glsl: add _mesa_glsl_parse_state object to is_lvalue()
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36 #include "main/mtypes.h"
37
38 #ifdef __cplusplus
39
40 /**
41 * \defgroup IR Intermediate representation nodes
42 *
43 * @{
44 */
45
46 /**
47 * Class tags
48 *
49 * Each concrete class derived from \c ir_instruction has a value in this
50 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
51 * by the constructor. While using type tags is not very C++, it is extremely
52 * convenient. For example, during debugging you can simply inspect
53 * \c ir_instruction::ir_type to find out the actual type of the object.
54 *
55 * In addition, it is possible to use a switch-statement based on \c
56 * \c ir_instruction::ir_type to select different behavior for different object
57 * types. For functions that have only slight differences for several object
58 * types, this allows writing very straightforward, readable code.
59 */
60 enum ir_node_type {
61 ir_type_dereference_array,
62 ir_type_dereference_record,
63 ir_type_dereference_variable,
64 ir_type_constant,
65 ir_type_expression,
66 ir_type_swizzle,
67 ir_type_texture,
68 ir_type_variable,
69 ir_type_assignment,
70 ir_type_call,
71 ir_type_function,
72 ir_type_function_signature,
73 ir_type_if,
74 ir_type_loop,
75 ir_type_loop_jump,
76 ir_type_return,
77 ir_type_discard,
78 ir_type_emit_vertex,
79 ir_type_end_primitive,
80 ir_type_barrier,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 bool is_rvalue() const
113 {
114 return ir_type == ir_type_dereference_array ||
115 ir_type == ir_type_dereference_record ||
116 ir_type == ir_type_dereference_variable ||
117 ir_type == ir_type_constant ||
118 ir_type == ir_type_expression ||
119 ir_type == ir_type_swizzle ||
120 ir_type == ir_type_texture;
121 }
122
123 bool is_dereference() const
124 {
125 return ir_type == ir_type_dereference_array ||
126 ir_type == ir_type_dereference_record ||
127 ir_type == ir_type_dereference_variable;
128 }
129
130 bool is_jump() const
131 {
132 return ir_type == ir_type_loop_jump ||
133 ir_type == ir_type_return ||
134 ir_type == ir_type_discard;
135 }
136
137 /**
138 * \name IR instruction downcast functions
139 *
140 * These functions either cast the object to a derived class or return
141 * \c NULL if the object's type does not match the specified derived class.
142 * Additional downcast functions will be added as needed.
143 */
144 /*@{*/
145 #define AS_BASE(TYPE) \
146 class ir_##TYPE *as_##TYPE() \
147 { \
148 assume(this != NULL); \
149 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
150 } \
151 const class ir_##TYPE *as_##TYPE() const \
152 { \
153 assume(this != NULL); \
154 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
155 }
156
157 AS_BASE(rvalue)
158 AS_BASE(dereference)
159 AS_BASE(jump)
160 #undef AS_BASE
161
162 #define AS_CHILD(TYPE) \
163 class ir_##TYPE * as_##TYPE() \
164 { \
165 assume(this != NULL); \
166 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
167 } \
168 const class ir_##TYPE * as_##TYPE() const \
169 { \
170 assume(this != NULL); \
171 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
172 }
173 AS_CHILD(variable)
174 AS_CHILD(function)
175 AS_CHILD(dereference_array)
176 AS_CHILD(dereference_variable)
177 AS_CHILD(dereference_record)
178 AS_CHILD(expression)
179 AS_CHILD(loop)
180 AS_CHILD(assignment)
181 AS_CHILD(call)
182 AS_CHILD(return)
183 AS_CHILD(if)
184 AS_CHILD(swizzle)
185 AS_CHILD(texture)
186 AS_CHILD(constant)
187 AS_CHILD(discard)
188 #undef AS_CHILD
189 /*@}*/
190
191 /**
192 * IR equality method: Return true if the referenced instruction would
193 * return the same value as this one.
194 *
195 * This intended to be used for CSE and algebraic optimizations, on rvalues
196 * in particular. No support for other instruction types (assignments,
197 * jumps, calls, etc.) is planned.
198 */
199 virtual bool equals(const ir_instruction *ir,
200 enum ir_node_type ignore = ir_type_unset) const;
201
202 protected:
203 ir_instruction(enum ir_node_type t)
204 : ir_type(t)
205 {
206 }
207
208 private:
209 ir_instruction()
210 {
211 assert(!"Should not get here.");
212 }
213 };
214
215
216 /**
217 * The base class for all "values"/expression trees.
218 */
219 class ir_rvalue : public ir_instruction {
220 public:
221 const struct glsl_type *type;
222
223 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
224
225 virtual void accept(ir_visitor *v)
226 {
227 v->visit(this);
228 }
229
230 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
231
232 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue(const struct _mesa_glsl_parse_state *state = NULL) const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_storage, /**< Variable declared as an ssbo. */
327 ir_var_shader_shared, /**< Variable declared as shared. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 int tokens[5];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine whether or not a variable is part of a uniform or
435 * shader storage block.
436 */
437 inline bool is_in_buffer_block() const
438 {
439 return (this->data.mode == ir_var_uniform ||
440 this->data.mode == ir_var_shader_storage) &&
441 this->interface_type != NULL;
442 }
443
444 /**
445 * Determine whether or not a variable is part of a shader storage block.
446 */
447 inline bool is_in_shader_storage_block() const
448 {
449 return this->data.mode == ir_var_shader_storage &&
450 this->interface_type != NULL;
451 }
452
453 /**
454 * Determine whether or not a variable is the declaration of an interface
455 * block
456 *
457 * For the first declaration below, there will be an \c ir_variable named
458 * "instance" whose type and whose instance_type will be the same
459 * \cglsl_type. For the second declaration, there will be an \c ir_variable
460 * named "f" whose type is float and whose instance_type is B2.
461 *
462 * "instance" is an interface instance variable, but "f" is not.
463 *
464 * uniform B1 {
465 * float f;
466 * } instance;
467 *
468 * uniform B2 {
469 * float f;
470 * };
471 */
472 inline bool is_interface_instance() const
473 {
474 return this->type->without_array() == this->interface_type;
475 }
476
477 /**
478 * Set this->interface_type on a newly created variable.
479 */
480 void init_interface_type(const struct glsl_type *type)
481 {
482 assert(this->interface_type == NULL);
483 this->interface_type = type;
484 if (this->is_interface_instance()) {
485 this->u.max_ifc_array_access =
486 ralloc_array(this, int, type->length);
487 for (unsigned i = 0; i < type->length; i++) {
488 this->u.max_ifc_array_access[i] = -1;
489 }
490 }
491 }
492
493 /**
494 * Change this->interface_type on a variable that previously had a
495 * different, but compatible, interface_type. This is used during linking
496 * to set the size of arrays in interface blocks.
497 */
498 void change_interface_type(const struct glsl_type *type)
499 {
500 if (this->u.max_ifc_array_access != NULL) {
501 /* max_ifc_array_access has already been allocated, so make sure the
502 * new interface has the same number of fields as the old one.
503 */
504 assert(this->interface_type->length == type->length);
505 }
506 this->interface_type = type;
507 }
508
509 /**
510 * Change this->interface_type on a variable that previously had a
511 * different, and incompatible, interface_type. This is used during
512 * compilation to handle redeclaration of the built-in gl_PerVertex
513 * interface block.
514 */
515 void reinit_interface_type(const struct glsl_type *type)
516 {
517 if (this->u.max_ifc_array_access != NULL) {
518 #ifndef NDEBUG
519 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
520 * it defines have been accessed yet; so it's safe to throw away the
521 * old max_ifc_array_access pointer, since all of its values are
522 * zero.
523 */
524 for (unsigned i = 0; i < this->interface_type->length; i++)
525 assert(this->u.max_ifc_array_access[i] == -1);
526 #endif
527 ralloc_free(this->u.max_ifc_array_access);
528 this->u.max_ifc_array_access = NULL;
529 }
530 this->interface_type = NULL;
531 init_interface_type(type);
532 }
533
534 const glsl_type *get_interface_type() const
535 {
536 return this->interface_type;
537 }
538
539 enum glsl_interface_packing get_interface_type_packing() const
540 {
541 return this->interface_type->get_interface_packing();
542 }
543 /**
544 * Get the max_ifc_array_access pointer
545 *
546 * A "set" function is not needed because the array is dynmically allocated
547 * as necessary.
548 */
549 inline int *get_max_ifc_array_access()
550 {
551 assert(this->data._num_state_slots == 0);
552 return this->u.max_ifc_array_access;
553 }
554
555 inline unsigned get_num_state_slots() const
556 {
557 assert(!this->is_interface_instance()
558 || this->data._num_state_slots == 0);
559 return this->data._num_state_slots;
560 }
561
562 inline void set_num_state_slots(unsigned n)
563 {
564 assert(!this->is_interface_instance()
565 || n == 0);
566 this->data._num_state_slots = n;
567 }
568
569 inline ir_state_slot *get_state_slots()
570 {
571 return this->is_interface_instance() ? NULL : this->u.state_slots;
572 }
573
574 inline const ir_state_slot *get_state_slots() const
575 {
576 return this->is_interface_instance() ? NULL : this->u.state_slots;
577 }
578
579 inline ir_state_slot *allocate_state_slots(unsigned n)
580 {
581 assert(!this->is_interface_instance());
582
583 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
584 this->data._num_state_slots = 0;
585
586 if (this->u.state_slots != NULL)
587 this->data._num_state_slots = n;
588
589 return this->u.state_slots;
590 }
591
592 inline bool is_interpolation_flat() const
593 {
594 return this->data.interpolation == INTERP_MODE_FLAT ||
595 this->type->contains_integer() ||
596 this->type->contains_double();
597 }
598
599 inline bool is_name_ralloced() const
600 {
601 return this->name != ir_variable::tmp_name &&
602 this->name != this->name_storage;
603 }
604
605 /**
606 * Enable emitting extension warnings for this variable
607 */
608 void enable_extension_warning(const char *extension);
609
610 /**
611 * Get the extension warning string for this variable
612 *
613 * If warnings are not enabled, \c NULL is returned.
614 */
615 const char *get_extension_warning() const;
616
617 /**
618 * Declared type of the variable
619 */
620 const struct glsl_type *type;
621
622 /**
623 * Declared name of the variable
624 */
625 const char *name;
626
627 private:
628 /**
629 * If the name length fits into name_storage, it's used, otherwise
630 * the name is ralloc'd. shader-db mining showed that 70% of variables
631 * fit here. This is a win over ralloc where only ralloc_header has
632 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
633 */
634 char name_storage[16];
635
636 public:
637 struct ir_variable_data {
638
639 /**
640 * Is the variable read-only?
641 *
642 * This is set for variables declared as \c const, shader inputs,
643 * and uniforms.
644 */
645 unsigned read_only:1;
646 unsigned centroid:1;
647 unsigned sample:1;
648 unsigned patch:1;
649 unsigned invariant:1;
650 unsigned precise:1;
651
652 /**
653 * Has this variable been used for reading or writing?
654 *
655 * Several GLSL semantic checks require knowledge of whether or not a
656 * variable has been used. For example, it is an error to redeclare a
657 * variable as invariant after it has been used.
658 *
659 * This is only maintained in the ast_to_hir.cpp path, not in
660 * Mesa's fixed function or ARB program paths.
661 */
662 unsigned used:1;
663
664 /**
665 * Has this variable been statically assigned?
666 *
667 * This answers whether the variable was assigned in any path of
668 * the shader during ast_to_hir. This doesn't answer whether it is
669 * still written after dead code removal, nor is it maintained in
670 * non-ast_to_hir.cpp (GLSL parsing) paths.
671 */
672 unsigned assigned:1;
673
674 /**
675 * When separate shader programs are enabled, only input/outputs between
676 * the stages of a multi-stage separate program can be safely removed
677 * from the shader interface. Other input/outputs must remains active.
678 */
679 unsigned always_active_io:1;
680
681 /**
682 * Enum indicating how the variable was declared. See
683 * ir_var_declaration_type.
684 *
685 * This is used to detect certain kinds of illegal variable redeclarations.
686 */
687 unsigned how_declared:2;
688
689 /**
690 * Storage class of the variable.
691 *
692 * \sa ir_variable_mode
693 */
694 unsigned mode:4;
695
696 /**
697 * Interpolation mode for shader inputs / outputs
698 *
699 * \sa glsl_interp_mode
700 */
701 unsigned interpolation:2;
702
703 /**
704 * \name ARB_fragment_coord_conventions
705 * @{
706 */
707 unsigned origin_upper_left:1;
708 unsigned pixel_center_integer:1;
709 /*@}*/
710
711 /**
712 * Was the location explicitly set in the shader?
713 *
714 * If the location is explicitly set in the shader, it \b cannot be changed
715 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
716 * no effect).
717 */
718 unsigned explicit_location:1;
719 unsigned explicit_index:1;
720
721 /**
722 * Was an initial binding explicitly set in the shader?
723 *
724 * If so, constant_value contains an integer ir_constant representing the
725 * initial binding point.
726 */
727 unsigned explicit_binding:1;
728
729 /**
730 * Was an initial component explicitly set in the shader?
731 */
732 unsigned explicit_component:1;
733
734 /**
735 * Does this variable have an initializer?
736 *
737 * This is used by the linker to cross-validiate initializers of global
738 * variables.
739 */
740 unsigned has_initializer:1;
741
742 /**
743 * Is this variable a generic output or input that has not yet been matched
744 * up to a variable in another stage of the pipeline?
745 *
746 * This is used by the linker as scratch storage while assigning locations
747 * to generic inputs and outputs.
748 */
749 unsigned is_unmatched_generic_inout:1;
750
751 /**
752 * Is this varying used only by transform feedback?
753 *
754 * This is used by the linker to decide if its safe to pack the varying.
755 */
756 unsigned is_xfb_only:1;
757
758 /**
759 * Was a transfor feedback buffer set in the shader?
760 */
761 unsigned explicit_xfb_buffer:1;
762
763 /**
764 * Was a transfor feedback offset set in the shader?
765 */
766 unsigned explicit_xfb_offset:1;
767
768 /**
769 * Was a transfor feedback stride set in the shader?
770 */
771 unsigned explicit_xfb_stride:1;
772
773 /**
774 * If non-zero, then this variable may be packed along with other variables
775 * into a single varying slot, so this offset should be applied when
776 * accessing components. For example, an offset of 1 means that the x
777 * component of this variable is actually stored in component y of the
778 * location specified by \c location.
779 */
780 unsigned location_frac:2;
781
782 /**
783 * Layout of the matrix. Uses glsl_matrix_layout values.
784 */
785 unsigned matrix_layout:2;
786
787 /**
788 * Non-zero if this variable was created by lowering a named interface
789 * block.
790 */
791 unsigned from_named_ifc_block:1;
792
793 /**
794 * Non-zero if the variable must be a shader input. This is useful for
795 * constraints on function parameters.
796 */
797 unsigned must_be_shader_input:1;
798
799 /**
800 * Output index for dual source blending.
801 *
802 * \note
803 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
804 * source blending.
805 */
806 unsigned index:1;
807
808 /**
809 * Precision qualifier.
810 *
811 * In desktop GLSL we do not care about precision qualifiers at all, in
812 * fact, the spec says that precision qualifiers are ignored.
813 *
814 * To make things easy, we make it so that this field is always
815 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
816 * have the same precision value and the checks we add in the compiler
817 * for this field will never break a desktop shader compile.
818 */
819 unsigned precision:2;
820
821 /**
822 * \brief Layout qualifier for gl_FragDepth.
823 *
824 * This is not equal to \c ir_depth_layout_none if and only if this
825 * variable is \c gl_FragDepth and a layout qualifier is specified.
826 */
827 ir_depth_layout depth_layout:3;
828
829 /**
830 * Memory qualifiers.
831 */
832 unsigned memory_read_only:1; /**< "readonly" qualifier. */
833 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
834 unsigned memory_coherent:1;
835 unsigned memory_volatile:1;
836 unsigned memory_restrict:1;
837
838 /**
839 * ARB_shader_storage_buffer_object
840 */
841 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
842
843 unsigned implicit_sized_array:1;
844
845 /**
846 * Whether this is a fragment shader output implicitly initialized with
847 * the previous contents of the specified render target at the
848 * framebuffer location corresponding to this shader invocation.
849 */
850 unsigned fb_fetch_output:1;
851
852 /**
853 * Non-zero if this variable is considered bindless as defined by
854 * ARB_bindless_texture.
855 */
856 unsigned bindless:1;
857
858 /**
859 * Non-zero if this variable is considered bound as defined by
860 * ARB_bindless_texture.
861 */
862 unsigned bound:1;
863
864 /**
865 * Emit a warning if this variable is accessed.
866 */
867 private:
868 uint8_t warn_extension_index;
869
870 public:
871 /** Image internal format if specified explicitly, otherwise GL_NONE. */
872 uint16_t image_format;
873
874 private:
875 /**
876 * Number of state slots used
877 *
878 * \note
879 * This could be stored in as few as 7-bits, if necessary. If it is made
880 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
881 * be safe.
882 */
883 uint16_t _num_state_slots;
884
885 public:
886 /**
887 * Initial binding point for a sampler, atomic, or UBO.
888 *
889 * For array types, this represents the binding point for the first element.
890 */
891 int16_t binding;
892
893 /**
894 * Storage location of the base of this variable
895 *
896 * The precise meaning of this field depends on the nature of the variable.
897 *
898 * - Vertex shader input: one of the values from \c gl_vert_attrib.
899 * - Vertex shader output: one of the values from \c gl_varying_slot.
900 * - Geometry shader input: one of the values from \c gl_varying_slot.
901 * - Geometry shader output: one of the values from \c gl_varying_slot.
902 * - Fragment shader input: one of the values from \c gl_varying_slot.
903 * - Fragment shader output: one of the values from \c gl_frag_result.
904 * - Uniforms: Per-stage uniform slot number for default uniform block.
905 * - Uniforms: Index within the uniform block definition for UBO members.
906 * - Non-UBO Uniforms: explicit location until linking then reused to
907 * store uniform slot number.
908 * - Other: This field is not currently used.
909 *
910 * If the variable is a uniform, shader input, or shader output, and the
911 * slot has not been assigned, the value will be -1.
912 */
913 int location;
914
915 /**
916 * for glsl->tgsi/mesa IR we need to store the index into the
917 * parameters for uniforms, initially the code overloaded location
918 * but this causes problems with indirect samplers and AoA.
919 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
920 */
921 int param_index;
922
923 /**
924 * Vertex stream output identifier.
925 *
926 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
927 * stream of the i-th component.
928 */
929 unsigned stream;
930
931 /**
932 * Atomic, transform feedback or block member offset.
933 */
934 unsigned offset;
935
936 /**
937 * Highest element accessed with a constant expression array index
938 *
939 * Not used for non-array variables. -1 is never accessed.
940 */
941 int max_array_access;
942
943 /**
944 * Transform feedback buffer.
945 */
946 unsigned xfb_buffer;
947
948 /**
949 * Transform feedback stride.
950 */
951 unsigned xfb_stride;
952
953 /**
954 * Allow (only) ir_variable direct access private members.
955 */
956 friend class ir_variable;
957 } data;
958
959 /**
960 * Value assigned in the initializer of a variable declared "const"
961 */
962 ir_constant *constant_value;
963
964 /**
965 * Constant expression assigned in the initializer of the variable
966 *
967 * \warning
968 * This field and \c ::constant_value are distinct. Even if the two fields
969 * refer to constants with the same value, they must point to separate
970 * objects.
971 */
972 ir_constant *constant_initializer;
973
974 private:
975 static const char *const warn_extension_table[];
976
977 union {
978 /**
979 * For variables which satisfy the is_interface_instance() predicate,
980 * this points to an array of integers such that if the ith member of
981 * the interface block is an array, max_ifc_array_access[i] is the
982 * maximum array element of that member that has been accessed. If the
983 * ith member of the interface block is not an array,
984 * max_ifc_array_access[i] is unused.
985 *
986 * For variables whose type is not an interface block, this pointer is
987 * NULL.
988 */
989 int *max_ifc_array_access;
990
991 /**
992 * Built-in state that backs this uniform
993 *
994 * Once set at variable creation, \c state_slots must remain invariant.
995 *
996 * If the variable is not a uniform, \c _num_state_slots will be zero
997 * and \c state_slots will be \c NULL.
998 */
999 ir_state_slot *state_slots;
1000 } u;
1001
1002 /**
1003 * For variables that are in an interface block or are an instance of an
1004 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1005 *
1006 * \sa ir_variable::location
1007 */
1008 const glsl_type *interface_type;
1009
1010 /**
1011 * Name used for anonymous compiler temporaries
1012 */
1013 static const char tmp_name[];
1014
1015 public:
1016 /**
1017 * Should the construct keep names for ir_var_temporary variables?
1018 *
1019 * When this global is false, names passed to the constructor for
1020 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1021 * be named "compiler_temp". This name will be in static storage.
1022 *
1023 * \warning
1024 * \b NEVER change the mode of an \c ir_var_temporary.
1025 *
1026 * \warning
1027 * This variable is \b not thread-safe. It is global, \b not
1028 * per-context. It begins life false. A context can, at some point, make
1029 * it true. From that point on, it will be true forever. This should be
1030 * okay since it will only be set true while debugging.
1031 */
1032 static bool temporaries_allocate_names;
1033 };
1034
1035 /**
1036 * A function that returns whether a built-in function is available in the
1037 * current shading language (based on version, ES or desktop, and extensions).
1038 */
1039 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1040
1041 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1042 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1043
1044 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1045 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1046
1047 enum ir_intrinsic_id {
1048 ir_intrinsic_invalid = 0,
1049
1050 /**
1051 * \name Generic intrinsics
1052 *
1053 * Each of these intrinsics has a specific version for shared variables and
1054 * SSBOs.
1055 */
1056 /*@{*/
1057 ir_intrinsic_generic_load,
1058 ir_intrinsic_generic_store,
1059 ir_intrinsic_generic_atomic_add,
1060 ir_intrinsic_generic_atomic_and,
1061 ir_intrinsic_generic_atomic_or,
1062 ir_intrinsic_generic_atomic_xor,
1063 ir_intrinsic_generic_atomic_min,
1064 ir_intrinsic_generic_atomic_max,
1065 ir_intrinsic_generic_atomic_exchange,
1066 ir_intrinsic_generic_atomic_comp_swap,
1067 /*@}*/
1068
1069 ir_intrinsic_atomic_counter_read,
1070 ir_intrinsic_atomic_counter_increment,
1071 ir_intrinsic_atomic_counter_predecrement,
1072 ir_intrinsic_atomic_counter_add,
1073 ir_intrinsic_atomic_counter_and,
1074 ir_intrinsic_atomic_counter_or,
1075 ir_intrinsic_atomic_counter_xor,
1076 ir_intrinsic_atomic_counter_min,
1077 ir_intrinsic_atomic_counter_max,
1078 ir_intrinsic_atomic_counter_exchange,
1079 ir_intrinsic_atomic_counter_comp_swap,
1080
1081 ir_intrinsic_image_load,
1082 ir_intrinsic_image_store,
1083 ir_intrinsic_image_atomic_add,
1084 ir_intrinsic_image_atomic_and,
1085 ir_intrinsic_image_atomic_or,
1086 ir_intrinsic_image_atomic_xor,
1087 ir_intrinsic_image_atomic_min,
1088 ir_intrinsic_image_atomic_max,
1089 ir_intrinsic_image_atomic_exchange,
1090 ir_intrinsic_image_atomic_comp_swap,
1091 ir_intrinsic_image_size,
1092 ir_intrinsic_image_samples,
1093
1094 ir_intrinsic_ssbo_load,
1095 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1096 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1097 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1098 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1099 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1100 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1101 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1102 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1103 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1104
1105 ir_intrinsic_memory_barrier,
1106 ir_intrinsic_shader_clock,
1107 ir_intrinsic_group_memory_barrier,
1108 ir_intrinsic_memory_barrier_atomic_counter,
1109 ir_intrinsic_memory_barrier_buffer,
1110 ir_intrinsic_memory_barrier_image,
1111 ir_intrinsic_memory_barrier_shared,
1112
1113 ir_intrinsic_vote_all,
1114 ir_intrinsic_vote_any,
1115 ir_intrinsic_vote_eq,
1116 ir_intrinsic_ballot,
1117 ir_intrinsic_read_invocation,
1118 ir_intrinsic_read_first_invocation,
1119
1120 ir_intrinsic_shared_load,
1121 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1122 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1123 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1124 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1125 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1126 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1127 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1128 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1129 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1130 };
1131
1132 /*@{*/
1133 /**
1134 * The representation of a function instance; may be the full definition or
1135 * simply a prototype.
1136 */
1137 class ir_function_signature : public ir_instruction {
1138 /* An ir_function_signature will be part of the list of signatures in
1139 * an ir_function.
1140 */
1141 public:
1142 ir_function_signature(const glsl_type *return_type,
1143 builtin_available_predicate builtin_avail = NULL);
1144
1145 virtual ir_function_signature *clone(void *mem_ctx,
1146 struct hash_table *ht) const;
1147 ir_function_signature *clone_prototype(void *mem_ctx,
1148 struct hash_table *ht) const;
1149
1150 virtual void accept(ir_visitor *v)
1151 {
1152 v->visit(this);
1153 }
1154
1155 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1156
1157 /**
1158 * Attempt to evaluate this function as a constant expression,
1159 * given a list of the actual parameters and the variable context.
1160 * Returns NULL for non-built-ins.
1161 */
1162 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1163
1164 /**
1165 * Get the name of the function for which this is a signature
1166 */
1167 const char *function_name() const;
1168
1169 /**
1170 * Get a handle to the function for which this is a signature
1171 *
1172 * There is no setter function, this function returns a \c const pointer,
1173 * and \c ir_function_signature::_function is private for a reason. The
1174 * only way to make a connection between a function and function signature
1175 * is via \c ir_function::add_signature. This helps ensure that certain
1176 * invariants (i.e., a function signature is in the list of signatures for
1177 * its \c _function) are met.
1178 *
1179 * \sa ir_function::add_signature
1180 */
1181 inline const class ir_function *function() const
1182 {
1183 return this->_function;
1184 }
1185
1186 /**
1187 * Check whether the qualifiers match between this signature's parameters
1188 * and the supplied parameter list. If not, returns the name of the first
1189 * parameter with mismatched qualifiers (for use in error messages).
1190 */
1191 const char *qualifiers_match(exec_list *params);
1192
1193 /**
1194 * Replace the current parameter list with the given one. This is useful
1195 * if the current information came from a prototype, and either has invalid
1196 * or missing parameter names.
1197 */
1198 void replace_parameters(exec_list *new_params);
1199
1200 /**
1201 * Function return type.
1202 *
1203 * \note This discards the optional precision qualifier.
1204 */
1205 const struct glsl_type *return_type;
1206
1207 /**
1208 * List of ir_variable of function parameters.
1209 *
1210 * This represents the storage. The paramaters passed in a particular
1211 * call will be in ir_call::actual_paramaters.
1212 */
1213 struct exec_list parameters;
1214
1215 /** Whether or not this function has a body (which may be empty). */
1216 unsigned is_defined:1;
1217
1218 /** Whether or not this function signature is a built-in. */
1219 bool is_builtin() const;
1220
1221 /**
1222 * Whether or not this function is an intrinsic to be implemented
1223 * by the driver.
1224 */
1225 inline bool is_intrinsic() const
1226 {
1227 return intrinsic_id != ir_intrinsic_invalid;
1228 }
1229
1230 /** Indentifier for this intrinsic. */
1231 enum ir_intrinsic_id intrinsic_id;
1232
1233 /** Whether or not a built-in is available for this shader. */
1234 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1235
1236 /** Body of instructions in the function. */
1237 struct exec_list body;
1238
1239 private:
1240 /**
1241 * A function pointer to a predicate that answers whether a built-in
1242 * function is available in the current shader. NULL if not a built-in.
1243 */
1244 builtin_available_predicate builtin_avail;
1245
1246 /** Function of which this signature is one overload. */
1247 class ir_function *_function;
1248
1249 /** Function signature of which this one is a prototype clone */
1250 const ir_function_signature *origin;
1251
1252 friend class ir_function;
1253
1254 /**
1255 * Helper function to run a list of instructions for constant
1256 * expression evaluation.
1257 *
1258 * The hash table represents the values of the visible variables.
1259 * There are no scoping issues because the table is indexed on
1260 * ir_variable pointers, not variable names.
1261 *
1262 * Returns false if the expression is not constant, true otherwise,
1263 * and the value in *result if result is non-NULL.
1264 */
1265 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1266 struct hash_table *variable_context,
1267 ir_constant **result);
1268 };
1269
1270
1271 /**
1272 * Header for tracking multiple overloaded functions with the same name.
1273 * Contains a list of ir_function_signatures representing each of the
1274 * actual functions.
1275 */
1276 class ir_function : public ir_instruction {
1277 public:
1278 ir_function(const char *name);
1279
1280 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1281
1282 virtual void accept(ir_visitor *v)
1283 {
1284 v->visit(this);
1285 }
1286
1287 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1288
1289 void add_signature(ir_function_signature *sig)
1290 {
1291 sig->_function = this;
1292 this->signatures.push_tail(sig);
1293 }
1294
1295 /**
1296 * Find a signature that matches a set of actual parameters, taking implicit
1297 * conversions into account. Also flags whether the match was exact.
1298 */
1299 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1300 const exec_list *actual_param,
1301 bool allow_builtins,
1302 bool *match_is_exact);
1303
1304 /**
1305 * Find a signature that matches a set of actual parameters, taking implicit
1306 * conversions into account.
1307 */
1308 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1309 const exec_list *actual_param,
1310 bool allow_builtins);
1311
1312 /**
1313 * Find a signature that exactly matches a set of actual parameters without
1314 * any implicit type conversions.
1315 */
1316 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1317 const exec_list *actual_ps);
1318
1319 /**
1320 * Name of the function.
1321 */
1322 const char *name;
1323
1324 /** Whether or not this function has a signature that isn't a built-in. */
1325 bool has_user_signature();
1326
1327 /**
1328 * List of ir_function_signature for each overloaded function with this name.
1329 */
1330 struct exec_list signatures;
1331
1332 /**
1333 * is this function a subroutine type declaration
1334 * e.g. subroutine void type1(float arg1);
1335 */
1336 bool is_subroutine;
1337
1338 /**
1339 * is this function associated to a subroutine type
1340 * e.g. subroutine (type1, type2) function_name { function_body };
1341 * would have num_subroutine_types 2,
1342 * and pointers to the type1 and type2 types.
1343 */
1344 int num_subroutine_types;
1345 const struct glsl_type **subroutine_types;
1346
1347 int subroutine_index;
1348 };
1349
1350 inline const char *ir_function_signature::function_name() const
1351 {
1352 return this->_function->name;
1353 }
1354 /*@}*/
1355
1356
1357 /**
1358 * IR instruction representing high-level if-statements
1359 */
1360 class ir_if : public ir_instruction {
1361 public:
1362 ir_if(ir_rvalue *condition)
1363 : ir_instruction(ir_type_if), condition(condition)
1364 {
1365 }
1366
1367 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1368
1369 virtual void accept(ir_visitor *v)
1370 {
1371 v->visit(this);
1372 }
1373
1374 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1375
1376 ir_rvalue *condition;
1377 /** List of ir_instruction for the body of the then branch */
1378 exec_list then_instructions;
1379 /** List of ir_instruction for the body of the else branch */
1380 exec_list else_instructions;
1381 };
1382
1383
1384 /**
1385 * IR instruction representing a high-level loop structure.
1386 */
1387 class ir_loop : public ir_instruction {
1388 public:
1389 ir_loop();
1390
1391 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1392
1393 virtual void accept(ir_visitor *v)
1394 {
1395 v->visit(this);
1396 }
1397
1398 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1399
1400 /** List of ir_instruction that make up the body of the loop. */
1401 exec_list body_instructions;
1402 };
1403
1404
1405 class ir_assignment : public ir_instruction {
1406 public:
1407 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1408
1409 /**
1410 * Construct an assignment with an explicit write mask
1411 *
1412 * \note
1413 * Since a write mask is supplied, the LHS must already be a bare
1414 * \c ir_dereference. The cannot be any swizzles in the LHS.
1415 */
1416 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1417 unsigned write_mask);
1418
1419 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1420
1421 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1422
1423 virtual void accept(ir_visitor *v)
1424 {
1425 v->visit(this);
1426 }
1427
1428 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1429
1430 /**
1431 * Get a whole variable written by an assignment
1432 *
1433 * If the LHS of the assignment writes a whole variable, the variable is
1434 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1435 * assignment are:
1436 *
1437 * - Assigning to a scalar
1438 * - Assigning to all components of a vector
1439 * - Whole array (or matrix) assignment
1440 * - Whole structure assignment
1441 */
1442 ir_variable *whole_variable_written();
1443
1444 /**
1445 * Set the LHS of an assignment
1446 */
1447 void set_lhs(ir_rvalue *lhs);
1448
1449 /**
1450 * Left-hand side of the assignment.
1451 *
1452 * This should be treated as read only. If you need to set the LHS of an
1453 * assignment, use \c ir_assignment::set_lhs.
1454 */
1455 ir_dereference *lhs;
1456
1457 /**
1458 * Value being assigned
1459 */
1460 ir_rvalue *rhs;
1461
1462 /**
1463 * Optional condition for the assignment.
1464 */
1465 ir_rvalue *condition;
1466
1467
1468 /**
1469 * Component mask written
1470 *
1471 * For non-vector types in the LHS, this field will be zero. For vector
1472 * types, a bit will be set for each component that is written. Note that
1473 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1474 *
1475 * A partially-set write mask means that each enabled channel gets
1476 * the value from a consecutive channel of the rhs. For example,
1477 * to write just .xyw of gl_FrontColor with color:
1478 *
1479 * (assign (constant bool (1)) (xyw)
1480 * (var_ref gl_FragColor)
1481 * (swiz xyw (var_ref color)))
1482 */
1483 unsigned write_mask:4;
1484 };
1485
1486 #include "ir_expression_operation.h"
1487
1488 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1489 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1490
1491 class ir_expression : public ir_rvalue {
1492 public:
1493 ir_expression(int op, const struct glsl_type *type,
1494 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1495 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1496
1497 /**
1498 * Constructor for unary operation expressions
1499 */
1500 ir_expression(int op, ir_rvalue *);
1501
1502 /**
1503 * Constructor for binary operation expressions
1504 */
1505 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1506
1507 /**
1508 * Constructor for ternary operation expressions
1509 */
1510 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1511
1512 virtual bool equals(const ir_instruction *ir,
1513 enum ir_node_type ignore = ir_type_unset) const;
1514
1515 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1516
1517 /**
1518 * Attempt to constant-fold the expression
1519 *
1520 * The "variable_context" hash table links ir_variable * to ir_constant *
1521 * that represent the variables' values. \c NULL represents an empty
1522 * context.
1523 *
1524 * If the expression cannot be constant folded, this method will return
1525 * \c NULL.
1526 */
1527 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1528
1529 /**
1530 * Determine the number of operands used by an expression
1531 */
1532 static unsigned int get_num_operands(ir_expression_operation);
1533
1534 /**
1535 * Determine the number of operands used by an expression
1536 */
1537 unsigned int get_num_operands() const
1538 {
1539 return (this->operation == ir_quadop_vector)
1540 ? this->type->vector_elements : get_num_operands(operation);
1541 }
1542
1543 /**
1544 * Return whether the expression operates on vectors horizontally.
1545 */
1546 bool is_horizontal() const
1547 {
1548 return operation == ir_binop_all_equal ||
1549 operation == ir_binop_any_nequal ||
1550 operation == ir_binop_dot ||
1551 operation == ir_binop_vector_extract ||
1552 operation == ir_triop_vector_insert ||
1553 operation == ir_binop_ubo_load ||
1554 operation == ir_quadop_vector;
1555 }
1556
1557 /**
1558 * Do a reverse-lookup to translate the given string into an operator.
1559 */
1560 static ir_expression_operation get_operator(const char *);
1561
1562 virtual void accept(ir_visitor *v)
1563 {
1564 v->visit(this);
1565 }
1566
1567 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1568
1569 virtual ir_variable *variable_referenced() const;
1570
1571 ir_expression_operation operation;
1572 ir_rvalue *operands[4];
1573 };
1574
1575
1576 /**
1577 * HIR instruction representing a high-level function call, containing a list
1578 * of parameters and returning a value in the supplied temporary.
1579 */
1580 class ir_call : public ir_instruction {
1581 public:
1582 ir_call(ir_function_signature *callee,
1583 ir_dereference_variable *return_deref,
1584 exec_list *actual_parameters)
1585 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1586 {
1587 assert(callee->return_type != NULL);
1588 actual_parameters->move_nodes_to(& this->actual_parameters);
1589 this->use_builtin = callee->is_builtin();
1590 }
1591
1592 ir_call(ir_function_signature *callee,
1593 ir_dereference_variable *return_deref,
1594 exec_list *actual_parameters,
1595 ir_variable *var, ir_rvalue *array_idx)
1596 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1597 {
1598 assert(callee->return_type != NULL);
1599 actual_parameters->move_nodes_to(& this->actual_parameters);
1600 this->use_builtin = callee->is_builtin();
1601 }
1602
1603 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1604
1605 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1606
1607 virtual void accept(ir_visitor *v)
1608 {
1609 v->visit(this);
1610 }
1611
1612 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1613
1614 /**
1615 * Get the name of the function being called.
1616 */
1617 const char *callee_name() const
1618 {
1619 return callee->function_name();
1620 }
1621
1622 /**
1623 * Generates an inline version of the function before @ir,
1624 * storing the return value in return_deref.
1625 */
1626 void generate_inline(ir_instruction *ir);
1627
1628 /**
1629 * Storage for the function's return value.
1630 * This must be NULL if the return type is void.
1631 */
1632 ir_dereference_variable *return_deref;
1633
1634 /**
1635 * The specific function signature being called.
1636 */
1637 ir_function_signature *callee;
1638
1639 /* List of ir_rvalue of paramaters passed in this call. */
1640 exec_list actual_parameters;
1641
1642 /** Should this call only bind to a built-in function? */
1643 bool use_builtin;
1644
1645 /*
1646 * ARB_shader_subroutine support -
1647 * the subroutine uniform variable and array index
1648 * rvalue to be used in the lowering pass later.
1649 */
1650 ir_variable *sub_var;
1651 ir_rvalue *array_idx;
1652 };
1653
1654
1655 /**
1656 * \name Jump-like IR instructions.
1657 *
1658 * These include \c break, \c continue, \c return, and \c discard.
1659 */
1660 /*@{*/
1661 class ir_jump : public ir_instruction {
1662 protected:
1663 ir_jump(enum ir_node_type t)
1664 : ir_instruction(t)
1665 {
1666 }
1667 };
1668
1669 class ir_return : public ir_jump {
1670 public:
1671 ir_return()
1672 : ir_jump(ir_type_return), value(NULL)
1673 {
1674 }
1675
1676 ir_return(ir_rvalue *value)
1677 : ir_jump(ir_type_return), value(value)
1678 {
1679 }
1680
1681 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1682
1683 ir_rvalue *get_value() const
1684 {
1685 return value;
1686 }
1687
1688 virtual void accept(ir_visitor *v)
1689 {
1690 v->visit(this);
1691 }
1692
1693 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1694
1695 ir_rvalue *value;
1696 };
1697
1698
1699 /**
1700 * Jump instructions used inside loops
1701 *
1702 * These include \c break and \c continue. The \c break within a loop is
1703 * different from the \c break within a switch-statement.
1704 *
1705 * \sa ir_switch_jump
1706 */
1707 class ir_loop_jump : public ir_jump {
1708 public:
1709 enum jump_mode {
1710 jump_break,
1711 jump_continue
1712 };
1713
1714 ir_loop_jump(jump_mode mode)
1715 : ir_jump(ir_type_loop_jump)
1716 {
1717 this->mode = mode;
1718 }
1719
1720 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1721
1722 virtual void accept(ir_visitor *v)
1723 {
1724 v->visit(this);
1725 }
1726
1727 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1728
1729 bool is_break() const
1730 {
1731 return mode == jump_break;
1732 }
1733
1734 bool is_continue() const
1735 {
1736 return mode == jump_continue;
1737 }
1738
1739 /** Mode selector for the jump instruction. */
1740 enum jump_mode mode;
1741 };
1742
1743 /**
1744 * IR instruction representing discard statements.
1745 */
1746 class ir_discard : public ir_jump {
1747 public:
1748 ir_discard()
1749 : ir_jump(ir_type_discard)
1750 {
1751 this->condition = NULL;
1752 }
1753
1754 ir_discard(ir_rvalue *cond)
1755 : ir_jump(ir_type_discard)
1756 {
1757 this->condition = cond;
1758 }
1759
1760 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1761
1762 virtual void accept(ir_visitor *v)
1763 {
1764 v->visit(this);
1765 }
1766
1767 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1768
1769 ir_rvalue *condition;
1770 };
1771 /*@}*/
1772
1773
1774 /**
1775 * Texture sampling opcodes used in ir_texture
1776 */
1777 enum ir_texture_opcode {
1778 ir_tex, /**< Regular texture look-up */
1779 ir_txb, /**< Texture look-up with LOD bias */
1780 ir_txl, /**< Texture look-up with explicit LOD */
1781 ir_txd, /**< Texture look-up with partial derivatvies */
1782 ir_txf, /**< Texel fetch with explicit LOD */
1783 ir_txf_ms, /**< Multisample texture fetch */
1784 ir_txs, /**< Texture size */
1785 ir_lod, /**< Texture lod query */
1786 ir_tg4, /**< Texture gather */
1787 ir_query_levels, /**< Texture levels query */
1788 ir_texture_samples, /**< Texture samples query */
1789 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1790 };
1791
1792
1793 /**
1794 * IR instruction to sample a texture
1795 *
1796 * The specific form of the IR instruction depends on the \c mode value
1797 * selected from \c ir_texture_opcodes. In the printed IR, these will
1798 * appear as:
1799 *
1800 * Texel offset (0 or an expression)
1801 * | Projection divisor
1802 * | | Shadow comparator
1803 * | | |
1804 * v v v
1805 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1806 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1807 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1808 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1809 * (txf <type> <sampler> <coordinate> 0 <lod>)
1810 * (txf_ms
1811 * <type> <sampler> <coordinate> <sample_index>)
1812 * (txs <type> <sampler> <lod>)
1813 * (lod <type> <sampler> <coordinate>)
1814 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1815 * (query_levels <type> <sampler>)
1816 * (samples_identical <sampler> <coordinate>)
1817 */
1818 class ir_texture : public ir_rvalue {
1819 public:
1820 ir_texture(enum ir_texture_opcode op)
1821 : ir_rvalue(ir_type_texture),
1822 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1823 shadow_comparator(NULL), offset(NULL)
1824 {
1825 memset(&lod_info, 0, sizeof(lod_info));
1826 }
1827
1828 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1829
1830 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1831
1832 virtual void accept(ir_visitor *v)
1833 {
1834 v->visit(this);
1835 }
1836
1837 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1838
1839 virtual bool equals(const ir_instruction *ir,
1840 enum ir_node_type ignore = ir_type_unset) const;
1841
1842 /**
1843 * Return a string representing the ir_texture_opcode.
1844 */
1845 const char *opcode_string();
1846
1847 /** Set the sampler and type. */
1848 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1849
1850 /**
1851 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1852 */
1853 static ir_texture_opcode get_opcode(const char *);
1854
1855 enum ir_texture_opcode op;
1856
1857 /** Sampler to use for the texture access. */
1858 ir_dereference *sampler;
1859
1860 /** Texture coordinate to sample */
1861 ir_rvalue *coordinate;
1862
1863 /**
1864 * Value used for projective divide.
1865 *
1866 * If there is no projective divide (the common case), this will be
1867 * \c NULL. Optimization passes should check for this to point to a constant
1868 * of 1.0 and replace that with \c NULL.
1869 */
1870 ir_rvalue *projector;
1871
1872 /**
1873 * Coordinate used for comparison on shadow look-ups.
1874 *
1875 * If there is no shadow comparison, this will be \c NULL. For the
1876 * \c ir_txf opcode, this *must* be \c NULL.
1877 */
1878 ir_rvalue *shadow_comparator;
1879
1880 /** Texel offset. */
1881 ir_rvalue *offset;
1882
1883 union {
1884 ir_rvalue *lod; /**< Floating point LOD */
1885 ir_rvalue *bias; /**< Floating point LOD bias */
1886 ir_rvalue *sample_index; /**< MSAA sample index */
1887 ir_rvalue *component; /**< Gather component selector */
1888 struct {
1889 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1890 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1891 } grad;
1892 } lod_info;
1893 };
1894
1895
1896 struct ir_swizzle_mask {
1897 unsigned x:2;
1898 unsigned y:2;
1899 unsigned z:2;
1900 unsigned w:2;
1901
1902 /**
1903 * Number of components in the swizzle.
1904 */
1905 unsigned num_components:3;
1906
1907 /**
1908 * Does the swizzle contain duplicate components?
1909 *
1910 * L-value swizzles cannot contain duplicate components.
1911 */
1912 unsigned has_duplicates:1;
1913 };
1914
1915
1916 class ir_swizzle : public ir_rvalue {
1917 public:
1918 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1919 unsigned count);
1920
1921 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1922
1923 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1924
1925 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1926
1927 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1928
1929 /**
1930 * Construct an ir_swizzle from the textual representation. Can fail.
1931 */
1932 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1933
1934 virtual void accept(ir_visitor *v)
1935 {
1936 v->visit(this);
1937 }
1938
1939 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1940
1941 virtual bool equals(const ir_instruction *ir,
1942 enum ir_node_type ignore = ir_type_unset) const;
1943
1944 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1945 {
1946 return val->is_lvalue(state) && !mask.has_duplicates;
1947 }
1948
1949 /**
1950 * Get the variable that is ultimately referenced by an r-value
1951 */
1952 virtual ir_variable *variable_referenced() const;
1953
1954 ir_rvalue *val;
1955 ir_swizzle_mask mask;
1956
1957 private:
1958 /**
1959 * Initialize the mask component of a swizzle
1960 *
1961 * This is used by the \c ir_swizzle constructors.
1962 */
1963 void init_mask(const unsigned *components, unsigned count);
1964 };
1965
1966
1967 class ir_dereference : public ir_rvalue {
1968 public:
1969 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1970
1971 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
1972
1973 /**
1974 * Get the variable that is ultimately referenced by an r-value
1975 */
1976 virtual ir_variable *variable_referenced() const = 0;
1977
1978 protected:
1979 ir_dereference(enum ir_node_type t)
1980 : ir_rvalue(t)
1981 {
1982 }
1983 };
1984
1985
1986 class ir_dereference_variable : public ir_dereference {
1987 public:
1988 ir_dereference_variable(ir_variable *var);
1989
1990 virtual ir_dereference_variable *clone(void *mem_ctx,
1991 struct hash_table *) const;
1992
1993 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1994
1995 virtual bool equals(const ir_instruction *ir,
1996 enum ir_node_type ignore = ir_type_unset) const;
1997
1998 /**
1999 * Get the variable that is ultimately referenced by an r-value
2000 */
2001 virtual ir_variable *variable_referenced() const
2002 {
2003 return this->var;
2004 }
2005
2006 virtual ir_variable *whole_variable_referenced()
2007 {
2008 /* ir_dereference_variable objects always dereference the entire
2009 * variable. However, if this dereference is dereferenced by anything
2010 * else, the complete deferefernce chain is not a whole-variable
2011 * dereference. This method should only be called on the top most
2012 * ir_rvalue in a dereference chain.
2013 */
2014 return this->var;
2015 }
2016
2017 virtual void accept(ir_visitor *v)
2018 {
2019 v->visit(this);
2020 }
2021
2022 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2023
2024 /**
2025 * Object being dereferenced.
2026 */
2027 ir_variable *var;
2028 };
2029
2030
2031 class ir_dereference_array : public ir_dereference {
2032 public:
2033 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2034
2035 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2036
2037 virtual ir_dereference_array *clone(void *mem_ctx,
2038 struct hash_table *) const;
2039
2040 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2041
2042 virtual bool equals(const ir_instruction *ir,
2043 enum ir_node_type ignore = ir_type_unset) const;
2044
2045 /**
2046 * Get the variable that is ultimately referenced by an r-value
2047 */
2048 virtual ir_variable *variable_referenced() const
2049 {
2050 return this->array->variable_referenced();
2051 }
2052
2053 virtual void accept(ir_visitor *v)
2054 {
2055 v->visit(this);
2056 }
2057
2058 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2059
2060 ir_rvalue *array;
2061 ir_rvalue *array_index;
2062
2063 private:
2064 void set_array(ir_rvalue *value);
2065 };
2066
2067
2068 class ir_dereference_record : public ir_dereference {
2069 public:
2070 ir_dereference_record(ir_rvalue *value, const char *field);
2071
2072 ir_dereference_record(ir_variable *var, const char *field);
2073
2074 virtual ir_dereference_record *clone(void *mem_ctx,
2075 struct hash_table *) const;
2076
2077 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2078
2079 /**
2080 * Get the variable that is ultimately referenced by an r-value
2081 */
2082 virtual ir_variable *variable_referenced() const
2083 {
2084 return this->record->variable_referenced();
2085 }
2086
2087 virtual void accept(ir_visitor *v)
2088 {
2089 v->visit(this);
2090 }
2091
2092 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2093
2094 ir_rvalue *record;
2095 const char *field;
2096 };
2097
2098
2099 /**
2100 * Data stored in an ir_constant
2101 */
2102 union ir_constant_data {
2103 unsigned u[16];
2104 int i[16];
2105 float f[16];
2106 bool b[16];
2107 double d[16];
2108 uint64_t u64[16];
2109 int64_t i64[16];
2110 };
2111
2112
2113 class ir_constant : public ir_rvalue {
2114 public:
2115 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2116 ir_constant(bool b, unsigned vector_elements=1);
2117 ir_constant(unsigned int u, unsigned vector_elements=1);
2118 ir_constant(int i, unsigned vector_elements=1);
2119 ir_constant(float f, unsigned vector_elements=1);
2120 ir_constant(double d, unsigned vector_elements=1);
2121 ir_constant(uint64_t u64, unsigned vector_elements=1);
2122 ir_constant(int64_t i64, unsigned vector_elements=1);
2123
2124 /**
2125 * Construct an ir_constant from a list of ir_constant values
2126 */
2127 ir_constant(const struct glsl_type *type, exec_list *values);
2128
2129 /**
2130 * Construct an ir_constant from a scalar component of another ir_constant
2131 *
2132 * The new \c ir_constant inherits the type of the component from the
2133 * source constant.
2134 *
2135 * \note
2136 * In the case of a matrix constant, the new constant is a scalar, \b not
2137 * a vector.
2138 */
2139 ir_constant(const ir_constant *c, unsigned i);
2140
2141 /**
2142 * Return a new ir_constant of the specified type containing all zeros.
2143 */
2144 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2145
2146 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2147
2148 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2149
2150 virtual void accept(ir_visitor *v)
2151 {
2152 v->visit(this);
2153 }
2154
2155 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2156
2157 virtual bool equals(const ir_instruction *ir,
2158 enum ir_node_type ignore = ir_type_unset) const;
2159
2160 /**
2161 * Get a particular component of a constant as a specific type
2162 *
2163 * This is useful, for example, to get a value from an integer constant
2164 * as a float or bool. This appears frequently when constructors are
2165 * called with all constant parameters.
2166 */
2167 /*@{*/
2168 bool get_bool_component(unsigned i) const;
2169 float get_float_component(unsigned i) const;
2170 double get_double_component(unsigned i) const;
2171 int get_int_component(unsigned i) const;
2172 unsigned get_uint_component(unsigned i) const;
2173 int64_t get_int64_component(unsigned i) const;
2174 uint64_t get_uint64_component(unsigned i) const;
2175 /*@}*/
2176
2177 ir_constant *get_array_element(unsigned i) const;
2178
2179 ir_constant *get_record_field(const char *name);
2180
2181 /**
2182 * Copy the values on another constant at a given offset.
2183 *
2184 * The offset is ignored for array or struct copies, it's only for
2185 * scalars or vectors into vectors or matrices.
2186 *
2187 * With identical types on both sides and zero offset it's clone()
2188 * without creating a new object.
2189 */
2190
2191 void copy_offset(ir_constant *src, int offset);
2192
2193 /**
2194 * Copy the values on another constant at a given offset and
2195 * following an assign-like mask.
2196 *
2197 * The mask is ignored for scalars.
2198 *
2199 * Note that this function only handles what assign can handle,
2200 * i.e. at most a vector as source and a column of a matrix as
2201 * destination.
2202 */
2203
2204 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2205
2206 /**
2207 * Determine whether a constant has the same value as another constant
2208 *
2209 * \sa ir_constant::is_zero, ir_constant::is_one,
2210 * ir_constant::is_negative_one
2211 */
2212 bool has_value(const ir_constant *) const;
2213
2214 /**
2215 * Return true if this ir_constant represents the given value.
2216 *
2217 * For vectors, this checks that each component is the given value.
2218 */
2219 virtual bool is_value(float f, int i) const;
2220 virtual bool is_zero() const;
2221 virtual bool is_one() const;
2222 virtual bool is_negative_one() const;
2223
2224 /**
2225 * Return true for constants that could be stored as 16-bit unsigned values.
2226 *
2227 * Note that this will return true even for signed integer ir_constants, as
2228 * long as the value is non-negative and fits in 16-bits.
2229 */
2230 virtual bool is_uint16_constant() const;
2231
2232 /**
2233 * Value of the constant.
2234 *
2235 * The field used to back the values supplied by the constant is determined
2236 * by the type associated with the \c ir_instruction. Constants may be
2237 * scalars, vectors, or matrices.
2238 */
2239 union ir_constant_data value;
2240
2241 /* Array elements */
2242 ir_constant **array_elements;
2243
2244 /* Structure fields */
2245 exec_list components;
2246
2247 private:
2248 /**
2249 * Parameterless constructor only used by the clone method
2250 */
2251 ir_constant(void);
2252 };
2253
2254 /**
2255 * IR instruction to emit a vertex in a geometry shader.
2256 */
2257 class ir_emit_vertex : public ir_instruction {
2258 public:
2259 ir_emit_vertex(ir_rvalue *stream)
2260 : ir_instruction(ir_type_emit_vertex),
2261 stream(stream)
2262 {
2263 assert(stream);
2264 }
2265
2266 virtual void accept(ir_visitor *v)
2267 {
2268 v->visit(this);
2269 }
2270
2271 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2272 {
2273 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2274 }
2275
2276 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2277
2278 int stream_id() const
2279 {
2280 return stream->as_constant()->value.i[0];
2281 }
2282
2283 ir_rvalue *stream;
2284 };
2285
2286 /**
2287 * IR instruction to complete the current primitive and start a new one in a
2288 * geometry shader.
2289 */
2290 class ir_end_primitive : public ir_instruction {
2291 public:
2292 ir_end_primitive(ir_rvalue *stream)
2293 : ir_instruction(ir_type_end_primitive),
2294 stream(stream)
2295 {
2296 assert(stream);
2297 }
2298
2299 virtual void accept(ir_visitor *v)
2300 {
2301 v->visit(this);
2302 }
2303
2304 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2305 {
2306 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2307 }
2308
2309 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2310
2311 int stream_id() const
2312 {
2313 return stream->as_constant()->value.i[0];
2314 }
2315
2316 ir_rvalue *stream;
2317 };
2318
2319 /**
2320 * IR instruction for tessellation control and compute shader barrier.
2321 */
2322 class ir_barrier : public ir_instruction {
2323 public:
2324 ir_barrier()
2325 : ir_instruction(ir_type_barrier)
2326 {
2327 }
2328
2329 virtual void accept(ir_visitor *v)
2330 {
2331 v->visit(this);
2332 }
2333
2334 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2335 {
2336 return new(mem_ctx) ir_barrier();
2337 }
2338
2339 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2340 };
2341
2342 /*@}*/
2343
2344 /**
2345 * Apply a visitor to each IR node in a list
2346 */
2347 void
2348 visit_exec_list(exec_list *list, ir_visitor *visitor);
2349
2350 /**
2351 * Validate invariants on each IR node in a list
2352 */
2353 void validate_ir_tree(exec_list *instructions);
2354
2355 struct _mesa_glsl_parse_state;
2356 struct gl_shader_program;
2357
2358 /**
2359 * Detect whether an unlinked shader contains static recursion
2360 *
2361 * If the list of instructions is determined to contain static recursion,
2362 * \c _mesa_glsl_error will be called to emit error messages for each function
2363 * that is in the recursion cycle.
2364 */
2365 void
2366 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2367 exec_list *instructions);
2368
2369 /**
2370 * Detect whether a linked shader contains static recursion
2371 *
2372 * If the list of instructions is determined to contain static recursion,
2373 * \c link_error_printf will be called to emit error messages for each function
2374 * that is in the recursion cycle. In addition,
2375 * \c gl_shader_program::LinkStatus will be set to false.
2376 */
2377 void
2378 detect_recursion_linked(struct gl_shader_program *prog,
2379 exec_list *instructions);
2380
2381 /**
2382 * Make a clone of each IR instruction in a list
2383 *
2384 * \param in List of IR instructions that are to be cloned
2385 * \param out List to hold the cloned instructions
2386 */
2387 void
2388 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2389
2390 extern void
2391 _mesa_glsl_initialize_variables(exec_list *instructions,
2392 struct _mesa_glsl_parse_state *state);
2393
2394 extern void
2395 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2396 gl_shader *shader);
2397
2398 extern void
2399 reparent_ir(exec_list *list, void *mem_ctx);
2400
2401 extern void
2402 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2403 gl_shader_stage shader_stage);
2404
2405 extern char *
2406 prototype_string(const glsl_type *return_type, const char *name,
2407 exec_list *parameters);
2408
2409 const char *
2410 mode_string(const ir_variable *var);
2411
2412 /**
2413 * Built-in / reserved GL variables names start with "gl_"
2414 */
2415 static inline bool
2416 is_gl_identifier(const char *s)
2417 {
2418 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2419 }
2420
2421 extern "C" {
2422 #endif /* __cplusplus */
2423
2424 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2425 struct _mesa_glsl_parse_state *state);
2426
2427 extern void
2428 fprint_ir(FILE *f, const void *instruction);
2429
2430 extern const struct gl_builtin_uniform_desc *
2431 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2432
2433 #ifdef __cplusplus
2434 } /* extern "C" */
2435 #endif
2436
2437 unsigned
2438 vertices_per_prim(GLenum prim);
2439
2440 #endif /* IR_H */