glsl: Store the precision for a function return type
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36
37 #ifdef __cplusplus
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 ir_type_dereference_array,
61 ir_type_dereference_record,
62 ir_type_dereference_variable,
63 ir_type_constant,
64 ir_type_expression,
65 ir_type_swizzle,
66 ir_type_texture,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_function,
71 ir_type_function_signature,
72 ir_type_if,
73 ir_type_loop,
74 ir_type_loop_jump,
75 ir_type_return,
76 ir_type_discard,
77 ir_type_emit_vertex,
78 ir_type_end_primitive,
79 ir_type_barrier,
80 ir_type_max, /**< maximum ir_type enum number, for validation */
81 ir_type_unset = ir_type_max
82 };
83
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104 void fprint(FILE *f) const;
105
106 virtual void accept(ir_visitor *) = 0;
107 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108 virtual ir_instruction *clone(void *mem_ctx,
109 struct hash_table *ht) const = 0;
110
111 bool is_rvalue() const
112 {
113 return ir_type == ir_type_dereference_array ||
114 ir_type == ir_type_dereference_record ||
115 ir_type == ir_type_dereference_variable ||
116 ir_type == ir_type_constant ||
117 ir_type == ir_type_expression ||
118 ir_type == ir_type_swizzle ||
119 ir_type == ir_type_texture;
120 }
121
122 bool is_dereference() const
123 {
124 return ir_type == ir_type_dereference_array ||
125 ir_type == ir_type_dereference_record ||
126 ir_type == ir_type_dereference_variable;
127 }
128
129 bool is_jump() const
130 {
131 return ir_type == ir_type_loop_jump ||
132 ir_type == ir_type_return ||
133 ir_type == ir_type_discard;
134 }
135
136 /**
137 * \name IR instruction downcast functions
138 *
139 * These functions either cast the object to a derived class or return
140 * \c NULL if the object's type does not match the specified derived class.
141 * Additional downcast functions will be added as needed.
142 */
143 /*@{*/
144 #define AS_BASE(TYPE) \
145 class ir_##TYPE *as_##TYPE() \
146 { \
147 assume(this != NULL); \
148 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
149 } \
150 const class ir_##TYPE *as_##TYPE() const \
151 { \
152 assume(this != NULL); \
153 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
154 }
155
156 AS_BASE(rvalue)
157 AS_BASE(dereference)
158 AS_BASE(jump)
159 #undef AS_BASE
160
161 #define AS_CHILD(TYPE) \
162 class ir_##TYPE * as_##TYPE() \
163 { \
164 assume(this != NULL); \
165 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166 } \
167 const class ir_##TYPE * as_##TYPE() const \
168 { \
169 assume(this != NULL); \
170 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171 }
172 AS_CHILD(variable)
173 AS_CHILD(function)
174 AS_CHILD(dereference_array)
175 AS_CHILD(dereference_variable)
176 AS_CHILD(dereference_record)
177 AS_CHILD(expression)
178 AS_CHILD(loop)
179 AS_CHILD(assignment)
180 AS_CHILD(call)
181 AS_CHILD(return)
182 AS_CHILD(if)
183 AS_CHILD(swizzle)
184 AS_CHILD(texture)
185 AS_CHILD(constant)
186 AS_CHILD(discard)
187 #undef AS_CHILD
188 /*@}*/
189
190 /**
191 * IR equality method: Return true if the referenced instruction would
192 * return the same value as this one.
193 *
194 * This intended to be used for CSE and algebraic optimizations, on rvalues
195 * in particular. No support for other instruction types (assignments,
196 * jumps, calls, etc.) is planned.
197 */
198 virtual bool equals(const ir_instruction *ir,
199 enum ir_node_type ignore = ir_type_unset) const;
200
201 protected:
202 ir_instruction(enum ir_node_type t)
203 : ir_type(t)
204 {
205 }
206
207 private:
208 ir_instruction()
209 {
210 assert(!"Should not get here.");
211 }
212 };
213
214
215 /**
216 * The base class for all "values"/expression trees.
217 */
218 class ir_rvalue : public ir_instruction {
219 public:
220 const struct glsl_type *type;
221
222 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224 virtual void accept(ir_visitor *v)
225 {
226 v->visit(this);
227 }
228
229 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231 virtual ir_constant *constant_expression_value(void *mem_ctx,
232 struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_storage, /**< Variable declared as an ssbo. */
327 ir_var_shader_shared, /**< Variable declared as shared. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 gl_state_index16 tokens[STATE_LENGTH];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine whether or not a variable is part of a uniform or
435 * shader storage block.
436 */
437 inline bool is_in_buffer_block() const
438 {
439 return (this->data.mode == ir_var_uniform ||
440 this->data.mode == ir_var_shader_storage) &&
441 this->interface_type != NULL;
442 }
443
444 /**
445 * Determine whether or not a variable is part of a shader storage block.
446 */
447 inline bool is_in_shader_storage_block() const
448 {
449 return this->data.mode == ir_var_shader_storage &&
450 this->interface_type != NULL;
451 }
452
453 /**
454 * Determine whether or not a variable is the declaration of an interface
455 * block
456 *
457 * For the first declaration below, there will be an \c ir_variable named
458 * "instance" whose type and whose instance_type will be the same
459 * \c glsl_type. For the second declaration, there will be an \c ir_variable
460 * named "f" whose type is float and whose instance_type is B2.
461 *
462 * "instance" is an interface instance variable, but "f" is not.
463 *
464 * uniform B1 {
465 * float f;
466 * } instance;
467 *
468 * uniform B2 {
469 * float f;
470 * };
471 */
472 inline bool is_interface_instance() const
473 {
474 return this->type->without_array() == this->interface_type;
475 }
476
477 /**
478 * Return whether this variable contains a bindless sampler/image.
479 */
480 inline bool contains_bindless() const
481 {
482 if (!this->type->contains_sampler() && !this->type->contains_image())
483 return false;
484
485 return this->data.bindless || this->data.mode != ir_var_uniform;
486 }
487
488 /**
489 * Set this->interface_type on a newly created variable.
490 */
491 void init_interface_type(const struct glsl_type *type)
492 {
493 assert(this->interface_type == NULL);
494 this->interface_type = type;
495 if (this->is_interface_instance()) {
496 this->u.max_ifc_array_access =
497 ralloc_array(this, int, type->length);
498 for (unsigned i = 0; i < type->length; i++) {
499 this->u.max_ifc_array_access[i] = -1;
500 }
501 }
502 }
503
504 /**
505 * Change this->interface_type on a variable that previously had a
506 * different, but compatible, interface_type. This is used during linking
507 * to set the size of arrays in interface blocks.
508 */
509 void change_interface_type(const struct glsl_type *type)
510 {
511 if (this->u.max_ifc_array_access != NULL) {
512 /* max_ifc_array_access has already been allocated, so make sure the
513 * new interface has the same number of fields as the old one.
514 */
515 assert(this->interface_type->length == type->length);
516 }
517 this->interface_type = type;
518 }
519
520 /**
521 * Change this->interface_type on a variable that previously had a
522 * different, and incompatible, interface_type. This is used during
523 * compilation to handle redeclaration of the built-in gl_PerVertex
524 * interface block.
525 */
526 void reinit_interface_type(const struct glsl_type *type)
527 {
528 if (this->u.max_ifc_array_access != NULL) {
529 #ifndef NDEBUG
530 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531 * it defines have been accessed yet; so it's safe to throw away the
532 * old max_ifc_array_access pointer, since all of its values are
533 * zero.
534 */
535 for (unsigned i = 0; i < this->interface_type->length; i++)
536 assert(this->u.max_ifc_array_access[i] == -1);
537 #endif
538 ralloc_free(this->u.max_ifc_array_access);
539 this->u.max_ifc_array_access = NULL;
540 }
541 this->interface_type = NULL;
542 init_interface_type(type);
543 }
544
545 const glsl_type *get_interface_type() const
546 {
547 return this->interface_type;
548 }
549
550 enum glsl_interface_packing get_interface_type_packing() const
551 {
552 return this->interface_type->get_interface_packing();
553 }
554 /**
555 * Get the max_ifc_array_access pointer
556 *
557 * A "set" function is not needed because the array is dynmically allocated
558 * as necessary.
559 */
560 inline int *get_max_ifc_array_access()
561 {
562 assert(this->data._num_state_slots == 0);
563 return this->u.max_ifc_array_access;
564 }
565
566 inline unsigned get_num_state_slots() const
567 {
568 assert(!this->is_interface_instance()
569 || this->data._num_state_slots == 0);
570 return this->data._num_state_slots;
571 }
572
573 inline void set_num_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance()
576 || n == 0);
577 this->data._num_state_slots = n;
578 }
579
580 inline ir_state_slot *get_state_slots()
581 {
582 return this->is_interface_instance() ? NULL : this->u.state_slots;
583 }
584
585 inline const ir_state_slot *get_state_slots() const
586 {
587 return this->is_interface_instance() ? NULL : this->u.state_slots;
588 }
589
590 inline ir_state_slot *allocate_state_slots(unsigned n)
591 {
592 assert(!this->is_interface_instance());
593
594 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595 this->data._num_state_slots = 0;
596
597 if (this->u.state_slots != NULL)
598 this->data._num_state_slots = n;
599
600 return this->u.state_slots;
601 }
602
603 inline bool is_interpolation_flat() const
604 {
605 return this->data.interpolation == INTERP_MODE_FLAT ||
606 this->type->contains_integer() ||
607 this->type->contains_double();
608 }
609
610 inline bool is_name_ralloced() const
611 {
612 return this->name != ir_variable::tmp_name &&
613 this->name != this->name_storage;
614 }
615
616 /**
617 * Enable emitting extension warnings for this variable
618 */
619 void enable_extension_warning(const char *extension);
620
621 /**
622 * Get the extension warning string for this variable
623 *
624 * If warnings are not enabled, \c NULL is returned.
625 */
626 const char *get_extension_warning() const;
627
628 /**
629 * Declared type of the variable
630 */
631 const struct glsl_type *type;
632
633 /**
634 * Declared name of the variable
635 */
636 const char *name;
637
638 private:
639 /**
640 * If the name length fits into name_storage, it's used, otherwise
641 * the name is ralloc'd. shader-db mining showed that 70% of variables
642 * fit here. This is a win over ralloc where only ralloc_header has
643 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644 */
645 char name_storage[16];
646
647 public:
648 struct ir_variable_data {
649
650 /**
651 * Is the variable read-only?
652 *
653 * This is set for variables declared as \c const, shader inputs,
654 * and uniforms.
655 */
656 unsigned read_only:1;
657 unsigned centroid:1;
658 unsigned sample:1;
659 unsigned patch:1;
660 /**
661 * Was an 'invariant' qualifier explicitly set in the shader?
662 *
663 * This is used to cross validate qualifiers.
664 */
665 unsigned explicit_invariant:1;
666 /**
667 * Is the variable invariant?
668 *
669 * It can happen either by having the 'invariant' qualifier
670 * explicitly set in the shader or by being used in calculations
671 * of other invariant variables.
672 */
673 unsigned invariant:1;
674 unsigned precise:1;
675
676 /**
677 * Has this variable been used for reading or writing?
678 *
679 * Several GLSL semantic checks require knowledge of whether or not a
680 * variable has been used. For example, it is an error to redeclare a
681 * variable as invariant after it has been used.
682 *
683 * This is maintained in the ast_to_hir.cpp path and during linking,
684 * but not in Mesa's fixed function or ARB program paths.
685 */
686 unsigned used:1;
687
688 /**
689 * Has this variable been statically assigned?
690 *
691 * This answers whether the variable was assigned in any path of
692 * the shader during ast_to_hir. This doesn't answer whether it is
693 * still written after dead code removal, nor is it maintained in
694 * non-ast_to_hir.cpp (GLSL parsing) paths.
695 */
696 unsigned assigned:1;
697
698 /**
699 * When separate shader programs are enabled, only input/outputs between
700 * the stages of a multi-stage separate program can be safely removed
701 * from the shader interface. Other input/outputs must remains active.
702 */
703 unsigned always_active_io:1;
704
705 /**
706 * Enum indicating how the variable was declared. See
707 * ir_var_declaration_type.
708 *
709 * This is used to detect certain kinds of illegal variable redeclarations.
710 */
711 unsigned how_declared:2;
712
713 /**
714 * Storage class of the variable.
715 *
716 * \sa ir_variable_mode
717 */
718 unsigned mode:4;
719
720 /**
721 * Interpolation mode for shader inputs / outputs
722 *
723 * \sa glsl_interp_mode
724 */
725 unsigned interpolation:2;
726
727 /**
728 * Was the location explicitly set in the shader?
729 *
730 * If the location is explicitly set in the shader, it \b cannot be changed
731 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
732 * no effect).
733 */
734 unsigned explicit_location:1;
735 unsigned explicit_index:1;
736
737 /**
738 * Was an initial binding explicitly set in the shader?
739 *
740 * If so, constant_value contains an integer ir_constant representing the
741 * initial binding point.
742 */
743 unsigned explicit_binding:1;
744
745 /**
746 * Was an initial component explicitly set in the shader?
747 */
748 unsigned explicit_component:1;
749
750 /**
751 * Does this variable have an initializer?
752 *
753 * This is used by the linker to cross-validiate initializers of global
754 * variables.
755 */
756 unsigned has_initializer:1;
757
758 /**
759 * Is this variable a generic output or input that has not yet been matched
760 * up to a variable in another stage of the pipeline?
761 *
762 * This is used by the linker as scratch storage while assigning locations
763 * to generic inputs and outputs.
764 */
765 unsigned is_unmatched_generic_inout:1;
766
767 /**
768 * Is this varying used only by transform feedback?
769 *
770 * This is used by the linker to decide if its safe to pack the varying.
771 */
772 unsigned is_xfb_only:1;
773
774 /**
775 * Was a transform feedback buffer set in the shader?
776 */
777 unsigned explicit_xfb_buffer:1;
778
779 /**
780 * Was a transform feedback offset set in the shader?
781 */
782 unsigned explicit_xfb_offset:1;
783
784 /**
785 * Was a transform feedback stride set in the shader?
786 */
787 unsigned explicit_xfb_stride:1;
788
789 /**
790 * If non-zero, then this variable may be packed along with other variables
791 * into a single varying slot, so this offset should be applied when
792 * accessing components. For example, an offset of 1 means that the x
793 * component of this variable is actually stored in component y of the
794 * location specified by \c location.
795 */
796 unsigned location_frac:2;
797
798 /**
799 * Layout of the matrix. Uses glsl_matrix_layout values.
800 */
801 unsigned matrix_layout:2;
802
803 /**
804 * Non-zero if this variable was created by lowering a named interface
805 * block.
806 */
807 unsigned from_named_ifc_block:1;
808
809 /**
810 * Non-zero if the variable must be a shader input. This is useful for
811 * constraints on function parameters.
812 */
813 unsigned must_be_shader_input:1;
814
815 /**
816 * Output index for dual source blending.
817 *
818 * \note
819 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
820 * source blending.
821 */
822 unsigned index:1;
823
824 /**
825 * Precision qualifier.
826 *
827 * In desktop GLSL we do not care about precision qualifiers at all, in
828 * fact, the spec says that precision qualifiers are ignored.
829 *
830 * To make things easy, we make it so that this field is always
831 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
832 * have the same precision value and the checks we add in the compiler
833 * for this field will never break a desktop shader compile.
834 */
835 unsigned precision:2;
836
837 /**
838 * \brief Layout qualifier for gl_FragDepth.
839 *
840 * This is not equal to \c ir_depth_layout_none if and only if this
841 * variable is \c gl_FragDepth and a layout qualifier is specified.
842 */
843 ir_depth_layout depth_layout:3;
844
845 /**
846 * Memory qualifiers.
847 */
848 unsigned memory_read_only:1; /**< "readonly" qualifier. */
849 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
850 unsigned memory_coherent:1;
851 unsigned memory_volatile:1;
852 unsigned memory_restrict:1;
853
854 /**
855 * ARB_shader_storage_buffer_object
856 */
857 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
858
859 unsigned implicit_sized_array:1;
860
861 /**
862 * Whether this is a fragment shader output implicitly initialized with
863 * the previous contents of the specified render target at the
864 * framebuffer location corresponding to this shader invocation.
865 */
866 unsigned fb_fetch_output:1;
867
868 /**
869 * Non-zero if this variable is considered bindless as defined by
870 * ARB_bindless_texture.
871 */
872 unsigned bindless:1;
873
874 /**
875 * Non-zero if this variable is considered bound as defined by
876 * ARB_bindless_texture.
877 */
878 unsigned bound:1;
879
880 /**
881 * Emit a warning if this variable is accessed.
882 */
883 private:
884 uint8_t warn_extension_index;
885
886 public:
887 /** Image internal format if specified explicitly, otherwise GL_NONE. */
888 uint16_t image_format;
889
890 private:
891 /**
892 * Number of state slots used
893 *
894 * \note
895 * This could be stored in as few as 7-bits, if necessary. If it is made
896 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
897 * be safe.
898 */
899 uint16_t _num_state_slots;
900
901 public:
902 /**
903 * Initial binding point for a sampler, atomic, or UBO.
904 *
905 * For array types, this represents the binding point for the first element.
906 */
907 int16_t binding;
908
909 /**
910 * Storage location of the base of this variable
911 *
912 * The precise meaning of this field depends on the nature of the variable.
913 *
914 * - Vertex shader input: one of the values from \c gl_vert_attrib.
915 * - Vertex shader output: one of the values from \c gl_varying_slot.
916 * - Geometry shader input: one of the values from \c gl_varying_slot.
917 * - Geometry shader output: one of the values from \c gl_varying_slot.
918 * - Fragment shader input: one of the values from \c gl_varying_slot.
919 * - Fragment shader output: one of the values from \c gl_frag_result.
920 * - Uniforms: Per-stage uniform slot number for default uniform block.
921 * - Uniforms: Index within the uniform block definition for UBO members.
922 * - Non-UBO Uniforms: explicit location until linking then reused to
923 * store uniform slot number.
924 * - Other: This field is not currently used.
925 *
926 * If the variable is a uniform, shader input, or shader output, and the
927 * slot has not been assigned, the value will be -1.
928 */
929 int location;
930
931 /**
932 * for glsl->tgsi/mesa IR we need to store the index into the
933 * parameters for uniforms, initially the code overloaded location
934 * but this causes problems with indirect samplers and AoA.
935 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
936 */
937 int param_index;
938
939 /**
940 * Vertex stream output identifier.
941 *
942 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
943 * stream of the i-th component.
944 */
945 unsigned stream;
946
947 /**
948 * Atomic, transform feedback or block member offset.
949 */
950 unsigned offset;
951
952 /**
953 * Highest element accessed with a constant expression array index
954 *
955 * Not used for non-array variables. -1 is never accessed.
956 */
957 int max_array_access;
958
959 /**
960 * Transform feedback buffer.
961 */
962 unsigned xfb_buffer;
963
964 /**
965 * Transform feedback stride.
966 */
967 unsigned xfb_stride;
968
969 /**
970 * Allow (only) ir_variable direct access private members.
971 */
972 friend class ir_variable;
973 } data;
974
975 /**
976 * Value assigned in the initializer of a variable declared "const"
977 */
978 ir_constant *constant_value;
979
980 /**
981 * Constant expression assigned in the initializer of the variable
982 *
983 * \warning
984 * This field and \c ::constant_value are distinct. Even if the two fields
985 * refer to constants with the same value, they must point to separate
986 * objects.
987 */
988 ir_constant *constant_initializer;
989
990 private:
991 static const char *const warn_extension_table[];
992
993 union {
994 /**
995 * For variables which satisfy the is_interface_instance() predicate,
996 * this points to an array of integers such that if the ith member of
997 * the interface block is an array, max_ifc_array_access[i] is the
998 * maximum array element of that member that has been accessed. If the
999 * ith member of the interface block is not an array,
1000 * max_ifc_array_access[i] is unused.
1001 *
1002 * For variables whose type is not an interface block, this pointer is
1003 * NULL.
1004 */
1005 int *max_ifc_array_access;
1006
1007 /**
1008 * Built-in state that backs this uniform
1009 *
1010 * Once set at variable creation, \c state_slots must remain invariant.
1011 *
1012 * If the variable is not a uniform, \c _num_state_slots will be zero
1013 * and \c state_slots will be \c NULL.
1014 */
1015 ir_state_slot *state_slots;
1016 } u;
1017
1018 /**
1019 * For variables that are in an interface block or are an instance of an
1020 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1021 *
1022 * \sa ir_variable::location
1023 */
1024 const glsl_type *interface_type;
1025
1026 /**
1027 * Name used for anonymous compiler temporaries
1028 */
1029 static const char tmp_name[];
1030
1031 public:
1032 /**
1033 * Should the construct keep names for ir_var_temporary variables?
1034 *
1035 * When this global is false, names passed to the constructor for
1036 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1037 * be named "compiler_temp". This name will be in static storage.
1038 *
1039 * \warning
1040 * \b NEVER change the mode of an \c ir_var_temporary.
1041 *
1042 * \warning
1043 * This variable is \b not thread-safe. It is global, \b not
1044 * per-context. It begins life false. A context can, at some point, make
1045 * it true. From that point on, it will be true forever. This should be
1046 * okay since it will only be set true while debugging.
1047 */
1048 static bool temporaries_allocate_names;
1049 };
1050
1051 /**
1052 * A function that returns whether a built-in function is available in the
1053 * current shading language (based on version, ES or desktop, and extensions).
1054 */
1055 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1056
1057 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1058 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1059
1060 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1061 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1062
1063 enum ir_intrinsic_id {
1064 ir_intrinsic_invalid = 0,
1065
1066 /**
1067 * \name Generic intrinsics
1068 *
1069 * Each of these intrinsics has a specific version for shared variables and
1070 * SSBOs.
1071 */
1072 /*@{*/
1073 ir_intrinsic_generic_load,
1074 ir_intrinsic_generic_store,
1075 ir_intrinsic_generic_atomic_add,
1076 ir_intrinsic_generic_atomic_and,
1077 ir_intrinsic_generic_atomic_or,
1078 ir_intrinsic_generic_atomic_xor,
1079 ir_intrinsic_generic_atomic_min,
1080 ir_intrinsic_generic_atomic_max,
1081 ir_intrinsic_generic_atomic_exchange,
1082 ir_intrinsic_generic_atomic_comp_swap,
1083 /*@}*/
1084
1085 ir_intrinsic_atomic_counter_read,
1086 ir_intrinsic_atomic_counter_increment,
1087 ir_intrinsic_atomic_counter_predecrement,
1088 ir_intrinsic_atomic_counter_add,
1089 ir_intrinsic_atomic_counter_and,
1090 ir_intrinsic_atomic_counter_or,
1091 ir_intrinsic_atomic_counter_xor,
1092 ir_intrinsic_atomic_counter_min,
1093 ir_intrinsic_atomic_counter_max,
1094 ir_intrinsic_atomic_counter_exchange,
1095 ir_intrinsic_atomic_counter_comp_swap,
1096
1097 ir_intrinsic_image_load,
1098 ir_intrinsic_image_store,
1099 ir_intrinsic_image_atomic_add,
1100 ir_intrinsic_image_atomic_and,
1101 ir_intrinsic_image_atomic_or,
1102 ir_intrinsic_image_atomic_xor,
1103 ir_intrinsic_image_atomic_min,
1104 ir_intrinsic_image_atomic_max,
1105 ir_intrinsic_image_atomic_exchange,
1106 ir_intrinsic_image_atomic_comp_swap,
1107 ir_intrinsic_image_size,
1108 ir_intrinsic_image_samples,
1109 ir_intrinsic_image_atomic_inc_wrap,
1110 ir_intrinsic_image_atomic_dec_wrap,
1111
1112 ir_intrinsic_ssbo_load,
1113 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1114 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1115 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1116 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1117 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1118 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1119 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1120 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1121 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1122
1123 ir_intrinsic_memory_barrier,
1124 ir_intrinsic_shader_clock,
1125 ir_intrinsic_group_memory_barrier,
1126 ir_intrinsic_memory_barrier_atomic_counter,
1127 ir_intrinsic_memory_barrier_buffer,
1128 ir_intrinsic_memory_barrier_image,
1129 ir_intrinsic_memory_barrier_shared,
1130 ir_intrinsic_begin_invocation_interlock,
1131 ir_intrinsic_end_invocation_interlock,
1132
1133 ir_intrinsic_vote_all,
1134 ir_intrinsic_vote_any,
1135 ir_intrinsic_vote_eq,
1136 ir_intrinsic_ballot,
1137 ir_intrinsic_read_invocation,
1138 ir_intrinsic_read_first_invocation,
1139
1140 ir_intrinsic_shared_load,
1141 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1142 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1143 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1144 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1145 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1146 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1147 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1148 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1149 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1150 };
1151
1152 /*@{*/
1153 /**
1154 * The representation of a function instance; may be the full definition or
1155 * simply a prototype.
1156 */
1157 class ir_function_signature : public ir_instruction {
1158 /* An ir_function_signature will be part of the list of signatures in
1159 * an ir_function.
1160 */
1161 public:
1162 ir_function_signature(const glsl_type *return_type,
1163 builtin_available_predicate builtin_avail = NULL);
1164
1165 virtual ir_function_signature *clone(void *mem_ctx,
1166 struct hash_table *ht) const;
1167 ir_function_signature *clone_prototype(void *mem_ctx,
1168 struct hash_table *ht) const;
1169
1170 virtual void accept(ir_visitor *v)
1171 {
1172 v->visit(this);
1173 }
1174
1175 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1176
1177 /**
1178 * Attempt to evaluate this function as a constant expression,
1179 * given a list of the actual parameters and the variable context.
1180 * Returns NULL for non-built-ins.
1181 */
1182 ir_constant *constant_expression_value(void *mem_ctx,
1183 exec_list *actual_parameters,
1184 struct hash_table *variable_context);
1185
1186 /**
1187 * Get the name of the function for which this is a signature
1188 */
1189 const char *function_name() const;
1190
1191 /**
1192 * Get a handle to the function for which this is a signature
1193 *
1194 * There is no setter function, this function returns a \c const pointer,
1195 * and \c ir_function_signature::_function is private for a reason. The
1196 * only way to make a connection between a function and function signature
1197 * is via \c ir_function::add_signature. This helps ensure that certain
1198 * invariants (i.e., a function signature is in the list of signatures for
1199 * its \c _function) are met.
1200 *
1201 * \sa ir_function::add_signature
1202 */
1203 inline const class ir_function *function() const
1204 {
1205 return this->_function;
1206 }
1207
1208 /**
1209 * Check whether the qualifiers match between this signature's parameters
1210 * and the supplied parameter list. If not, returns the name of the first
1211 * parameter with mismatched qualifiers (for use in error messages).
1212 */
1213 const char *qualifiers_match(exec_list *params);
1214
1215 /**
1216 * Replace the current parameter list with the given one. This is useful
1217 * if the current information came from a prototype, and either has invalid
1218 * or missing parameter names.
1219 */
1220 void replace_parameters(exec_list *new_params);
1221
1222 /**
1223 * Function return type.
1224 *
1225 * \note The precision qualifier is stored separately in return_precision.
1226 */
1227 const struct glsl_type *return_type;
1228
1229 /**
1230 * List of ir_variable of function parameters.
1231 *
1232 * This represents the storage. The paramaters passed in a particular
1233 * call will be in ir_call::actual_paramaters.
1234 */
1235 struct exec_list parameters;
1236
1237 /** Whether or not this function has a body (which may be empty). */
1238 unsigned is_defined:1;
1239
1240 /*
1241 * Precision qualifier for the return type.
1242 *
1243 * See the comment for ir_variable_data::precision for more details.
1244 */
1245 unsigned return_precision:2;
1246
1247 /** Whether or not this function signature is a built-in. */
1248 bool is_builtin() const;
1249
1250 /**
1251 * Whether or not this function is an intrinsic to be implemented
1252 * by the driver.
1253 */
1254 inline bool is_intrinsic() const
1255 {
1256 return intrinsic_id != ir_intrinsic_invalid;
1257 }
1258
1259 /** Indentifier for this intrinsic. */
1260 enum ir_intrinsic_id intrinsic_id;
1261
1262 /** Whether or not a built-in is available for this shader. */
1263 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1264
1265 /** Body of instructions in the function. */
1266 struct exec_list body;
1267
1268 private:
1269 /**
1270 * A function pointer to a predicate that answers whether a built-in
1271 * function is available in the current shader. NULL if not a built-in.
1272 */
1273 builtin_available_predicate builtin_avail;
1274
1275 /** Function of which this signature is one overload. */
1276 class ir_function *_function;
1277
1278 /** Function signature of which this one is a prototype clone */
1279 const ir_function_signature *origin;
1280
1281 friend class ir_function;
1282
1283 /**
1284 * Helper function to run a list of instructions for constant
1285 * expression evaluation.
1286 *
1287 * The hash table represents the values of the visible variables.
1288 * There are no scoping issues because the table is indexed on
1289 * ir_variable pointers, not variable names.
1290 *
1291 * Returns false if the expression is not constant, true otherwise,
1292 * and the value in *result if result is non-NULL.
1293 */
1294 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1295 const struct exec_list &body,
1296 struct hash_table *variable_context,
1297 ir_constant **result);
1298 };
1299
1300
1301 /**
1302 * Header for tracking multiple overloaded functions with the same name.
1303 * Contains a list of ir_function_signatures representing each of the
1304 * actual functions.
1305 */
1306 class ir_function : public ir_instruction {
1307 public:
1308 ir_function(const char *name);
1309
1310 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1311
1312 virtual void accept(ir_visitor *v)
1313 {
1314 v->visit(this);
1315 }
1316
1317 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1318
1319 void add_signature(ir_function_signature *sig)
1320 {
1321 sig->_function = this;
1322 this->signatures.push_tail(sig);
1323 }
1324
1325 /**
1326 * Find a signature that matches a set of actual parameters, taking implicit
1327 * conversions into account. Also flags whether the match was exact.
1328 */
1329 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1330 const exec_list *actual_param,
1331 bool allow_builtins,
1332 bool *match_is_exact);
1333
1334 /**
1335 * Find a signature that matches a set of actual parameters, taking implicit
1336 * conversions into account.
1337 */
1338 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1339 const exec_list *actual_param,
1340 bool allow_builtins);
1341
1342 /**
1343 * Find a signature that exactly matches a set of actual parameters without
1344 * any implicit type conversions.
1345 */
1346 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1347 const exec_list *actual_ps);
1348
1349 /**
1350 * Name of the function.
1351 */
1352 const char *name;
1353
1354 /** Whether or not this function has a signature that isn't a built-in. */
1355 bool has_user_signature();
1356
1357 /**
1358 * List of ir_function_signature for each overloaded function with this name.
1359 */
1360 struct exec_list signatures;
1361
1362 /**
1363 * is this function a subroutine type declaration
1364 * e.g. subroutine void type1(float arg1);
1365 */
1366 bool is_subroutine;
1367
1368 /**
1369 * is this function associated to a subroutine type
1370 * e.g. subroutine (type1, type2) function_name { function_body };
1371 * would have num_subroutine_types 2,
1372 * and pointers to the type1 and type2 types.
1373 */
1374 int num_subroutine_types;
1375 const struct glsl_type **subroutine_types;
1376
1377 int subroutine_index;
1378 };
1379
1380 inline const char *ir_function_signature::function_name() const
1381 {
1382 return this->_function->name;
1383 }
1384 /*@}*/
1385
1386
1387 /**
1388 * IR instruction representing high-level if-statements
1389 */
1390 class ir_if : public ir_instruction {
1391 public:
1392 ir_if(ir_rvalue *condition)
1393 : ir_instruction(ir_type_if), condition(condition)
1394 {
1395 }
1396
1397 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1398
1399 virtual void accept(ir_visitor *v)
1400 {
1401 v->visit(this);
1402 }
1403
1404 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1405
1406 ir_rvalue *condition;
1407 /** List of ir_instruction for the body of the then branch */
1408 exec_list then_instructions;
1409 /** List of ir_instruction for the body of the else branch */
1410 exec_list else_instructions;
1411 };
1412
1413
1414 /**
1415 * IR instruction representing a high-level loop structure.
1416 */
1417 class ir_loop : public ir_instruction {
1418 public:
1419 ir_loop();
1420
1421 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1422
1423 virtual void accept(ir_visitor *v)
1424 {
1425 v->visit(this);
1426 }
1427
1428 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1429
1430 /** List of ir_instruction that make up the body of the loop. */
1431 exec_list body_instructions;
1432 };
1433
1434
1435 class ir_assignment : public ir_instruction {
1436 public:
1437 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1438
1439 /**
1440 * Construct an assignment with an explicit write mask
1441 *
1442 * \note
1443 * Since a write mask is supplied, the LHS must already be a bare
1444 * \c ir_dereference. The cannot be any swizzles in the LHS.
1445 */
1446 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1447 unsigned write_mask);
1448
1449 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1450
1451 virtual ir_constant *constant_expression_value(void *mem_ctx,
1452 struct hash_table *variable_context = NULL);
1453
1454 virtual void accept(ir_visitor *v)
1455 {
1456 v->visit(this);
1457 }
1458
1459 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1460
1461 /**
1462 * Get a whole variable written by an assignment
1463 *
1464 * If the LHS of the assignment writes a whole variable, the variable is
1465 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1466 * assignment are:
1467 *
1468 * - Assigning to a scalar
1469 * - Assigning to all components of a vector
1470 * - Whole array (or matrix) assignment
1471 * - Whole structure assignment
1472 */
1473 ir_variable *whole_variable_written();
1474
1475 /**
1476 * Set the LHS of an assignment
1477 */
1478 void set_lhs(ir_rvalue *lhs);
1479
1480 /**
1481 * Left-hand side of the assignment.
1482 *
1483 * This should be treated as read only. If you need to set the LHS of an
1484 * assignment, use \c ir_assignment::set_lhs.
1485 */
1486 ir_dereference *lhs;
1487
1488 /**
1489 * Value being assigned
1490 */
1491 ir_rvalue *rhs;
1492
1493 /**
1494 * Optional condition for the assignment.
1495 */
1496 ir_rvalue *condition;
1497
1498
1499 /**
1500 * Component mask written
1501 *
1502 * For non-vector types in the LHS, this field will be zero. For vector
1503 * types, a bit will be set for each component that is written. Note that
1504 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1505 *
1506 * A partially-set write mask means that each enabled channel gets
1507 * the value from a consecutive channel of the rhs. For example,
1508 * to write just .xyw of gl_FrontColor with color:
1509 *
1510 * (assign (constant bool (1)) (xyw)
1511 * (var_ref gl_FragColor)
1512 * (swiz xyw (var_ref color)))
1513 */
1514 unsigned write_mask:4;
1515 };
1516
1517 #include "ir_expression_operation.h"
1518
1519 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1520 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1521
1522 class ir_expression : public ir_rvalue {
1523 public:
1524 ir_expression(int op, const struct glsl_type *type,
1525 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1526 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1527
1528 /**
1529 * Constructor for unary operation expressions
1530 */
1531 ir_expression(int op, ir_rvalue *);
1532
1533 /**
1534 * Constructor for binary operation expressions
1535 */
1536 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1537
1538 /**
1539 * Constructor for ternary operation expressions
1540 */
1541 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1542
1543 virtual bool equals(const ir_instruction *ir,
1544 enum ir_node_type ignore = ir_type_unset) const;
1545
1546 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1547
1548 /**
1549 * Attempt to constant-fold the expression
1550 *
1551 * The "variable_context" hash table links ir_variable * to ir_constant *
1552 * that represent the variables' values. \c NULL represents an empty
1553 * context.
1554 *
1555 * If the expression cannot be constant folded, this method will return
1556 * \c NULL.
1557 */
1558 virtual ir_constant *constant_expression_value(void *mem_ctx,
1559 struct hash_table *variable_context = NULL);
1560
1561 /**
1562 * This is only here for ir_reader to used for testing purposes please use
1563 * the precomputed num_operands field if you need the number of operands.
1564 */
1565 static unsigned get_num_operands(ir_expression_operation);
1566
1567 /**
1568 * Return whether the expression operates on vectors horizontally.
1569 */
1570 bool is_horizontal() const
1571 {
1572 return operation == ir_binop_all_equal ||
1573 operation == ir_binop_any_nequal ||
1574 operation == ir_binop_dot ||
1575 operation == ir_binop_vector_extract ||
1576 operation == ir_triop_vector_insert ||
1577 operation == ir_binop_ubo_load ||
1578 operation == ir_quadop_vector;
1579 }
1580
1581 /**
1582 * Do a reverse-lookup to translate the given string into an operator.
1583 */
1584 static ir_expression_operation get_operator(const char *);
1585
1586 virtual void accept(ir_visitor *v)
1587 {
1588 v->visit(this);
1589 }
1590
1591 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1592
1593 virtual ir_variable *variable_referenced() const;
1594
1595 /**
1596 * Determine the number of operands used by an expression
1597 */
1598 void init_num_operands()
1599 {
1600 if (operation == ir_quadop_vector) {
1601 num_operands = this->type->vector_elements;
1602 } else {
1603 num_operands = get_num_operands(operation);
1604 }
1605 }
1606
1607 ir_expression_operation operation;
1608 ir_rvalue *operands[4];
1609 uint8_t num_operands;
1610 };
1611
1612
1613 /**
1614 * HIR instruction representing a high-level function call, containing a list
1615 * of parameters and returning a value in the supplied temporary.
1616 */
1617 class ir_call : public ir_instruction {
1618 public:
1619 ir_call(ir_function_signature *callee,
1620 ir_dereference_variable *return_deref,
1621 exec_list *actual_parameters)
1622 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1623 {
1624 assert(callee->return_type != NULL);
1625 actual_parameters->move_nodes_to(& this->actual_parameters);
1626 }
1627
1628 ir_call(ir_function_signature *callee,
1629 ir_dereference_variable *return_deref,
1630 exec_list *actual_parameters,
1631 ir_variable *var, ir_rvalue *array_idx)
1632 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1633 {
1634 assert(callee->return_type != NULL);
1635 actual_parameters->move_nodes_to(& this->actual_parameters);
1636 }
1637
1638 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1639
1640 virtual ir_constant *constant_expression_value(void *mem_ctx,
1641 struct hash_table *variable_context = NULL);
1642
1643 virtual void accept(ir_visitor *v)
1644 {
1645 v->visit(this);
1646 }
1647
1648 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1649
1650 /**
1651 * Get the name of the function being called.
1652 */
1653 const char *callee_name() const
1654 {
1655 return callee->function_name();
1656 }
1657
1658 /**
1659 * Generates an inline version of the function before @ir,
1660 * storing the return value in return_deref.
1661 */
1662 void generate_inline(ir_instruction *ir);
1663
1664 /**
1665 * Storage for the function's return value.
1666 * This must be NULL if the return type is void.
1667 */
1668 ir_dereference_variable *return_deref;
1669
1670 /**
1671 * The specific function signature being called.
1672 */
1673 ir_function_signature *callee;
1674
1675 /* List of ir_rvalue of paramaters passed in this call. */
1676 exec_list actual_parameters;
1677
1678 /*
1679 * ARB_shader_subroutine support -
1680 * the subroutine uniform variable and array index
1681 * rvalue to be used in the lowering pass later.
1682 */
1683 ir_variable *sub_var;
1684 ir_rvalue *array_idx;
1685 };
1686
1687
1688 /**
1689 * \name Jump-like IR instructions.
1690 *
1691 * These include \c break, \c continue, \c return, and \c discard.
1692 */
1693 /*@{*/
1694 class ir_jump : public ir_instruction {
1695 protected:
1696 ir_jump(enum ir_node_type t)
1697 : ir_instruction(t)
1698 {
1699 }
1700 };
1701
1702 class ir_return : public ir_jump {
1703 public:
1704 ir_return()
1705 : ir_jump(ir_type_return), value(NULL)
1706 {
1707 }
1708
1709 ir_return(ir_rvalue *value)
1710 : ir_jump(ir_type_return), value(value)
1711 {
1712 }
1713
1714 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1715
1716 ir_rvalue *get_value() const
1717 {
1718 return value;
1719 }
1720
1721 virtual void accept(ir_visitor *v)
1722 {
1723 v->visit(this);
1724 }
1725
1726 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1727
1728 ir_rvalue *value;
1729 };
1730
1731
1732 /**
1733 * Jump instructions used inside loops
1734 *
1735 * These include \c break and \c continue. The \c break within a loop is
1736 * different from the \c break within a switch-statement.
1737 *
1738 * \sa ir_switch_jump
1739 */
1740 class ir_loop_jump : public ir_jump {
1741 public:
1742 enum jump_mode {
1743 jump_break,
1744 jump_continue
1745 };
1746
1747 ir_loop_jump(jump_mode mode)
1748 : ir_jump(ir_type_loop_jump)
1749 {
1750 this->mode = mode;
1751 }
1752
1753 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1754
1755 virtual void accept(ir_visitor *v)
1756 {
1757 v->visit(this);
1758 }
1759
1760 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1761
1762 bool is_break() const
1763 {
1764 return mode == jump_break;
1765 }
1766
1767 bool is_continue() const
1768 {
1769 return mode == jump_continue;
1770 }
1771
1772 /** Mode selector for the jump instruction. */
1773 enum jump_mode mode;
1774 };
1775
1776 /**
1777 * IR instruction representing discard statements.
1778 */
1779 class ir_discard : public ir_jump {
1780 public:
1781 ir_discard()
1782 : ir_jump(ir_type_discard)
1783 {
1784 this->condition = NULL;
1785 }
1786
1787 ir_discard(ir_rvalue *cond)
1788 : ir_jump(ir_type_discard)
1789 {
1790 this->condition = cond;
1791 }
1792
1793 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1794
1795 virtual void accept(ir_visitor *v)
1796 {
1797 v->visit(this);
1798 }
1799
1800 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1801
1802 ir_rvalue *condition;
1803 };
1804 /*@}*/
1805
1806
1807 /**
1808 * Texture sampling opcodes used in ir_texture
1809 */
1810 enum ir_texture_opcode {
1811 ir_tex, /**< Regular texture look-up */
1812 ir_txb, /**< Texture look-up with LOD bias */
1813 ir_txl, /**< Texture look-up with explicit LOD */
1814 ir_txd, /**< Texture look-up with partial derivatvies */
1815 ir_txf, /**< Texel fetch with explicit LOD */
1816 ir_txf_ms, /**< Multisample texture fetch */
1817 ir_txs, /**< Texture size */
1818 ir_lod, /**< Texture lod query */
1819 ir_tg4, /**< Texture gather */
1820 ir_query_levels, /**< Texture levels query */
1821 ir_texture_samples, /**< Texture samples query */
1822 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1823 };
1824
1825
1826 /**
1827 * IR instruction to sample a texture
1828 *
1829 * The specific form of the IR instruction depends on the \c mode value
1830 * selected from \c ir_texture_opcodes. In the printed IR, these will
1831 * appear as:
1832 *
1833 * Texel offset (0 or an expression)
1834 * | Projection divisor
1835 * | | Shadow comparator
1836 * | | |
1837 * v v v
1838 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1839 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1840 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1841 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1842 * (txf <type> <sampler> <coordinate> 0 <lod>)
1843 * (txf_ms
1844 * <type> <sampler> <coordinate> <sample_index>)
1845 * (txs <type> <sampler> <lod>)
1846 * (lod <type> <sampler> <coordinate>)
1847 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1848 * (query_levels <type> <sampler>)
1849 * (samples_identical <sampler> <coordinate>)
1850 */
1851 class ir_texture : public ir_rvalue {
1852 public:
1853 ir_texture(enum ir_texture_opcode op)
1854 : ir_rvalue(ir_type_texture),
1855 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1856 shadow_comparator(NULL), offset(NULL)
1857 {
1858 memset(&lod_info, 0, sizeof(lod_info));
1859 }
1860
1861 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1862
1863 virtual ir_constant *constant_expression_value(void *mem_ctx,
1864 struct hash_table *variable_context = NULL);
1865
1866 virtual void accept(ir_visitor *v)
1867 {
1868 v->visit(this);
1869 }
1870
1871 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1872
1873 virtual bool equals(const ir_instruction *ir,
1874 enum ir_node_type ignore = ir_type_unset) const;
1875
1876 /**
1877 * Return a string representing the ir_texture_opcode.
1878 */
1879 const char *opcode_string();
1880
1881 /** Set the sampler and type. */
1882 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1883
1884 /**
1885 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1886 */
1887 static ir_texture_opcode get_opcode(const char *);
1888
1889 enum ir_texture_opcode op;
1890
1891 /** Sampler to use for the texture access. */
1892 ir_dereference *sampler;
1893
1894 /** Texture coordinate to sample */
1895 ir_rvalue *coordinate;
1896
1897 /**
1898 * Value used for projective divide.
1899 *
1900 * If there is no projective divide (the common case), this will be
1901 * \c NULL. Optimization passes should check for this to point to a constant
1902 * of 1.0 and replace that with \c NULL.
1903 */
1904 ir_rvalue *projector;
1905
1906 /**
1907 * Coordinate used for comparison on shadow look-ups.
1908 *
1909 * If there is no shadow comparison, this will be \c NULL. For the
1910 * \c ir_txf opcode, this *must* be \c NULL.
1911 */
1912 ir_rvalue *shadow_comparator;
1913
1914 /** Texel offset. */
1915 ir_rvalue *offset;
1916
1917 union {
1918 ir_rvalue *lod; /**< Floating point LOD */
1919 ir_rvalue *bias; /**< Floating point LOD bias */
1920 ir_rvalue *sample_index; /**< MSAA sample index */
1921 ir_rvalue *component; /**< Gather component selector */
1922 struct {
1923 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1924 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1925 } grad;
1926 } lod_info;
1927 };
1928
1929
1930 struct ir_swizzle_mask {
1931 unsigned x:2;
1932 unsigned y:2;
1933 unsigned z:2;
1934 unsigned w:2;
1935
1936 /**
1937 * Number of components in the swizzle.
1938 */
1939 unsigned num_components:3;
1940
1941 /**
1942 * Does the swizzle contain duplicate components?
1943 *
1944 * L-value swizzles cannot contain duplicate components.
1945 */
1946 unsigned has_duplicates:1;
1947 };
1948
1949
1950 class ir_swizzle : public ir_rvalue {
1951 public:
1952 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1953 unsigned count);
1954
1955 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1956
1957 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1958
1959 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1960
1961 virtual ir_constant *constant_expression_value(void *mem_ctx,
1962 struct hash_table *variable_context = NULL);
1963
1964 /**
1965 * Construct an ir_swizzle from the textual representation. Can fail.
1966 */
1967 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1968
1969 virtual void accept(ir_visitor *v)
1970 {
1971 v->visit(this);
1972 }
1973
1974 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1975
1976 virtual bool equals(const ir_instruction *ir,
1977 enum ir_node_type ignore = ir_type_unset) const;
1978
1979 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1980 {
1981 return val->is_lvalue(state) && !mask.has_duplicates;
1982 }
1983
1984 /**
1985 * Get the variable that is ultimately referenced by an r-value
1986 */
1987 virtual ir_variable *variable_referenced() const;
1988
1989 ir_rvalue *val;
1990 ir_swizzle_mask mask;
1991
1992 private:
1993 /**
1994 * Initialize the mask component of a swizzle
1995 *
1996 * This is used by the \c ir_swizzle constructors.
1997 */
1998 void init_mask(const unsigned *components, unsigned count);
1999 };
2000
2001
2002 class ir_dereference : public ir_rvalue {
2003 public:
2004 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2005
2006 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2007
2008 /**
2009 * Get the variable that is ultimately referenced by an r-value
2010 */
2011 virtual ir_variable *variable_referenced() const = 0;
2012
2013 protected:
2014 ir_dereference(enum ir_node_type t)
2015 : ir_rvalue(t)
2016 {
2017 }
2018 };
2019
2020
2021 class ir_dereference_variable : public ir_dereference {
2022 public:
2023 ir_dereference_variable(ir_variable *var);
2024
2025 virtual ir_dereference_variable *clone(void *mem_ctx,
2026 struct hash_table *) const;
2027
2028 virtual ir_constant *constant_expression_value(void *mem_ctx,
2029 struct hash_table *variable_context = NULL);
2030
2031 virtual bool equals(const ir_instruction *ir,
2032 enum ir_node_type ignore = ir_type_unset) const;
2033
2034 /**
2035 * Get the variable that is ultimately referenced by an r-value
2036 */
2037 virtual ir_variable *variable_referenced() const
2038 {
2039 return this->var;
2040 }
2041
2042 virtual ir_variable *whole_variable_referenced()
2043 {
2044 /* ir_dereference_variable objects always dereference the entire
2045 * variable. However, if this dereference is dereferenced by anything
2046 * else, the complete deferefernce chain is not a whole-variable
2047 * dereference. This method should only be called on the top most
2048 * ir_rvalue in a dereference chain.
2049 */
2050 return this->var;
2051 }
2052
2053 virtual void accept(ir_visitor *v)
2054 {
2055 v->visit(this);
2056 }
2057
2058 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2059
2060 /**
2061 * Object being dereferenced.
2062 */
2063 ir_variable *var;
2064 };
2065
2066
2067 class ir_dereference_array : public ir_dereference {
2068 public:
2069 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2070
2071 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2072
2073 virtual ir_dereference_array *clone(void *mem_ctx,
2074 struct hash_table *) const;
2075
2076 virtual ir_constant *constant_expression_value(void *mem_ctx,
2077 struct hash_table *variable_context = NULL);
2078
2079 virtual bool equals(const ir_instruction *ir,
2080 enum ir_node_type ignore = ir_type_unset) const;
2081
2082 /**
2083 * Get the variable that is ultimately referenced by an r-value
2084 */
2085 virtual ir_variable *variable_referenced() const
2086 {
2087 return this->array->variable_referenced();
2088 }
2089
2090 virtual void accept(ir_visitor *v)
2091 {
2092 v->visit(this);
2093 }
2094
2095 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2096
2097 ir_rvalue *array;
2098 ir_rvalue *array_index;
2099
2100 private:
2101 void set_array(ir_rvalue *value);
2102 };
2103
2104
2105 class ir_dereference_record : public ir_dereference {
2106 public:
2107 ir_dereference_record(ir_rvalue *value, const char *field);
2108
2109 ir_dereference_record(ir_variable *var, const char *field);
2110
2111 virtual ir_dereference_record *clone(void *mem_ctx,
2112 struct hash_table *) const;
2113
2114 virtual ir_constant *constant_expression_value(void *mem_ctx,
2115 struct hash_table *variable_context = NULL);
2116
2117 /**
2118 * Get the variable that is ultimately referenced by an r-value
2119 */
2120 virtual ir_variable *variable_referenced() const
2121 {
2122 return this->record->variable_referenced();
2123 }
2124
2125 virtual void accept(ir_visitor *v)
2126 {
2127 v->visit(this);
2128 }
2129
2130 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2131
2132 ir_rvalue *record;
2133 int field_idx;
2134 };
2135
2136
2137 /**
2138 * Data stored in an ir_constant
2139 */
2140 union ir_constant_data {
2141 unsigned u[16];
2142 int i[16];
2143 float f[16];
2144 bool b[16];
2145 double d[16];
2146 uint64_t u64[16];
2147 int64_t i64[16];
2148 };
2149
2150
2151 class ir_constant : public ir_rvalue {
2152 public:
2153 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2154 ir_constant(bool b, unsigned vector_elements=1);
2155 ir_constant(unsigned int u, unsigned vector_elements=1);
2156 ir_constant(int i, unsigned vector_elements=1);
2157 ir_constant(float f, unsigned vector_elements=1);
2158 ir_constant(double d, unsigned vector_elements=1);
2159 ir_constant(uint64_t u64, unsigned vector_elements=1);
2160 ir_constant(int64_t i64, unsigned vector_elements=1);
2161
2162 /**
2163 * Construct an ir_constant from a list of ir_constant values
2164 */
2165 ir_constant(const struct glsl_type *type, exec_list *values);
2166
2167 /**
2168 * Construct an ir_constant from a scalar component of another ir_constant
2169 *
2170 * The new \c ir_constant inherits the type of the component from the
2171 * source constant.
2172 *
2173 * \note
2174 * In the case of a matrix constant, the new constant is a scalar, \b not
2175 * a vector.
2176 */
2177 ir_constant(const ir_constant *c, unsigned i);
2178
2179 /**
2180 * Return a new ir_constant of the specified type containing all zeros.
2181 */
2182 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2183
2184 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2185
2186 virtual ir_constant *constant_expression_value(void *mem_ctx,
2187 struct hash_table *variable_context = NULL);
2188
2189 virtual void accept(ir_visitor *v)
2190 {
2191 v->visit(this);
2192 }
2193
2194 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2195
2196 virtual bool equals(const ir_instruction *ir,
2197 enum ir_node_type ignore = ir_type_unset) const;
2198
2199 /**
2200 * Get a particular component of a constant as a specific type
2201 *
2202 * This is useful, for example, to get a value from an integer constant
2203 * as a float or bool. This appears frequently when constructors are
2204 * called with all constant parameters.
2205 */
2206 /*@{*/
2207 bool get_bool_component(unsigned i) const;
2208 float get_float_component(unsigned i) const;
2209 double get_double_component(unsigned i) const;
2210 int get_int_component(unsigned i) const;
2211 unsigned get_uint_component(unsigned i) const;
2212 int64_t get_int64_component(unsigned i) const;
2213 uint64_t get_uint64_component(unsigned i) const;
2214 /*@}*/
2215
2216 ir_constant *get_array_element(unsigned i) const;
2217
2218 ir_constant *get_record_field(int idx);
2219
2220 /**
2221 * Copy the values on another constant at a given offset.
2222 *
2223 * The offset is ignored for array or struct copies, it's only for
2224 * scalars or vectors into vectors or matrices.
2225 *
2226 * With identical types on both sides and zero offset it's clone()
2227 * without creating a new object.
2228 */
2229
2230 void copy_offset(ir_constant *src, int offset);
2231
2232 /**
2233 * Copy the values on another constant at a given offset and
2234 * following an assign-like mask.
2235 *
2236 * The mask is ignored for scalars.
2237 *
2238 * Note that this function only handles what assign can handle,
2239 * i.e. at most a vector as source and a column of a matrix as
2240 * destination.
2241 */
2242
2243 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2244
2245 /**
2246 * Determine whether a constant has the same value as another constant
2247 *
2248 * \sa ir_constant::is_zero, ir_constant::is_one,
2249 * ir_constant::is_negative_one
2250 */
2251 bool has_value(const ir_constant *) const;
2252
2253 /**
2254 * Return true if this ir_constant represents the given value.
2255 *
2256 * For vectors, this checks that each component is the given value.
2257 */
2258 virtual bool is_value(float f, int i) const;
2259 virtual bool is_zero() const;
2260 virtual bool is_one() const;
2261 virtual bool is_negative_one() const;
2262
2263 /**
2264 * Return true for constants that could be stored as 16-bit unsigned values.
2265 *
2266 * Note that this will return true even for signed integer ir_constants, as
2267 * long as the value is non-negative and fits in 16-bits.
2268 */
2269 virtual bool is_uint16_constant() const;
2270
2271 /**
2272 * Value of the constant.
2273 *
2274 * The field used to back the values supplied by the constant is determined
2275 * by the type associated with the \c ir_instruction. Constants may be
2276 * scalars, vectors, or matrices.
2277 */
2278 union ir_constant_data value;
2279
2280 /* Array elements and structure fields */
2281 ir_constant **const_elements;
2282
2283 private:
2284 /**
2285 * Parameterless constructor only used by the clone method
2286 */
2287 ir_constant(void);
2288 };
2289
2290 /**
2291 * IR instruction to emit a vertex in a geometry shader.
2292 */
2293 class ir_emit_vertex : public ir_instruction {
2294 public:
2295 ir_emit_vertex(ir_rvalue *stream)
2296 : ir_instruction(ir_type_emit_vertex),
2297 stream(stream)
2298 {
2299 assert(stream);
2300 }
2301
2302 virtual void accept(ir_visitor *v)
2303 {
2304 v->visit(this);
2305 }
2306
2307 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2308 {
2309 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2310 }
2311
2312 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2313
2314 int stream_id() const
2315 {
2316 return stream->as_constant()->value.i[0];
2317 }
2318
2319 ir_rvalue *stream;
2320 };
2321
2322 /**
2323 * IR instruction to complete the current primitive and start a new one in a
2324 * geometry shader.
2325 */
2326 class ir_end_primitive : public ir_instruction {
2327 public:
2328 ir_end_primitive(ir_rvalue *stream)
2329 : ir_instruction(ir_type_end_primitive),
2330 stream(stream)
2331 {
2332 assert(stream);
2333 }
2334
2335 virtual void accept(ir_visitor *v)
2336 {
2337 v->visit(this);
2338 }
2339
2340 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2341 {
2342 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2343 }
2344
2345 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2346
2347 int stream_id() const
2348 {
2349 return stream->as_constant()->value.i[0];
2350 }
2351
2352 ir_rvalue *stream;
2353 };
2354
2355 /**
2356 * IR instruction for tessellation control and compute shader barrier.
2357 */
2358 class ir_barrier : public ir_instruction {
2359 public:
2360 ir_barrier()
2361 : ir_instruction(ir_type_barrier)
2362 {
2363 }
2364
2365 virtual void accept(ir_visitor *v)
2366 {
2367 v->visit(this);
2368 }
2369
2370 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2371 {
2372 return new(mem_ctx) ir_barrier();
2373 }
2374
2375 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2376 };
2377
2378 /*@}*/
2379
2380 /**
2381 * Apply a visitor to each IR node in a list
2382 */
2383 void
2384 visit_exec_list(exec_list *list, ir_visitor *visitor);
2385
2386 /**
2387 * Validate invariants on each IR node in a list
2388 */
2389 void validate_ir_tree(exec_list *instructions);
2390
2391 struct _mesa_glsl_parse_state;
2392 struct gl_shader_program;
2393
2394 /**
2395 * Detect whether an unlinked shader contains static recursion
2396 *
2397 * If the list of instructions is determined to contain static recursion,
2398 * \c _mesa_glsl_error will be called to emit error messages for each function
2399 * that is in the recursion cycle.
2400 */
2401 void
2402 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2403 exec_list *instructions);
2404
2405 /**
2406 * Detect whether a linked shader contains static recursion
2407 *
2408 * If the list of instructions is determined to contain static recursion,
2409 * \c link_error_printf will be called to emit error messages for each function
2410 * that is in the recursion cycle. In addition,
2411 * \c gl_shader_program::LinkStatus will be set to false.
2412 */
2413 void
2414 detect_recursion_linked(struct gl_shader_program *prog,
2415 exec_list *instructions);
2416
2417 /**
2418 * Make a clone of each IR instruction in a list
2419 *
2420 * \param in List of IR instructions that are to be cloned
2421 * \param out List to hold the cloned instructions
2422 */
2423 void
2424 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2425
2426 extern void
2427 _mesa_glsl_initialize_variables(exec_list *instructions,
2428 struct _mesa_glsl_parse_state *state);
2429
2430 extern void
2431 reparent_ir(exec_list *list, void *mem_ctx);
2432
2433 extern void
2434 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2435 gl_shader_stage shader_stage);
2436
2437 extern char *
2438 prototype_string(const glsl_type *return_type, const char *name,
2439 exec_list *parameters);
2440
2441 const char *
2442 mode_string(const ir_variable *var);
2443
2444 /**
2445 * Built-in / reserved GL variables names start with "gl_"
2446 */
2447 static inline bool
2448 is_gl_identifier(const char *s)
2449 {
2450 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2451 }
2452
2453 extern "C" {
2454 #endif /* __cplusplus */
2455
2456 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2457 struct _mesa_glsl_parse_state *state);
2458
2459 extern void
2460 fprint_ir(FILE *f, const void *instruction);
2461
2462 extern const struct gl_builtin_uniform_desc *
2463 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2464
2465 #ifdef __cplusplus
2466 } /* extern "C" */
2467 #endif
2468
2469 unsigned
2470 vertices_per_prim(GLenum prim);
2471
2472 #endif /* IR_H */