glsl: Add ir_demote
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36
37 #ifdef __cplusplus
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 ir_type_dereference_array,
61 ir_type_dereference_record,
62 ir_type_dereference_variable,
63 ir_type_constant,
64 ir_type_expression,
65 ir_type_swizzle,
66 ir_type_texture,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_function,
71 ir_type_function_signature,
72 ir_type_if,
73 ir_type_loop,
74 ir_type_loop_jump,
75 ir_type_return,
76 ir_type_discard,
77 ir_type_demote,
78 ir_type_emit_vertex,
79 ir_type_end_primitive,
80 ir_type_barrier,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 bool is_rvalue() const
113 {
114 return ir_type == ir_type_dereference_array ||
115 ir_type == ir_type_dereference_record ||
116 ir_type == ir_type_dereference_variable ||
117 ir_type == ir_type_constant ||
118 ir_type == ir_type_expression ||
119 ir_type == ir_type_swizzle ||
120 ir_type == ir_type_texture;
121 }
122
123 bool is_dereference() const
124 {
125 return ir_type == ir_type_dereference_array ||
126 ir_type == ir_type_dereference_record ||
127 ir_type == ir_type_dereference_variable;
128 }
129
130 bool is_jump() const
131 {
132 return ir_type == ir_type_loop_jump ||
133 ir_type == ir_type_return ||
134 ir_type == ir_type_discard;
135 }
136
137 /**
138 * \name IR instruction downcast functions
139 *
140 * These functions either cast the object to a derived class or return
141 * \c NULL if the object's type does not match the specified derived class.
142 * Additional downcast functions will be added as needed.
143 */
144 /*@{*/
145 #define AS_BASE(TYPE) \
146 class ir_##TYPE *as_##TYPE() \
147 { \
148 assume(this != NULL); \
149 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
150 } \
151 const class ir_##TYPE *as_##TYPE() const \
152 { \
153 assume(this != NULL); \
154 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
155 }
156
157 AS_BASE(rvalue)
158 AS_BASE(dereference)
159 AS_BASE(jump)
160 #undef AS_BASE
161
162 #define AS_CHILD(TYPE) \
163 class ir_##TYPE * as_##TYPE() \
164 { \
165 assume(this != NULL); \
166 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
167 } \
168 const class ir_##TYPE * as_##TYPE() const \
169 { \
170 assume(this != NULL); \
171 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
172 }
173 AS_CHILD(variable)
174 AS_CHILD(function)
175 AS_CHILD(dereference_array)
176 AS_CHILD(dereference_variable)
177 AS_CHILD(dereference_record)
178 AS_CHILD(expression)
179 AS_CHILD(loop)
180 AS_CHILD(assignment)
181 AS_CHILD(call)
182 AS_CHILD(return)
183 AS_CHILD(if)
184 AS_CHILD(swizzle)
185 AS_CHILD(texture)
186 AS_CHILD(constant)
187 AS_CHILD(discard)
188 #undef AS_CHILD
189 /*@}*/
190
191 /**
192 * IR equality method: Return true if the referenced instruction would
193 * return the same value as this one.
194 *
195 * This intended to be used for CSE and algebraic optimizations, on rvalues
196 * in particular. No support for other instruction types (assignments,
197 * jumps, calls, etc.) is planned.
198 */
199 virtual bool equals(const ir_instruction *ir,
200 enum ir_node_type ignore = ir_type_unset) const;
201
202 protected:
203 ir_instruction(enum ir_node_type t)
204 : ir_type(t)
205 {
206 }
207
208 private:
209 ir_instruction()
210 {
211 assert(!"Should not get here.");
212 }
213 };
214
215
216 /**
217 * The base class for all "values"/expression trees.
218 */
219 class ir_rvalue : public ir_instruction {
220 public:
221 const struct glsl_type *type;
222
223 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
224
225 virtual void accept(ir_visitor *v)
226 {
227 v->visit(this);
228 }
229
230 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
231
232 virtual ir_constant *constant_expression_value(void *mem_ctx,
233 struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 gl_state_index16 tokens[STATE_LENGTH];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \c glsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Return whether this variable contains a bindless sampler/image.
480 */
481 inline bool contains_bindless() const
482 {
483 if (!this->type->contains_sampler() && !this->type->contains_image())
484 return false;
485
486 return this->data.bindless || this->data.mode != ir_var_uniform;
487 }
488
489 /**
490 * Set this->interface_type on a newly created variable.
491 */
492 void init_interface_type(const struct glsl_type *type)
493 {
494 assert(this->interface_type == NULL);
495 this->interface_type = type;
496 if (this->is_interface_instance()) {
497 this->u.max_ifc_array_access =
498 ralloc_array(this, int, type->length);
499 for (unsigned i = 0; i < type->length; i++) {
500 this->u.max_ifc_array_access[i] = -1;
501 }
502 }
503 }
504
505 /**
506 * Change this->interface_type on a variable that previously had a
507 * different, but compatible, interface_type. This is used during linking
508 * to set the size of arrays in interface blocks.
509 */
510 void change_interface_type(const struct glsl_type *type)
511 {
512 if (this->u.max_ifc_array_access != NULL) {
513 /* max_ifc_array_access has already been allocated, so make sure the
514 * new interface has the same number of fields as the old one.
515 */
516 assert(this->interface_type->length == type->length);
517 }
518 this->interface_type = type;
519 }
520
521 /**
522 * Change this->interface_type on a variable that previously had a
523 * different, and incompatible, interface_type. This is used during
524 * compilation to handle redeclaration of the built-in gl_PerVertex
525 * interface block.
526 */
527 void reinit_interface_type(const struct glsl_type *type)
528 {
529 if (this->u.max_ifc_array_access != NULL) {
530 #ifndef NDEBUG
531 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
532 * it defines have been accessed yet; so it's safe to throw away the
533 * old max_ifc_array_access pointer, since all of its values are
534 * zero.
535 */
536 for (unsigned i = 0; i < this->interface_type->length; i++)
537 assert(this->u.max_ifc_array_access[i] == -1);
538 #endif
539 ralloc_free(this->u.max_ifc_array_access);
540 this->u.max_ifc_array_access = NULL;
541 }
542 this->interface_type = NULL;
543 init_interface_type(type);
544 }
545
546 const glsl_type *get_interface_type() const
547 {
548 return this->interface_type;
549 }
550
551 enum glsl_interface_packing get_interface_type_packing() const
552 {
553 return this->interface_type->get_interface_packing();
554 }
555 /**
556 * Get the max_ifc_array_access pointer
557 *
558 * A "set" function is not needed because the array is dynmically allocated
559 * as necessary.
560 */
561 inline int *get_max_ifc_array_access()
562 {
563 assert(this->data._num_state_slots == 0);
564 return this->u.max_ifc_array_access;
565 }
566
567 inline unsigned get_num_state_slots() const
568 {
569 assert(!this->is_interface_instance()
570 || this->data._num_state_slots == 0);
571 return this->data._num_state_slots;
572 }
573
574 inline void set_num_state_slots(unsigned n)
575 {
576 assert(!this->is_interface_instance()
577 || n == 0);
578 this->data._num_state_slots = n;
579 }
580
581 inline ir_state_slot *get_state_slots()
582 {
583 return this->is_interface_instance() ? NULL : this->u.state_slots;
584 }
585
586 inline const ir_state_slot *get_state_slots() const
587 {
588 return this->is_interface_instance() ? NULL : this->u.state_slots;
589 }
590
591 inline ir_state_slot *allocate_state_slots(unsigned n)
592 {
593 assert(!this->is_interface_instance());
594
595 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
596 this->data._num_state_slots = 0;
597
598 if (this->u.state_slots != NULL)
599 this->data._num_state_slots = n;
600
601 return this->u.state_slots;
602 }
603
604 inline bool is_interpolation_flat() const
605 {
606 return this->data.interpolation == INTERP_MODE_FLAT ||
607 this->type->contains_integer() ||
608 this->type->contains_double();
609 }
610
611 inline bool is_name_ralloced() const
612 {
613 return this->name != ir_variable::tmp_name &&
614 this->name != this->name_storage;
615 }
616
617 /**
618 * Enable emitting extension warnings for this variable
619 */
620 void enable_extension_warning(const char *extension);
621
622 /**
623 * Get the extension warning string for this variable
624 *
625 * If warnings are not enabled, \c NULL is returned.
626 */
627 const char *get_extension_warning() const;
628
629 /**
630 * Declared type of the variable
631 */
632 const struct glsl_type *type;
633
634 /**
635 * Declared name of the variable
636 */
637 const char *name;
638
639 private:
640 /**
641 * If the name length fits into name_storage, it's used, otherwise
642 * the name is ralloc'd. shader-db mining showed that 70% of variables
643 * fit here. This is a win over ralloc where only ralloc_header has
644 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
645 */
646 char name_storage[16];
647
648 public:
649 struct ir_variable_data {
650
651 /**
652 * Is the variable read-only?
653 *
654 * This is set for variables declared as \c const, shader inputs,
655 * and uniforms.
656 */
657 unsigned read_only:1;
658 unsigned centroid:1;
659 unsigned sample:1;
660 unsigned patch:1;
661 /**
662 * Was an 'invariant' qualifier explicitly set in the shader?
663 *
664 * This is used to cross validate qualifiers.
665 */
666 unsigned explicit_invariant:1;
667 /**
668 * Is the variable invariant?
669 *
670 * It can happen either by having the 'invariant' qualifier
671 * explicitly set in the shader or by being used in calculations
672 * of other invariant variables.
673 */
674 unsigned invariant:1;
675 unsigned precise:1;
676
677 /**
678 * Has this variable been used for reading or writing?
679 *
680 * Several GLSL semantic checks require knowledge of whether or not a
681 * variable has been used. For example, it is an error to redeclare a
682 * variable as invariant after it has been used.
683 *
684 * This is maintained in the ast_to_hir.cpp path and during linking,
685 * but not in Mesa's fixed function or ARB program paths.
686 */
687 unsigned used:1;
688
689 /**
690 * Has this variable been statically assigned?
691 *
692 * This answers whether the variable was assigned in any path of
693 * the shader during ast_to_hir. This doesn't answer whether it is
694 * still written after dead code removal, nor is it maintained in
695 * non-ast_to_hir.cpp (GLSL parsing) paths.
696 */
697 unsigned assigned:1;
698
699 /**
700 * When separate shader programs are enabled, only input/outputs between
701 * the stages of a multi-stage separate program can be safely removed
702 * from the shader interface. Other input/outputs must remains active.
703 */
704 unsigned always_active_io:1;
705
706 /**
707 * Enum indicating how the variable was declared. See
708 * ir_var_declaration_type.
709 *
710 * This is used to detect certain kinds of illegal variable redeclarations.
711 */
712 unsigned how_declared:2;
713
714 /**
715 * Storage class of the variable.
716 *
717 * \sa ir_variable_mode
718 */
719 unsigned mode:4;
720
721 /**
722 * Interpolation mode for shader inputs / outputs
723 *
724 * \sa glsl_interp_mode
725 */
726 unsigned interpolation:2;
727
728 /**
729 * Was the location explicitly set in the shader?
730 *
731 * If the location is explicitly set in the shader, it \b cannot be changed
732 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
733 * no effect).
734 */
735 unsigned explicit_location:1;
736 unsigned explicit_index:1;
737
738 /**
739 * Was an initial binding explicitly set in the shader?
740 *
741 * If so, constant_value contains an integer ir_constant representing the
742 * initial binding point.
743 */
744 unsigned explicit_binding:1;
745
746 /**
747 * Was an initial component explicitly set in the shader?
748 */
749 unsigned explicit_component:1;
750
751 /**
752 * Does this variable have an initializer?
753 *
754 * This is used by the linker to cross-validiate initializers of global
755 * variables.
756 */
757 unsigned has_initializer:1;
758
759 /**
760 * Is this variable a generic output or input that has not yet been matched
761 * up to a variable in another stage of the pipeline?
762 *
763 * This is used by the linker as scratch storage while assigning locations
764 * to generic inputs and outputs.
765 */
766 unsigned is_unmatched_generic_inout:1;
767
768 /**
769 * Is this varying used only by transform feedback?
770 *
771 * This is used by the linker to decide if its safe to pack the varying.
772 */
773 unsigned is_xfb_only:1;
774
775 /**
776 * Was a transform feedback buffer set in the shader?
777 */
778 unsigned explicit_xfb_buffer:1;
779
780 /**
781 * Was a transform feedback offset set in the shader?
782 */
783 unsigned explicit_xfb_offset:1;
784
785 /**
786 * Was a transform feedback stride set in the shader?
787 */
788 unsigned explicit_xfb_stride:1;
789
790 /**
791 * If non-zero, then this variable may be packed along with other variables
792 * into a single varying slot, so this offset should be applied when
793 * accessing components. For example, an offset of 1 means that the x
794 * component of this variable is actually stored in component y of the
795 * location specified by \c location.
796 */
797 unsigned location_frac:2;
798
799 /**
800 * Layout of the matrix. Uses glsl_matrix_layout values.
801 */
802 unsigned matrix_layout:2;
803
804 /**
805 * Non-zero if this variable was created by lowering a named interface
806 * block.
807 */
808 unsigned from_named_ifc_block:1;
809
810 /**
811 * Non-zero if the variable must be a shader input. This is useful for
812 * constraints on function parameters.
813 */
814 unsigned must_be_shader_input:1;
815
816 /**
817 * Output index for dual source blending.
818 *
819 * \note
820 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
821 * source blending.
822 */
823 unsigned index:1;
824
825 /**
826 * Precision qualifier.
827 *
828 * In desktop GLSL we do not care about precision qualifiers at all, in
829 * fact, the spec says that precision qualifiers are ignored.
830 *
831 * To make things easy, we make it so that this field is always
832 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
833 * have the same precision value and the checks we add in the compiler
834 * for this field will never break a desktop shader compile.
835 */
836 unsigned precision:2;
837
838 /**
839 * \brief Layout qualifier for gl_FragDepth.
840 *
841 * This is not equal to \c ir_depth_layout_none if and only if this
842 * variable is \c gl_FragDepth and a layout qualifier is specified.
843 */
844 ir_depth_layout depth_layout:3;
845
846 /**
847 * Memory qualifiers.
848 */
849 unsigned memory_read_only:1; /**< "readonly" qualifier. */
850 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
851 unsigned memory_coherent:1;
852 unsigned memory_volatile:1;
853 unsigned memory_restrict:1;
854
855 /**
856 * ARB_shader_storage_buffer_object
857 */
858 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
859
860 unsigned implicit_sized_array:1;
861
862 /**
863 * Whether this is a fragment shader output implicitly initialized with
864 * the previous contents of the specified render target at the
865 * framebuffer location corresponding to this shader invocation.
866 */
867 unsigned fb_fetch_output:1;
868
869 /**
870 * Non-zero if this variable is considered bindless as defined by
871 * ARB_bindless_texture.
872 */
873 unsigned bindless:1;
874
875 /**
876 * Non-zero if this variable is considered bound as defined by
877 * ARB_bindless_texture.
878 */
879 unsigned bound:1;
880
881 /**
882 * Emit a warning if this variable is accessed.
883 */
884 private:
885 uint8_t warn_extension_index;
886
887 public:
888 /** Image internal format if specified explicitly, otherwise GL_NONE. */
889 uint16_t image_format;
890
891 private:
892 /**
893 * Number of state slots used
894 *
895 * \note
896 * This could be stored in as few as 7-bits, if necessary. If it is made
897 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
898 * be safe.
899 */
900 uint16_t _num_state_slots;
901
902 public:
903 /**
904 * Initial binding point for a sampler, atomic, or UBO.
905 *
906 * For array types, this represents the binding point for the first element.
907 */
908 int16_t binding;
909
910 /**
911 * Storage location of the base of this variable
912 *
913 * The precise meaning of this field depends on the nature of the variable.
914 *
915 * - Vertex shader input: one of the values from \c gl_vert_attrib.
916 * - Vertex shader output: one of the values from \c gl_varying_slot.
917 * - Geometry shader input: one of the values from \c gl_varying_slot.
918 * - Geometry shader output: one of the values from \c gl_varying_slot.
919 * - Fragment shader input: one of the values from \c gl_varying_slot.
920 * - Fragment shader output: one of the values from \c gl_frag_result.
921 * - Uniforms: Per-stage uniform slot number for default uniform block.
922 * - Uniforms: Index within the uniform block definition for UBO members.
923 * - Non-UBO Uniforms: explicit location until linking then reused to
924 * store uniform slot number.
925 * - Other: This field is not currently used.
926 *
927 * If the variable is a uniform, shader input, or shader output, and the
928 * slot has not been assigned, the value will be -1.
929 */
930 int location;
931
932 /**
933 * for glsl->tgsi/mesa IR we need to store the index into the
934 * parameters for uniforms, initially the code overloaded location
935 * but this causes problems with indirect samplers and AoA.
936 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
937 */
938 int param_index;
939
940 /**
941 * Vertex stream output identifier.
942 *
943 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
944 * stream of the i-th component.
945 */
946 unsigned stream;
947
948 /**
949 * Atomic, transform feedback or block member offset.
950 */
951 unsigned offset;
952
953 /**
954 * Highest element accessed with a constant expression array index
955 *
956 * Not used for non-array variables. -1 is never accessed.
957 */
958 int max_array_access;
959
960 /**
961 * Transform feedback buffer.
962 */
963 unsigned xfb_buffer;
964
965 /**
966 * Transform feedback stride.
967 */
968 unsigned xfb_stride;
969
970 /**
971 * Allow (only) ir_variable direct access private members.
972 */
973 friend class ir_variable;
974 } data;
975
976 /**
977 * Value assigned in the initializer of a variable declared "const"
978 */
979 ir_constant *constant_value;
980
981 /**
982 * Constant expression assigned in the initializer of the variable
983 *
984 * \warning
985 * This field and \c ::constant_value are distinct. Even if the two fields
986 * refer to constants with the same value, they must point to separate
987 * objects.
988 */
989 ir_constant *constant_initializer;
990
991 private:
992 static const char *const warn_extension_table[];
993
994 union {
995 /**
996 * For variables which satisfy the is_interface_instance() predicate,
997 * this points to an array of integers such that if the ith member of
998 * the interface block is an array, max_ifc_array_access[i] is the
999 * maximum array element of that member that has been accessed. If the
1000 * ith member of the interface block is not an array,
1001 * max_ifc_array_access[i] is unused.
1002 *
1003 * For variables whose type is not an interface block, this pointer is
1004 * NULL.
1005 */
1006 int *max_ifc_array_access;
1007
1008 /**
1009 * Built-in state that backs this uniform
1010 *
1011 * Once set at variable creation, \c state_slots must remain invariant.
1012 *
1013 * If the variable is not a uniform, \c _num_state_slots will be zero
1014 * and \c state_slots will be \c NULL.
1015 */
1016 ir_state_slot *state_slots;
1017 } u;
1018
1019 /**
1020 * For variables that are in an interface block or are an instance of an
1021 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1022 *
1023 * \sa ir_variable::location
1024 */
1025 const glsl_type *interface_type;
1026
1027 /**
1028 * Name used for anonymous compiler temporaries
1029 */
1030 static const char tmp_name[];
1031
1032 public:
1033 /**
1034 * Should the construct keep names for ir_var_temporary variables?
1035 *
1036 * When this global is false, names passed to the constructor for
1037 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1038 * be named "compiler_temp". This name will be in static storage.
1039 *
1040 * \warning
1041 * \b NEVER change the mode of an \c ir_var_temporary.
1042 *
1043 * \warning
1044 * This variable is \b not thread-safe. It is global, \b not
1045 * per-context. It begins life false. A context can, at some point, make
1046 * it true. From that point on, it will be true forever. This should be
1047 * okay since it will only be set true while debugging.
1048 */
1049 static bool temporaries_allocate_names;
1050 };
1051
1052 /**
1053 * A function that returns whether a built-in function is available in the
1054 * current shading language (based on version, ES or desktop, and extensions).
1055 */
1056 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1057
1058 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1059 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1060
1061 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1062 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1063
1064 enum ir_intrinsic_id {
1065 ir_intrinsic_invalid = 0,
1066
1067 /**
1068 * \name Generic intrinsics
1069 *
1070 * Each of these intrinsics has a specific version for shared variables and
1071 * SSBOs.
1072 */
1073 /*@{*/
1074 ir_intrinsic_generic_load,
1075 ir_intrinsic_generic_store,
1076 ir_intrinsic_generic_atomic_add,
1077 ir_intrinsic_generic_atomic_and,
1078 ir_intrinsic_generic_atomic_or,
1079 ir_intrinsic_generic_atomic_xor,
1080 ir_intrinsic_generic_atomic_min,
1081 ir_intrinsic_generic_atomic_max,
1082 ir_intrinsic_generic_atomic_exchange,
1083 ir_intrinsic_generic_atomic_comp_swap,
1084 /*@}*/
1085
1086 ir_intrinsic_atomic_counter_read,
1087 ir_intrinsic_atomic_counter_increment,
1088 ir_intrinsic_atomic_counter_predecrement,
1089 ir_intrinsic_atomic_counter_add,
1090 ir_intrinsic_atomic_counter_and,
1091 ir_intrinsic_atomic_counter_or,
1092 ir_intrinsic_atomic_counter_xor,
1093 ir_intrinsic_atomic_counter_min,
1094 ir_intrinsic_atomic_counter_max,
1095 ir_intrinsic_atomic_counter_exchange,
1096 ir_intrinsic_atomic_counter_comp_swap,
1097
1098 ir_intrinsic_image_load,
1099 ir_intrinsic_image_store,
1100 ir_intrinsic_image_atomic_add,
1101 ir_intrinsic_image_atomic_and,
1102 ir_intrinsic_image_atomic_or,
1103 ir_intrinsic_image_atomic_xor,
1104 ir_intrinsic_image_atomic_min,
1105 ir_intrinsic_image_atomic_max,
1106 ir_intrinsic_image_atomic_exchange,
1107 ir_intrinsic_image_atomic_comp_swap,
1108 ir_intrinsic_image_size,
1109 ir_intrinsic_image_samples,
1110 ir_intrinsic_image_atomic_inc_wrap,
1111 ir_intrinsic_image_atomic_dec_wrap,
1112
1113 ir_intrinsic_ssbo_load,
1114 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1115 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1116 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1117 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1118 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1119 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1120 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1121 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1122 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1123
1124 ir_intrinsic_memory_barrier,
1125 ir_intrinsic_shader_clock,
1126 ir_intrinsic_group_memory_barrier,
1127 ir_intrinsic_memory_barrier_atomic_counter,
1128 ir_intrinsic_memory_barrier_buffer,
1129 ir_intrinsic_memory_barrier_image,
1130 ir_intrinsic_memory_barrier_shared,
1131 ir_intrinsic_begin_invocation_interlock,
1132 ir_intrinsic_end_invocation_interlock,
1133
1134 ir_intrinsic_vote_all,
1135 ir_intrinsic_vote_any,
1136 ir_intrinsic_vote_eq,
1137 ir_intrinsic_ballot,
1138 ir_intrinsic_read_invocation,
1139 ir_intrinsic_read_first_invocation,
1140
1141 ir_intrinsic_shared_load,
1142 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1143 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1144 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1145 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1146 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1147 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1148 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1149 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1150 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1151 };
1152
1153 /*@{*/
1154 /**
1155 * The representation of a function instance; may be the full definition or
1156 * simply a prototype.
1157 */
1158 class ir_function_signature : public ir_instruction {
1159 /* An ir_function_signature will be part of the list of signatures in
1160 * an ir_function.
1161 */
1162 public:
1163 ir_function_signature(const glsl_type *return_type,
1164 builtin_available_predicate builtin_avail = NULL);
1165
1166 virtual ir_function_signature *clone(void *mem_ctx,
1167 struct hash_table *ht) const;
1168 ir_function_signature *clone_prototype(void *mem_ctx,
1169 struct hash_table *ht) const;
1170
1171 virtual void accept(ir_visitor *v)
1172 {
1173 v->visit(this);
1174 }
1175
1176 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1177
1178 /**
1179 * Attempt to evaluate this function as a constant expression,
1180 * given a list of the actual parameters and the variable context.
1181 * Returns NULL for non-built-ins.
1182 */
1183 ir_constant *constant_expression_value(void *mem_ctx,
1184 exec_list *actual_parameters,
1185 struct hash_table *variable_context);
1186
1187 /**
1188 * Get the name of the function for which this is a signature
1189 */
1190 const char *function_name() const;
1191
1192 /**
1193 * Get a handle to the function for which this is a signature
1194 *
1195 * There is no setter function, this function returns a \c const pointer,
1196 * and \c ir_function_signature::_function is private for a reason. The
1197 * only way to make a connection between a function and function signature
1198 * is via \c ir_function::add_signature. This helps ensure that certain
1199 * invariants (i.e., a function signature is in the list of signatures for
1200 * its \c _function) are met.
1201 *
1202 * \sa ir_function::add_signature
1203 */
1204 inline const class ir_function *function() const
1205 {
1206 return this->_function;
1207 }
1208
1209 /**
1210 * Check whether the qualifiers match between this signature's parameters
1211 * and the supplied parameter list. If not, returns the name of the first
1212 * parameter with mismatched qualifiers (for use in error messages).
1213 */
1214 const char *qualifiers_match(exec_list *params);
1215
1216 /**
1217 * Replace the current parameter list with the given one. This is useful
1218 * if the current information came from a prototype, and either has invalid
1219 * or missing parameter names.
1220 */
1221 void replace_parameters(exec_list *new_params);
1222
1223 /**
1224 * Function return type.
1225 *
1226 * \note The precision qualifier is stored separately in return_precision.
1227 */
1228 const struct glsl_type *return_type;
1229
1230 /**
1231 * List of ir_variable of function parameters.
1232 *
1233 * This represents the storage. The paramaters passed in a particular
1234 * call will be in ir_call::actual_paramaters.
1235 */
1236 struct exec_list parameters;
1237
1238 /** Whether or not this function has a body (which may be empty). */
1239 unsigned is_defined:1;
1240
1241 /*
1242 * Precision qualifier for the return type.
1243 *
1244 * See the comment for ir_variable_data::precision for more details.
1245 */
1246 unsigned return_precision:2;
1247
1248 /** Whether or not this function signature is a built-in. */
1249 bool is_builtin() const;
1250
1251 /**
1252 * Whether or not this function is an intrinsic to be implemented
1253 * by the driver.
1254 */
1255 inline bool is_intrinsic() const
1256 {
1257 return intrinsic_id != ir_intrinsic_invalid;
1258 }
1259
1260 /** Indentifier for this intrinsic. */
1261 enum ir_intrinsic_id intrinsic_id;
1262
1263 /** Whether or not a built-in is available for this shader. */
1264 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1265
1266 /** Body of instructions in the function. */
1267 struct exec_list body;
1268
1269 private:
1270 /**
1271 * A function pointer to a predicate that answers whether a built-in
1272 * function is available in the current shader. NULL if not a built-in.
1273 */
1274 builtin_available_predicate builtin_avail;
1275
1276 /** Function of which this signature is one overload. */
1277 class ir_function *_function;
1278
1279 /** Function signature of which this one is a prototype clone */
1280 const ir_function_signature *origin;
1281
1282 friend class ir_function;
1283
1284 /**
1285 * Helper function to run a list of instructions for constant
1286 * expression evaluation.
1287 *
1288 * The hash table represents the values of the visible variables.
1289 * There are no scoping issues because the table is indexed on
1290 * ir_variable pointers, not variable names.
1291 *
1292 * Returns false if the expression is not constant, true otherwise,
1293 * and the value in *result if result is non-NULL.
1294 */
1295 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1296 const struct exec_list &body,
1297 struct hash_table *variable_context,
1298 ir_constant **result);
1299 };
1300
1301
1302 /**
1303 * Header for tracking multiple overloaded functions with the same name.
1304 * Contains a list of ir_function_signatures representing each of the
1305 * actual functions.
1306 */
1307 class ir_function : public ir_instruction {
1308 public:
1309 ir_function(const char *name);
1310
1311 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1312
1313 virtual void accept(ir_visitor *v)
1314 {
1315 v->visit(this);
1316 }
1317
1318 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1319
1320 void add_signature(ir_function_signature *sig)
1321 {
1322 sig->_function = this;
1323 this->signatures.push_tail(sig);
1324 }
1325
1326 /**
1327 * Find a signature that matches a set of actual parameters, taking implicit
1328 * conversions into account. Also flags whether the match was exact.
1329 */
1330 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1331 const exec_list *actual_param,
1332 bool allow_builtins,
1333 bool *match_is_exact);
1334
1335 /**
1336 * Find a signature that matches a set of actual parameters, taking implicit
1337 * conversions into account.
1338 */
1339 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1340 const exec_list *actual_param,
1341 bool allow_builtins);
1342
1343 /**
1344 * Find a signature that exactly matches a set of actual parameters without
1345 * any implicit type conversions.
1346 */
1347 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1348 const exec_list *actual_ps);
1349
1350 /**
1351 * Name of the function.
1352 */
1353 const char *name;
1354
1355 /** Whether or not this function has a signature that isn't a built-in. */
1356 bool has_user_signature();
1357
1358 /**
1359 * List of ir_function_signature for each overloaded function with this name.
1360 */
1361 struct exec_list signatures;
1362
1363 /**
1364 * is this function a subroutine type declaration
1365 * e.g. subroutine void type1(float arg1);
1366 */
1367 bool is_subroutine;
1368
1369 /**
1370 * is this function associated to a subroutine type
1371 * e.g. subroutine (type1, type2) function_name { function_body };
1372 * would have num_subroutine_types 2,
1373 * and pointers to the type1 and type2 types.
1374 */
1375 int num_subroutine_types;
1376 const struct glsl_type **subroutine_types;
1377
1378 int subroutine_index;
1379 };
1380
1381 inline const char *ir_function_signature::function_name() const
1382 {
1383 return this->_function->name;
1384 }
1385 /*@}*/
1386
1387
1388 /**
1389 * IR instruction representing high-level if-statements
1390 */
1391 class ir_if : public ir_instruction {
1392 public:
1393 ir_if(ir_rvalue *condition)
1394 : ir_instruction(ir_type_if), condition(condition)
1395 {
1396 }
1397
1398 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1399
1400 virtual void accept(ir_visitor *v)
1401 {
1402 v->visit(this);
1403 }
1404
1405 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1406
1407 ir_rvalue *condition;
1408 /** List of ir_instruction for the body of the then branch */
1409 exec_list then_instructions;
1410 /** List of ir_instruction for the body of the else branch */
1411 exec_list else_instructions;
1412 };
1413
1414
1415 /**
1416 * IR instruction representing a high-level loop structure.
1417 */
1418 class ir_loop : public ir_instruction {
1419 public:
1420 ir_loop();
1421
1422 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1423
1424 virtual void accept(ir_visitor *v)
1425 {
1426 v->visit(this);
1427 }
1428
1429 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1430
1431 /** List of ir_instruction that make up the body of the loop. */
1432 exec_list body_instructions;
1433 };
1434
1435
1436 class ir_assignment : public ir_instruction {
1437 public:
1438 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1439
1440 /**
1441 * Construct an assignment with an explicit write mask
1442 *
1443 * \note
1444 * Since a write mask is supplied, the LHS must already be a bare
1445 * \c ir_dereference. The cannot be any swizzles in the LHS.
1446 */
1447 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1448 unsigned write_mask);
1449
1450 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1451
1452 virtual ir_constant *constant_expression_value(void *mem_ctx,
1453 struct hash_table *variable_context = NULL);
1454
1455 virtual void accept(ir_visitor *v)
1456 {
1457 v->visit(this);
1458 }
1459
1460 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1461
1462 /**
1463 * Get a whole variable written by an assignment
1464 *
1465 * If the LHS of the assignment writes a whole variable, the variable is
1466 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1467 * assignment are:
1468 *
1469 * - Assigning to a scalar
1470 * - Assigning to all components of a vector
1471 * - Whole array (or matrix) assignment
1472 * - Whole structure assignment
1473 */
1474 ir_variable *whole_variable_written();
1475
1476 /**
1477 * Set the LHS of an assignment
1478 */
1479 void set_lhs(ir_rvalue *lhs);
1480
1481 /**
1482 * Left-hand side of the assignment.
1483 *
1484 * This should be treated as read only. If you need to set the LHS of an
1485 * assignment, use \c ir_assignment::set_lhs.
1486 */
1487 ir_dereference *lhs;
1488
1489 /**
1490 * Value being assigned
1491 */
1492 ir_rvalue *rhs;
1493
1494 /**
1495 * Optional condition for the assignment.
1496 */
1497 ir_rvalue *condition;
1498
1499
1500 /**
1501 * Component mask written
1502 *
1503 * For non-vector types in the LHS, this field will be zero. For vector
1504 * types, a bit will be set for each component that is written. Note that
1505 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1506 *
1507 * A partially-set write mask means that each enabled channel gets
1508 * the value from a consecutive channel of the rhs. For example,
1509 * to write just .xyw of gl_FrontColor with color:
1510 *
1511 * (assign (constant bool (1)) (xyw)
1512 * (var_ref gl_FragColor)
1513 * (swiz xyw (var_ref color)))
1514 */
1515 unsigned write_mask:4;
1516 };
1517
1518 #include "ir_expression_operation.h"
1519
1520 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1521 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1522
1523 class ir_expression : public ir_rvalue {
1524 public:
1525 ir_expression(int op, const struct glsl_type *type,
1526 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1527 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1528
1529 /**
1530 * Constructor for unary operation expressions
1531 */
1532 ir_expression(int op, ir_rvalue *);
1533
1534 /**
1535 * Constructor for binary operation expressions
1536 */
1537 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1538
1539 /**
1540 * Constructor for ternary operation expressions
1541 */
1542 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1543
1544 virtual bool equals(const ir_instruction *ir,
1545 enum ir_node_type ignore = ir_type_unset) const;
1546
1547 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1548
1549 /**
1550 * Attempt to constant-fold the expression
1551 *
1552 * The "variable_context" hash table links ir_variable * to ir_constant *
1553 * that represent the variables' values. \c NULL represents an empty
1554 * context.
1555 *
1556 * If the expression cannot be constant folded, this method will return
1557 * \c NULL.
1558 */
1559 virtual ir_constant *constant_expression_value(void *mem_ctx,
1560 struct hash_table *variable_context = NULL);
1561
1562 /**
1563 * This is only here for ir_reader to used for testing purposes please use
1564 * the precomputed num_operands field if you need the number of operands.
1565 */
1566 static unsigned get_num_operands(ir_expression_operation);
1567
1568 /**
1569 * Return whether the expression operates on vectors horizontally.
1570 */
1571 bool is_horizontal() const
1572 {
1573 return operation == ir_binop_all_equal ||
1574 operation == ir_binop_any_nequal ||
1575 operation == ir_binop_dot ||
1576 operation == ir_binop_vector_extract ||
1577 operation == ir_triop_vector_insert ||
1578 operation == ir_binop_ubo_load ||
1579 operation == ir_quadop_vector;
1580 }
1581
1582 /**
1583 * Do a reverse-lookup to translate the given string into an operator.
1584 */
1585 static ir_expression_operation get_operator(const char *);
1586
1587 virtual void accept(ir_visitor *v)
1588 {
1589 v->visit(this);
1590 }
1591
1592 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1593
1594 virtual ir_variable *variable_referenced() const;
1595
1596 /**
1597 * Determine the number of operands used by an expression
1598 */
1599 void init_num_operands()
1600 {
1601 if (operation == ir_quadop_vector) {
1602 num_operands = this->type->vector_elements;
1603 } else {
1604 num_operands = get_num_operands(operation);
1605 }
1606 }
1607
1608 ir_expression_operation operation;
1609 ir_rvalue *operands[4];
1610 uint8_t num_operands;
1611 };
1612
1613
1614 /**
1615 * HIR instruction representing a high-level function call, containing a list
1616 * of parameters and returning a value in the supplied temporary.
1617 */
1618 class ir_call : public ir_instruction {
1619 public:
1620 ir_call(ir_function_signature *callee,
1621 ir_dereference_variable *return_deref,
1622 exec_list *actual_parameters)
1623 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1624 {
1625 assert(callee->return_type != NULL);
1626 actual_parameters->move_nodes_to(& this->actual_parameters);
1627 }
1628
1629 ir_call(ir_function_signature *callee,
1630 ir_dereference_variable *return_deref,
1631 exec_list *actual_parameters,
1632 ir_variable *var, ir_rvalue *array_idx)
1633 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1634 {
1635 assert(callee->return_type != NULL);
1636 actual_parameters->move_nodes_to(& this->actual_parameters);
1637 }
1638
1639 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1640
1641 virtual ir_constant *constant_expression_value(void *mem_ctx,
1642 struct hash_table *variable_context = NULL);
1643
1644 virtual void accept(ir_visitor *v)
1645 {
1646 v->visit(this);
1647 }
1648
1649 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1650
1651 /**
1652 * Get the name of the function being called.
1653 */
1654 const char *callee_name() const
1655 {
1656 return callee->function_name();
1657 }
1658
1659 /**
1660 * Generates an inline version of the function before @ir,
1661 * storing the return value in return_deref.
1662 */
1663 void generate_inline(ir_instruction *ir);
1664
1665 /**
1666 * Storage for the function's return value.
1667 * This must be NULL if the return type is void.
1668 */
1669 ir_dereference_variable *return_deref;
1670
1671 /**
1672 * The specific function signature being called.
1673 */
1674 ir_function_signature *callee;
1675
1676 /* List of ir_rvalue of paramaters passed in this call. */
1677 exec_list actual_parameters;
1678
1679 /*
1680 * ARB_shader_subroutine support -
1681 * the subroutine uniform variable and array index
1682 * rvalue to be used in the lowering pass later.
1683 */
1684 ir_variable *sub_var;
1685 ir_rvalue *array_idx;
1686 };
1687
1688
1689 /**
1690 * \name Jump-like IR instructions.
1691 *
1692 * These include \c break, \c continue, \c return, and \c discard.
1693 */
1694 /*@{*/
1695 class ir_jump : public ir_instruction {
1696 protected:
1697 ir_jump(enum ir_node_type t)
1698 : ir_instruction(t)
1699 {
1700 }
1701 };
1702
1703 class ir_return : public ir_jump {
1704 public:
1705 ir_return()
1706 : ir_jump(ir_type_return), value(NULL)
1707 {
1708 }
1709
1710 ir_return(ir_rvalue *value)
1711 : ir_jump(ir_type_return), value(value)
1712 {
1713 }
1714
1715 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1716
1717 ir_rvalue *get_value() const
1718 {
1719 return value;
1720 }
1721
1722 virtual void accept(ir_visitor *v)
1723 {
1724 v->visit(this);
1725 }
1726
1727 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1728
1729 ir_rvalue *value;
1730 };
1731
1732
1733 /**
1734 * Jump instructions used inside loops
1735 *
1736 * These include \c break and \c continue. The \c break within a loop is
1737 * different from the \c break within a switch-statement.
1738 *
1739 * \sa ir_switch_jump
1740 */
1741 class ir_loop_jump : public ir_jump {
1742 public:
1743 enum jump_mode {
1744 jump_break,
1745 jump_continue
1746 };
1747
1748 ir_loop_jump(jump_mode mode)
1749 : ir_jump(ir_type_loop_jump)
1750 {
1751 this->mode = mode;
1752 }
1753
1754 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1755
1756 virtual void accept(ir_visitor *v)
1757 {
1758 v->visit(this);
1759 }
1760
1761 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1762
1763 bool is_break() const
1764 {
1765 return mode == jump_break;
1766 }
1767
1768 bool is_continue() const
1769 {
1770 return mode == jump_continue;
1771 }
1772
1773 /** Mode selector for the jump instruction. */
1774 enum jump_mode mode;
1775 };
1776
1777 /**
1778 * IR instruction representing discard statements.
1779 */
1780 class ir_discard : public ir_jump {
1781 public:
1782 ir_discard()
1783 : ir_jump(ir_type_discard)
1784 {
1785 this->condition = NULL;
1786 }
1787
1788 ir_discard(ir_rvalue *cond)
1789 : ir_jump(ir_type_discard)
1790 {
1791 this->condition = cond;
1792 }
1793
1794 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1795
1796 virtual void accept(ir_visitor *v)
1797 {
1798 v->visit(this);
1799 }
1800
1801 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1802
1803 ir_rvalue *condition;
1804 };
1805 /*@}*/
1806
1807
1808 /**
1809 * IR instruction representing demote statements from
1810 * GL_EXT_demote_to_helper_invocation.
1811 */
1812 class ir_demote : public ir_instruction {
1813 public:
1814 ir_demote()
1815 : ir_instruction(ir_type_demote)
1816 {
1817 }
1818
1819 virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
1820
1821 virtual void accept(ir_visitor *v)
1822 {
1823 v->visit(this);
1824 }
1825
1826 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1827 };
1828
1829
1830 /**
1831 * Texture sampling opcodes used in ir_texture
1832 */
1833 enum ir_texture_opcode {
1834 ir_tex, /**< Regular texture look-up */
1835 ir_txb, /**< Texture look-up with LOD bias */
1836 ir_txl, /**< Texture look-up with explicit LOD */
1837 ir_txd, /**< Texture look-up with partial derivatvies */
1838 ir_txf, /**< Texel fetch with explicit LOD */
1839 ir_txf_ms, /**< Multisample texture fetch */
1840 ir_txs, /**< Texture size */
1841 ir_lod, /**< Texture lod query */
1842 ir_tg4, /**< Texture gather */
1843 ir_query_levels, /**< Texture levels query */
1844 ir_texture_samples, /**< Texture samples query */
1845 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1846 };
1847
1848
1849 /**
1850 * IR instruction to sample a texture
1851 *
1852 * The specific form of the IR instruction depends on the \c mode value
1853 * selected from \c ir_texture_opcodes. In the printed IR, these will
1854 * appear as:
1855 *
1856 * Texel offset (0 or an expression)
1857 * | Projection divisor
1858 * | | Shadow comparator
1859 * | | |
1860 * v v v
1861 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1862 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1863 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1864 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1865 * (txf <type> <sampler> <coordinate> 0 <lod>)
1866 * (txf_ms
1867 * <type> <sampler> <coordinate> <sample_index>)
1868 * (txs <type> <sampler> <lod>)
1869 * (lod <type> <sampler> <coordinate>)
1870 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1871 * (query_levels <type> <sampler>)
1872 * (samples_identical <sampler> <coordinate>)
1873 */
1874 class ir_texture : public ir_rvalue {
1875 public:
1876 ir_texture(enum ir_texture_opcode op)
1877 : ir_rvalue(ir_type_texture),
1878 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1879 shadow_comparator(NULL), offset(NULL)
1880 {
1881 memset(&lod_info, 0, sizeof(lod_info));
1882 }
1883
1884 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1885
1886 virtual ir_constant *constant_expression_value(void *mem_ctx,
1887 struct hash_table *variable_context = NULL);
1888
1889 virtual void accept(ir_visitor *v)
1890 {
1891 v->visit(this);
1892 }
1893
1894 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1895
1896 virtual bool equals(const ir_instruction *ir,
1897 enum ir_node_type ignore = ir_type_unset) const;
1898
1899 /**
1900 * Return a string representing the ir_texture_opcode.
1901 */
1902 const char *opcode_string();
1903
1904 /** Set the sampler and type. */
1905 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1906
1907 /**
1908 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1909 */
1910 static ir_texture_opcode get_opcode(const char *);
1911
1912 enum ir_texture_opcode op;
1913
1914 /** Sampler to use for the texture access. */
1915 ir_dereference *sampler;
1916
1917 /** Texture coordinate to sample */
1918 ir_rvalue *coordinate;
1919
1920 /**
1921 * Value used for projective divide.
1922 *
1923 * If there is no projective divide (the common case), this will be
1924 * \c NULL. Optimization passes should check for this to point to a constant
1925 * of 1.0 and replace that with \c NULL.
1926 */
1927 ir_rvalue *projector;
1928
1929 /**
1930 * Coordinate used for comparison on shadow look-ups.
1931 *
1932 * If there is no shadow comparison, this will be \c NULL. For the
1933 * \c ir_txf opcode, this *must* be \c NULL.
1934 */
1935 ir_rvalue *shadow_comparator;
1936
1937 /** Texel offset. */
1938 ir_rvalue *offset;
1939
1940 union {
1941 ir_rvalue *lod; /**< Floating point LOD */
1942 ir_rvalue *bias; /**< Floating point LOD bias */
1943 ir_rvalue *sample_index; /**< MSAA sample index */
1944 ir_rvalue *component; /**< Gather component selector */
1945 struct {
1946 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1947 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1948 } grad;
1949 } lod_info;
1950 };
1951
1952
1953 struct ir_swizzle_mask {
1954 unsigned x:2;
1955 unsigned y:2;
1956 unsigned z:2;
1957 unsigned w:2;
1958
1959 /**
1960 * Number of components in the swizzle.
1961 */
1962 unsigned num_components:3;
1963
1964 /**
1965 * Does the swizzle contain duplicate components?
1966 *
1967 * L-value swizzles cannot contain duplicate components.
1968 */
1969 unsigned has_duplicates:1;
1970 };
1971
1972
1973 class ir_swizzle : public ir_rvalue {
1974 public:
1975 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1976 unsigned count);
1977
1978 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1979
1980 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1981
1982 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1983
1984 virtual ir_constant *constant_expression_value(void *mem_ctx,
1985 struct hash_table *variable_context = NULL);
1986
1987 /**
1988 * Construct an ir_swizzle from the textual representation. Can fail.
1989 */
1990 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1991
1992 virtual void accept(ir_visitor *v)
1993 {
1994 v->visit(this);
1995 }
1996
1997 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1998
1999 virtual bool equals(const ir_instruction *ir,
2000 enum ir_node_type ignore = ir_type_unset) const;
2001
2002 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
2003 {
2004 return val->is_lvalue(state) && !mask.has_duplicates;
2005 }
2006
2007 /**
2008 * Get the variable that is ultimately referenced by an r-value
2009 */
2010 virtual ir_variable *variable_referenced() const;
2011
2012 ir_rvalue *val;
2013 ir_swizzle_mask mask;
2014
2015 private:
2016 /**
2017 * Initialize the mask component of a swizzle
2018 *
2019 * This is used by the \c ir_swizzle constructors.
2020 */
2021 void init_mask(const unsigned *components, unsigned count);
2022 };
2023
2024
2025 class ir_dereference : public ir_rvalue {
2026 public:
2027 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2028
2029 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2030
2031 /**
2032 * Get the variable that is ultimately referenced by an r-value
2033 */
2034 virtual ir_variable *variable_referenced() const = 0;
2035
2036 protected:
2037 ir_dereference(enum ir_node_type t)
2038 : ir_rvalue(t)
2039 {
2040 }
2041 };
2042
2043
2044 class ir_dereference_variable : public ir_dereference {
2045 public:
2046 ir_dereference_variable(ir_variable *var);
2047
2048 virtual ir_dereference_variable *clone(void *mem_ctx,
2049 struct hash_table *) const;
2050
2051 virtual ir_constant *constant_expression_value(void *mem_ctx,
2052 struct hash_table *variable_context = NULL);
2053
2054 virtual bool equals(const ir_instruction *ir,
2055 enum ir_node_type ignore = ir_type_unset) const;
2056
2057 /**
2058 * Get the variable that is ultimately referenced by an r-value
2059 */
2060 virtual ir_variable *variable_referenced() const
2061 {
2062 return this->var;
2063 }
2064
2065 virtual ir_variable *whole_variable_referenced()
2066 {
2067 /* ir_dereference_variable objects always dereference the entire
2068 * variable. However, if this dereference is dereferenced by anything
2069 * else, the complete deferefernce chain is not a whole-variable
2070 * dereference. This method should only be called on the top most
2071 * ir_rvalue in a dereference chain.
2072 */
2073 return this->var;
2074 }
2075
2076 virtual void accept(ir_visitor *v)
2077 {
2078 v->visit(this);
2079 }
2080
2081 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2082
2083 /**
2084 * Object being dereferenced.
2085 */
2086 ir_variable *var;
2087 };
2088
2089
2090 class ir_dereference_array : public ir_dereference {
2091 public:
2092 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2093
2094 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2095
2096 virtual ir_dereference_array *clone(void *mem_ctx,
2097 struct hash_table *) const;
2098
2099 virtual ir_constant *constant_expression_value(void *mem_ctx,
2100 struct hash_table *variable_context = NULL);
2101
2102 virtual bool equals(const ir_instruction *ir,
2103 enum ir_node_type ignore = ir_type_unset) const;
2104
2105 /**
2106 * Get the variable that is ultimately referenced by an r-value
2107 */
2108 virtual ir_variable *variable_referenced() const
2109 {
2110 return this->array->variable_referenced();
2111 }
2112
2113 virtual void accept(ir_visitor *v)
2114 {
2115 v->visit(this);
2116 }
2117
2118 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2119
2120 ir_rvalue *array;
2121 ir_rvalue *array_index;
2122
2123 private:
2124 void set_array(ir_rvalue *value);
2125 };
2126
2127
2128 class ir_dereference_record : public ir_dereference {
2129 public:
2130 ir_dereference_record(ir_rvalue *value, const char *field);
2131
2132 ir_dereference_record(ir_variable *var, const char *field);
2133
2134 virtual ir_dereference_record *clone(void *mem_ctx,
2135 struct hash_table *) const;
2136
2137 virtual ir_constant *constant_expression_value(void *mem_ctx,
2138 struct hash_table *variable_context = NULL);
2139
2140 /**
2141 * Get the variable that is ultimately referenced by an r-value
2142 */
2143 virtual ir_variable *variable_referenced() const
2144 {
2145 return this->record->variable_referenced();
2146 }
2147
2148 virtual void accept(ir_visitor *v)
2149 {
2150 v->visit(this);
2151 }
2152
2153 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2154
2155 ir_rvalue *record;
2156 int field_idx;
2157 };
2158
2159
2160 /**
2161 * Data stored in an ir_constant
2162 */
2163 union ir_constant_data {
2164 unsigned u[16];
2165 int i[16];
2166 float f[16];
2167 bool b[16];
2168 double d[16];
2169 uint64_t u64[16];
2170 int64_t i64[16];
2171 };
2172
2173
2174 class ir_constant : public ir_rvalue {
2175 public:
2176 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2177 ir_constant(bool b, unsigned vector_elements=1);
2178 ir_constant(unsigned int u, unsigned vector_elements=1);
2179 ir_constant(int i, unsigned vector_elements=1);
2180 ir_constant(float f, unsigned vector_elements=1);
2181 ir_constant(double d, unsigned vector_elements=1);
2182 ir_constant(uint64_t u64, unsigned vector_elements=1);
2183 ir_constant(int64_t i64, unsigned vector_elements=1);
2184
2185 /**
2186 * Construct an ir_constant from a list of ir_constant values
2187 */
2188 ir_constant(const struct glsl_type *type, exec_list *values);
2189
2190 /**
2191 * Construct an ir_constant from a scalar component of another ir_constant
2192 *
2193 * The new \c ir_constant inherits the type of the component from the
2194 * source constant.
2195 *
2196 * \note
2197 * In the case of a matrix constant, the new constant is a scalar, \b not
2198 * a vector.
2199 */
2200 ir_constant(const ir_constant *c, unsigned i);
2201
2202 /**
2203 * Return a new ir_constant of the specified type containing all zeros.
2204 */
2205 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2206
2207 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2208
2209 virtual ir_constant *constant_expression_value(void *mem_ctx,
2210 struct hash_table *variable_context = NULL);
2211
2212 virtual void accept(ir_visitor *v)
2213 {
2214 v->visit(this);
2215 }
2216
2217 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2218
2219 virtual bool equals(const ir_instruction *ir,
2220 enum ir_node_type ignore = ir_type_unset) const;
2221
2222 /**
2223 * Get a particular component of a constant as a specific type
2224 *
2225 * This is useful, for example, to get a value from an integer constant
2226 * as a float or bool. This appears frequently when constructors are
2227 * called with all constant parameters.
2228 */
2229 /*@{*/
2230 bool get_bool_component(unsigned i) const;
2231 float get_float_component(unsigned i) const;
2232 double get_double_component(unsigned i) const;
2233 int get_int_component(unsigned i) const;
2234 unsigned get_uint_component(unsigned i) const;
2235 int64_t get_int64_component(unsigned i) const;
2236 uint64_t get_uint64_component(unsigned i) const;
2237 /*@}*/
2238
2239 ir_constant *get_array_element(unsigned i) const;
2240
2241 ir_constant *get_record_field(int idx);
2242
2243 /**
2244 * Copy the values on another constant at a given offset.
2245 *
2246 * The offset is ignored for array or struct copies, it's only for
2247 * scalars or vectors into vectors or matrices.
2248 *
2249 * With identical types on both sides and zero offset it's clone()
2250 * without creating a new object.
2251 */
2252
2253 void copy_offset(ir_constant *src, int offset);
2254
2255 /**
2256 * Copy the values on another constant at a given offset and
2257 * following an assign-like mask.
2258 *
2259 * The mask is ignored for scalars.
2260 *
2261 * Note that this function only handles what assign can handle,
2262 * i.e. at most a vector as source and a column of a matrix as
2263 * destination.
2264 */
2265
2266 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2267
2268 /**
2269 * Determine whether a constant has the same value as another constant
2270 *
2271 * \sa ir_constant::is_zero, ir_constant::is_one,
2272 * ir_constant::is_negative_one
2273 */
2274 bool has_value(const ir_constant *) const;
2275
2276 /**
2277 * Return true if this ir_constant represents the given value.
2278 *
2279 * For vectors, this checks that each component is the given value.
2280 */
2281 virtual bool is_value(float f, int i) const;
2282 virtual bool is_zero() const;
2283 virtual bool is_one() const;
2284 virtual bool is_negative_one() const;
2285
2286 /**
2287 * Return true for constants that could be stored as 16-bit unsigned values.
2288 *
2289 * Note that this will return true even for signed integer ir_constants, as
2290 * long as the value is non-negative and fits in 16-bits.
2291 */
2292 virtual bool is_uint16_constant() const;
2293
2294 /**
2295 * Value of the constant.
2296 *
2297 * The field used to back the values supplied by the constant is determined
2298 * by the type associated with the \c ir_instruction. Constants may be
2299 * scalars, vectors, or matrices.
2300 */
2301 union ir_constant_data value;
2302
2303 /* Array elements and structure fields */
2304 ir_constant **const_elements;
2305
2306 private:
2307 /**
2308 * Parameterless constructor only used by the clone method
2309 */
2310 ir_constant(void);
2311 };
2312
2313 /**
2314 * IR instruction to emit a vertex in a geometry shader.
2315 */
2316 class ir_emit_vertex : public ir_instruction {
2317 public:
2318 ir_emit_vertex(ir_rvalue *stream)
2319 : ir_instruction(ir_type_emit_vertex),
2320 stream(stream)
2321 {
2322 assert(stream);
2323 }
2324
2325 virtual void accept(ir_visitor *v)
2326 {
2327 v->visit(this);
2328 }
2329
2330 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2331 {
2332 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2333 }
2334
2335 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2336
2337 int stream_id() const
2338 {
2339 return stream->as_constant()->value.i[0];
2340 }
2341
2342 ir_rvalue *stream;
2343 };
2344
2345 /**
2346 * IR instruction to complete the current primitive and start a new one in a
2347 * geometry shader.
2348 */
2349 class ir_end_primitive : public ir_instruction {
2350 public:
2351 ir_end_primitive(ir_rvalue *stream)
2352 : ir_instruction(ir_type_end_primitive),
2353 stream(stream)
2354 {
2355 assert(stream);
2356 }
2357
2358 virtual void accept(ir_visitor *v)
2359 {
2360 v->visit(this);
2361 }
2362
2363 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2364 {
2365 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2366 }
2367
2368 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2369
2370 int stream_id() const
2371 {
2372 return stream->as_constant()->value.i[0];
2373 }
2374
2375 ir_rvalue *stream;
2376 };
2377
2378 /**
2379 * IR instruction for tessellation control and compute shader barrier.
2380 */
2381 class ir_barrier : public ir_instruction {
2382 public:
2383 ir_barrier()
2384 : ir_instruction(ir_type_barrier)
2385 {
2386 }
2387
2388 virtual void accept(ir_visitor *v)
2389 {
2390 v->visit(this);
2391 }
2392
2393 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2394 {
2395 return new(mem_ctx) ir_barrier();
2396 }
2397
2398 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2399 };
2400
2401 /*@}*/
2402
2403 /**
2404 * Apply a visitor to each IR node in a list
2405 */
2406 void
2407 visit_exec_list(exec_list *list, ir_visitor *visitor);
2408
2409 /**
2410 * Validate invariants on each IR node in a list
2411 */
2412 void validate_ir_tree(exec_list *instructions);
2413
2414 struct _mesa_glsl_parse_state;
2415 struct gl_shader_program;
2416
2417 /**
2418 * Detect whether an unlinked shader contains static recursion
2419 *
2420 * If the list of instructions is determined to contain static recursion,
2421 * \c _mesa_glsl_error will be called to emit error messages for each function
2422 * that is in the recursion cycle.
2423 */
2424 void
2425 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2426 exec_list *instructions);
2427
2428 /**
2429 * Detect whether a linked shader contains static recursion
2430 *
2431 * If the list of instructions is determined to contain static recursion,
2432 * \c link_error_printf will be called to emit error messages for each function
2433 * that is in the recursion cycle. In addition,
2434 * \c gl_shader_program::LinkStatus will be set to false.
2435 */
2436 void
2437 detect_recursion_linked(struct gl_shader_program *prog,
2438 exec_list *instructions);
2439
2440 /**
2441 * Make a clone of each IR instruction in a list
2442 *
2443 * \param in List of IR instructions that are to be cloned
2444 * \param out List to hold the cloned instructions
2445 */
2446 void
2447 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2448
2449 extern void
2450 _mesa_glsl_initialize_variables(exec_list *instructions,
2451 struct _mesa_glsl_parse_state *state);
2452
2453 extern void
2454 reparent_ir(exec_list *list, void *mem_ctx);
2455
2456 extern void
2457 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2458 gl_shader_stage shader_stage);
2459
2460 extern char *
2461 prototype_string(const glsl_type *return_type, const char *name,
2462 exec_list *parameters);
2463
2464 const char *
2465 mode_string(const ir_variable *var);
2466
2467 /**
2468 * Built-in / reserved GL variables names start with "gl_"
2469 */
2470 static inline bool
2471 is_gl_identifier(const char *s)
2472 {
2473 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2474 }
2475
2476 extern "C" {
2477 #endif /* __cplusplus */
2478
2479 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2480 struct _mesa_glsl_parse_state *state);
2481
2482 extern void
2483 fprint_ir(FILE *f, const void *instruction);
2484
2485 extern const struct gl_builtin_uniform_desc *
2486 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2487
2488 #ifdef __cplusplus
2489 } /* extern "C" */
2490 #endif
2491
2492 unsigned
2493 vertices_per_prim(GLenum prim);
2494
2495 #endif /* IR_H */