glsl: add intrinsics for ARB_shader_group_vote and ARB_shader_ballot
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36 #include "main/mtypes.h"
37
38 #ifdef __cplusplus
39
40 /**
41 * \defgroup IR Intermediate representation nodes
42 *
43 * @{
44 */
45
46 /**
47 * Class tags
48 *
49 * Each concrete class derived from \c ir_instruction has a value in this
50 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
51 * by the constructor. While using type tags is not very C++, it is extremely
52 * convenient. For example, during debugging you can simply inspect
53 * \c ir_instruction::ir_type to find out the actual type of the object.
54 *
55 * In addition, it is possible to use a switch-statement based on \c
56 * \c ir_instruction::ir_type to select different behavior for different object
57 * types. For functions that have only slight differences for several object
58 * types, this allows writing very straightforward, readable code.
59 */
60 enum ir_node_type {
61 ir_type_dereference_array,
62 ir_type_dereference_record,
63 ir_type_dereference_variable,
64 ir_type_constant,
65 ir_type_expression,
66 ir_type_swizzle,
67 ir_type_texture,
68 ir_type_variable,
69 ir_type_assignment,
70 ir_type_call,
71 ir_type_function,
72 ir_type_function_signature,
73 ir_type_if,
74 ir_type_loop,
75 ir_type_loop_jump,
76 ir_type_return,
77 ir_type_discard,
78 ir_type_emit_vertex,
79 ir_type_end_primitive,
80 ir_type_barrier,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 bool is_rvalue() const
113 {
114 return ir_type == ir_type_dereference_array ||
115 ir_type == ir_type_dereference_record ||
116 ir_type == ir_type_dereference_variable ||
117 ir_type == ir_type_constant ||
118 ir_type == ir_type_expression ||
119 ir_type == ir_type_swizzle ||
120 ir_type == ir_type_texture;
121 }
122
123 bool is_dereference() const
124 {
125 return ir_type == ir_type_dereference_array ||
126 ir_type == ir_type_dereference_record ||
127 ir_type == ir_type_dereference_variable;
128 }
129
130 bool is_jump() const
131 {
132 return ir_type == ir_type_loop_jump ||
133 ir_type == ir_type_return ||
134 ir_type == ir_type_discard;
135 }
136
137 /**
138 * \name IR instruction downcast functions
139 *
140 * These functions either cast the object to a derived class or return
141 * \c NULL if the object's type does not match the specified derived class.
142 * Additional downcast functions will be added as needed.
143 */
144 /*@{*/
145 #define AS_BASE(TYPE) \
146 class ir_##TYPE *as_##TYPE() \
147 { \
148 assume(this != NULL); \
149 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
150 } \
151 const class ir_##TYPE *as_##TYPE() const \
152 { \
153 assume(this != NULL); \
154 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
155 }
156
157 AS_BASE(rvalue)
158 AS_BASE(dereference)
159 AS_BASE(jump)
160 #undef AS_BASE
161
162 #define AS_CHILD(TYPE) \
163 class ir_##TYPE * as_##TYPE() \
164 { \
165 assume(this != NULL); \
166 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
167 } \
168 const class ir_##TYPE * as_##TYPE() const \
169 { \
170 assume(this != NULL); \
171 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
172 }
173 AS_CHILD(variable)
174 AS_CHILD(function)
175 AS_CHILD(dereference_array)
176 AS_CHILD(dereference_variable)
177 AS_CHILD(dereference_record)
178 AS_CHILD(expression)
179 AS_CHILD(loop)
180 AS_CHILD(assignment)
181 AS_CHILD(call)
182 AS_CHILD(return)
183 AS_CHILD(if)
184 AS_CHILD(swizzle)
185 AS_CHILD(texture)
186 AS_CHILD(constant)
187 AS_CHILD(discard)
188 #undef AS_CHILD
189 /*@}*/
190
191 /**
192 * IR equality method: Return true if the referenced instruction would
193 * return the same value as this one.
194 *
195 * This intended to be used for CSE and algebraic optimizations, on rvalues
196 * in particular. No support for other instruction types (assignments,
197 * jumps, calls, etc.) is planned.
198 */
199 virtual bool equals(const ir_instruction *ir,
200 enum ir_node_type ignore = ir_type_unset) const;
201
202 protected:
203 ir_instruction(enum ir_node_type t)
204 : ir_type(t)
205 {
206 }
207
208 private:
209 ir_instruction()
210 {
211 assert(!"Should not get here.");
212 }
213 };
214
215
216 /**
217 * The base class for all "values"/expression trees.
218 */
219 class ir_rvalue : public ir_instruction {
220 public:
221 const struct glsl_type *type;
222
223 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
224
225 virtual void accept(ir_visitor *v)
226 {
227 v->visit(this);
228 }
229
230 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
231
232 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue() const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_storage, /**< Variable declared as an ssbo. */
327 ir_var_shader_shared, /**< Variable declared as shared. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 int tokens[5];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine whether or not a variable is part of a uniform or
435 * shader storage block.
436 */
437 inline bool is_in_buffer_block() const
438 {
439 return (this->data.mode == ir_var_uniform ||
440 this->data.mode == ir_var_shader_storage) &&
441 this->interface_type != NULL;
442 }
443
444 /**
445 * Determine whether or not a variable is part of a shader storage block.
446 */
447 inline bool is_in_shader_storage_block() const
448 {
449 return this->data.mode == ir_var_shader_storage &&
450 this->interface_type != NULL;
451 }
452
453 /**
454 * Determine whether or not a variable is the declaration of an interface
455 * block
456 *
457 * For the first declaration below, there will be an \c ir_variable named
458 * "instance" whose type and whose instance_type will be the same
459 * \cglsl_type. For the second declaration, there will be an \c ir_variable
460 * named "f" whose type is float and whose instance_type is B2.
461 *
462 * "instance" is an interface instance variable, but "f" is not.
463 *
464 * uniform B1 {
465 * float f;
466 * } instance;
467 *
468 * uniform B2 {
469 * float f;
470 * };
471 */
472 inline bool is_interface_instance() const
473 {
474 return this->type->without_array() == this->interface_type;
475 }
476
477 /**
478 * Set this->interface_type on a newly created variable.
479 */
480 void init_interface_type(const struct glsl_type *type)
481 {
482 assert(this->interface_type == NULL);
483 this->interface_type = type;
484 if (this->is_interface_instance()) {
485 this->u.max_ifc_array_access =
486 ralloc_array(this, int, type->length);
487 for (unsigned i = 0; i < type->length; i++) {
488 this->u.max_ifc_array_access[i] = -1;
489 }
490 }
491 }
492
493 /**
494 * Change this->interface_type on a variable that previously had a
495 * different, but compatible, interface_type. This is used during linking
496 * to set the size of arrays in interface blocks.
497 */
498 void change_interface_type(const struct glsl_type *type)
499 {
500 if (this->u.max_ifc_array_access != NULL) {
501 /* max_ifc_array_access has already been allocated, so make sure the
502 * new interface has the same number of fields as the old one.
503 */
504 assert(this->interface_type->length == type->length);
505 }
506 this->interface_type = type;
507 }
508
509 /**
510 * Change this->interface_type on a variable that previously had a
511 * different, and incompatible, interface_type. This is used during
512 * compilation to handle redeclaration of the built-in gl_PerVertex
513 * interface block.
514 */
515 void reinit_interface_type(const struct glsl_type *type)
516 {
517 if (this->u.max_ifc_array_access != NULL) {
518 #ifndef NDEBUG
519 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
520 * it defines have been accessed yet; so it's safe to throw away the
521 * old max_ifc_array_access pointer, since all of its values are
522 * zero.
523 */
524 for (unsigned i = 0; i < this->interface_type->length; i++)
525 assert(this->u.max_ifc_array_access[i] == -1);
526 #endif
527 ralloc_free(this->u.max_ifc_array_access);
528 this->u.max_ifc_array_access = NULL;
529 }
530 this->interface_type = NULL;
531 init_interface_type(type);
532 }
533
534 const glsl_type *get_interface_type() const
535 {
536 return this->interface_type;
537 }
538
539 enum glsl_interface_packing get_interface_type_packing() const
540 {
541 return this->interface_type->get_interface_packing();
542 }
543 /**
544 * Get the max_ifc_array_access pointer
545 *
546 * A "set" function is not needed because the array is dynmically allocated
547 * as necessary.
548 */
549 inline int *get_max_ifc_array_access()
550 {
551 assert(this->data._num_state_slots == 0);
552 return this->u.max_ifc_array_access;
553 }
554
555 inline unsigned get_num_state_slots() const
556 {
557 assert(!this->is_interface_instance()
558 || this->data._num_state_slots == 0);
559 return this->data._num_state_slots;
560 }
561
562 inline void set_num_state_slots(unsigned n)
563 {
564 assert(!this->is_interface_instance()
565 || n == 0);
566 this->data._num_state_slots = n;
567 }
568
569 inline ir_state_slot *get_state_slots()
570 {
571 return this->is_interface_instance() ? NULL : this->u.state_slots;
572 }
573
574 inline const ir_state_slot *get_state_slots() const
575 {
576 return this->is_interface_instance() ? NULL : this->u.state_slots;
577 }
578
579 inline ir_state_slot *allocate_state_slots(unsigned n)
580 {
581 assert(!this->is_interface_instance());
582
583 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
584 this->data._num_state_slots = 0;
585
586 if (this->u.state_slots != NULL)
587 this->data._num_state_slots = n;
588
589 return this->u.state_slots;
590 }
591
592 inline bool is_interpolation_flat() const
593 {
594 return this->data.interpolation == INTERP_MODE_FLAT ||
595 this->type->contains_integer() ||
596 this->type->contains_double();
597 }
598
599 inline bool is_name_ralloced() const
600 {
601 return this->name != ir_variable::tmp_name &&
602 this->name != this->name_storage;
603 }
604
605 /**
606 * Enable emitting extension warnings for this variable
607 */
608 void enable_extension_warning(const char *extension);
609
610 /**
611 * Get the extension warning string for this variable
612 *
613 * If warnings are not enabled, \c NULL is returned.
614 */
615 const char *get_extension_warning() const;
616
617 /**
618 * Declared type of the variable
619 */
620 const struct glsl_type *type;
621
622 /**
623 * Declared name of the variable
624 */
625 const char *name;
626
627 private:
628 /**
629 * If the name length fits into name_storage, it's used, otherwise
630 * the name is ralloc'd. shader-db mining showed that 70% of variables
631 * fit here. This is a win over ralloc where only ralloc_header has
632 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
633 */
634 char name_storage[16];
635
636 public:
637 struct ir_variable_data {
638
639 /**
640 * Is the variable read-only?
641 *
642 * This is set for variables declared as \c const, shader inputs,
643 * and uniforms.
644 */
645 unsigned read_only:1;
646 unsigned centroid:1;
647 unsigned sample:1;
648 unsigned patch:1;
649 unsigned invariant:1;
650 unsigned precise:1;
651
652 /**
653 * Has this variable been used for reading or writing?
654 *
655 * Several GLSL semantic checks require knowledge of whether or not a
656 * variable has been used. For example, it is an error to redeclare a
657 * variable as invariant after it has been used.
658 *
659 * This is only maintained in the ast_to_hir.cpp path, not in
660 * Mesa's fixed function or ARB program paths.
661 */
662 unsigned used:1;
663
664 /**
665 * Has this variable been statically assigned?
666 *
667 * This answers whether the variable was assigned in any path of
668 * the shader during ast_to_hir. This doesn't answer whether it is
669 * still written after dead code removal, nor is it maintained in
670 * non-ast_to_hir.cpp (GLSL parsing) paths.
671 */
672 unsigned assigned:1;
673
674 /**
675 * When separate shader programs are enabled, only input/outputs between
676 * the stages of a multi-stage separate program can be safely removed
677 * from the shader interface. Other input/outputs must remains active.
678 */
679 unsigned always_active_io:1;
680
681 /**
682 * Enum indicating how the variable was declared. See
683 * ir_var_declaration_type.
684 *
685 * This is used to detect certain kinds of illegal variable redeclarations.
686 */
687 unsigned how_declared:2;
688
689 /**
690 * Storage class of the variable.
691 *
692 * \sa ir_variable_mode
693 */
694 unsigned mode:4;
695
696 /**
697 * Interpolation mode for shader inputs / outputs
698 *
699 * \sa glsl_interp_mode
700 */
701 unsigned interpolation:2;
702
703 /**
704 * \name ARB_fragment_coord_conventions
705 * @{
706 */
707 unsigned origin_upper_left:1;
708 unsigned pixel_center_integer:1;
709 /*@}*/
710
711 /**
712 * Was the location explicitly set in the shader?
713 *
714 * If the location is explicitly set in the shader, it \b cannot be changed
715 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
716 * no effect).
717 */
718 unsigned explicit_location:1;
719 unsigned explicit_index:1;
720
721 /**
722 * Was an initial binding explicitly set in the shader?
723 *
724 * If so, constant_value contains an integer ir_constant representing the
725 * initial binding point.
726 */
727 unsigned explicit_binding:1;
728
729 /**
730 * Was an initial component explicitly set in the shader?
731 */
732 unsigned explicit_component:1;
733
734 /**
735 * Does this variable have an initializer?
736 *
737 * This is used by the linker to cross-validiate initializers of global
738 * variables.
739 */
740 unsigned has_initializer:1;
741
742 /**
743 * Is this variable a generic output or input that has not yet been matched
744 * up to a variable in another stage of the pipeline?
745 *
746 * This is used by the linker as scratch storage while assigning locations
747 * to generic inputs and outputs.
748 */
749 unsigned is_unmatched_generic_inout:1;
750
751 /**
752 * Is this varying used only by transform feedback?
753 *
754 * This is used by the linker to decide if its safe to pack the varying.
755 */
756 unsigned is_xfb_only:1;
757
758 /**
759 * Was a transfor feedback buffer set in the shader?
760 */
761 unsigned explicit_xfb_buffer:1;
762
763 /**
764 * Was a transfor feedback offset set in the shader?
765 */
766 unsigned explicit_xfb_offset:1;
767
768 /**
769 * Was a transfor feedback stride set in the shader?
770 */
771 unsigned explicit_xfb_stride:1;
772
773 /**
774 * If non-zero, then this variable may be packed along with other variables
775 * into a single varying slot, so this offset should be applied when
776 * accessing components. For example, an offset of 1 means that the x
777 * component of this variable is actually stored in component y of the
778 * location specified by \c location.
779 */
780 unsigned location_frac:2;
781
782 /**
783 * Layout of the matrix. Uses glsl_matrix_layout values.
784 */
785 unsigned matrix_layout:2;
786
787 /**
788 * Non-zero if this variable was created by lowering a named interface
789 * block.
790 */
791 unsigned from_named_ifc_block:1;
792
793 /**
794 * Non-zero if the variable must be a shader input. This is useful for
795 * constraints on function parameters.
796 */
797 unsigned must_be_shader_input:1;
798
799 /**
800 * Output index for dual source blending.
801 *
802 * \note
803 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
804 * source blending.
805 */
806 unsigned index:1;
807
808 /**
809 * Precision qualifier.
810 *
811 * In desktop GLSL we do not care about precision qualifiers at all, in
812 * fact, the spec says that precision qualifiers are ignored.
813 *
814 * To make things easy, we make it so that this field is always
815 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
816 * have the same precision value and the checks we add in the compiler
817 * for this field will never break a desktop shader compile.
818 */
819 unsigned precision:2;
820
821 /**
822 * \brief Layout qualifier for gl_FragDepth.
823 *
824 * This is not equal to \c ir_depth_layout_none if and only if this
825 * variable is \c gl_FragDepth and a layout qualifier is specified.
826 */
827 ir_depth_layout depth_layout:3;
828
829 /**
830 * ARB_shader_image_load_store qualifiers.
831 */
832 unsigned image_read_only:1; /**< "readonly" qualifier. */
833 unsigned image_write_only:1; /**< "writeonly" qualifier. */
834 unsigned image_coherent:1;
835 unsigned image_volatile:1;
836 unsigned image_restrict:1;
837
838 /**
839 * ARB_shader_storage_buffer_object
840 */
841 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
842
843 unsigned implicit_sized_array:1;
844
845 /**
846 * Whether this is a fragment shader output implicitly initialized with
847 * the previous contents of the specified render target at the
848 * framebuffer location corresponding to this shader invocation.
849 */
850 unsigned fb_fetch_output:1;
851
852 /**
853 * Emit a warning if this variable is accessed.
854 */
855 private:
856 uint8_t warn_extension_index;
857
858 public:
859 /** Image internal format if specified explicitly, otherwise GL_NONE. */
860 uint16_t image_format;
861
862 private:
863 /**
864 * Number of state slots used
865 *
866 * \note
867 * This could be stored in as few as 7-bits, if necessary. If it is made
868 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
869 * be safe.
870 */
871 uint16_t _num_state_slots;
872
873 public:
874 /**
875 * Initial binding point for a sampler, atomic, or UBO.
876 *
877 * For array types, this represents the binding point for the first element.
878 */
879 int16_t binding;
880
881 /**
882 * Storage location of the base of this variable
883 *
884 * The precise meaning of this field depends on the nature of the variable.
885 *
886 * - Vertex shader input: one of the values from \c gl_vert_attrib.
887 * - Vertex shader output: one of the values from \c gl_varying_slot.
888 * - Geometry shader input: one of the values from \c gl_varying_slot.
889 * - Geometry shader output: one of the values from \c gl_varying_slot.
890 * - Fragment shader input: one of the values from \c gl_varying_slot.
891 * - Fragment shader output: one of the values from \c gl_frag_result.
892 * - Uniforms: Per-stage uniform slot number for default uniform block.
893 * - Uniforms: Index within the uniform block definition for UBO members.
894 * - Non-UBO Uniforms: explicit location until linking then reused to
895 * store uniform slot number.
896 * - Other: This field is not currently used.
897 *
898 * If the variable is a uniform, shader input, or shader output, and the
899 * slot has not been assigned, the value will be -1.
900 */
901 int location;
902
903 /**
904 * for glsl->tgsi/mesa IR we need to store the index into the
905 * parameters for uniforms, initially the code overloaded location
906 * but this causes problems with indirect samplers and AoA.
907 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
908 */
909 int param_index;
910
911 /**
912 * Vertex stream output identifier.
913 *
914 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
915 * stream of the i-th component.
916 */
917 unsigned stream;
918
919 /**
920 * Atomic, transform feedback or block member offset.
921 */
922 unsigned offset;
923
924 /**
925 * Highest element accessed with a constant expression array index
926 *
927 * Not used for non-array variables. -1 is never accessed.
928 */
929 int max_array_access;
930
931 /**
932 * Transform feedback buffer.
933 */
934 unsigned xfb_buffer;
935
936 /**
937 * Transform feedback stride.
938 */
939 unsigned xfb_stride;
940
941 /**
942 * Allow (only) ir_variable direct access private members.
943 */
944 friend class ir_variable;
945 } data;
946
947 /**
948 * Value assigned in the initializer of a variable declared "const"
949 */
950 ir_constant *constant_value;
951
952 /**
953 * Constant expression assigned in the initializer of the variable
954 *
955 * \warning
956 * This field and \c ::constant_value are distinct. Even if the two fields
957 * refer to constants with the same value, they must point to separate
958 * objects.
959 */
960 ir_constant *constant_initializer;
961
962 private:
963 static const char *const warn_extension_table[];
964
965 union {
966 /**
967 * For variables which satisfy the is_interface_instance() predicate,
968 * this points to an array of integers such that if the ith member of
969 * the interface block is an array, max_ifc_array_access[i] is the
970 * maximum array element of that member that has been accessed. If the
971 * ith member of the interface block is not an array,
972 * max_ifc_array_access[i] is unused.
973 *
974 * For variables whose type is not an interface block, this pointer is
975 * NULL.
976 */
977 int *max_ifc_array_access;
978
979 /**
980 * Built-in state that backs this uniform
981 *
982 * Once set at variable creation, \c state_slots must remain invariant.
983 *
984 * If the variable is not a uniform, \c _num_state_slots will be zero
985 * and \c state_slots will be \c NULL.
986 */
987 ir_state_slot *state_slots;
988 } u;
989
990 /**
991 * For variables that are in an interface block or are an instance of an
992 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
993 *
994 * \sa ir_variable::location
995 */
996 const glsl_type *interface_type;
997
998 /**
999 * Name used for anonymous compiler temporaries
1000 */
1001 static const char tmp_name[];
1002
1003 public:
1004 /**
1005 * Should the construct keep names for ir_var_temporary variables?
1006 *
1007 * When this global is false, names passed to the constructor for
1008 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1009 * be named "compiler_temp". This name will be in static storage.
1010 *
1011 * \warning
1012 * \b NEVER change the mode of an \c ir_var_temporary.
1013 *
1014 * \warning
1015 * This variable is \b not thread-safe. It is global, \b not
1016 * per-context. It begins life false. A context can, at some point, make
1017 * it true. From that point on, it will be true forever. This should be
1018 * okay since it will only be set true while debugging.
1019 */
1020 static bool temporaries_allocate_names;
1021 };
1022
1023 /**
1024 * A function that returns whether a built-in function is available in the
1025 * current shading language (based on version, ES or desktop, and extensions).
1026 */
1027 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1028
1029 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1030 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1031
1032 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1033 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1034
1035 enum ir_intrinsic_id {
1036 ir_intrinsic_invalid = 0,
1037
1038 /**
1039 * \name Generic intrinsics
1040 *
1041 * Each of these intrinsics has a specific version for shared variables and
1042 * SSBOs.
1043 */
1044 /*@{*/
1045 ir_intrinsic_generic_load,
1046 ir_intrinsic_generic_store,
1047 ir_intrinsic_generic_atomic_add,
1048 ir_intrinsic_generic_atomic_and,
1049 ir_intrinsic_generic_atomic_or,
1050 ir_intrinsic_generic_atomic_xor,
1051 ir_intrinsic_generic_atomic_min,
1052 ir_intrinsic_generic_atomic_max,
1053 ir_intrinsic_generic_atomic_exchange,
1054 ir_intrinsic_generic_atomic_comp_swap,
1055 /*@}*/
1056
1057 ir_intrinsic_atomic_counter_read,
1058 ir_intrinsic_atomic_counter_increment,
1059 ir_intrinsic_atomic_counter_predecrement,
1060 ir_intrinsic_atomic_counter_add,
1061 ir_intrinsic_atomic_counter_and,
1062 ir_intrinsic_atomic_counter_or,
1063 ir_intrinsic_atomic_counter_xor,
1064 ir_intrinsic_atomic_counter_min,
1065 ir_intrinsic_atomic_counter_max,
1066 ir_intrinsic_atomic_counter_exchange,
1067 ir_intrinsic_atomic_counter_comp_swap,
1068
1069 ir_intrinsic_image_load,
1070 ir_intrinsic_image_store,
1071 ir_intrinsic_image_atomic_add,
1072 ir_intrinsic_image_atomic_and,
1073 ir_intrinsic_image_atomic_or,
1074 ir_intrinsic_image_atomic_xor,
1075 ir_intrinsic_image_atomic_min,
1076 ir_intrinsic_image_atomic_max,
1077 ir_intrinsic_image_atomic_exchange,
1078 ir_intrinsic_image_atomic_comp_swap,
1079 ir_intrinsic_image_size,
1080 ir_intrinsic_image_samples,
1081
1082 ir_intrinsic_ssbo_load,
1083 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1084 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1085 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1086 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1087 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1088 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1089 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1090 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1091 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1092
1093 ir_intrinsic_memory_barrier,
1094 ir_intrinsic_shader_clock,
1095 ir_intrinsic_group_memory_barrier,
1096 ir_intrinsic_memory_barrier_atomic_counter,
1097 ir_intrinsic_memory_barrier_buffer,
1098 ir_intrinsic_memory_barrier_image,
1099 ir_intrinsic_memory_barrier_shared,
1100
1101 ir_intrinsic_vote_all,
1102 ir_intrinsic_vote_any,
1103 ir_intrinsic_vote_eq,
1104 ir_intrinsic_ballot,
1105 ir_intrinsic_read_invocation,
1106 ir_intrinsic_read_first_invocation,
1107
1108 ir_intrinsic_shared_load,
1109 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1110 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1111 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1112 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1113 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1114 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1115 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1116 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1117 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1118 };
1119
1120 /*@{*/
1121 /**
1122 * The representation of a function instance; may be the full definition or
1123 * simply a prototype.
1124 */
1125 class ir_function_signature : public ir_instruction {
1126 /* An ir_function_signature will be part of the list of signatures in
1127 * an ir_function.
1128 */
1129 public:
1130 ir_function_signature(const glsl_type *return_type,
1131 builtin_available_predicate builtin_avail = NULL);
1132
1133 virtual ir_function_signature *clone(void *mem_ctx,
1134 struct hash_table *ht) const;
1135 ir_function_signature *clone_prototype(void *mem_ctx,
1136 struct hash_table *ht) const;
1137
1138 virtual void accept(ir_visitor *v)
1139 {
1140 v->visit(this);
1141 }
1142
1143 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1144
1145 /**
1146 * Attempt to evaluate this function as a constant expression,
1147 * given a list of the actual parameters and the variable context.
1148 * Returns NULL for non-built-ins.
1149 */
1150 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1151
1152 /**
1153 * Get the name of the function for which this is a signature
1154 */
1155 const char *function_name() const;
1156
1157 /**
1158 * Get a handle to the function for which this is a signature
1159 *
1160 * There is no setter function, this function returns a \c const pointer,
1161 * and \c ir_function_signature::_function is private for a reason. The
1162 * only way to make a connection between a function and function signature
1163 * is via \c ir_function::add_signature. This helps ensure that certain
1164 * invariants (i.e., a function signature is in the list of signatures for
1165 * its \c _function) are met.
1166 *
1167 * \sa ir_function::add_signature
1168 */
1169 inline const class ir_function *function() const
1170 {
1171 return this->_function;
1172 }
1173
1174 /**
1175 * Check whether the qualifiers match between this signature's parameters
1176 * and the supplied parameter list. If not, returns the name of the first
1177 * parameter with mismatched qualifiers (for use in error messages).
1178 */
1179 const char *qualifiers_match(exec_list *params);
1180
1181 /**
1182 * Replace the current parameter list with the given one. This is useful
1183 * if the current information came from a prototype, and either has invalid
1184 * or missing parameter names.
1185 */
1186 void replace_parameters(exec_list *new_params);
1187
1188 /**
1189 * Function return type.
1190 *
1191 * \note This discards the optional precision qualifier.
1192 */
1193 const struct glsl_type *return_type;
1194
1195 /**
1196 * List of ir_variable of function parameters.
1197 *
1198 * This represents the storage. The paramaters passed in a particular
1199 * call will be in ir_call::actual_paramaters.
1200 */
1201 struct exec_list parameters;
1202
1203 /** Whether or not this function has a body (which may be empty). */
1204 unsigned is_defined:1;
1205
1206 /** Whether or not this function signature is a built-in. */
1207 bool is_builtin() const;
1208
1209 /**
1210 * Whether or not this function is an intrinsic to be implemented
1211 * by the driver.
1212 */
1213 inline bool is_intrinsic() const
1214 {
1215 return intrinsic_id != ir_intrinsic_invalid;
1216 }
1217
1218 /** Indentifier for this intrinsic. */
1219 enum ir_intrinsic_id intrinsic_id;
1220
1221 /** Whether or not a built-in is available for this shader. */
1222 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1223
1224 /** Body of instructions in the function. */
1225 struct exec_list body;
1226
1227 private:
1228 /**
1229 * A function pointer to a predicate that answers whether a built-in
1230 * function is available in the current shader. NULL if not a built-in.
1231 */
1232 builtin_available_predicate builtin_avail;
1233
1234 /** Function of which this signature is one overload. */
1235 class ir_function *_function;
1236
1237 /** Function signature of which this one is a prototype clone */
1238 const ir_function_signature *origin;
1239
1240 friend class ir_function;
1241
1242 /**
1243 * Helper function to run a list of instructions for constant
1244 * expression evaluation.
1245 *
1246 * The hash table represents the values of the visible variables.
1247 * There are no scoping issues because the table is indexed on
1248 * ir_variable pointers, not variable names.
1249 *
1250 * Returns false if the expression is not constant, true otherwise,
1251 * and the value in *result if result is non-NULL.
1252 */
1253 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1254 struct hash_table *variable_context,
1255 ir_constant **result);
1256 };
1257
1258
1259 /**
1260 * Header for tracking multiple overloaded functions with the same name.
1261 * Contains a list of ir_function_signatures representing each of the
1262 * actual functions.
1263 */
1264 class ir_function : public ir_instruction {
1265 public:
1266 ir_function(const char *name);
1267
1268 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1269
1270 virtual void accept(ir_visitor *v)
1271 {
1272 v->visit(this);
1273 }
1274
1275 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1276
1277 void add_signature(ir_function_signature *sig)
1278 {
1279 sig->_function = this;
1280 this->signatures.push_tail(sig);
1281 }
1282
1283 /**
1284 * Find a signature that matches a set of actual parameters, taking implicit
1285 * conversions into account. Also flags whether the match was exact.
1286 */
1287 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1288 const exec_list *actual_param,
1289 bool allow_builtins,
1290 bool *match_is_exact);
1291
1292 /**
1293 * Find a signature that matches a set of actual parameters, taking implicit
1294 * conversions into account.
1295 */
1296 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1297 const exec_list *actual_param,
1298 bool allow_builtins);
1299
1300 /**
1301 * Find a signature that exactly matches a set of actual parameters without
1302 * any implicit type conversions.
1303 */
1304 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1305 const exec_list *actual_ps);
1306
1307 /**
1308 * Name of the function.
1309 */
1310 const char *name;
1311
1312 /** Whether or not this function has a signature that isn't a built-in. */
1313 bool has_user_signature();
1314
1315 /**
1316 * List of ir_function_signature for each overloaded function with this name.
1317 */
1318 struct exec_list signatures;
1319
1320 /**
1321 * is this function a subroutine type declaration
1322 * e.g. subroutine void type1(float arg1);
1323 */
1324 bool is_subroutine;
1325
1326 /**
1327 * is this function associated to a subroutine type
1328 * e.g. subroutine (type1, type2) function_name { function_body };
1329 * would have num_subroutine_types 2,
1330 * and pointers to the type1 and type2 types.
1331 */
1332 int num_subroutine_types;
1333 const struct glsl_type **subroutine_types;
1334
1335 int subroutine_index;
1336 };
1337
1338 inline const char *ir_function_signature::function_name() const
1339 {
1340 return this->_function->name;
1341 }
1342 /*@}*/
1343
1344
1345 /**
1346 * IR instruction representing high-level if-statements
1347 */
1348 class ir_if : public ir_instruction {
1349 public:
1350 ir_if(ir_rvalue *condition)
1351 : ir_instruction(ir_type_if), condition(condition)
1352 {
1353 }
1354
1355 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1356
1357 virtual void accept(ir_visitor *v)
1358 {
1359 v->visit(this);
1360 }
1361
1362 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1363
1364 ir_rvalue *condition;
1365 /** List of ir_instruction for the body of the then branch */
1366 exec_list then_instructions;
1367 /** List of ir_instruction for the body of the else branch */
1368 exec_list else_instructions;
1369 };
1370
1371
1372 /**
1373 * IR instruction representing a high-level loop structure.
1374 */
1375 class ir_loop : public ir_instruction {
1376 public:
1377 ir_loop();
1378
1379 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1380
1381 virtual void accept(ir_visitor *v)
1382 {
1383 v->visit(this);
1384 }
1385
1386 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1387
1388 /** List of ir_instruction that make up the body of the loop. */
1389 exec_list body_instructions;
1390 };
1391
1392
1393 class ir_assignment : public ir_instruction {
1394 public:
1395 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1396
1397 /**
1398 * Construct an assignment with an explicit write mask
1399 *
1400 * \note
1401 * Since a write mask is supplied, the LHS must already be a bare
1402 * \c ir_dereference. The cannot be any swizzles in the LHS.
1403 */
1404 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1405 unsigned write_mask);
1406
1407 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1408
1409 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1410
1411 virtual void accept(ir_visitor *v)
1412 {
1413 v->visit(this);
1414 }
1415
1416 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1417
1418 /**
1419 * Get a whole variable written by an assignment
1420 *
1421 * If the LHS of the assignment writes a whole variable, the variable is
1422 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1423 * assignment are:
1424 *
1425 * - Assigning to a scalar
1426 * - Assigning to all components of a vector
1427 * - Whole array (or matrix) assignment
1428 * - Whole structure assignment
1429 */
1430 ir_variable *whole_variable_written();
1431
1432 /**
1433 * Set the LHS of an assignment
1434 */
1435 void set_lhs(ir_rvalue *lhs);
1436
1437 /**
1438 * Left-hand side of the assignment.
1439 *
1440 * This should be treated as read only. If you need to set the LHS of an
1441 * assignment, use \c ir_assignment::set_lhs.
1442 */
1443 ir_dereference *lhs;
1444
1445 /**
1446 * Value being assigned
1447 */
1448 ir_rvalue *rhs;
1449
1450 /**
1451 * Optional condition for the assignment.
1452 */
1453 ir_rvalue *condition;
1454
1455
1456 /**
1457 * Component mask written
1458 *
1459 * For non-vector types in the LHS, this field will be zero. For vector
1460 * types, a bit will be set for each component that is written. Note that
1461 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1462 *
1463 * A partially-set write mask means that each enabled channel gets
1464 * the value from a consecutive channel of the rhs. For example,
1465 * to write just .xyw of gl_FrontColor with color:
1466 *
1467 * (assign (constant bool (1)) (xyw)
1468 * (var_ref gl_FragColor)
1469 * (swiz xyw (var_ref color)))
1470 */
1471 unsigned write_mask:4;
1472 };
1473
1474 #include "ir_expression_operation.h"
1475
1476 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1477 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1478
1479 class ir_expression : public ir_rvalue {
1480 public:
1481 ir_expression(int op, const struct glsl_type *type,
1482 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1483 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1484
1485 /**
1486 * Constructor for unary operation expressions
1487 */
1488 ir_expression(int op, ir_rvalue *);
1489
1490 /**
1491 * Constructor for binary operation expressions
1492 */
1493 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1494
1495 /**
1496 * Constructor for ternary operation expressions
1497 */
1498 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1499
1500 virtual bool equals(const ir_instruction *ir,
1501 enum ir_node_type ignore = ir_type_unset) const;
1502
1503 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1504
1505 /**
1506 * Attempt to constant-fold the expression
1507 *
1508 * The "variable_context" hash table links ir_variable * to ir_constant *
1509 * that represent the variables' values. \c NULL represents an empty
1510 * context.
1511 *
1512 * If the expression cannot be constant folded, this method will return
1513 * \c NULL.
1514 */
1515 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1516
1517 /**
1518 * Determine the number of operands used by an expression
1519 */
1520 static unsigned int get_num_operands(ir_expression_operation);
1521
1522 /**
1523 * Determine the number of operands used by an expression
1524 */
1525 unsigned int get_num_operands() const
1526 {
1527 return (this->operation == ir_quadop_vector)
1528 ? this->type->vector_elements : get_num_operands(operation);
1529 }
1530
1531 /**
1532 * Return whether the expression operates on vectors horizontally.
1533 */
1534 bool is_horizontal() const
1535 {
1536 return operation == ir_binop_all_equal ||
1537 operation == ir_binop_any_nequal ||
1538 operation == ir_binop_dot ||
1539 operation == ir_binop_vector_extract ||
1540 operation == ir_triop_vector_insert ||
1541 operation == ir_binop_ubo_load ||
1542 operation == ir_quadop_vector;
1543 }
1544
1545 /**
1546 * Do a reverse-lookup to translate the given string into an operator.
1547 */
1548 static ir_expression_operation get_operator(const char *);
1549
1550 virtual void accept(ir_visitor *v)
1551 {
1552 v->visit(this);
1553 }
1554
1555 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1556
1557 virtual ir_variable *variable_referenced() const;
1558
1559 ir_expression_operation operation;
1560 ir_rvalue *operands[4];
1561 };
1562
1563
1564 /**
1565 * HIR instruction representing a high-level function call, containing a list
1566 * of parameters and returning a value in the supplied temporary.
1567 */
1568 class ir_call : public ir_instruction {
1569 public:
1570 ir_call(ir_function_signature *callee,
1571 ir_dereference_variable *return_deref,
1572 exec_list *actual_parameters)
1573 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1574 {
1575 assert(callee->return_type != NULL);
1576 actual_parameters->move_nodes_to(& this->actual_parameters);
1577 this->use_builtin = callee->is_builtin();
1578 }
1579
1580 ir_call(ir_function_signature *callee,
1581 ir_dereference_variable *return_deref,
1582 exec_list *actual_parameters,
1583 ir_variable *var, ir_rvalue *array_idx)
1584 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1585 {
1586 assert(callee->return_type != NULL);
1587 actual_parameters->move_nodes_to(& this->actual_parameters);
1588 this->use_builtin = callee->is_builtin();
1589 }
1590
1591 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1592
1593 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1594
1595 virtual void accept(ir_visitor *v)
1596 {
1597 v->visit(this);
1598 }
1599
1600 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1601
1602 /**
1603 * Get the name of the function being called.
1604 */
1605 const char *callee_name() const
1606 {
1607 return callee->function_name();
1608 }
1609
1610 /**
1611 * Generates an inline version of the function before @ir,
1612 * storing the return value in return_deref.
1613 */
1614 void generate_inline(ir_instruction *ir);
1615
1616 /**
1617 * Storage for the function's return value.
1618 * This must be NULL if the return type is void.
1619 */
1620 ir_dereference_variable *return_deref;
1621
1622 /**
1623 * The specific function signature being called.
1624 */
1625 ir_function_signature *callee;
1626
1627 /* List of ir_rvalue of paramaters passed in this call. */
1628 exec_list actual_parameters;
1629
1630 /** Should this call only bind to a built-in function? */
1631 bool use_builtin;
1632
1633 /*
1634 * ARB_shader_subroutine support -
1635 * the subroutine uniform variable and array index
1636 * rvalue to be used in the lowering pass later.
1637 */
1638 ir_variable *sub_var;
1639 ir_rvalue *array_idx;
1640 };
1641
1642
1643 /**
1644 * \name Jump-like IR instructions.
1645 *
1646 * These include \c break, \c continue, \c return, and \c discard.
1647 */
1648 /*@{*/
1649 class ir_jump : public ir_instruction {
1650 protected:
1651 ir_jump(enum ir_node_type t)
1652 : ir_instruction(t)
1653 {
1654 }
1655 };
1656
1657 class ir_return : public ir_jump {
1658 public:
1659 ir_return()
1660 : ir_jump(ir_type_return), value(NULL)
1661 {
1662 }
1663
1664 ir_return(ir_rvalue *value)
1665 : ir_jump(ir_type_return), value(value)
1666 {
1667 }
1668
1669 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1670
1671 ir_rvalue *get_value() const
1672 {
1673 return value;
1674 }
1675
1676 virtual void accept(ir_visitor *v)
1677 {
1678 v->visit(this);
1679 }
1680
1681 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1682
1683 ir_rvalue *value;
1684 };
1685
1686
1687 /**
1688 * Jump instructions used inside loops
1689 *
1690 * These include \c break and \c continue. The \c break within a loop is
1691 * different from the \c break within a switch-statement.
1692 *
1693 * \sa ir_switch_jump
1694 */
1695 class ir_loop_jump : public ir_jump {
1696 public:
1697 enum jump_mode {
1698 jump_break,
1699 jump_continue
1700 };
1701
1702 ir_loop_jump(jump_mode mode)
1703 : ir_jump(ir_type_loop_jump)
1704 {
1705 this->mode = mode;
1706 }
1707
1708 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1709
1710 virtual void accept(ir_visitor *v)
1711 {
1712 v->visit(this);
1713 }
1714
1715 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1716
1717 bool is_break() const
1718 {
1719 return mode == jump_break;
1720 }
1721
1722 bool is_continue() const
1723 {
1724 return mode == jump_continue;
1725 }
1726
1727 /** Mode selector for the jump instruction. */
1728 enum jump_mode mode;
1729 };
1730
1731 /**
1732 * IR instruction representing discard statements.
1733 */
1734 class ir_discard : public ir_jump {
1735 public:
1736 ir_discard()
1737 : ir_jump(ir_type_discard)
1738 {
1739 this->condition = NULL;
1740 }
1741
1742 ir_discard(ir_rvalue *cond)
1743 : ir_jump(ir_type_discard)
1744 {
1745 this->condition = cond;
1746 }
1747
1748 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1749
1750 virtual void accept(ir_visitor *v)
1751 {
1752 v->visit(this);
1753 }
1754
1755 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1756
1757 ir_rvalue *condition;
1758 };
1759 /*@}*/
1760
1761
1762 /**
1763 * Texture sampling opcodes used in ir_texture
1764 */
1765 enum ir_texture_opcode {
1766 ir_tex, /**< Regular texture look-up */
1767 ir_txb, /**< Texture look-up with LOD bias */
1768 ir_txl, /**< Texture look-up with explicit LOD */
1769 ir_txd, /**< Texture look-up with partial derivatvies */
1770 ir_txf, /**< Texel fetch with explicit LOD */
1771 ir_txf_ms, /**< Multisample texture fetch */
1772 ir_txs, /**< Texture size */
1773 ir_lod, /**< Texture lod query */
1774 ir_tg4, /**< Texture gather */
1775 ir_query_levels, /**< Texture levels query */
1776 ir_texture_samples, /**< Texture samples query */
1777 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1778 };
1779
1780
1781 /**
1782 * IR instruction to sample a texture
1783 *
1784 * The specific form of the IR instruction depends on the \c mode value
1785 * selected from \c ir_texture_opcodes. In the printed IR, these will
1786 * appear as:
1787 *
1788 * Texel offset (0 or an expression)
1789 * | Projection divisor
1790 * | | Shadow comparator
1791 * | | |
1792 * v v v
1793 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1794 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1795 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1796 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1797 * (txf <type> <sampler> <coordinate> 0 <lod>)
1798 * (txf_ms
1799 * <type> <sampler> <coordinate> <sample_index>)
1800 * (txs <type> <sampler> <lod>)
1801 * (lod <type> <sampler> <coordinate>)
1802 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1803 * (query_levels <type> <sampler>)
1804 * (samples_identical <sampler> <coordinate>)
1805 */
1806 class ir_texture : public ir_rvalue {
1807 public:
1808 ir_texture(enum ir_texture_opcode op)
1809 : ir_rvalue(ir_type_texture),
1810 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1811 shadow_comparator(NULL), offset(NULL)
1812 {
1813 memset(&lod_info, 0, sizeof(lod_info));
1814 }
1815
1816 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1817
1818 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1819
1820 virtual void accept(ir_visitor *v)
1821 {
1822 v->visit(this);
1823 }
1824
1825 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1826
1827 virtual bool equals(const ir_instruction *ir,
1828 enum ir_node_type ignore = ir_type_unset) const;
1829
1830 /**
1831 * Return a string representing the ir_texture_opcode.
1832 */
1833 const char *opcode_string();
1834
1835 /** Set the sampler and type. */
1836 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1837
1838 /**
1839 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1840 */
1841 static ir_texture_opcode get_opcode(const char *);
1842
1843 enum ir_texture_opcode op;
1844
1845 /** Sampler to use for the texture access. */
1846 ir_dereference *sampler;
1847
1848 /** Texture coordinate to sample */
1849 ir_rvalue *coordinate;
1850
1851 /**
1852 * Value used for projective divide.
1853 *
1854 * If there is no projective divide (the common case), this will be
1855 * \c NULL. Optimization passes should check for this to point to a constant
1856 * of 1.0 and replace that with \c NULL.
1857 */
1858 ir_rvalue *projector;
1859
1860 /**
1861 * Coordinate used for comparison on shadow look-ups.
1862 *
1863 * If there is no shadow comparison, this will be \c NULL. For the
1864 * \c ir_txf opcode, this *must* be \c NULL.
1865 */
1866 ir_rvalue *shadow_comparator;
1867
1868 /** Texel offset. */
1869 ir_rvalue *offset;
1870
1871 union {
1872 ir_rvalue *lod; /**< Floating point LOD */
1873 ir_rvalue *bias; /**< Floating point LOD bias */
1874 ir_rvalue *sample_index; /**< MSAA sample index */
1875 ir_rvalue *component; /**< Gather component selector */
1876 struct {
1877 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1878 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1879 } grad;
1880 } lod_info;
1881 };
1882
1883
1884 struct ir_swizzle_mask {
1885 unsigned x:2;
1886 unsigned y:2;
1887 unsigned z:2;
1888 unsigned w:2;
1889
1890 /**
1891 * Number of components in the swizzle.
1892 */
1893 unsigned num_components:3;
1894
1895 /**
1896 * Does the swizzle contain duplicate components?
1897 *
1898 * L-value swizzles cannot contain duplicate components.
1899 */
1900 unsigned has_duplicates:1;
1901 };
1902
1903
1904 class ir_swizzle : public ir_rvalue {
1905 public:
1906 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1907 unsigned count);
1908
1909 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1910
1911 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1912
1913 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1914
1915 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1916
1917 /**
1918 * Construct an ir_swizzle from the textual representation. Can fail.
1919 */
1920 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1921
1922 virtual void accept(ir_visitor *v)
1923 {
1924 v->visit(this);
1925 }
1926
1927 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1928
1929 virtual bool equals(const ir_instruction *ir,
1930 enum ir_node_type ignore = ir_type_unset) const;
1931
1932 bool is_lvalue() const
1933 {
1934 return val->is_lvalue() && !mask.has_duplicates;
1935 }
1936
1937 /**
1938 * Get the variable that is ultimately referenced by an r-value
1939 */
1940 virtual ir_variable *variable_referenced() const;
1941
1942 ir_rvalue *val;
1943 ir_swizzle_mask mask;
1944
1945 private:
1946 /**
1947 * Initialize the mask component of a swizzle
1948 *
1949 * This is used by the \c ir_swizzle constructors.
1950 */
1951 void init_mask(const unsigned *components, unsigned count);
1952 };
1953
1954
1955 class ir_dereference : public ir_rvalue {
1956 public:
1957 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1958
1959 bool is_lvalue() const;
1960
1961 /**
1962 * Get the variable that is ultimately referenced by an r-value
1963 */
1964 virtual ir_variable *variable_referenced() const = 0;
1965
1966 protected:
1967 ir_dereference(enum ir_node_type t)
1968 : ir_rvalue(t)
1969 {
1970 }
1971 };
1972
1973
1974 class ir_dereference_variable : public ir_dereference {
1975 public:
1976 ir_dereference_variable(ir_variable *var);
1977
1978 virtual ir_dereference_variable *clone(void *mem_ctx,
1979 struct hash_table *) const;
1980
1981 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1982
1983 virtual bool equals(const ir_instruction *ir,
1984 enum ir_node_type ignore = ir_type_unset) const;
1985
1986 /**
1987 * Get the variable that is ultimately referenced by an r-value
1988 */
1989 virtual ir_variable *variable_referenced() const
1990 {
1991 return this->var;
1992 }
1993
1994 virtual ir_variable *whole_variable_referenced()
1995 {
1996 /* ir_dereference_variable objects always dereference the entire
1997 * variable. However, if this dereference is dereferenced by anything
1998 * else, the complete deferefernce chain is not a whole-variable
1999 * dereference. This method should only be called on the top most
2000 * ir_rvalue in a dereference chain.
2001 */
2002 return this->var;
2003 }
2004
2005 virtual void accept(ir_visitor *v)
2006 {
2007 v->visit(this);
2008 }
2009
2010 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2011
2012 /**
2013 * Object being dereferenced.
2014 */
2015 ir_variable *var;
2016 };
2017
2018
2019 class ir_dereference_array : public ir_dereference {
2020 public:
2021 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2022
2023 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2024
2025 virtual ir_dereference_array *clone(void *mem_ctx,
2026 struct hash_table *) const;
2027
2028 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2029
2030 virtual bool equals(const ir_instruction *ir,
2031 enum ir_node_type ignore = ir_type_unset) const;
2032
2033 /**
2034 * Get the variable that is ultimately referenced by an r-value
2035 */
2036 virtual ir_variable *variable_referenced() const
2037 {
2038 return this->array->variable_referenced();
2039 }
2040
2041 virtual void accept(ir_visitor *v)
2042 {
2043 v->visit(this);
2044 }
2045
2046 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2047
2048 ir_rvalue *array;
2049 ir_rvalue *array_index;
2050
2051 private:
2052 void set_array(ir_rvalue *value);
2053 };
2054
2055
2056 class ir_dereference_record : public ir_dereference {
2057 public:
2058 ir_dereference_record(ir_rvalue *value, const char *field);
2059
2060 ir_dereference_record(ir_variable *var, const char *field);
2061
2062 virtual ir_dereference_record *clone(void *mem_ctx,
2063 struct hash_table *) const;
2064
2065 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2066
2067 /**
2068 * Get the variable that is ultimately referenced by an r-value
2069 */
2070 virtual ir_variable *variable_referenced() const
2071 {
2072 return this->record->variable_referenced();
2073 }
2074
2075 virtual void accept(ir_visitor *v)
2076 {
2077 v->visit(this);
2078 }
2079
2080 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2081
2082 ir_rvalue *record;
2083 const char *field;
2084 };
2085
2086
2087 /**
2088 * Data stored in an ir_constant
2089 */
2090 union ir_constant_data {
2091 unsigned u[16];
2092 int i[16];
2093 float f[16];
2094 bool b[16];
2095 double d[16];
2096 uint64_t u64[16];
2097 int64_t i64[16];
2098 };
2099
2100
2101 class ir_constant : public ir_rvalue {
2102 public:
2103 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2104 ir_constant(bool b, unsigned vector_elements=1);
2105 ir_constant(unsigned int u, unsigned vector_elements=1);
2106 ir_constant(int i, unsigned vector_elements=1);
2107 ir_constant(float f, unsigned vector_elements=1);
2108 ir_constant(double d, unsigned vector_elements=1);
2109 ir_constant(uint64_t u64, unsigned vector_elements=1);
2110 ir_constant(int64_t i64, unsigned vector_elements=1);
2111
2112 /**
2113 * Construct an ir_constant from a list of ir_constant values
2114 */
2115 ir_constant(const struct glsl_type *type, exec_list *values);
2116
2117 /**
2118 * Construct an ir_constant from a scalar component of another ir_constant
2119 *
2120 * The new \c ir_constant inherits the type of the component from the
2121 * source constant.
2122 *
2123 * \note
2124 * In the case of a matrix constant, the new constant is a scalar, \b not
2125 * a vector.
2126 */
2127 ir_constant(const ir_constant *c, unsigned i);
2128
2129 /**
2130 * Return a new ir_constant of the specified type containing all zeros.
2131 */
2132 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2133
2134 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2135
2136 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2137
2138 virtual void accept(ir_visitor *v)
2139 {
2140 v->visit(this);
2141 }
2142
2143 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2144
2145 virtual bool equals(const ir_instruction *ir,
2146 enum ir_node_type ignore = ir_type_unset) const;
2147
2148 /**
2149 * Get a particular component of a constant as a specific type
2150 *
2151 * This is useful, for example, to get a value from an integer constant
2152 * as a float or bool. This appears frequently when constructors are
2153 * called with all constant parameters.
2154 */
2155 /*@{*/
2156 bool get_bool_component(unsigned i) const;
2157 float get_float_component(unsigned i) const;
2158 double get_double_component(unsigned i) const;
2159 int get_int_component(unsigned i) const;
2160 unsigned get_uint_component(unsigned i) const;
2161 int64_t get_int64_component(unsigned i) const;
2162 uint64_t get_uint64_component(unsigned i) const;
2163 /*@}*/
2164
2165 ir_constant *get_array_element(unsigned i) const;
2166
2167 ir_constant *get_record_field(const char *name);
2168
2169 /**
2170 * Copy the values on another constant at a given offset.
2171 *
2172 * The offset is ignored for array or struct copies, it's only for
2173 * scalars or vectors into vectors or matrices.
2174 *
2175 * With identical types on both sides and zero offset it's clone()
2176 * without creating a new object.
2177 */
2178
2179 void copy_offset(ir_constant *src, int offset);
2180
2181 /**
2182 * Copy the values on another constant at a given offset and
2183 * following an assign-like mask.
2184 *
2185 * The mask is ignored for scalars.
2186 *
2187 * Note that this function only handles what assign can handle,
2188 * i.e. at most a vector as source and a column of a matrix as
2189 * destination.
2190 */
2191
2192 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2193
2194 /**
2195 * Determine whether a constant has the same value as another constant
2196 *
2197 * \sa ir_constant::is_zero, ir_constant::is_one,
2198 * ir_constant::is_negative_one
2199 */
2200 bool has_value(const ir_constant *) const;
2201
2202 /**
2203 * Return true if this ir_constant represents the given value.
2204 *
2205 * For vectors, this checks that each component is the given value.
2206 */
2207 virtual bool is_value(float f, int i) const;
2208 virtual bool is_zero() const;
2209 virtual bool is_one() const;
2210 virtual bool is_negative_one() const;
2211
2212 /**
2213 * Return true for constants that could be stored as 16-bit unsigned values.
2214 *
2215 * Note that this will return true even for signed integer ir_constants, as
2216 * long as the value is non-negative and fits in 16-bits.
2217 */
2218 virtual bool is_uint16_constant() const;
2219
2220 /**
2221 * Value of the constant.
2222 *
2223 * The field used to back the values supplied by the constant is determined
2224 * by the type associated with the \c ir_instruction. Constants may be
2225 * scalars, vectors, or matrices.
2226 */
2227 union ir_constant_data value;
2228
2229 /* Array elements */
2230 ir_constant **array_elements;
2231
2232 /* Structure fields */
2233 exec_list components;
2234
2235 private:
2236 /**
2237 * Parameterless constructor only used by the clone method
2238 */
2239 ir_constant(void);
2240 };
2241
2242 /**
2243 * IR instruction to emit a vertex in a geometry shader.
2244 */
2245 class ir_emit_vertex : public ir_instruction {
2246 public:
2247 ir_emit_vertex(ir_rvalue *stream)
2248 : ir_instruction(ir_type_emit_vertex),
2249 stream(stream)
2250 {
2251 assert(stream);
2252 }
2253
2254 virtual void accept(ir_visitor *v)
2255 {
2256 v->visit(this);
2257 }
2258
2259 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2260 {
2261 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2262 }
2263
2264 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2265
2266 int stream_id() const
2267 {
2268 return stream->as_constant()->value.i[0];
2269 }
2270
2271 ir_rvalue *stream;
2272 };
2273
2274 /**
2275 * IR instruction to complete the current primitive and start a new one in a
2276 * geometry shader.
2277 */
2278 class ir_end_primitive : public ir_instruction {
2279 public:
2280 ir_end_primitive(ir_rvalue *stream)
2281 : ir_instruction(ir_type_end_primitive),
2282 stream(stream)
2283 {
2284 assert(stream);
2285 }
2286
2287 virtual void accept(ir_visitor *v)
2288 {
2289 v->visit(this);
2290 }
2291
2292 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2293 {
2294 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2295 }
2296
2297 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2298
2299 int stream_id() const
2300 {
2301 return stream->as_constant()->value.i[0];
2302 }
2303
2304 ir_rvalue *stream;
2305 };
2306
2307 /**
2308 * IR instruction for tessellation control and compute shader barrier.
2309 */
2310 class ir_barrier : public ir_instruction {
2311 public:
2312 ir_barrier()
2313 : ir_instruction(ir_type_barrier)
2314 {
2315 }
2316
2317 virtual void accept(ir_visitor *v)
2318 {
2319 v->visit(this);
2320 }
2321
2322 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2323 {
2324 return new(mem_ctx) ir_barrier();
2325 }
2326
2327 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2328 };
2329
2330 /*@}*/
2331
2332 /**
2333 * Apply a visitor to each IR node in a list
2334 */
2335 void
2336 visit_exec_list(exec_list *list, ir_visitor *visitor);
2337
2338 /**
2339 * Validate invariants on each IR node in a list
2340 */
2341 void validate_ir_tree(exec_list *instructions);
2342
2343 struct _mesa_glsl_parse_state;
2344 struct gl_shader_program;
2345
2346 /**
2347 * Detect whether an unlinked shader contains static recursion
2348 *
2349 * If the list of instructions is determined to contain static recursion,
2350 * \c _mesa_glsl_error will be called to emit error messages for each function
2351 * that is in the recursion cycle.
2352 */
2353 void
2354 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2355 exec_list *instructions);
2356
2357 /**
2358 * Detect whether a linked shader contains static recursion
2359 *
2360 * If the list of instructions is determined to contain static recursion,
2361 * \c link_error_printf will be called to emit error messages for each function
2362 * that is in the recursion cycle. In addition,
2363 * \c gl_shader_program::LinkStatus will be set to false.
2364 */
2365 void
2366 detect_recursion_linked(struct gl_shader_program *prog,
2367 exec_list *instructions);
2368
2369 /**
2370 * Make a clone of each IR instruction in a list
2371 *
2372 * \param in List of IR instructions that are to be cloned
2373 * \param out List to hold the cloned instructions
2374 */
2375 void
2376 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2377
2378 extern void
2379 _mesa_glsl_initialize_variables(exec_list *instructions,
2380 struct _mesa_glsl_parse_state *state);
2381
2382 extern void
2383 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2384 gl_shader *shader);
2385
2386 extern void
2387 reparent_ir(exec_list *list, void *mem_ctx);
2388
2389 extern void
2390 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2391 gl_shader_stage shader_stage);
2392
2393 extern char *
2394 prototype_string(const glsl_type *return_type, const char *name,
2395 exec_list *parameters);
2396
2397 const char *
2398 mode_string(const ir_variable *var);
2399
2400 /**
2401 * Built-in / reserved GL variables names start with "gl_"
2402 */
2403 static inline bool
2404 is_gl_identifier(const char *s)
2405 {
2406 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2407 }
2408
2409 extern "C" {
2410 #endif /* __cplusplus */
2411
2412 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2413 struct _mesa_glsl_parse_state *state);
2414
2415 extern void
2416 fprint_ir(FILE *f, const void *instruction);
2417
2418 extern const struct gl_builtin_uniform_desc *
2419 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2420
2421 #ifdef __cplusplus
2422 } /* extern "C" */
2423 #endif
2424
2425 unsigned
2426 vertices_per_prim(GLenum prim);
2427
2428 #endif /* IR_H */