mesa: Fix incorrect "see also" comments
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_name_ralloced() const
594 {
595 return this->name != ir_variable::tmp_name;
596 }
597
598 /**
599 * Enable emitting extension warnings for this variable
600 */
601 void enable_extension_warning(const char *extension);
602
603 /**
604 * Get the extension warning string for this variable
605 *
606 * If warnings are not enabled, \c NULL is returned.
607 */
608 const char *get_extension_warning() const;
609
610 /**
611 * Declared type of the variable
612 */
613 const struct glsl_type *type;
614
615 /**
616 * Declared name of the variable
617 */
618 const char *name;
619
620 struct ir_variable_data {
621
622 /**
623 * Is the variable read-only?
624 *
625 * This is set for variables declared as \c const, shader inputs,
626 * and uniforms.
627 */
628 unsigned read_only:1;
629 unsigned centroid:1;
630 unsigned sample:1;
631 unsigned patch:1;
632 unsigned invariant:1;
633 unsigned precise:1;
634
635 /**
636 * Has this variable been used for reading or writing?
637 *
638 * Several GLSL semantic checks require knowledge of whether or not a
639 * variable has been used. For example, it is an error to redeclare a
640 * variable as invariant after it has been used.
641 *
642 * This is only maintained in the ast_to_hir.cpp path, not in
643 * Mesa's fixed function or ARB program paths.
644 */
645 unsigned used:1;
646
647 /**
648 * Has this variable been statically assigned?
649 *
650 * This answers whether the variable was assigned in any path of
651 * the shader during ast_to_hir. This doesn't answer whether it is
652 * still written after dead code removal, nor is it maintained in
653 * non-ast_to_hir.cpp (GLSL parsing) paths.
654 */
655 unsigned assigned:1;
656
657 /**
658 * When separate shader programs are enabled, only input/outputs between
659 * the stages of a multi-stage separate program can be safely removed
660 * from the shader interface. Other input/outputs must remains active.
661 */
662 unsigned always_active_io:1;
663
664 /**
665 * Enum indicating how the variable was declared. See
666 * ir_var_declaration_type.
667 *
668 * This is used to detect certain kinds of illegal variable redeclarations.
669 */
670 unsigned how_declared:2;
671
672 /**
673 * Storage class of the variable.
674 *
675 * \sa ir_variable_mode
676 */
677 unsigned mode:4;
678
679 /**
680 * Interpolation mode for shader inputs / outputs
681 *
682 * \sa glsl_interp_qualifier
683 */
684 unsigned interpolation:2;
685
686 /**
687 * \name ARB_fragment_coord_conventions
688 * @{
689 */
690 unsigned origin_upper_left:1;
691 unsigned pixel_center_integer:1;
692 /*@}*/
693
694 /**
695 * Was the location explicitly set in the shader?
696 *
697 * If the location is explicitly set in the shader, it \b cannot be changed
698 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
699 * no effect).
700 */
701 unsigned explicit_location:1;
702 unsigned explicit_index:1;
703
704 /**
705 * Was an initial binding explicitly set in the shader?
706 *
707 * If so, constant_value contains an integer ir_constant representing the
708 * initial binding point.
709 */
710 unsigned explicit_binding:1;
711
712 /**
713 * Was an initial component explicitly set in the shader?
714 */
715 unsigned explicit_component:1;
716
717 /**
718 * Does this variable have an initializer?
719 *
720 * This is used by the linker to cross-validiate initializers of global
721 * variables.
722 */
723 unsigned has_initializer:1;
724
725 /**
726 * Is this variable a generic output or input that has not yet been matched
727 * up to a variable in another stage of the pipeline?
728 *
729 * This is used by the linker as scratch storage while assigning locations
730 * to generic inputs and outputs.
731 */
732 unsigned is_unmatched_generic_inout:1;
733
734 /**
735 * Is this varying used only by transform feedback?
736 *
737 * This is used by the linker to decide if its safe to pack the varying.
738 */
739 unsigned is_xfb_only:1;
740
741 /**
742 * Was a transfor feedback buffer set in the shader?
743 */
744 unsigned explicit_xfb_buffer:1;
745
746 /**
747 * Was a transfor feedback offset set in the shader?
748 */
749 unsigned explicit_xfb_offset:1;
750
751 /**
752 * Was a transfor feedback stride set in the shader?
753 */
754 unsigned explicit_xfb_stride:1;
755
756 /**
757 * If non-zero, then this variable may be packed along with other variables
758 * into a single varying slot, so this offset should be applied when
759 * accessing components. For example, an offset of 1 means that the x
760 * component of this variable is actually stored in component y of the
761 * location specified by \c location.
762 */
763 unsigned location_frac:2;
764
765 /**
766 * Layout of the matrix. Uses glsl_matrix_layout values.
767 */
768 unsigned matrix_layout:2;
769
770 /**
771 * Non-zero if this variable was created by lowering a named interface
772 * block.
773 */
774 unsigned from_named_ifc_block:1;
775
776 /**
777 * Non-zero if the variable must be a shader input. This is useful for
778 * constraints on function parameters.
779 */
780 unsigned must_be_shader_input:1;
781
782 /**
783 * Output index for dual source blending.
784 *
785 * \note
786 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
787 * source blending.
788 */
789 unsigned index:1;
790
791 /**
792 * Precision qualifier.
793 *
794 * In desktop GLSL we do not care about precision qualifiers at all, in
795 * fact, the spec says that precision qualifiers are ignored.
796 *
797 * To make things easy, we make it so that this field is always
798 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
799 * have the same precision value and the checks we add in the compiler
800 * for this field will never break a desktop shader compile.
801 */
802 unsigned precision:2;
803
804 /**
805 * \brief Layout qualifier for gl_FragDepth.
806 *
807 * This is not equal to \c ir_depth_layout_none if and only if this
808 * variable is \c gl_FragDepth and a layout qualifier is specified.
809 */
810 ir_depth_layout depth_layout:3;
811
812 /**
813 * ARB_shader_image_load_store qualifiers.
814 */
815 unsigned image_read_only:1; /**< "readonly" qualifier. */
816 unsigned image_write_only:1; /**< "writeonly" qualifier. */
817 unsigned image_coherent:1;
818 unsigned image_volatile:1;
819 unsigned image_restrict:1;
820
821 /**
822 * ARB_shader_storage_buffer_object
823 */
824 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
825
826 unsigned implicit_sized_array:1;
827 /**
828 * Emit a warning if this variable is accessed.
829 */
830 private:
831 uint8_t warn_extension_index;
832
833 public:
834 /** Image internal format if specified explicitly, otherwise GL_NONE. */
835 uint16_t image_format;
836
837 private:
838 /**
839 * Number of state slots used
840 *
841 * \note
842 * This could be stored in as few as 7-bits, if necessary. If it is made
843 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
844 * be safe.
845 */
846 uint16_t _num_state_slots;
847
848 public:
849 /**
850 * Initial binding point for a sampler, atomic, or UBO.
851 *
852 * For array types, this represents the binding point for the first element.
853 */
854 int16_t binding;
855
856 /**
857 * Storage location of the base of this variable
858 *
859 * The precise meaning of this field depends on the nature of the variable.
860 *
861 * - Vertex shader input: one of the values from \c gl_vert_attrib.
862 * - Vertex shader output: one of the values from \c gl_varying_slot.
863 * - Geometry shader input: one of the values from \c gl_varying_slot.
864 * - Geometry shader output: one of the values from \c gl_varying_slot.
865 * - Fragment shader input: one of the values from \c gl_varying_slot.
866 * - Fragment shader output: one of the values from \c gl_frag_result.
867 * - Uniforms: Per-stage uniform slot number for default uniform block.
868 * - Uniforms: Index within the uniform block definition for UBO members.
869 * - Non-UBO Uniforms: explicit location until linking then reused to
870 * store uniform slot number.
871 * - Other: This field is not currently used.
872 *
873 * If the variable is a uniform, shader input, or shader output, and the
874 * slot has not been assigned, the value will be -1.
875 */
876 int location;
877
878 /**
879 * for glsl->tgsi/mesa IR we need to store the index into the
880 * parameters for uniforms, initially the code overloaded location
881 * but this causes problems with indirect samplers and AoA.
882 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
883 */
884 int param_index;
885
886 /**
887 * Vertex stream output identifier.
888 */
889 unsigned stream;
890
891 /**
892 * Atomic, transform feedback or block member offset.
893 */
894 unsigned offset;
895
896 /**
897 * Highest element accessed with a constant expression array index
898 *
899 * Not used for non-array variables. -1 is never accessed.
900 */
901 int max_array_access;
902
903 /**
904 * Transform feedback buffer.
905 */
906 unsigned xfb_buffer;
907
908 /**
909 * Transform feedback stride.
910 */
911 unsigned xfb_stride;
912
913 /**
914 * Allow (only) ir_variable direct access private members.
915 */
916 friend class ir_variable;
917 } data;
918
919 /**
920 * Value assigned in the initializer of a variable declared "const"
921 */
922 ir_constant *constant_value;
923
924 /**
925 * Constant expression assigned in the initializer of the variable
926 *
927 * \warning
928 * This field and \c ::constant_value are distinct. Even if the two fields
929 * refer to constants with the same value, they must point to separate
930 * objects.
931 */
932 ir_constant *constant_initializer;
933
934 private:
935 static const char *const warn_extension_table[];
936
937 union {
938 /**
939 * For variables which satisfy the is_interface_instance() predicate,
940 * this points to an array of integers such that if the ith member of
941 * the interface block is an array, max_ifc_array_access[i] is the
942 * maximum array element of that member that has been accessed. If the
943 * ith member of the interface block is not an array,
944 * max_ifc_array_access[i] is unused.
945 *
946 * For variables whose type is not an interface block, this pointer is
947 * NULL.
948 */
949 int *max_ifc_array_access;
950
951 /**
952 * Built-in state that backs this uniform
953 *
954 * Once set at variable creation, \c state_slots must remain invariant.
955 *
956 * If the variable is not a uniform, \c _num_state_slots will be zero
957 * and \c state_slots will be \c NULL.
958 */
959 ir_state_slot *state_slots;
960 } u;
961
962 /**
963 * For variables that are in an interface block or are an instance of an
964 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
965 *
966 * \sa ir_variable::location
967 */
968 const glsl_type *interface_type;
969
970 /**
971 * Name used for anonymous compiler temporaries
972 */
973 static const char tmp_name[];
974
975 public:
976 /**
977 * Should the construct keep names for ir_var_temporary variables?
978 *
979 * When this global is false, names passed to the constructor for
980 * \c ir_var_temporary variables will be dropped. Instead, the variable will
981 * be named "compiler_temp". This name will be in static storage.
982 *
983 * \warning
984 * \b NEVER change the mode of an \c ir_var_temporary.
985 *
986 * \warning
987 * This variable is \b not thread-safe. It is global, \b not
988 * per-context. It begins life false. A context can, at some point, make
989 * it true. From that point on, it will be true forever. This should be
990 * okay since it will only be set true while debugging.
991 */
992 static bool temporaries_allocate_names;
993 };
994
995 /**
996 * A function that returns whether a built-in function is available in the
997 * current shading language (based on version, ES or desktop, and extensions).
998 */
999 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1000
1001 /*@{*/
1002 /**
1003 * The representation of a function instance; may be the full definition or
1004 * simply a prototype.
1005 */
1006 class ir_function_signature : public ir_instruction {
1007 /* An ir_function_signature will be part of the list of signatures in
1008 * an ir_function.
1009 */
1010 public:
1011 ir_function_signature(const glsl_type *return_type,
1012 builtin_available_predicate builtin_avail = NULL);
1013
1014 virtual ir_function_signature *clone(void *mem_ctx,
1015 struct hash_table *ht) const;
1016 ir_function_signature *clone_prototype(void *mem_ctx,
1017 struct hash_table *ht) const;
1018
1019 virtual void accept(ir_visitor *v)
1020 {
1021 v->visit(this);
1022 }
1023
1024 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1025
1026 /**
1027 * Attempt to evaluate this function as a constant expression,
1028 * given a list of the actual parameters and the variable context.
1029 * Returns NULL for non-built-ins.
1030 */
1031 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1032
1033 /**
1034 * Get the name of the function for which this is a signature
1035 */
1036 const char *function_name() const;
1037
1038 /**
1039 * Get a handle to the function for which this is a signature
1040 *
1041 * There is no setter function, this function returns a \c const pointer,
1042 * and \c ir_function_signature::_function is private for a reason. The
1043 * only way to make a connection between a function and function signature
1044 * is via \c ir_function::add_signature. This helps ensure that certain
1045 * invariants (i.e., a function signature is in the list of signatures for
1046 * its \c _function) are met.
1047 *
1048 * \sa ir_function::add_signature
1049 */
1050 inline const class ir_function *function() const
1051 {
1052 return this->_function;
1053 }
1054
1055 /**
1056 * Check whether the qualifiers match between this signature's parameters
1057 * and the supplied parameter list. If not, returns the name of the first
1058 * parameter with mismatched qualifiers (for use in error messages).
1059 */
1060 const char *qualifiers_match(exec_list *params);
1061
1062 /**
1063 * Replace the current parameter list with the given one. This is useful
1064 * if the current information came from a prototype, and either has invalid
1065 * or missing parameter names.
1066 */
1067 void replace_parameters(exec_list *new_params);
1068
1069 /**
1070 * Function return type.
1071 *
1072 * \note This discards the optional precision qualifier.
1073 */
1074 const struct glsl_type *return_type;
1075
1076 /**
1077 * List of ir_variable of function parameters.
1078 *
1079 * This represents the storage. The paramaters passed in a particular
1080 * call will be in ir_call::actual_paramaters.
1081 */
1082 struct exec_list parameters;
1083
1084 /** Whether or not this function has a body (which may be empty). */
1085 unsigned is_defined:1;
1086
1087 /** Whether or not this function signature is a built-in. */
1088 bool is_builtin() const;
1089
1090 /**
1091 * Whether or not this function is an intrinsic to be implemented
1092 * by the driver.
1093 */
1094 bool is_intrinsic;
1095
1096 /** Whether or not a built-in is available for this shader. */
1097 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1098
1099 /** Body of instructions in the function. */
1100 struct exec_list body;
1101
1102 private:
1103 /**
1104 * A function pointer to a predicate that answers whether a built-in
1105 * function is available in the current shader. NULL if not a built-in.
1106 */
1107 builtin_available_predicate builtin_avail;
1108
1109 /** Function of which this signature is one overload. */
1110 class ir_function *_function;
1111
1112 /** Function signature of which this one is a prototype clone */
1113 const ir_function_signature *origin;
1114
1115 friend class ir_function;
1116
1117 /**
1118 * Helper function to run a list of instructions for constant
1119 * expression evaluation.
1120 *
1121 * The hash table represents the values of the visible variables.
1122 * There are no scoping issues because the table is indexed on
1123 * ir_variable pointers, not variable names.
1124 *
1125 * Returns false if the expression is not constant, true otherwise,
1126 * and the value in *result if result is non-NULL.
1127 */
1128 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1129 struct hash_table *variable_context,
1130 ir_constant **result);
1131 };
1132
1133
1134 /**
1135 * Header for tracking multiple overloaded functions with the same name.
1136 * Contains a list of ir_function_signatures representing each of the
1137 * actual functions.
1138 */
1139 class ir_function : public ir_instruction {
1140 public:
1141 ir_function(const char *name);
1142
1143 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1144
1145 virtual void accept(ir_visitor *v)
1146 {
1147 v->visit(this);
1148 }
1149
1150 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1151
1152 void add_signature(ir_function_signature *sig)
1153 {
1154 sig->_function = this;
1155 this->signatures.push_tail(sig);
1156 }
1157
1158 /**
1159 * Find a signature that matches a set of actual parameters, taking implicit
1160 * conversions into account. Also flags whether the match was exact.
1161 */
1162 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1163 const exec_list *actual_param,
1164 bool allow_builtins,
1165 bool *match_is_exact);
1166
1167 /**
1168 * Find a signature that matches a set of actual parameters, taking implicit
1169 * conversions into account.
1170 */
1171 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1172 const exec_list *actual_param,
1173 bool allow_builtins);
1174
1175 /**
1176 * Find a signature that exactly matches a set of actual parameters without
1177 * any implicit type conversions.
1178 */
1179 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1180 const exec_list *actual_ps);
1181
1182 /**
1183 * Name of the function.
1184 */
1185 const char *name;
1186
1187 /** Whether or not this function has a signature that isn't a built-in. */
1188 bool has_user_signature();
1189
1190 /**
1191 * List of ir_function_signature for each overloaded function with this name.
1192 */
1193 struct exec_list signatures;
1194
1195 /**
1196 * is this function a subroutine type declaration
1197 * e.g. subroutine void type1(float arg1);
1198 */
1199 bool is_subroutine;
1200
1201 /**
1202 * is this function associated to a subroutine type
1203 * e.g. subroutine (type1, type2) function_name { function_body };
1204 * would have num_subroutine_types 2,
1205 * and pointers to the type1 and type2 types.
1206 */
1207 int num_subroutine_types;
1208 const struct glsl_type **subroutine_types;
1209
1210 int subroutine_index;
1211 };
1212
1213 inline const char *ir_function_signature::function_name() const
1214 {
1215 return this->_function->name;
1216 }
1217 /*@}*/
1218
1219
1220 /**
1221 * IR instruction representing high-level if-statements
1222 */
1223 class ir_if : public ir_instruction {
1224 public:
1225 ir_if(ir_rvalue *condition)
1226 : ir_instruction(ir_type_if), condition(condition)
1227 {
1228 }
1229
1230 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1231
1232 virtual void accept(ir_visitor *v)
1233 {
1234 v->visit(this);
1235 }
1236
1237 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1238
1239 ir_rvalue *condition;
1240 /** List of ir_instruction for the body of the then branch */
1241 exec_list then_instructions;
1242 /** List of ir_instruction for the body of the else branch */
1243 exec_list else_instructions;
1244 };
1245
1246
1247 /**
1248 * IR instruction representing a high-level loop structure.
1249 */
1250 class ir_loop : public ir_instruction {
1251 public:
1252 ir_loop();
1253
1254 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1255
1256 virtual void accept(ir_visitor *v)
1257 {
1258 v->visit(this);
1259 }
1260
1261 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1262
1263 /** List of ir_instruction that make up the body of the loop. */
1264 exec_list body_instructions;
1265 };
1266
1267
1268 class ir_assignment : public ir_instruction {
1269 public:
1270 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1271
1272 /**
1273 * Construct an assignment with an explicit write mask
1274 *
1275 * \note
1276 * Since a write mask is supplied, the LHS must already be a bare
1277 * \c ir_dereference. The cannot be any swizzles in the LHS.
1278 */
1279 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1280 unsigned write_mask);
1281
1282 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1283
1284 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1285
1286 virtual void accept(ir_visitor *v)
1287 {
1288 v->visit(this);
1289 }
1290
1291 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1292
1293 /**
1294 * Get a whole variable written by an assignment
1295 *
1296 * If the LHS of the assignment writes a whole variable, the variable is
1297 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1298 * assignment are:
1299 *
1300 * - Assigning to a scalar
1301 * - Assigning to all components of a vector
1302 * - Whole array (or matrix) assignment
1303 * - Whole structure assignment
1304 */
1305 ir_variable *whole_variable_written();
1306
1307 /**
1308 * Set the LHS of an assignment
1309 */
1310 void set_lhs(ir_rvalue *lhs);
1311
1312 /**
1313 * Left-hand side of the assignment.
1314 *
1315 * This should be treated as read only. If you need to set the LHS of an
1316 * assignment, use \c ir_assignment::set_lhs.
1317 */
1318 ir_dereference *lhs;
1319
1320 /**
1321 * Value being assigned
1322 */
1323 ir_rvalue *rhs;
1324
1325 /**
1326 * Optional condition for the assignment.
1327 */
1328 ir_rvalue *condition;
1329
1330
1331 /**
1332 * Component mask written
1333 *
1334 * For non-vector types in the LHS, this field will be zero. For vector
1335 * types, a bit will be set for each component that is written. Note that
1336 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1337 *
1338 * A partially-set write mask means that each enabled channel gets
1339 * the value from a consecutive channel of the rhs. For example,
1340 * to write just .xyw of gl_FrontColor with color:
1341 *
1342 * (assign (constant bool (1)) (xyw)
1343 * (var_ref gl_FragColor)
1344 * (swiz xyw (var_ref color)))
1345 */
1346 unsigned write_mask:4;
1347 };
1348
1349 /* Update ir_expression::get_num_operands() and operator_strs when
1350 * updating this list.
1351 */
1352 enum ir_expression_operation {
1353 ir_unop_bit_not,
1354 ir_unop_logic_not,
1355 ir_unop_neg,
1356 ir_unop_abs,
1357 ir_unop_sign,
1358 ir_unop_rcp,
1359 ir_unop_rsq,
1360 ir_unop_sqrt,
1361 ir_unop_exp, /**< Log base e on gentype */
1362 ir_unop_log, /**< Natural log on gentype */
1363 ir_unop_exp2,
1364 ir_unop_log2,
1365 ir_unop_f2i, /**< Float-to-integer conversion. */
1366 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1367 ir_unop_i2f, /**< Integer-to-float conversion. */
1368 ir_unop_f2b, /**< Float-to-boolean conversion */
1369 ir_unop_b2f, /**< Boolean-to-float conversion */
1370 ir_unop_i2b, /**< int-to-boolean conversion */
1371 ir_unop_b2i, /**< Boolean-to-int conversion */
1372 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1373 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1374 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1375 ir_unop_d2f, /**< Double-to-float conversion. */
1376 ir_unop_f2d, /**< Float-to-double conversion. */
1377 ir_unop_d2i, /**< Double-to-integer conversion. */
1378 ir_unop_i2d, /**< Integer-to-double conversion. */
1379 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1380 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1381 ir_unop_d2b, /**< Double-to-boolean conversion. */
1382 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1383 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1384 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1385 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1386
1387 /**
1388 * \name Unary floating-point rounding operations.
1389 */
1390 /*@{*/
1391 ir_unop_trunc,
1392 ir_unop_ceil,
1393 ir_unop_floor,
1394 ir_unop_fract,
1395 ir_unop_round_even,
1396 /*@}*/
1397
1398 /**
1399 * \name Trigonometric operations.
1400 */
1401 /*@{*/
1402 ir_unop_sin,
1403 ir_unop_cos,
1404 /*@}*/
1405
1406 /**
1407 * \name Partial derivatives.
1408 */
1409 /*@{*/
1410 ir_unop_dFdx,
1411 ir_unop_dFdx_coarse,
1412 ir_unop_dFdx_fine,
1413 ir_unop_dFdy,
1414 ir_unop_dFdy_coarse,
1415 ir_unop_dFdy_fine,
1416 /*@}*/
1417
1418 /**
1419 * \name Floating point pack and unpack operations.
1420 */
1421 /*@{*/
1422 ir_unop_pack_snorm_2x16,
1423 ir_unop_pack_snorm_4x8,
1424 ir_unop_pack_unorm_2x16,
1425 ir_unop_pack_unorm_4x8,
1426 ir_unop_pack_half_2x16,
1427 ir_unop_unpack_snorm_2x16,
1428 ir_unop_unpack_snorm_4x8,
1429 ir_unop_unpack_unorm_2x16,
1430 ir_unop_unpack_unorm_4x8,
1431 ir_unop_unpack_half_2x16,
1432 /*@}*/
1433
1434 /**
1435 * \name Bit operations, part of ARB_gpu_shader5.
1436 */
1437 /*@{*/
1438 ir_unop_bitfield_reverse,
1439 ir_unop_bit_count,
1440 ir_unop_find_msb,
1441 ir_unop_find_lsb,
1442 /*@}*/
1443
1444 ir_unop_saturate,
1445
1446 /**
1447 * \name Double packing, part of ARB_gpu_shader_fp64.
1448 */
1449 /*@{*/
1450 ir_unop_pack_double_2x32,
1451 ir_unop_unpack_double_2x32,
1452 /*@}*/
1453
1454 ir_unop_frexp_sig,
1455 ir_unop_frexp_exp,
1456
1457 ir_unop_noise,
1458
1459 ir_unop_subroutine_to_int,
1460 /**
1461 * Interpolate fs input at centroid
1462 *
1463 * operand0 is the fs input.
1464 */
1465 ir_unop_interpolate_at_centroid,
1466
1467 /**
1468 * Ask the driver for the total size of a buffer block.
1469 *
1470 * operand0 is the ir_constant buffer block index in the linked shader.
1471 */
1472 ir_unop_get_buffer_size,
1473
1474 /**
1475 * Calculate length of an unsized array inside a buffer block.
1476 * This opcode is going to be replaced in a lowering pass inside
1477 * the linker.
1478 *
1479 * operand0 is the unsized array's ir_value for the calculation
1480 * of its length.
1481 */
1482 ir_unop_ssbo_unsized_array_length,
1483
1484 /**
1485 * Vote among threads on the value of the boolean argument.
1486 */
1487 ir_unop_vote_any,
1488 ir_unop_vote_all,
1489 ir_unop_vote_eq,
1490
1491 /**
1492 * A sentinel marking the last of the unary operations.
1493 */
1494 ir_last_unop = ir_unop_vote_eq,
1495
1496 ir_binop_add,
1497 ir_binop_sub,
1498 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1499 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1500 ir_binop_div,
1501
1502 /**
1503 * Returns the carry resulting from the addition of the two arguments.
1504 */
1505 /*@{*/
1506 ir_binop_carry,
1507 /*@}*/
1508
1509 /**
1510 * Returns the borrow resulting from the subtraction of the second argument
1511 * from the first argument.
1512 */
1513 /*@{*/
1514 ir_binop_borrow,
1515 /*@}*/
1516
1517 /**
1518 * Takes one of two combinations of arguments:
1519 *
1520 * - mod(vecN, vecN)
1521 * - mod(vecN, float)
1522 *
1523 * Does not take integer types.
1524 */
1525 ir_binop_mod,
1526
1527 /**
1528 * \name Binary comparison operators which return a boolean vector.
1529 * The type of both operands must be equal.
1530 */
1531 /*@{*/
1532 ir_binop_less,
1533 ir_binop_greater,
1534 ir_binop_lequal,
1535 ir_binop_gequal,
1536 ir_binop_equal,
1537 ir_binop_nequal,
1538 /**
1539 * Returns single boolean for whether all components of operands[0]
1540 * equal the components of operands[1].
1541 */
1542 ir_binop_all_equal,
1543 /**
1544 * Returns single boolean for whether any component of operands[0]
1545 * is not equal to the corresponding component of operands[1].
1546 */
1547 ir_binop_any_nequal,
1548 /*@}*/
1549
1550 /**
1551 * \name Bit-wise binary operations.
1552 */
1553 /*@{*/
1554 ir_binop_lshift,
1555 ir_binop_rshift,
1556 ir_binop_bit_and,
1557 ir_binop_bit_xor,
1558 ir_binop_bit_or,
1559 /*@}*/
1560
1561 ir_binop_logic_and,
1562 ir_binop_logic_xor,
1563 ir_binop_logic_or,
1564
1565 ir_binop_dot,
1566 ir_binop_min,
1567 ir_binop_max,
1568
1569 ir_binop_pow,
1570
1571 /**
1572 * Load a value the size of a given GLSL type from a uniform block.
1573 *
1574 * operand0 is the ir_constant uniform block index in the linked shader.
1575 * operand1 is a byte offset within the uniform block.
1576 */
1577 ir_binop_ubo_load,
1578
1579 /**
1580 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1581 */
1582 /*@{*/
1583 ir_binop_ldexp,
1584 /*@}*/
1585
1586 /**
1587 * Extract a scalar from a vector
1588 *
1589 * operand0 is the vector
1590 * operand1 is the index of the field to read from operand0
1591 */
1592 ir_binop_vector_extract,
1593
1594 /**
1595 * Interpolate fs input at offset
1596 *
1597 * operand0 is the fs input
1598 * operand1 is the offset from the pixel center
1599 */
1600 ir_binop_interpolate_at_offset,
1601
1602 /**
1603 * Interpolate fs input at sample position
1604 *
1605 * operand0 is the fs input
1606 * operand1 is the sample ID
1607 */
1608 ir_binop_interpolate_at_sample,
1609
1610 /**
1611 * A sentinel marking the last of the binary operations.
1612 */
1613 ir_last_binop = ir_binop_interpolate_at_sample,
1614
1615 /**
1616 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1617 */
1618 /*@{*/
1619 ir_triop_fma,
1620 /*@}*/
1621
1622 ir_triop_lrp,
1623
1624 /**
1625 * \name Conditional Select
1626 *
1627 * A vector conditional select instruction (like ?:, but operating per-
1628 * component on vectors).
1629 *
1630 * \see lower_instructions_visitor::ldexp_to_arith
1631 */
1632 /*@{*/
1633 ir_triop_csel,
1634 /*@}*/
1635
1636 ir_triop_bitfield_extract,
1637
1638 /**
1639 * Generate a value with one field of a vector changed
1640 *
1641 * operand0 is the vector
1642 * operand1 is the value to write into the vector result
1643 * operand2 is the index in operand0 to be modified
1644 */
1645 ir_triop_vector_insert,
1646
1647 /**
1648 * A sentinel marking the last of the ternary operations.
1649 */
1650 ir_last_triop = ir_triop_vector_insert,
1651
1652 ir_quadop_bitfield_insert,
1653
1654 ir_quadop_vector,
1655
1656 /**
1657 * A sentinel marking the last of the ternary operations.
1658 */
1659 ir_last_quadop = ir_quadop_vector,
1660
1661 /**
1662 * A sentinel marking the last of all operations.
1663 */
1664 ir_last_opcode = ir_quadop_vector
1665 };
1666
1667 class ir_expression : public ir_rvalue {
1668 public:
1669 ir_expression(int op, const struct glsl_type *type,
1670 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1671 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1672
1673 /**
1674 * Constructor for unary operation expressions
1675 */
1676 ir_expression(int op, ir_rvalue *);
1677
1678 /**
1679 * Constructor for binary operation expressions
1680 */
1681 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1682
1683 /**
1684 * Constructor for ternary operation expressions
1685 */
1686 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1687
1688 virtual bool equals(const ir_instruction *ir,
1689 enum ir_node_type ignore = ir_type_unset) const;
1690
1691 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1692
1693 /**
1694 * Attempt to constant-fold the expression
1695 *
1696 * The "variable_context" hash table links ir_variable * to ir_constant *
1697 * that represent the variables' values. \c NULL represents an empty
1698 * context.
1699 *
1700 * If the expression cannot be constant folded, this method will return
1701 * \c NULL.
1702 */
1703 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1704
1705 /**
1706 * Determine the number of operands used by an expression
1707 */
1708 static unsigned int get_num_operands(ir_expression_operation);
1709
1710 /**
1711 * Determine the number of operands used by an expression
1712 */
1713 unsigned int get_num_operands() const
1714 {
1715 return (this->operation == ir_quadop_vector)
1716 ? this->type->vector_elements : get_num_operands(operation);
1717 }
1718
1719 /**
1720 * Return whether the expression operates on vectors horizontally.
1721 */
1722 bool is_horizontal() const
1723 {
1724 return operation == ir_binop_all_equal ||
1725 operation == ir_binop_any_nequal ||
1726 operation == ir_binop_dot ||
1727 operation == ir_binop_vector_extract ||
1728 operation == ir_triop_vector_insert ||
1729 operation == ir_binop_ubo_load ||
1730 operation == ir_quadop_vector;
1731 }
1732
1733 /**
1734 * Return a string representing this expression's operator.
1735 */
1736 const char *operator_string();
1737
1738 /**
1739 * Return a string representing this expression's operator.
1740 */
1741 static const char *operator_string(ir_expression_operation);
1742
1743
1744 /**
1745 * Do a reverse-lookup to translate the given string into an operator.
1746 */
1747 static ir_expression_operation get_operator(const char *);
1748
1749 virtual void accept(ir_visitor *v)
1750 {
1751 v->visit(this);
1752 }
1753
1754 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1755
1756 virtual ir_variable *variable_referenced() const;
1757
1758 ir_expression_operation operation;
1759 ir_rvalue *operands[4];
1760 };
1761
1762
1763 /**
1764 * HIR instruction representing a high-level function call, containing a list
1765 * of parameters and returning a value in the supplied temporary.
1766 */
1767 class ir_call : public ir_instruction {
1768 public:
1769 ir_call(ir_function_signature *callee,
1770 ir_dereference_variable *return_deref,
1771 exec_list *actual_parameters)
1772 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1773 {
1774 assert(callee->return_type != NULL);
1775 actual_parameters->move_nodes_to(& this->actual_parameters);
1776 this->use_builtin = callee->is_builtin();
1777 }
1778
1779 ir_call(ir_function_signature *callee,
1780 ir_dereference_variable *return_deref,
1781 exec_list *actual_parameters,
1782 ir_variable *var, ir_rvalue *array_idx)
1783 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1784 {
1785 assert(callee->return_type != NULL);
1786 actual_parameters->move_nodes_to(& this->actual_parameters);
1787 this->use_builtin = callee->is_builtin();
1788 }
1789
1790 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1791
1792 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1793
1794 virtual void accept(ir_visitor *v)
1795 {
1796 v->visit(this);
1797 }
1798
1799 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1800
1801 /**
1802 * Get the name of the function being called.
1803 */
1804 const char *callee_name() const
1805 {
1806 return callee->function_name();
1807 }
1808
1809 /**
1810 * Generates an inline version of the function before @ir,
1811 * storing the return value in return_deref.
1812 */
1813 void generate_inline(ir_instruction *ir);
1814
1815 /**
1816 * Storage for the function's return value.
1817 * This must be NULL if the return type is void.
1818 */
1819 ir_dereference_variable *return_deref;
1820
1821 /**
1822 * The specific function signature being called.
1823 */
1824 ir_function_signature *callee;
1825
1826 /* List of ir_rvalue of paramaters passed in this call. */
1827 exec_list actual_parameters;
1828
1829 /** Should this call only bind to a built-in function? */
1830 bool use_builtin;
1831
1832 /*
1833 * ARB_shader_subroutine support -
1834 * the subroutine uniform variable and array index
1835 * rvalue to be used in the lowering pass later.
1836 */
1837 ir_variable *sub_var;
1838 ir_rvalue *array_idx;
1839 };
1840
1841
1842 /**
1843 * \name Jump-like IR instructions.
1844 *
1845 * These include \c break, \c continue, \c return, and \c discard.
1846 */
1847 /*@{*/
1848 class ir_jump : public ir_instruction {
1849 protected:
1850 ir_jump(enum ir_node_type t)
1851 : ir_instruction(t)
1852 {
1853 }
1854 };
1855
1856 class ir_return : public ir_jump {
1857 public:
1858 ir_return()
1859 : ir_jump(ir_type_return), value(NULL)
1860 {
1861 }
1862
1863 ir_return(ir_rvalue *value)
1864 : ir_jump(ir_type_return), value(value)
1865 {
1866 }
1867
1868 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1869
1870 ir_rvalue *get_value() const
1871 {
1872 return value;
1873 }
1874
1875 virtual void accept(ir_visitor *v)
1876 {
1877 v->visit(this);
1878 }
1879
1880 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1881
1882 ir_rvalue *value;
1883 };
1884
1885
1886 /**
1887 * Jump instructions used inside loops
1888 *
1889 * These include \c break and \c continue. The \c break within a loop is
1890 * different from the \c break within a switch-statement.
1891 *
1892 * \sa ir_switch_jump
1893 */
1894 class ir_loop_jump : public ir_jump {
1895 public:
1896 enum jump_mode {
1897 jump_break,
1898 jump_continue
1899 };
1900
1901 ir_loop_jump(jump_mode mode)
1902 : ir_jump(ir_type_loop_jump)
1903 {
1904 this->mode = mode;
1905 }
1906
1907 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1908
1909 virtual void accept(ir_visitor *v)
1910 {
1911 v->visit(this);
1912 }
1913
1914 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1915
1916 bool is_break() const
1917 {
1918 return mode == jump_break;
1919 }
1920
1921 bool is_continue() const
1922 {
1923 return mode == jump_continue;
1924 }
1925
1926 /** Mode selector for the jump instruction. */
1927 enum jump_mode mode;
1928 };
1929
1930 /**
1931 * IR instruction representing discard statements.
1932 */
1933 class ir_discard : public ir_jump {
1934 public:
1935 ir_discard()
1936 : ir_jump(ir_type_discard)
1937 {
1938 this->condition = NULL;
1939 }
1940
1941 ir_discard(ir_rvalue *cond)
1942 : ir_jump(ir_type_discard)
1943 {
1944 this->condition = cond;
1945 }
1946
1947 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1948
1949 virtual void accept(ir_visitor *v)
1950 {
1951 v->visit(this);
1952 }
1953
1954 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1955
1956 ir_rvalue *condition;
1957 };
1958 /*@}*/
1959
1960
1961 /**
1962 * Texture sampling opcodes used in ir_texture
1963 */
1964 enum ir_texture_opcode {
1965 ir_tex, /**< Regular texture look-up */
1966 ir_txb, /**< Texture look-up with LOD bias */
1967 ir_txl, /**< Texture look-up with explicit LOD */
1968 ir_txd, /**< Texture look-up with partial derivatvies */
1969 ir_txf, /**< Texel fetch with explicit LOD */
1970 ir_txf_ms, /**< Multisample texture fetch */
1971 ir_txs, /**< Texture size */
1972 ir_lod, /**< Texture lod query */
1973 ir_tg4, /**< Texture gather */
1974 ir_query_levels, /**< Texture levels query */
1975 ir_texture_samples, /**< Texture samples query */
1976 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1977 };
1978
1979
1980 /**
1981 * IR instruction to sample a texture
1982 *
1983 * The specific form of the IR instruction depends on the \c mode value
1984 * selected from \c ir_texture_opcodes. In the printed IR, these will
1985 * appear as:
1986 *
1987 * Texel offset (0 or an expression)
1988 * | Projection divisor
1989 * | | Shadow comparitor
1990 * | | |
1991 * v v v
1992 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1993 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1994 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1995 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1996 * (txf <type> <sampler> <coordinate> 0 <lod>)
1997 * (txf_ms
1998 * <type> <sampler> <coordinate> <sample_index>)
1999 * (txs <type> <sampler> <lod>)
2000 * (lod <type> <sampler> <coordinate>)
2001 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
2002 * (query_levels <type> <sampler>)
2003 * (samples_identical <sampler> <coordinate>)
2004 */
2005 class ir_texture : public ir_rvalue {
2006 public:
2007 ir_texture(enum ir_texture_opcode op)
2008 : ir_rvalue(ir_type_texture),
2009 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
2010 shadow_comparitor(NULL), offset(NULL)
2011 {
2012 memset(&lod_info, 0, sizeof(lod_info));
2013 }
2014
2015 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2016
2017 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2018
2019 virtual void accept(ir_visitor *v)
2020 {
2021 v->visit(this);
2022 }
2023
2024 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2025
2026 virtual bool equals(const ir_instruction *ir,
2027 enum ir_node_type ignore = ir_type_unset) const;
2028
2029 /**
2030 * Return a string representing the ir_texture_opcode.
2031 */
2032 const char *opcode_string();
2033
2034 /** Set the sampler and type. */
2035 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2036
2037 /**
2038 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2039 */
2040 static ir_texture_opcode get_opcode(const char *);
2041
2042 enum ir_texture_opcode op;
2043
2044 /** Sampler to use for the texture access. */
2045 ir_dereference *sampler;
2046
2047 /** Texture coordinate to sample */
2048 ir_rvalue *coordinate;
2049
2050 /**
2051 * Value used for projective divide.
2052 *
2053 * If there is no projective divide (the common case), this will be
2054 * \c NULL. Optimization passes should check for this to point to a constant
2055 * of 1.0 and replace that with \c NULL.
2056 */
2057 ir_rvalue *projector;
2058
2059 /**
2060 * Coordinate used for comparison on shadow look-ups.
2061 *
2062 * If there is no shadow comparison, this will be \c NULL. For the
2063 * \c ir_txf opcode, this *must* be \c NULL.
2064 */
2065 ir_rvalue *shadow_comparitor;
2066
2067 /** Texel offset. */
2068 ir_rvalue *offset;
2069
2070 union {
2071 ir_rvalue *lod; /**< Floating point LOD */
2072 ir_rvalue *bias; /**< Floating point LOD bias */
2073 ir_rvalue *sample_index; /**< MSAA sample index */
2074 ir_rvalue *component; /**< Gather component selector */
2075 struct {
2076 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2077 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2078 } grad;
2079 } lod_info;
2080 };
2081
2082
2083 struct ir_swizzle_mask {
2084 unsigned x:2;
2085 unsigned y:2;
2086 unsigned z:2;
2087 unsigned w:2;
2088
2089 /**
2090 * Number of components in the swizzle.
2091 */
2092 unsigned num_components:3;
2093
2094 /**
2095 * Does the swizzle contain duplicate components?
2096 *
2097 * L-value swizzles cannot contain duplicate components.
2098 */
2099 unsigned has_duplicates:1;
2100 };
2101
2102
2103 class ir_swizzle : public ir_rvalue {
2104 public:
2105 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2106 unsigned count);
2107
2108 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2109
2110 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2111
2112 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2113
2114 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2115
2116 /**
2117 * Construct an ir_swizzle from the textual representation. Can fail.
2118 */
2119 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2120
2121 virtual void accept(ir_visitor *v)
2122 {
2123 v->visit(this);
2124 }
2125
2126 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2127
2128 virtual bool equals(const ir_instruction *ir,
2129 enum ir_node_type ignore = ir_type_unset) const;
2130
2131 bool is_lvalue() const
2132 {
2133 return val->is_lvalue() && !mask.has_duplicates;
2134 }
2135
2136 /**
2137 * Get the variable that is ultimately referenced by an r-value
2138 */
2139 virtual ir_variable *variable_referenced() const;
2140
2141 ir_rvalue *val;
2142 ir_swizzle_mask mask;
2143
2144 private:
2145 /**
2146 * Initialize the mask component of a swizzle
2147 *
2148 * This is used by the \c ir_swizzle constructors.
2149 */
2150 void init_mask(const unsigned *components, unsigned count);
2151 };
2152
2153
2154 class ir_dereference : public ir_rvalue {
2155 public:
2156 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2157
2158 bool is_lvalue() const;
2159
2160 /**
2161 * Get the variable that is ultimately referenced by an r-value
2162 */
2163 virtual ir_variable *variable_referenced() const = 0;
2164
2165 protected:
2166 ir_dereference(enum ir_node_type t)
2167 : ir_rvalue(t)
2168 {
2169 }
2170 };
2171
2172
2173 class ir_dereference_variable : public ir_dereference {
2174 public:
2175 ir_dereference_variable(ir_variable *var);
2176
2177 virtual ir_dereference_variable *clone(void *mem_ctx,
2178 struct hash_table *) const;
2179
2180 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2181
2182 virtual bool equals(const ir_instruction *ir,
2183 enum ir_node_type ignore = ir_type_unset) const;
2184
2185 /**
2186 * Get the variable that is ultimately referenced by an r-value
2187 */
2188 virtual ir_variable *variable_referenced() const
2189 {
2190 return this->var;
2191 }
2192
2193 virtual ir_variable *whole_variable_referenced()
2194 {
2195 /* ir_dereference_variable objects always dereference the entire
2196 * variable. However, if this dereference is dereferenced by anything
2197 * else, the complete deferefernce chain is not a whole-variable
2198 * dereference. This method should only be called on the top most
2199 * ir_rvalue in a dereference chain.
2200 */
2201 return this->var;
2202 }
2203
2204 virtual void accept(ir_visitor *v)
2205 {
2206 v->visit(this);
2207 }
2208
2209 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2210
2211 /**
2212 * Object being dereferenced.
2213 */
2214 ir_variable *var;
2215 };
2216
2217
2218 class ir_dereference_array : public ir_dereference {
2219 public:
2220 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2221
2222 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2223
2224 virtual ir_dereference_array *clone(void *mem_ctx,
2225 struct hash_table *) const;
2226
2227 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2228
2229 virtual bool equals(const ir_instruction *ir,
2230 enum ir_node_type ignore = ir_type_unset) const;
2231
2232 /**
2233 * Get the variable that is ultimately referenced by an r-value
2234 */
2235 virtual ir_variable *variable_referenced() const
2236 {
2237 return this->array->variable_referenced();
2238 }
2239
2240 virtual void accept(ir_visitor *v)
2241 {
2242 v->visit(this);
2243 }
2244
2245 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2246
2247 ir_rvalue *array;
2248 ir_rvalue *array_index;
2249
2250 private:
2251 void set_array(ir_rvalue *value);
2252 };
2253
2254
2255 class ir_dereference_record : public ir_dereference {
2256 public:
2257 ir_dereference_record(ir_rvalue *value, const char *field);
2258
2259 ir_dereference_record(ir_variable *var, const char *field);
2260
2261 virtual ir_dereference_record *clone(void *mem_ctx,
2262 struct hash_table *) const;
2263
2264 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2265
2266 /**
2267 * Get the variable that is ultimately referenced by an r-value
2268 */
2269 virtual ir_variable *variable_referenced() const
2270 {
2271 return this->record->variable_referenced();
2272 }
2273
2274 virtual void accept(ir_visitor *v)
2275 {
2276 v->visit(this);
2277 }
2278
2279 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2280
2281 ir_rvalue *record;
2282 const char *field;
2283 };
2284
2285
2286 /**
2287 * Data stored in an ir_constant
2288 */
2289 union ir_constant_data {
2290 unsigned u[16];
2291 int i[16];
2292 float f[16];
2293 bool b[16];
2294 double d[16];
2295 };
2296
2297
2298 class ir_constant : public ir_rvalue {
2299 public:
2300 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2301 ir_constant(bool b, unsigned vector_elements=1);
2302 ir_constant(unsigned int u, unsigned vector_elements=1);
2303 ir_constant(int i, unsigned vector_elements=1);
2304 ir_constant(float f, unsigned vector_elements=1);
2305 ir_constant(double d, unsigned vector_elements=1);
2306
2307 /**
2308 * Construct an ir_constant from a list of ir_constant values
2309 */
2310 ir_constant(const struct glsl_type *type, exec_list *values);
2311
2312 /**
2313 * Construct an ir_constant from a scalar component of another ir_constant
2314 *
2315 * The new \c ir_constant inherits the type of the component from the
2316 * source constant.
2317 *
2318 * \note
2319 * In the case of a matrix constant, the new constant is a scalar, \b not
2320 * a vector.
2321 */
2322 ir_constant(const ir_constant *c, unsigned i);
2323
2324 /**
2325 * Return a new ir_constant of the specified type containing all zeros.
2326 */
2327 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2328
2329 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2330
2331 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2332
2333 virtual void accept(ir_visitor *v)
2334 {
2335 v->visit(this);
2336 }
2337
2338 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2339
2340 virtual bool equals(const ir_instruction *ir,
2341 enum ir_node_type ignore = ir_type_unset) const;
2342
2343 /**
2344 * Get a particular component of a constant as a specific type
2345 *
2346 * This is useful, for example, to get a value from an integer constant
2347 * as a float or bool. This appears frequently when constructors are
2348 * called with all constant parameters.
2349 */
2350 /*@{*/
2351 bool get_bool_component(unsigned i) const;
2352 float get_float_component(unsigned i) const;
2353 double get_double_component(unsigned i) const;
2354 int get_int_component(unsigned i) const;
2355 unsigned get_uint_component(unsigned i) const;
2356 /*@}*/
2357
2358 ir_constant *get_array_element(unsigned i) const;
2359
2360 ir_constant *get_record_field(const char *name);
2361
2362 /**
2363 * Copy the values on another constant at a given offset.
2364 *
2365 * The offset is ignored for array or struct copies, it's only for
2366 * scalars or vectors into vectors or matrices.
2367 *
2368 * With identical types on both sides and zero offset it's clone()
2369 * without creating a new object.
2370 */
2371
2372 void copy_offset(ir_constant *src, int offset);
2373
2374 /**
2375 * Copy the values on another constant at a given offset and
2376 * following an assign-like mask.
2377 *
2378 * The mask is ignored for scalars.
2379 *
2380 * Note that this function only handles what assign can handle,
2381 * i.e. at most a vector as source and a column of a matrix as
2382 * destination.
2383 */
2384
2385 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2386
2387 /**
2388 * Determine whether a constant has the same value as another constant
2389 *
2390 * \sa ir_constant::is_zero, ir_constant::is_one,
2391 * ir_constant::is_negative_one
2392 */
2393 bool has_value(const ir_constant *) const;
2394
2395 /**
2396 * Return true if this ir_constant represents the given value.
2397 *
2398 * For vectors, this checks that each component is the given value.
2399 */
2400 virtual bool is_value(float f, int i) const;
2401 virtual bool is_zero() const;
2402 virtual bool is_one() const;
2403 virtual bool is_negative_one() const;
2404
2405 /**
2406 * Return true for constants that could be stored as 16-bit unsigned values.
2407 *
2408 * Note that this will return true even for signed integer ir_constants, as
2409 * long as the value is non-negative and fits in 16-bits.
2410 */
2411 virtual bool is_uint16_constant() const;
2412
2413 /**
2414 * Value of the constant.
2415 *
2416 * The field used to back the values supplied by the constant is determined
2417 * by the type associated with the \c ir_instruction. Constants may be
2418 * scalars, vectors, or matrices.
2419 */
2420 union ir_constant_data value;
2421
2422 /* Array elements */
2423 ir_constant **array_elements;
2424
2425 /* Structure fields */
2426 exec_list components;
2427
2428 private:
2429 /**
2430 * Parameterless constructor only used by the clone method
2431 */
2432 ir_constant(void);
2433 };
2434
2435 /**
2436 * IR instruction to emit a vertex in a geometry shader.
2437 */
2438 class ir_emit_vertex : public ir_instruction {
2439 public:
2440 ir_emit_vertex(ir_rvalue *stream)
2441 : ir_instruction(ir_type_emit_vertex),
2442 stream(stream)
2443 {
2444 assert(stream);
2445 }
2446
2447 virtual void accept(ir_visitor *v)
2448 {
2449 v->visit(this);
2450 }
2451
2452 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2453 {
2454 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2455 }
2456
2457 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2458
2459 int stream_id() const
2460 {
2461 return stream->as_constant()->value.i[0];
2462 }
2463
2464 ir_rvalue *stream;
2465 };
2466
2467 /**
2468 * IR instruction to complete the current primitive and start a new one in a
2469 * geometry shader.
2470 */
2471 class ir_end_primitive : public ir_instruction {
2472 public:
2473 ir_end_primitive(ir_rvalue *stream)
2474 : ir_instruction(ir_type_end_primitive),
2475 stream(stream)
2476 {
2477 assert(stream);
2478 }
2479
2480 virtual void accept(ir_visitor *v)
2481 {
2482 v->visit(this);
2483 }
2484
2485 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2486 {
2487 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2488 }
2489
2490 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2491
2492 int stream_id() const
2493 {
2494 return stream->as_constant()->value.i[0];
2495 }
2496
2497 ir_rvalue *stream;
2498 };
2499
2500 /**
2501 * IR instruction for tessellation control and compute shader barrier.
2502 */
2503 class ir_barrier : public ir_instruction {
2504 public:
2505 ir_barrier()
2506 : ir_instruction(ir_type_barrier)
2507 {
2508 }
2509
2510 virtual void accept(ir_visitor *v)
2511 {
2512 v->visit(this);
2513 }
2514
2515 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2516 {
2517 return new(mem_ctx) ir_barrier();
2518 }
2519
2520 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2521 };
2522
2523 /*@}*/
2524
2525 /**
2526 * Apply a visitor to each IR node in a list
2527 */
2528 void
2529 visit_exec_list(exec_list *list, ir_visitor *visitor);
2530
2531 /**
2532 * Validate invariants on each IR node in a list
2533 */
2534 void validate_ir_tree(exec_list *instructions);
2535
2536 struct _mesa_glsl_parse_state;
2537 struct gl_shader_program;
2538
2539 /**
2540 * Detect whether an unlinked shader contains static recursion
2541 *
2542 * If the list of instructions is determined to contain static recursion,
2543 * \c _mesa_glsl_error will be called to emit error messages for each function
2544 * that is in the recursion cycle.
2545 */
2546 void
2547 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2548 exec_list *instructions);
2549
2550 /**
2551 * Detect whether a linked shader contains static recursion
2552 *
2553 * If the list of instructions is determined to contain static recursion,
2554 * \c link_error_printf will be called to emit error messages for each function
2555 * that is in the recursion cycle. In addition,
2556 * \c gl_shader_program::LinkStatus will be set to false.
2557 */
2558 void
2559 detect_recursion_linked(struct gl_shader_program *prog,
2560 exec_list *instructions);
2561
2562 /**
2563 * Make a clone of each IR instruction in a list
2564 *
2565 * \param in List of IR instructions that are to be cloned
2566 * \param out List to hold the cloned instructions
2567 */
2568 void
2569 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2570
2571 extern void
2572 _mesa_glsl_initialize_variables(exec_list *instructions,
2573 struct _mesa_glsl_parse_state *state);
2574
2575 extern void
2576 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2577 gl_shader *shader);
2578
2579 extern void
2580 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2581
2582 extern void
2583 _mesa_glsl_initialize_builtin_functions();
2584
2585 extern ir_function_signature *
2586 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2587 const char *name, exec_list *actual_parameters);
2588
2589 extern ir_function *
2590 _mesa_glsl_find_builtin_function_by_name(const char *name);
2591
2592 extern gl_shader *
2593 _mesa_glsl_get_builtin_function_shader(void);
2594
2595 extern ir_function_signature *
2596 _mesa_get_main_function_signature(gl_shader *sh);
2597
2598 extern void
2599 _mesa_glsl_release_functions(void);
2600
2601 extern void
2602 _mesa_glsl_release_builtin_functions(void);
2603
2604 extern void
2605 reparent_ir(exec_list *list, void *mem_ctx);
2606
2607 struct glsl_symbol_table;
2608
2609 extern void
2610 import_prototypes(const exec_list *source, exec_list *dest,
2611 struct glsl_symbol_table *symbols, void *mem_ctx);
2612
2613 extern bool
2614 ir_has_call(ir_instruction *ir);
2615
2616 extern void
2617 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2618 gl_shader_stage shader_stage);
2619
2620 extern char *
2621 prototype_string(const glsl_type *return_type, const char *name,
2622 exec_list *parameters);
2623
2624 const char *
2625 mode_string(const ir_variable *var);
2626
2627 /**
2628 * Built-in / reserved GL variables names start with "gl_"
2629 */
2630 static inline bool
2631 is_gl_identifier(const char *s)
2632 {
2633 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2634 }
2635
2636 extern "C" {
2637 #endif /* __cplusplus */
2638
2639 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2640 struct _mesa_glsl_parse_state *state);
2641
2642 extern void
2643 fprint_ir(FILE *f, const void *instruction);
2644
2645 extern const struct gl_builtin_uniform_desc *
2646 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2647
2648 #ifdef __cplusplus
2649 } /* extern "C" */
2650 #endif
2651
2652 unsigned
2653 vertices_per_prim(GLenum prim);
2654
2655 #endif /* IR_H */