stream->as_constant()->value.i[0];
2263 }
2264
2265 ir_rvalue *stream;
2266 };
2267
2268 /**
2269 * IR instruction to complete the current primitive and start a new one in a
2270 * geometry shader.
2271 */
2272 class ir_end_primitive : public ir_instruction {
2273 public:
2274 ir_end_primitive(ir_rvalue *stream)
2275 : ir_instruction(ir_type_end_primitive),
2276 stream(stream)
2277 {
2278 assert(stream);
2279 }
2280
2281 virtual void accept(ir_visitor *v)
2282 {
2283 v->visit(this);
2284 }
2285
2286 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2287 {
2288 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2289 }
2290
2291 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2292
2293 int stream_id() const
2294 {
2295 return stream->as_constant()->value.i[0];
2296 }
2297
2298 ir_rvalue *stream;
2299 };
2300
2301 /**
2302 * IR instruction for tessellation control and compute shader barrier.
2303 */
2304 class ir_barrier : public ir_instruction {
2305 public:
2306 ir_barrier()
2307 : ir_instruction(ir_type_barrier)
2308 {
2309 }
2310
2311 virtual void accept(ir_visitor *v)
2312 {
2313 v->visit(this);
2314 }
2315
2316 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2317 {
2318 return new(mem_ctx) ir_barrier();
2319 }
2320
2321 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2322 };
2323
2324 /*@}*/
2325
2326 /**
2327 * Apply a visitor to each IR node in a list
2328 */
2329 void
2330 visit_exec_list(exec_list *list, ir_visitor *visitor);
2331
2332 /**
2333 * Validate invariants on each IR node in a list
2334 */
2335 void validate_ir_tree(exec_list *instructions);
2336
2337 struct _mesa_glsl_parse_state;
2338 struct gl_shader_program;
2339
2340 /**
2341 * Detect whether an unlinked shader contains static recursion
2342 *
2343 * If the list of instructions is determined to contain static recursion,
2344 * \c _mesa_glsl_error will be called to emit error messages for each function
2345 * that is in the recursion cycle.
2346 */
2347 void
2348 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2349 exec_list *instructions);
2350
2351 /**
2352 * Detect whether a linked shader contains static recursion
2353 *
2354 * If the list of instructions is determined to contain static recursion,
2355 * \c link_error_printf will be called to emit error messages for each function
2356 * that is in the recursion cycle. In addition,
2357 * \c gl_shader_program::LinkStatus will be set to false.
2358 */
2359 void
2360 detect_recursion_linked(struct gl_shader_program *prog,
2361 exec_list *instructions);
2362
2363 /**
2364 * Make a clone of each IR instruction in a list
2365 *
2366 * \param in List of IR instructions that are to be cloned
2367 * \param out List to hold the cloned instructions
2368 */
2369 void
2370 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2371
2372 extern void
2373 _mesa_glsl_initialize_variables(exec_list *instructions,
2374 struct _mesa_glsl_parse_state *state);
2375
2376 extern void
2377 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2378 gl_shader *shader);
2379
2380 extern void
2381 _mesa_glsl_initialize_builtin_functions();
2382
2383 extern ir_function_signature *
2384 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2385 const char *name, exec_list *actual_parameters);
2386
2387 extern ir_function *
2388 _mesa_glsl_find_builtin_function_by_name(const char *name);
2389
2390 extern gl_shader *
2391 _mesa_glsl_get_builtin_function_shader(void);
2392
2393 extern ir_function_signature *
2394 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2395
2396 extern void
2397 _mesa_glsl_release_builtin_functions(void);
2398
2399 extern void
2400 reparent_ir(exec_list *list, void *mem_ctx);
2401
2402 extern void
2403 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2404 gl_shader_stage shader_stage);
2405
2406 extern char *
2407 prototype_string(const glsl_type *return_type, const char *name,
2408 exec_list *parameters);
2409
2410 const char *
2411 mode_string(const ir_variable *var);
2412
2413 /**
2414 * Built-in / reserved GL variables names start with "gl_"
2415 */
2416 static inline bool
2417 is_gl_identifier(const char *s)
2418 {
2419 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2420 }
2421
2422 extern "C" {
2423 #endif /* __cplusplus */
2424
2425 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2426 struct _mesa_glsl_parse_state *state);
2427
2428 extern void
2429 fprint_ir(FILE *f, const void *instruction);
2430
2431 extern const struct gl_builtin_uniform_desc *
2432 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2433
2434 #ifdef __cplusplus
2435 } /* extern "C" */
2436 #endif
2437
2438 unsigned
2439 vertices_per_prim(GLenum prim);
2440
2441 #endif /* IR_H */