glsl: Add ir_function_signature::is_intrinsic() method
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_interpolation_flat() const
594 {
595 return this->data.interpolation == INTERP_MODE_FLAT ||
596 this->type->contains_integer() ||
597 this->type->contains_double();
598 }
599
600 inline bool is_name_ralloced() const
601 {
602 return this->name != ir_variable::tmp_name;
603 }
604
605 /**
606 * Enable emitting extension warnings for this variable
607 */
608 void enable_extension_warning(const char *extension);
609
610 /**
611 * Get the extension warning string for this variable
612 *
613 * If warnings are not enabled, \c NULL is returned.
614 */
615 const char *get_extension_warning() const;
616
617 /**
618 * Declared type of the variable
619 */
620 const struct glsl_type *type;
621
622 /**
623 * Declared name of the variable
624 */
625 const char *name;
626
627 struct ir_variable_data {
628
629 /**
630 * Is the variable read-only?
631 *
632 * This is set for variables declared as \c const, shader inputs,
633 * and uniforms.
634 */
635 unsigned read_only:1;
636 unsigned centroid:1;
637 unsigned sample:1;
638 unsigned patch:1;
639 unsigned invariant:1;
640 unsigned precise:1;
641
642 /**
643 * Has this variable been used for reading or writing?
644 *
645 * Several GLSL semantic checks require knowledge of whether or not a
646 * variable has been used. For example, it is an error to redeclare a
647 * variable as invariant after it has been used.
648 *
649 * This is only maintained in the ast_to_hir.cpp path, not in
650 * Mesa's fixed function or ARB program paths.
651 */
652 unsigned used:1;
653
654 /**
655 * Has this variable been statically assigned?
656 *
657 * This answers whether the variable was assigned in any path of
658 * the shader during ast_to_hir. This doesn't answer whether it is
659 * still written after dead code removal, nor is it maintained in
660 * non-ast_to_hir.cpp (GLSL parsing) paths.
661 */
662 unsigned assigned:1;
663
664 /**
665 * When separate shader programs are enabled, only input/outputs between
666 * the stages of a multi-stage separate program can be safely removed
667 * from the shader interface. Other input/outputs must remains active.
668 */
669 unsigned always_active_io:1;
670
671 /**
672 * Enum indicating how the variable was declared. See
673 * ir_var_declaration_type.
674 *
675 * This is used to detect certain kinds of illegal variable redeclarations.
676 */
677 unsigned how_declared:2;
678
679 /**
680 * Storage class of the variable.
681 *
682 * \sa ir_variable_mode
683 */
684 unsigned mode:4;
685
686 /**
687 * Interpolation mode for shader inputs / outputs
688 *
689 * \sa glsl_interp_mode
690 */
691 unsigned interpolation:2;
692
693 /**
694 * \name ARB_fragment_coord_conventions
695 * @{
696 */
697 unsigned origin_upper_left:1;
698 unsigned pixel_center_integer:1;
699 /*@}*/
700
701 /**
702 * Was the location explicitly set in the shader?
703 *
704 * If the location is explicitly set in the shader, it \b cannot be changed
705 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
706 * no effect).
707 */
708 unsigned explicit_location:1;
709 unsigned explicit_index:1;
710
711 /**
712 * Was an initial binding explicitly set in the shader?
713 *
714 * If so, constant_value contains an integer ir_constant representing the
715 * initial binding point.
716 */
717 unsigned explicit_binding:1;
718
719 /**
720 * Was an initial component explicitly set in the shader?
721 */
722 unsigned explicit_component:1;
723
724 /**
725 * Does this variable have an initializer?
726 *
727 * This is used by the linker to cross-validiate initializers of global
728 * variables.
729 */
730 unsigned has_initializer:1;
731
732 /**
733 * Is this variable a generic output or input that has not yet been matched
734 * up to a variable in another stage of the pipeline?
735 *
736 * This is used by the linker as scratch storage while assigning locations
737 * to generic inputs and outputs.
738 */
739 unsigned is_unmatched_generic_inout:1;
740
741 /**
742 * Is this varying used only by transform feedback?
743 *
744 * This is used by the linker to decide if its safe to pack the varying.
745 */
746 unsigned is_xfb_only:1;
747
748 /**
749 * Was a transfor feedback buffer set in the shader?
750 */
751 unsigned explicit_xfb_buffer:1;
752
753 /**
754 * Was a transfor feedback offset set in the shader?
755 */
756 unsigned explicit_xfb_offset:1;
757
758 /**
759 * Was a transfor feedback stride set in the shader?
760 */
761 unsigned explicit_xfb_stride:1;
762
763 /**
764 * If non-zero, then this variable may be packed along with other variables
765 * into a single varying slot, so this offset should be applied when
766 * accessing components. For example, an offset of 1 means that the x
767 * component of this variable is actually stored in component y of the
768 * location specified by \c location.
769 */
770 unsigned location_frac:2;
771
772 /**
773 * Layout of the matrix. Uses glsl_matrix_layout values.
774 */
775 unsigned matrix_layout:2;
776
777 /**
778 * Non-zero if this variable was created by lowering a named interface
779 * block.
780 */
781 unsigned from_named_ifc_block:1;
782
783 /**
784 * Non-zero if the variable must be a shader input. This is useful for
785 * constraints on function parameters.
786 */
787 unsigned must_be_shader_input:1;
788
789 /**
790 * Output index for dual source blending.
791 *
792 * \note
793 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
794 * source blending.
795 */
796 unsigned index:1;
797
798 /**
799 * Precision qualifier.
800 *
801 * In desktop GLSL we do not care about precision qualifiers at all, in
802 * fact, the spec says that precision qualifiers are ignored.
803 *
804 * To make things easy, we make it so that this field is always
805 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
806 * have the same precision value and the checks we add in the compiler
807 * for this field will never break a desktop shader compile.
808 */
809 unsigned precision:2;
810
811 /**
812 * \brief Layout qualifier for gl_FragDepth.
813 *
814 * This is not equal to \c ir_depth_layout_none if and only if this
815 * variable is \c gl_FragDepth and a layout qualifier is specified.
816 */
817 ir_depth_layout depth_layout:3;
818
819 /**
820 * ARB_shader_image_load_store qualifiers.
821 */
822 unsigned image_read_only:1; /**< "readonly" qualifier. */
823 unsigned image_write_only:1; /**< "writeonly" qualifier. */
824 unsigned image_coherent:1;
825 unsigned image_volatile:1;
826 unsigned image_restrict:1;
827
828 /**
829 * ARB_shader_storage_buffer_object
830 */
831 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
832
833 unsigned implicit_sized_array:1;
834
835 /**
836 * Whether this is a fragment shader output implicitly initialized with
837 * the previous contents of the specified render target at the
838 * framebuffer location corresponding to this shader invocation.
839 */
840 unsigned fb_fetch_output:1;
841
842 /**
843 * Emit a warning if this variable is accessed.
844 */
845 private:
846 uint8_t warn_extension_index;
847
848 public:
849 /** Image internal format if specified explicitly, otherwise GL_NONE. */
850 uint16_t image_format;
851
852 private:
853 /**
854 * Number of state slots used
855 *
856 * \note
857 * This could be stored in as few as 7-bits, if necessary. If it is made
858 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
859 * be safe.
860 */
861 uint16_t _num_state_slots;
862
863 public:
864 /**
865 * Initial binding point for a sampler, atomic, or UBO.
866 *
867 * For array types, this represents the binding point for the first element.
868 */
869 int16_t binding;
870
871 /**
872 * Storage location of the base of this variable
873 *
874 * The precise meaning of this field depends on the nature of the variable.
875 *
876 * - Vertex shader input: one of the values from \c gl_vert_attrib.
877 * - Vertex shader output: one of the values from \c gl_varying_slot.
878 * - Geometry shader input: one of the values from \c gl_varying_slot.
879 * - Geometry shader output: one of the values from \c gl_varying_slot.
880 * - Fragment shader input: one of the values from \c gl_varying_slot.
881 * - Fragment shader output: one of the values from \c gl_frag_result.
882 * - Uniforms: Per-stage uniform slot number for default uniform block.
883 * - Uniforms: Index within the uniform block definition for UBO members.
884 * - Non-UBO Uniforms: explicit location until linking then reused to
885 * store uniform slot number.
886 * - Other: This field is not currently used.
887 *
888 * If the variable is a uniform, shader input, or shader output, and the
889 * slot has not been assigned, the value will be -1.
890 */
891 int location;
892
893 /**
894 * for glsl->tgsi/mesa IR we need to store the index into the
895 * parameters for uniforms, initially the code overloaded location
896 * but this causes problems with indirect samplers and AoA.
897 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
898 */
899 int param_index;
900
901 /**
902 * Vertex stream output identifier.
903 */
904 unsigned stream;
905
906 /**
907 * Atomic, transform feedback or block member offset.
908 */
909 unsigned offset;
910
911 /**
912 * Highest element accessed with a constant expression array index
913 *
914 * Not used for non-array variables. -1 is never accessed.
915 */
916 int max_array_access;
917
918 /**
919 * Transform feedback buffer.
920 */
921 unsigned xfb_buffer;
922
923 /**
924 * Transform feedback stride.
925 */
926 unsigned xfb_stride;
927
928 /**
929 * Allow (only) ir_variable direct access private members.
930 */
931 friend class ir_variable;
932 } data;
933
934 /**
935 * Value assigned in the initializer of a variable declared "const"
936 */
937 ir_constant *constant_value;
938
939 /**
940 * Constant expression assigned in the initializer of the variable
941 *
942 * \warning
943 * This field and \c ::constant_value are distinct. Even if the two fields
944 * refer to constants with the same value, they must point to separate
945 * objects.
946 */
947 ir_constant *constant_initializer;
948
949 private:
950 static const char *const warn_extension_table[];
951
952 union {
953 /**
954 * For variables which satisfy the is_interface_instance() predicate,
955 * this points to an array of integers such that if the ith member of
956 * the interface block is an array, max_ifc_array_access[i] is the
957 * maximum array element of that member that has been accessed. If the
958 * ith member of the interface block is not an array,
959 * max_ifc_array_access[i] is unused.
960 *
961 * For variables whose type is not an interface block, this pointer is
962 * NULL.
963 */
964 int *max_ifc_array_access;
965
966 /**
967 * Built-in state that backs this uniform
968 *
969 * Once set at variable creation, \c state_slots must remain invariant.
970 *
971 * If the variable is not a uniform, \c _num_state_slots will be zero
972 * and \c state_slots will be \c NULL.
973 */
974 ir_state_slot *state_slots;
975 } u;
976
977 /**
978 * For variables that are in an interface block or are an instance of an
979 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
980 *
981 * \sa ir_variable::location
982 */
983 const glsl_type *interface_type;
984
985 /**
986 * Name used for anonymous compiler temporaries
987 */
988 static const char tmp_name[];
989
990 public:
991 /**
992 * Should the construct keep names for ir_var_temporary variables?
993 *
994 * When this global is false, names passed to the constructor for
995 * \c ir_var_temporary variables will be dropped. Instead, the variable will
996 * be named "compiler_temp". This name will be in static storage.
997 *
998 * \warning
999 * \b NEVER change the mode of an \c ir_var_temporary.
1000 *
1001 * \warning
1002 * This variable is \b not thread-safe. It is global, \b not
1003 * per-context. It begins life false. A context can, at some point, make
1004 * it true. From that point on, it will be true forever. This should be
1005 * okay since it will only be set true while debugging.
1006 */
1007 static bool temporaries_allocate_names;
1008 };
1009
1010 /**
1011 * A function that returns whether a built-in function is available in the
1012 * current shading language (based on version, ES or desktop, and extensions).
1013 */
1014 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1015
1016 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1017 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1018
1019 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1020 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1021
1022 enum ir_intrinsic_id {
1023 ir_intrinsic_invalid = 0,
1024
1025 /**
1026 * \name Generic intrinsics
1027 *
1028 * Each of these intrinsics has a specific version for shared variables and
1029 * SSBOs.
1030 */
1031 /*@{*/
1032 ir_intrinsic_generic_load,
1033 ir_intrinsic_generic_store,
1034 ir_intrinsic_generic_atomic_add,
1035 ir_intrinsic_generic_atomic_and,
1036 ir_intrinsic_generic_atomic_or,
1037 ir_intrinsic_generic_atomic_xor,
1038 ir_intrinsic_generic_atomic_min,
1039 ir_intrinsic_generic_atomic_max,
1040 ir_intrinsic_generic_atomic_exchange,
1041 ir_intrinsic_generic_atomic_comp_swap,
1042 /*@}*/
1043
1044 ir_intrinsic_atomic_counter_read,
1045 ir_intrinsic_atomic_counter_increment,
1046 ir_intrinsic_atomic_counter_predecrement,
1047 ir_intrinsic_atomic_counter_add,
1048 ir_intrinsic_atomic_counter_sub,
1049 ir_intrinsic_atomic_counter_and,
1050 ir_intrinsic_atomic_counter_or,
1051 ir_intrinsic_atomic_counter_xor,
1052 ir_intrinsic_atomic_counter_min,
1053 ir_intrinsic_atomic_counter_max,
1054 ir_intrinsic_atomic_counter_exchange,
1055 ir_intrinsic_atomic_counter_comp_swap,
1056
1057 ir_intrinsic_image_load,
1058 ir_intrinsic_image_store,
1059 ir_intrinsic_image_atomic_add,
1060 ir_intrinsic_image_atomic_and,
1061 ir_intrinsic_image_atomic_or,
1062 ir_intrinsic_image_atomic_xor,
1063 ir_intrinsic_image_atomic_min,
1064 ir_intrinsic_image_atomic_max,
1065 ir_intrinsic_image_atomic_exchange,
1066 ir_intrinsic_image_atomic_comp_swap,
1067 ir_intrinsic_image_size,
1068 ir_intrinsic_image_samples,
1069
1070 ir_intrinsic_ssbo_load,
1071 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1072 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1073 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1074 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1075 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1076 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1077 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1078 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1079 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1080
1081 ir_intrinsic_memory_barrier,
1082 ir_intrinsic_shader_clock,
1083 ir_intrinsic_group_memory_barrier,
1084 ir_intrinsic_memory_barrier_atomic_counter,
1085 ir_intrinsic_memory_barrier_buffer,
1086 ir_intrinsic_memory_barrier_image,
1087 ir_intrinsic_memory_barrier_shared,
1088
1089 ir_intrinsic_shared_load,
1090 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1091 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1092 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1093 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1094 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1095 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1096 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1097 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1098 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1099 };
1100
1101 /*@{*/
1102 /**
1103 * The representation of a function instance; may be the full definition or
1104 * simply a prototype.
1105 */
1106 class ir_function_signature : public ir_instruction {
1107 /* An ir_function_signature will be part of the list of signatures in
1108 * an ir_function.
1109 */
1110 public:
1111 ir_function_signature(const glsl_type *return_type,
1112 builtin_available_predicate builtin_avail = NULL);
1113
1114 virtual ir_function_signature *clone(void *mem_ctx,
1115 struct hash_table *ht) const;
1116 ir_function_signature *clone_prototype(void *mem_ctx,
1117 struct hash_table *ht) const;
1118
1119 virtual void accept(ir_visitor *v)
1120 {
1121 v->visit(this);
1122 }
1123
1124 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1125
1126 /**
1127 * Attempt to evaluate this function as a constant expression,
1128 * given a list of the actual parameters and the variable context.
1129 * Returns NULL for non-built-ins.
1130 */
1131 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1132
1133 /**
1134 * Get the name of the function for which this is a signature
1135 */
1136 const char *function_name() const;
1137
1138 /**
1139 * Get a handle to the function for which this is a signature
1140 *
1141 * There is no setter function, this function returns a \c const pointer,
1142 * and \c ir_function_signature::_function is private for a reason. The
1143 * only way to make a connection between a function and function signature
1144 * is via \c ir_function::add_signature. This helps ensure that certain
1145 * invariants (i.e., a function signature is in the list of signatures for
1146 * its \c _function) are met.
1147 *
1148 * \sa ir_function::add_signature
1149 */
1150 inline const class ir_function *function() const
1151 {
1152 return this->_function;
1153 }
1154
1155 /**
1156 * Check whether the qualifiers match between this signature's parameters
1157 * and the supplied parameter list. If not, returns the name of the first
1158 * parameter with mismatched qualifiers (for use in error messages).
1159 */
1160 const char *qualifiers_match(exec_list *params);
1161
1162 /**
1163 * Replace the current parameter list with the given one. This is useful
1164 * if the current information came from a prototype, and either has invalid
1165 * or missing parameter names.
1166 */
1167 void replace_parameters(exec_list *new_params);
1168
1169 /**
1170 * Function return type.
1171 *
1172 * \note This discards the optional precision qualifier.
1173 */
1174 const struct glsl_type *return_type;
1175
1176 /**
1177 * List of ir_variable of function parameters.
1178 *
1179 * This represents the storage. The paramaters passed in a particular
1180 * call will be in ir_call::actual_paramaters.
1181 */
1182 struct exec_list parameters;
1183
1184 /** Whether or not this function has a body (which may be empty). */
1185 unsigned is_defined:1;
1186
1187 /** Whether or not this function signature is a built-in. */
1188 bool is_builtin() const;
1189
1190 /** Whehter or not this function signautre is an intrinsic. */
1191 inline bool is_intrinsic() const
1192 {
1193 return _is_intrinsic;
1194 }
1195
1196 /**
1197 * Whether or not this function is an intrinsic to be implemented
1198 * by the driver.
1199 */
1200 bool _is_intrinsic;
1201
1202 /** Indentifier for this intrinsic. */
1203 enum ir_intrinsic_id intrinsic_id;
1204
1205 /** Whether or not a built-in is available for this shader. */
1206 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1207
1208 /** Body of instructions in the function. */
1209 struct exec_list body;
1210
1211 private:
1212 /**
1213 * A function pointer to a predicate that answers whether a built-in
1214 * function is available in the current shader. NULL if not a built-in.
1215 */
1216 builtin_available_predicate builtin_avail;
1217
1218 /** Function of which this signature is one overload. */
1219 class ir_function *_function;
1220
1221 /** Function signature of which this one is a prototype clone */
1222 const ir_function_signature *origin;
1223
1224 friend class ir_function;
1225
1226 /**
1227 * Helper function to run a list of instructions for constant
1228 * expression evaluation.
1229 *
1230 * The hash table represents the values of the visible variables.
1231 * There are no scoping issues because the table is indexed on
1232 * ir_variable pointers, not variable names.
1233 *
1234 * Returns false if the expression is not constant, true otherwise,
1235 * and the value in *result if result is non-NULL.
1236 */
1237 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1238 struct hash_table *variable_context,
1239 ir_constant **result);
1240 };
1241
1242
1243 /**
1244 * Header for tracking multiple overloaded functions with the same name.
1245 * Contains a list of ir_function_signatures representing each of the
1246 * actual functions.
1247 */
1248 class ir_function : public ir_instruction {
1249 public:
1250 ir_function(const char *name);
1251
1252 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1253
1254 virtual void accept(ir_visitor *v)
1255 {
1256 v->visit(this);
1257 }
1258
1259 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1260
1261 void add_signature(ir_function_signature *sig)
1262 {
1263 sig->_function = this;
1264 this->signatures.push_tail(sig);
1265 }
1266
1267 /**
1268 * Find a signature that matches a set of actual parameters, taking implicit
1269 * conversions into account. Also flags whether the match was exact.
1270 */
1271 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1272 const exec_list *actual_param,
1273 bool allow_builtins,
1274 bool *match_is_exact);
1275
1276 /**
1277 * Find a signature that matches a set of actual parameters, taking implicit
1278 * conversions into account.
1279 */
1280 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1281 const exec_list *actual_param,
1282 bool allow_builtins);
1283
1284 /**
1285 * Find a signature that exactly matches a set of actual parameters without
1286 * any implicit type conversions.
1287 */
1288 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1289 const exec_list *actual_ps);
1290
1291 /**
1292 * Name of the function.
1293 */
1294 const char *name;
1295
1296 /** Whether or not this function has a signature that isn't a built-in. */
1297 bool has_user_signature();
1298
1299 /**
1300 * List of ir_function_signature for each overloaded function with this name.
1301 */
1302 struct exec_list signatures;
1303
1304 /**
1305 * is this function a subroutine type declaration
1306 * e.g. subroutine void type1(float arg1);
1307 */
1308 bool is_subroutine;
1309
1310 /**
1311 * is this function associated to a subroutine type
1312 * e.g. subroutine (type1, type2) function_name { function_body };
1313 * would have num_subroutine_types 2,
1314 * and pointers to the type1 and type2 types.
1315 */
1316 int num_subroutine_types;
1317 const struct glsl_type **subroutine_types;
1318
1319 int subroutine_index;
1320 };
1321
1322 inline const char *ir_function_signature::function_name() const
1323 {
1324 return this->_function->name;
1325 }
1326 /*@}*/
1327
1328
1329 /**
1330 * IR instruction representing high-level if-statements
1331 */
1332 class ir_if : public ir_instruction {
1333 public:
1334 ir_if(ir_rvalue *condition)
1335 : ir_instruction(ir_type_if), condition(condition)
1336 {
1337 }
1338
1339 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1340
1341 virtual void accept(ir_visitor *v)
1342 {
1343 v->visit(this);
1344 }
1345
1346 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1347
1348 ir_rvalue *condition;
1349 /** List of ir_instruction for the body of the then branch */
1350 exec_list then_instructions;
1351 /** List of ir_instruction for the body of the else branch */
1352 exec_list else_instructions;
1353 };
1354
1355
1356 /**
1357 * IR instruction representing a high-level loop structure.
1358 */
1359 class ir_loop : public ir_instruction {
1360 public:
1361 ir_loop();
1362
1363 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1364
1365 virtual void accept(ir_visitor *v)
1366 {
1367 v->visit(this);
1368 }
1369
1370 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1371
1372 /** List of ir_instruction that make up the body of the loop. */
1373 exec_list body_instructions;
1374 };
1375
1376
1377 class ir_assignment : public ir_instruction {
1378 public:
1379 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1380
1381 /**
1382 * Construct an assignment with an explicit write mask
1383 *
1384 * \note
1385 * Since a write mask is supplied, the LHS must already be a bare
1386 * \c ir_dereference. The cannot be any swizzles in the LHS.
1387 */
1388 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1389 unsigned write_mask);
1390
1391 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1392
1393 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1394
1395 virtual void accept(ir_visitor *v)
1396 {
1397 v->visit(this);
1398 }
1399
1400 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1401
1402 /**
1403 * Get a whole variable written by an assignment
1404 *
1405 * If the LHS of the assignment writes a whole variable, the variable is
1406 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1407 * assignment are:
1408 *
1409 * - Assigning to a scalar
1410 * - Assigning to all components of a vector
1411 * - Whole array (or matrix) assignment
1412 * - Whole structure assignment
1413 */
1414 ir_variable *whole_variable_written();
1415
1416 /**
1417 * Set the LHS of an assignment
1418 */
1419 void set_lhs(ir_rvalue *lhs);
1420
1421 /**
1422 * Left-hand side of the assignment.
1423 *
1424 * This should be treated as read only. If you need to set the LHS of an
1425 * assignment, use \c ir_assignment::set_lhs.
1426 */
1427 ir_dereference *lhs;
1428
1429 /**
1430 * Value being assigned
1431 */
1432 ir_rvalue *rhs;
1433
1434 /**
1435 * Optional condition for the assignment.
1436 */
1437 ir_rvalue *condition;
1438
1439
1440 /**
1441 * Component mask written
1442 *
1443 * For non-vector types in the LHS, this field will be zero. For vector
1444 * types, a bit will be set for each component that is written. Note that
1445 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1446 *
1447 * A partially-set write mask means that each enabled channel gets
1448 * the value from a consecutive channel of the rhs. For example,
1449 * to write just .xyw of gl_FrontColor with color:
1450 *
1451 * (assign (constant bool (1)) (xyw)
1452 * (var_ref gl_FragColor)
1453 * (swiz xyw (var_ref color)))
1454 */
1455 unsigned write_mask:4;
1456 };
1457
1458 #include "ir_expression_operation.h"
1459
1460 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1461
1462 class ir_expression : public ir_rvalue {
1463 public:
1464 ir_expression(int op, const struct glsl_type *type,
1465 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1466 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1467
1468 /**
1469 * Constructor for unary operation expressions
1470 */
1471 ir_expression(int op, ir_rvalue *);
1472
1473 /**
1474 * Constructor for binary operation expressions
1475 */
1476 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1477
1478 /**
1479 * Constructor for ternary operation expressions
1480 */
1481 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1482
1483 virtual bool equals(const ir_instruction *ir,
1484 enum ir_node_type ignore = ir_type_unset) const;
1485
1486 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1487
1488 /**
1489 * Attempt to constant-fold the expression
1490 *
1491 * The "variable_context" hash table links ir_variable * to ir_constant *
1492 * that represent the variables' values. \c NULL represents an empty
1493 * context.
1494 *
1495 * If the expression cannot be constant folded, this method will return
1496 * \c NULL.
1497 */
1498 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1499
1500 /**
1501 * Determine the number of operands used by an expression
1502 */
1503 static unsigned int get_num_operands(ir_expression_operation);
1504
1505 /**
1506 * Determine the number of operands used by an expression
1507 */
1508 unsigned int get_num_operands() const
1509 {
1510 return (this->operation == ir_quadop_vector)
1511 ? this->type->vector_elements : get_num_operands(operation);
1512 }
1513
1514 /**
1515 * Return whether the expression operates on vectors horizontally.
1516 */
1517 bool is_horizontal() const
1518 {
1519 return operation == ir_binop_all_equal ||
1520 operation == ir_binop_any_nequal ||
1521 operation == ir_binop_dot ||
1522 operation == ir_binop_vector_extract ||
1523 operation == ir_triop_vector_insert ||
1524 operation == ir_binop_ubo_load ||
1525 operation == ir_quadop_vector;
1526 }
1527
1528 /**
1529 * Do a reverse-lookup to translate the given string into an operator.
1530 */
1531 static ir_expression_operation get_operator(const char *);
1532
1533 virtual void accept(ir_visitor *v)
1534 {
1535 v->visit(this);
1536 }
1537
1538 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1539
1540 virtual ir_variable *variable_referenced() const;
1541
1542 ir_expression_operation operation;
1543 ir_rvalue *operands[4];
1544 };
1545
1546
1547 /**
1548 * HIR instruction representing a high-level function call, containing a list
1549 * of parameters and returning a value in the supplied temporary.
1550 */
1551 class ir_call : public ir_instruction {
1552 public:
1553 ir_call(ir_function_signature *callee,
1554 ir_dereference_variable *return_deref,
1555 exec_list *actual_parameters)
1556 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1557 {
1558 assert(callee->return_type != NULL);
1559 actual_parameters->move_nodes_to(& this->actual_parameters);
1560 this->use_builtin = callee->is_builtin();
1561 }
1562
1563 ir_call(ir_function_signature *callee,
1564 ir_dereference_variable *return_deref,
1565 exec_list *actual_parameters,
1566 ir_variable *var, ir_rvalue *array_idx)
1567 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1568 {
1569 assert(callee->return_type != NULL);
1570 actual_parameters->move_nodes_to(& this->actual_parameters);
1571 this->use_builtin = callee->is_builtin();
1572 }
1573
1574 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1575
1576 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1577
1578 virtual void accept(ir_visitor *v)
1579 {
1580 v->visit(this);
1581 }
1582
1583 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1584
1585 /**
1586 * Get the name of the function being called.
1587 */
1588 const char *callee_name() const
1589 {
1590 return callee->function_name();
1591 }
1592
1593 /**
1594 * Generates an inline version of the function before @ir,
1595 * storing the return value in return_deref.
1596 */
1597 void generate_inline(ir_instruction *ir);
1598
1599 /**
1600 * Storage for the function's return value.
1601 * This must be NULL if the return type is void.
1602 */
1603 ir_dereference_variable *return_deref;
1604
1605 /**
1606 * The specific function signature being called.
1607 */
1608 ir_function_signature *callee;
1609
1610 /* List of ir_rvalue of paramaters passed in this call. */
1611 exec_list actual_parameters;
1612
1613 /** Should this call only bind to a built-in function? */
1614 bool use_builtin;
1615
1616 /*
1617 * ARB_shader_subroutine support -
1618 * the subroutine uniform variable and array index
1619 * rvalue to be used in the lowering pass later.
1620 */
1621 ir_variable *sub_var;
1622 ir_rvalue *array_idx;
1623 };
1624
1625
1626 /**
1627 * \name Jump-like IR instructions.
1628 *
1629 * These include \c break, \c continue, \c return, and \c discard.
1630 */
1631 /*@{*/
1632 class ir_jump : public ir_instruction {
1633 protected:
1634 ir_jump(enum ir_node_type t)
1635 : ir_instruction(t)
1636 {
1637 }
1638 };
1639
1640 class ir_return : public ir_jump {
1641 public:
1642 ir_return()
1643 : ir_jump(ir_type_return), value(NULL)
1644 {
1645 }
1646
1647 ir_return(ir_rvalue *value)
1648 : ir_jump(ir_type_return), value(value)
1649 {
1650 }
1651
1652 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1653
1654 ir_rvalue *get_value() const
1655 {
1656 return value;
1657 }
1658
1659 virtual void accept(ir_visitor *v)
1660 {
1661 v->visit(this);
1662 }
1663
1664 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1665
1666 ir_rvalue *value;
1667 };
1668
1669
1670 /**
1671 * Jump instructions used inside loops
1672 *
1673 * These include \c break and \c continue. The \c break within a loop is
1674 * different from the \c break within a switch-statement.
1675 *
1676 * \sa ir_switch_jump
1677 */
1678 class ir_loop_jump : public ir_jump {
1679 public:
1680 enum jump_mode {
1681 jump_break,
1682 jump_continue
1683 };
1684
1685 ir_loop_jump(jump_mode mode)
1686 : ir_jump(ir_type_loop_jump)
1687 {
1688 this->mode = mode;
1689 }
1690
1691 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1692
1693 virtual void accept(ir_visitor *v)
1694 {
1695 v->visit(this);
1696 }
1697
1698 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1699
1700 bool is_break() const
1701 {
1702 return mode == jump_break;
1703 }
1704
1705 bool is_continue() const
1706 {
1707 return mode == jump_continue;
1708 }
1709
1710 /** Mode selector for the jump instruction. */
1711 enum jump_mode mode;
1712 };
1713
1714 /**
1715 * IR instruction representing discard statements.
1716 */
1717 class ir_discard : public ir_jump {
1718 public:
1719 ir_discard()
1720 : ir_jump(ir_type_discard)
1721 {
1722 this->condition = NULL;
1723 }
1724
1725 ir_discard(ir_rvalue *cond)
1726 : ir_jump(ir_type_discard)
1727 {
1728 this->condition = cond;
1729 }
1730
1731 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1732
1733 virtual void accept(ir_visitor *v)
1734 {
1735 v->visit(this);
1736 }
1737
1738 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1739
1740 ir_rvalue *condition;
1741 };
1742 /*@}*/
1743
1744
1745 /**
1746 * Texture sampling opcodes used in ir_texture
1747 */
1748 enum ir_texture_opcode {
1749 ir_tex, /**< Regular texture look-up */
1750 ir_txb, /**< Texture look-up with LOD bias */
1751 ir_txl, /**< Texture look-up with explicit LOD */
1752 ir_txd, /**< Texture look-up with partial derivatvies */
1753 ir_txf, /**< Texel fetch with explicit LOD */
1754 ir_txf_ms, /**< Multisample texture fetch */
1755 ir_txs, /**< Texture size */
1756 ir_lod, /**< Texture lod query */
1757 ir_tg4, /**< Texture gather */
1758 ir_query_levels, /**< Texture levels query */
1759 ir_texture_samples, /**< Texture samples query */
1760 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1761 };
1762
1763
1764 /**
1765 * IR instruction to sample a texture
1766 *
1767 * The specific form of the IR instruction depends on the \c mode value
1768 * selected from \c ir_texture_opcodes. In the printed IR, these will
1769 * appear as:
1770 *
1771 * Texel offset (0 or an expression)
1772 * | Projection divisor
1773 * | | Shadow comparitor
1774 * | | |
1775 * v v v
1776 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1777 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1778 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1779 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1780 * (txf <type> <sampler> <coordinate> 0 <lod>)
1781 * (txf_ms
1782 * <type> <sampler> <coordinate> <sample_index>)
1783 * (txs <type> <sampler> <lod>)
1784 * (lod <type> <sampler> <coordinate>)
1785 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1786 * (query_levels <type> <sampler>)
1787 * (samples_identical <sampler> <coordinate>)
1788 */
1789 class ir_texture : public ir_rvalue {
1790 public:
1791 ir_texture(enum ir_texture_opcode op)
1792 : ir_rvalue(ir_type_texture),
1793 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1794 shadow_comparitor(NULL), offset(NULL)
1795 {
1796 memset(&lod_info, 0, sizeof(lod_info));
1797 }
1798
1799 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1800
1801 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1802
1803 virtual void accept(ir_visitor *v)
1804 {
1805 v->visit(this);
1806 }
1807
1808 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1809
1810 virtual bool equals(const ir_instruction *ir,
1811 enum ir_node_type ignore = ir_type_unset) const;
1812
1813 /**
1814 * Return a string representing the ir_texture_opcode.
1815 */
1816 const char *opcode_string();
1817
1818 /** Set the sampler and type. */
1819 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1820
1821 /**
1822 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1823 */
1824 static ir_texture_opcode get_opcode(const char *);
1825
1826 enum ir_texture_opcode op;
1827
1828 /** Sampler to use for the texture access. */
1829 ir_dereference *sampler;
1830
1831 /** Texture coordinate to sample */
1832 ir_rvalue *coordinate;
1833
1834 /**
1835 * Value used for projective divide.
1836 *
1837 * If there is no projective divide (the common case), this will be
1838 * \c NULL. Optimization passes should check for this to point to a constant
1839 * of 1.0 and replace that with \c NULL.
1840 */
1841 ir_rvalue *projector;
1842
1843 /**
1844 * Coordinate used for comparison on shadow look-ups.
1845 *
1846 * If there is no shadow comparison, this will be \c NULL. For the
1847 * \c ir_txf opcode, this *must* be \c NULL.
1848 */
1849 ir_rvalue *shadow_comparitor;
1850
1851 /** Texel offset. */
1852 ir_rvalue *offset;
1853
1854 union {
1855 ir_rvalue *lod; /**< Floating point LOD */
1856 ir_rvalue *bias; /**< Floating point LOD bias */
1857 ir_rvalue *sample_index; /**< MSAA sample index */
1858 ir_rvalue *component; /**< Gather component selector */
1859 struct {
1860 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1861 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1862 } grad;
1863 } lod_info;
1864 };
1865
1866
1867 struct ir_swizzle_mask {
1868 unsigned x:2;
1869 unsigned y:2;
1870 unsigned z:2;
1871 unsigned w:2;
1872
1873 /**
1874 * Number of components in the swizzle.
1875 */
1876 unsigned num_components:3;
1877
1878 /**
1879 * Does the swizzle contain duplicate components?
1880 *
1881 * L-value swizzles cannot contain duplicate components.
1882 */
1883 unsigned has_duplicates:1;
1884 };
1885
1886
1887 class ir_swizzle : public ir_rvalue {
1888 public:
1889 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1890 unsigned count);
1891
1892 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1893
1894 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1895
1896 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1897
1898 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1899
1900 /**
1901 * Construct an ir_swizzle from the textual representation. Can fail.
1902 */
1903 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1904
1905 virtual void accept(ir_visitor *v)
1906 {
1907 v->visit(this);
1908 }
1909
1910 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1911
1912 virtual bool equals(const ir_instruction *ir,
1913 enum ir_node_type ignore = ir_type_unset) const;
1914
1915 bool is_lvalue() const
1916 {
1917 return val->is_lvalue() && !mask.has_duplicates;
1918 }
1919
1920 /**
1921 * Get the variable that is ultimately referenced by an r-value
1922 */
1923 virtual ir_variable *variable_referenced() const;
1924
1925 ir_rvalue *val;
1926 ir_swizzle_mask mask;
1927
1928 private:
1929 /**
1930 * Initialize the mask component of a swizzle
1931 *
1932 * This is used by the \c ir_swizzle constructors.
1933 */
1934 void init_mask(const unsigned *components, unsigned count);
1935 };
1936
1937
1938 class ir_dereference : public ir_rvalue {
1939 public:
1940 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1941
1942 bool is_lvalue() const;
1943
1944 /**
1945 * Get the variable that is ultimately referenced by an r-value
1946 */
1947 virtual ir_variable *variable_referenced() const = 0;
1948
1949 protected:
1950 ir_dereference(enum ir_node_type t)
1951 : ir_rvalue(t)
1952 {
1953 }
1954 };
1955
1956
1957 class ir_dereference_variable : public ir_dereference {
1958 public:
1959 ir_dereference_variable(ir_variable *var);
1960
1961 virtual ir_dereference_variable *clone(void *mem_ctx,
1962 struct hash_table *) const;
1963
1964 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1965
1966 virtual bool equals(const ir_instruction *ir,
1967 enum ir_node_type ignore = ir_type_unset) const;
1968
1969 /**
1970 * Get the variable that is ultimately referenced by an r-value
1971 */
1972 virtual ir_variable *variable_referenced() const
1973 {
1974 return this->var;
1975 }
1976
1977 virtual ir_variable *whole_variable_referenced()
1978 {
1979 /* ir_dereference_variable objects always dereference the entire
1980 * variable. However, if this dereference is dereferenced by anything
1981 * else, the complete deferefernce chain is not a whole-variable
1982 * dereference. This method should only be called on the top most
1983 * ir_rvalue in a dereference chain.
1984 */
1985 return this->var;
1986 }
1987
1988 virtual void accept(ir_visitor *v)
1989 {
1990 v->visit(this);
1991 }
1992
1993 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1994
1995 /**
1996 * Object being dereferenced.
1997 */
1998 ir_variable *var;
1999 };
2000
2001
2002 class ir_dereference_array : public ir_dereference {
2003 public:
2004 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2005
2006 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2007
2008 virtual ir_dereference_array *clone(void *mem_ctx,
2009 struct hash_table *) const;
2010
2011 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2012
2013 virtual bool equals(const ir_instruction *ir,
2014 enum ir_node_type ignore = ir_type_unset) const;
2015
2016 /**
2017 * Get the variable that is ultimately referenced by an r-value
2018 */
2019 virtual ir_variable *variable_referenced() const
2020 {
2021 return this->array->variable_referenced();
2022 }
2023
2024 virtual void accept(ir_visitor *v)
2025 {
2026 v->visit(this);
2027 }
2028
2029 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2030
2031 ir_rvalue *array;
2032 ir_rvalue *array_index;
2033
2034 private:
2035 void set_array(ir_rvalue *value);
2036 };
2037
2038
2039 class ir_dereference_record : public ir_dereference {
2040 public:
2041 ir_dereference_record(ir_rvalue *value, const char *field);
2042
2043 ir_dereference_record(ir_variable *var, const char *field);
2044
2045 virtual ir_dereference_record *clone(void *mem_ctx,
2046 struct hash_table *) const;
2047
2048 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2049
2050 /**
2051 * Get the variable that is ultimately referenced by an r-value
2052 */
2053 virtual ir_variable *variable_referenced() const
2054 {
2055 return this->record->variable_referenced();
2056 }
2057
2058 virtual void accept(ir_visitor *v)
2059 {
2060 v->visit(this);
2061 }
2062
2063 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2064
2065 ir_rvalue *record;
2066 const char *field;
2067 };
2068
2069
2070 /**
2071 * Data stored in an ir_constant
2072 */
2073 union ir_constant_data {
2074 unsigned u[16];
2075 int i[16];
2076 float f[16];
2077 bool b[16];
2078 double d[16];
2079 };
2080
2081
2082 class ir_constant : public ir_rvalue {
2083 public:
2084 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2085 ir_constant(bool b, unsigned vector_elements=1);
2086 ir_constant(unsigned int u, unsigned vector_elements=1);
2087 ir_constant(int i, unsigned vector_elements=1);
2088 ir_constant(float f, unsigned vector_elements=1);
2089 ir_constant(double d, unsigned vector_elements=1);
2090
2091 /**
2092 * Construct an ir_constant from a list of ir_constant values
2093 */
2094 ir_constant(const struct glsl_type *type, exec_list *values);
2095
2096 /**
2097 * Construct an ir_constant from a scalar component of another ir_constant
2098 *
2099 * The new \c ir_constant inherits the type of the component from the
2100 * source constant.
2101 *
2102 * \note
2103 * In the case of a matrix constant, the new constant is a scalar, \b not
2104 * a vector.
2105 */
2106 ir_constant(const ir_constant *c, unsigned i);
2107
2108 /**
2109 * Return a new ir_constant of the specified type containing all zeros.
2110 */
2111 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2112
2113 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2114
2115 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2116
2117 virtual void accept(ir_visitor *v)
2118 {
2119 v->visit(this);
2120 }
2121
2122 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2123
2124 virtual bool equals(const ir_instruction *ir,
2125 enum ir_node_type ignore = ir_type_unset) const;
2126
2127 /**
2128 * Get a particular component of a constant as a specific type
2129 *
2130 * This is useful, for example, to get a value from an integer constant
2131 * as a float or bool. This appears frequently when constructors are
2132 * called with all constant parameters.
2133 */
2134 /*@{*/
2135 bool get_bool_component(unsigned i) const;
2136 float get_float_component(unsigned i) const;
2137 double get_double_component(unsigned i) const;
2138 int get_int_component(unsigned i) const;
2139 unsigned get_uint_component(unsigned i) const;
2140 /*@}*/
2141
2142 ir_constant *get_array_element(unsigned i) const;
2143
2144 ir_constant *get_record_field(const char *name);
2145
2146 /**
2147 * Copy the values on another constant at a given offset.
2148 *
2149 * The offset is ignored for array or struct copies, it's only for
2150 * scalars or vectors into vectors or matrices.
2151 *
2152 * With identical types on both sides and zero offset it's clone()
2153 * without creating a new object.
2154 */
2155
2156 void copy_offset(ir_constant *src, int offset);
2157
2158 /**
2159 * Copy the values on another constant at a given offset and
2160 * following an assign-like mask.
2161 *
2162 * The mask is ignored for scalars.
2163 *
2164 * Note that this function only handles what assign can handle,
2165 * i.e. at most a vector as source and a column of a matrix as
2166 * destination.
2167 */
2168
2169 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2170
2171 /**
2172 * Determine whether a constant has the same value as another constant
2173 *
2174 * \sa ir_constant::is_zero, ir_constant::is_one,
2175 * ir_constant::is_negative_one
2176 */
2177 bool has_value(const ir_constant *) const;
2178
2179 /**
2180 * Return true if this ir_constant represents the given value.
2181 *
2182 * For vectors, this checks that each component is the given value.
2183 */
2184 virtual bool is_value(float f, int i) const;
2185 virtual bool is_zero() const;
2186 virtual bool is_one() const;
2187 virtual bool is_negative_one() const;
2188
2189 /**
2190 * Return true for constants that could be stored as 16-bit unsigned values.
2191 *
2192 * Note that this will return true even for signed integer ir_constants, as
2193 * long as the value is non-negative and fits in 16-bits.
2194 */
2195 virtual bool is_uint16_constant() const;
2196
2197 /**
2198 * Value of the constant.
2199 *
2200 * The field used to back the values supplied by the constant is determined
2201 * by the type associated with the \c ir_instruction. Constants may be
2202 * scalars, vectors, or matrices.
2203 */
2204 union ir_constant_data value;
2205
2206 /* Array elements */
2207 ir_constant **array_elements;
2208
2209 /* Structure fields */
2210 exec_list components;
2211
2212 private:
2213 /**
2214 * Parameterless constructor only used by the clone method
2215 */
2216 ir_constant(void);
2217 };
2218
2219 /**
2220 * IR instruction to emit a vertex in a geometry shader.
2221 */
2222 class ir_emit_vertex : public ir_instruction {
2223 public:
2224 ir_emit_vertex(ir_rvalue *stream)
2225 : ir_instruction(ir_type_emit_vertex),
2226 stream(stream)
2227 {
2228 assert(stream);
2229 }
2230
2231 virtual void accept(ir_visitor *v)
2232 {
2233 v->visit(this);
2234 }
2235
2236 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2237 {
2238 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2239 }
2240
2241 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2242
2243 int stream_id() const
2244 {
2245 return stream->as_constant()->value.i[0];
2246 }
2247
2248 ir_rvalue *stream;
2249 };
2250
2251 /**
2252 * IR instruction to complete the current primitive and start a new one in a
2253 * geometry shader.
2254 */
2255 class ir_end_primitive : public ir_instruction {
2256 public:
2257 ir_end_primitive(ir_rvalue *stream)
2258 : ir_instruction(ir_type_end_primitive),
2259 stream(stream)
2260 {
2261 assert(stream);
2262 }
2263
2264 virtual void accept(ir_visitor *v)
2265 {
2266 v->visit(this);
2267 }
2268
2269 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2270 {
2271 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2272 }
2273
2274 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2275
2276 int stream_id() const
2277 {
2278 return stream->as_constant()->value.i[0];
2279 }
2280
2281 ir_rvalue *stream;
2282 };
2283
2284 /**
2285 * IR instruction for tessellation control and compute shader barrier.
2286 */
2287 class ir_barrier : public ir_instruction {
2288 public:
2289 ir_barrier()
2290 : ir_instruction(ir_type_barrier)
2291 {
2292 }
2293
2294 virtual void accept(ir_visitor *v)
2295 {
2296 v->visit(this);
2297 }
2298
2299 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2300 {
2301 return new(mem_ctx) ir_barrier();
2302 }
2303
2304 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2305 };
2306
2307 /*@}*/
2308
2309 /**
2310 * Apply a visitor to each IR node in a list
2311 */
2312 void
2313 visit_exec_list(exec_list *list, ir_visitor *visitor);
2314
2315 /**
2316 * Validate invariants on each IR node in a list
2317 */
2318 void validate_ir_tree(exec_list *instructions);
2319
2320 struct _mesa_glsl_parse_state;
2321 struct gl_shader_program;
2322
2323 /**
2324 * Detect whether an unlinked shader contains static recursion
2325 *
2326 * If the list of instructions is determined to contain static recursion,
2327 * \c _mesa_glsl_error will be called to emit error messages for each function
2328 * that is in the recursion cycle.
2329 */
2330 void
2331 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2332 exec_list *instructions);
2333
2334 /**
2335 * Detect whether a linked shader contains static recursion
2336 *
2337 * If the list of instructions is determined to contain static recursion,
2338 * \c link_error_printf will be called to emit error messages for each function
2339 * that is in the recursion cycle. In addition,
2340 * \c gl_shader_program::LinkStatus will be set to false.
2341 */
2342 void
2343 detect_recursion_linked(struct gl_shader_program *prog,
2344 exec_list *instructions);
2345
2346 /**
2347 * Make a clone of each IR instruction in a list
2348 *
2349 * \param in List of IR instructions that are to be cloned
2350 * \param out List to hold the cloned instructions
2351 */
2352 void
2353 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2354
2355 extern void
2356 _mesa_glsl_initialize_variables(exec_list *instructions,
2357 struct _mesa_glsl_parse_state *state);
2358
2359 extern void
2360 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2361 gl_shader *shader);
2362
2363 extern void
2364 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2365
2366 extern void
2367 _mesa_glsl_initialize_builtin_functions();
2368
2369 extern ir_function_signature *
2370 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2371 const char *name, exec_list *actual_parameters);
2372
2373 extern ir_function *
2374 _mesa_glsl_find_builtin_function_by_name(const char *name);
2375
2376 extern gl_shader *
2377 _mesa_glsl_get_builtin_function_shader(void);
2378
2379 extern ir_function_signature *
2380 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2381
2382 extern void
2383 _mesa_glsl_release_functions(void);
2384
2385 extern void
2386 _mesa_glsl_release_builtin_functions(void);
2387
2388 extern void
2389 reparent_ir(exec_list *list, void *mem_ctx);
2390
2391 struct glsl_symbol_table;
2392
2393 extern void
2394 import_prototypes(const exec_list *source, exec_list *dest,
2395 struct glsl_symbol_table *symbols, void *mem_ctx);
2396
2397 extern bool
2398 ir_has_call(ir_instruction *ir);
2399
2400 extern void
2401 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2402 gl_shader_stage shader_stage);
2403
2404 extern char *
2405 prototype_string(const glsl_type *return_type, const char *name,
2406 exec_list *parameters);
2407
2408 const char *
2409 mode_string(const ir_variable *var);
2410
2411 /**
2412 * Built-in / reserved GL variables names start with "gl_"
2413 */
2414 static inline bool
2415 is_gl_identifier(const char *s)
2416 {
2417 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2418 }
2419
2420 extern "C" {
2421 #endif /* __cplusplus */
2422
2423 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2424 struct _mesa_glsl_parse_state *state);
2425
2426 extern void
2427 fprint_ir(FILE *f, const void *instruction);
2428
2429 extern const struct gl_builtin_uniform_desc *
2430 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2431
2432 #ifdef __cplusplus
2433 } /* extern "C" */
2434 #endif
2435
2436 unsigned
2437 vertices_per_prim(GLenum prim);
2438
2439 #endif /* IR_H */