4b63f7693f6e10fd9f49f787b93733d8b33a44ad
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/errors.h"
33 #include "main/mtypes.h"
34 #include "glsl_symbol_table.h"
35 #include "glsl_parser_extras.h"
36 #include "ir_optimization.h"
37 #include "linker.h"
38 #include "link_varyings.h"
39 #include "main/macros.h"
40 #include "util/hash_table.h"
41 #include "util/u_math.h"
42 #include "program.h"
43
44
45 /**
46 * Get the varying type stripped of the outermost array if we're processing
47 * a stage whose varyings are arrays indexed by a vertex number (such as
48 * geometry shader inputs).
49 */
50 static const glsl_type *
51 get_varying_type(const ir_variable *var, gl_shader_stage stage)
52 {
53 const glsl_type *type = var->type;
54
55 if (!var->data.patch &&
56 ((var->data.mode == ir_var_shader_out &&
57 stage == MESA_SHADER_TESS_CTRL) ||
58 (var->data.mode == ir_var_shader_in &&
59 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
60 stage == MESA_SHADER_GEOMETRY)))) {
61 assert(type->is_array());
62 type = type->fields.array;
63 }
64
65 return type;
66 }
67
68 static void
69 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
70 size_t name_length, unsigned *count,
71 const char *ifc_member_name,
72 const glsl_type *ifc_member_t, char ***varying_names)
73 {
74 if (t->is_interface()) {
75 size_t new_length = name_length;
76
77 assert(ifc_member_name && ifc_member_t);
78 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
79
80 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
81 NULL, NULL, varying_names);
82 } else if (t->is_struct()) {
83 for (unsigned i = 0; i < t->length; i++) {
84 const char *field = t->fields.structure[i].name;
85 size_t new_length = name_length;
86
87 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
88
89 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
90 new_length, count, NULL, NULL,
91 varying_names);
92 }
93 } else if (t->without_array()->is_struct() ||
94 t->without_array()->is_interface() ||
95 (t->is_array() && t->fields.array->is_array())) {
96 for (unsigned i = 0; i < t->length; i++) {
97 size_t new_length = name_length;
98
99 /* Append the subscript to the current variable name */
100 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
101
102 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
103 count, ifc_member_name, ifc_member_t,
104 varying_names);
105 }
106 } else {
107 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
108 }
109 }
110
111 static bool
112 process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh,
113 struct gl_shader_program *prog,
114 unsigned *num_tfeedback_decls,
115 char ***varying_names)
116 {
117 bool has_xfb_qualifiers = false;
118
119 /* We still need to enable transform feedback mode even if xfb_stride is
120 * only applied to a global out. Also we don't bother to propagate
121 * xfb_stride to interface block members so this will catch that case also.
122 */
123 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
124 if (prog->TransformFeedback.BufferStride[j]) {
125 has_xfb_qualifiers = true;
126 break;
127 }
128 }
129
130 foreach_in_list(ir_instruction, node, sh->ir) {
131 ir_variable *var = node->as_variable();
132 if (!var || var->data.mode != ir_var_shader_out)
133 continue;
134
135 /* From the ARB_enhanced_layouts spec:
136 *
137 * "Any shader making any static use (after preprocessing) of any of
138 * these *xfb_* qualifiers will cause the shader to be in a
139 * transform feedback capturing mode and hence responsible for
140 * describing the transform feedback setup. This mode will capture
141 * any output selected by *xfb_offset*, directly or indirectly, to
142 * a transform feedback buffer."
143 */
144 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
145 has_xfb_qualifiers = true;
146 }
147
148 if (var->data.explicit_xfb_offset) {
149 *num_tfeedback_decls += var->type->varying_count();
150 has_xfb_qualifiers = true;
151 }
152 }
153
154 if (*num_tfeedback_decls == 0)
155 return has_xfb_qualifiers;
156
157 unsigned i = 0;
158 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
159 foreach_in_list(ir_instruction, node, sh->ir) {
160 ir_variable *var = node->as_variable();
161 if (!var || var->data.mode != ir_var_shader_out)
162 continue;
163
164 if (var->data.explicit_xfb_offset) {
165 char *name;
166 const glsl_type *type, *member_type;
167
168 if (var->data.from_named_ifc_block) {
169 type = var->get_interface_type();
170
171 /* Find the member type before it was altered by lowering */
172 const glsl_type *type_wa = type->without_array();
173 member_type =
174 type_wa->fields.structure[type_wa->field_index(var->name)].type;
175 name = ralloc_strdup(NULL, type_wa->name);
176 } else {
177 type = var->type;
178 member_type = NULL;
179 name = ralloc_strdup(NULL, var->name);
180 }
181 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
182 var->name, member_type, varying_names);
183 ralloc_free(name);
184 }
185 }
186
187 assert(i == *num_tfeedback_decls);
188 return has_xfb_qualifiers;
189 }
190
191 /**
192 * Validate the types and qualifiers of an output from one stage against the
193 * matching input to another stage.
194 */
195 static void
196 cross_validate_types_and_qualifiers(struct gl_context *ctx,
197 struct gl_shader_program *prog,
198 const ir_variable *input,
199 const ir_variable *output,
200 gl_shader_stage consumer_stage,
201 gl_shader_stage producer_stage)
202 {
203 /* Check that the types match between stages.
204 */
205 const glsl_type *type_to_match = input->type;
206
207 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
208 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
209 consumer_stage != MESA_SHADER_FRAGMENT) ||
210 consumer_stage == MESA_SHADER_GEOMETRY;
211 if (extra_array_level) {
212 assert(type_to_match->is_array());
213 type_to_match = type_to_match->fields.array;
214 }
215
216 if (type_to_match != output->type) {
217 if (output->type->is_struct()) {
218 /* Structures across shader stages can have different name
219 * and considered to match in type if and only if structure
220 * members match in name, type, qualification, and declaration
221 * order. The precision doesn’t need to match.
222 */
223 if (!output->type->record_compare(type_to_match,
224 false, /* match_name */
225 true, /* match_locations */
226 false /* match_precision */)) {
227 linker_error(prog,
228 "%s shader output `%s' declared as struct `%s', "
229 "doesn't match in type with %s shader input "
230 "declared as struct `%s'\n",
231 _mesa_shader_stage_to_string(producer_stage),
232 output->name,
233 output->type->name,
234 _mesa_shader_stage_to_string(consumer_stage),
235 input->type->name);
236 }
237 } else if (!output->type->is_array() || !is_gl_identifier(output->name)) {
238 /* There is a bit of a special case for gl_TexCoord. This
239 * built-in is unsized by default. Applications that variable
240 * access it must redeclare it with a size. There is some
241 * language in the GLSL spec that implies the fragment shader
242 * and vertex shader do not have to agree on this size. Other
243 * driver behave this way, and one or two applications seem to
244 * rely on it.
245 *
246 * Neither declaration needs to be modified here because the array
247 * sizes are fixed later when update_array_sizes is called.
248 *
249 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
250 *
251 * "Unlike user-defined varying variables, the built-in
252 * varying variables don't have a strict one-to-one
253 * correspondence between the vertex language and the
254 * fragment language."
255 */
256 linker_error(prog,
257 "%s shader output `%s' declared as type `%s', "
258 "but %s shader input declared as type `%s'\n",
259 _mesa_shader_stage_to_string(producer_stage),
260 output->name,
261 output->type->name,
262 _mesa_shader_stage_to_string(consumer_stage),
263 input->type->name);
264 return;
265 }
266 }
267
268 /* Check that all of the qualifiers match between stages.
269 */
270
271 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
272 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
273 * conformance test suite does not verify that the qualifiers must match.
274 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
275 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
276 */
277 if (false /* always skip the centroid check */ &&
278 prog->data->Version < (prog->IsES ? 310 : 430) &&
279 input->data.centroid != output->data.centroid) {
280 linker_error(prog,
281 "%s shader output `%s' %s centroid qualifier, "
282 "but %s shader input %s centroid qualifier\n",
283 _mesa_shader_stage_to_string(producer_stage),
284 output->name,
285 (output->data.centroid) ? "has" : "lacks",
286 _mesa_shader_stage_to_string(consumer_stage),
287 (input->data.centroid) ? "has" : "lacks");
288 return;
289 }
290
291 if (input->data.sample != output->data.sample) {
292 linker_error(prog,
293 "%s shader output `%s' %s sample qualifier, "
294 "but %s shader input %s sample qualifier\n",
295 _mesa_shader_stage_to_string(producer_stage),
296 output->name,
297 (output->data.sample) ? "has" : "lacks",
298 _mesa_shader_stage_to_string(consumer_stage),
299 (input->data.sample) ? "has" : "lacks");
300 return;
301 }
302
303 if (input->data.patch != output->data.patch) {
304 linker_error(prog,
305 "%s shader output `%s' %s patch qualifier, "
306 "but %s shader input %s patch qualifier\n",
307 _mesa_shader_stage_to_string(producer_stage),
308 output->name,
309 (output->data.patch) ? "has" : "lacks",
310 _mesa_shader_stage_to_string(consumer_stage),
311 (input->data.patch) ? "has" : "lacks");
312 return;
313 }
314
315 /* The GLSL 4.30 and GLSL ES 3.00 specifications say:
316 *
317 * "As only outputs need be declared with invariant, an output from
318 * one shader stage will still match an input of a subsequent stage
319 * without the input being declared as invariant."
320 *
321 * while GLSL 4.20 says:
322 *
323 * "For variables leaving one shader and coming into another shader,
324 * the invariant keyword has to be used in both shaders, or a link
325 * error will result."
326 *
327 * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says:
328 *
329 * "The invariance of varyings that are declared in both the vertex
330 * and fragment shaders must match."
331 */
332 if (input->data.explicit_invariant != output->data.explicit_invariant &&
333 prog->data->Version < (prog->IsES ? 300 : 430)) {
334 linker_error(prog,
335 "%s shader output `%s' %s invariant qualifier, "
336 "but %s shader input %s invariant qualifier\n",
337 _mesa_shader_stage_to_string(producer_stage),
338 output->name,
339 (output->data.explicit_invariant) ? "has" : "lacks",
340 _mesa_shader_stage_to_string(consumer_stage),
341 (input->data.explicit_invariant) ? "has" : "lacks");
342 return;
343 }
344
345 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
346 * to match cross stage, they must only match within the same stage.
347 *
348 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
349 *
350 * "It is a link-time error if, within the same stage, the interpolation
351 * qualifiers of variables of the same name do not match.
352 *
353 * Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
354 *
355 * "When no interpolation qualifier is present, smooth interpolation
356 * is used."
357 *
358 * So we match variables where one is smooth and the other has no explicit
359 * qualifier.
360 */
361 unsigned input_interpolation = input->data.interpolation;
362 unsigned output_interpolation = output->data.interpolation;
363 if (prog->IsES) {
364 if (input_interpolation == INTERP_MODE_NONE)
365 input_interpolation = INTERP_MODE_SMOOTH;
366 if (output_interpolation == INTERP_MODE_NONE)
367 output_interpolation = INTERP_MODE_SMOOTH;
368 }
369 if (input_interpolation != output_interpolation &&
370 prog->data->Version < 440) {
371 if (!ctx->Const.AllowGLSLCrossStageInterpolationMismatch) {
372 linker_error(prog,
373 "%s shader output `%s' specifies %s "
374 "interpolation qualifier, "
375 "but %s shader input specifies %s "
376 "interpolation qualifier\n",
377 _mesa_shader_stage_to_string(producer_stage),
378 output->name,
379 interpolation_string(output->data.interpolation),
380 _mesa_shader_stage_to_string(consumer_stage),
381 interpolation_string(input->data.interpolation));
382 return;
383 } else {
384 linker_warning(prog,
385 "%s shader output `%s' specifies %s "
386 "interpolation qualifier, "
387 "but %s shader input specifies %s "
388 "interpolation qualifier\n",
389 _mesa_shader_stage_to_string(producer_stage),
390 output->name,
391 interpolation_string(output->data.interpolation),
392 _mesa_shader_stage_to_string(consumer_stage),
393 interpolation_string(input->data.interpolation));
394 }
395 }
396 }
397
398 /**
399 * Validate front and back color outputs against single color input
400 */
401 static void
402 cross_validate_front_and_back_color(struct gl_context *ctx,
403 struct gl_shader_program *prog,
404 const ir_variable *input,
405 const ir_variable *front_color,
406 const ir_variable *back_color,
407 gl_shader_stage consumer_stage,
408 gl_shader_stage producer_stage)
409 {
410 if (front_color != NULL && front_color->data.assigned)
411 cross_validate_types_and_qualifiers(ctx, prog, input, front_color,
412 consumer_stage, producer_stage);
413
414 if (back_color != NULL && back_color->data.assigned)
415 cross_validate_types_and_qualifiers(ctx, prog, input, back_color,
416 consumer_stage, producer_stage);
417 }
418
419 static unsigned
420 compute_variable_location_slot(ir_variable *var, gl_shader_stage stage)
421 {
422 unsigned location_start = VARYING_SLOT_VAR0;
423
424 switch (stage) {
425 case MESA_SHADER_VERTEX:
426 if (var->data.mode == ir_var_shader_in)
427 location_start = VERT_ATTRIB_GENERIC0;
428 break;
429 case MESA_SHADER_TESS_CTRL:
430 case MESA_SHADER_TESS_EVAL:
431 if (var->data.patch)
432 location_start = VARYING_SLOT_PATCH0;
433 break;
434 case MESA_SHADER_FRAGMENT:
435 if (var->data.mode == ir_var_shader_out)
436 location_start = FRAG_RESULT_DATA0;
437 break;
438 default:
439 break;
440 }
441
442 return var->data.location - location_start;
443 }
444
445 struct explicit_location_info {
446 ir_variable *var;
447 bool base_type_is_integer;
448 unsigned base_type_bit_size;
449 unsigned interpolation;
450 bool centroid;
451 bool sample;
452 bool patch;
453 };
454
455 static bool
456 check_location_aliasing(struct explicit_location_info explicit_locations[][4],
457 ir_variable *var,
458 unsigned location,
459 unsigned component,
460 unsigned location_limit,
461 const glsl_type *type,
462 unsigned interpolation,
463 bool centroid,
464 bool sample,
465 bool patch,
466 gl_shader_program *prog,
467 gl_shader_stage stage)
468 {
469 unsigned last_comp;
470 unsigned base_type_bit_size;
471 const glsl_type *type_without_array = type->without_array();
472 const bool base_type_is_integer =
473 glsl_base_type_is_integer(type_without_array->base_type);
474 const bool is_struct = type_without_array->is_struct();
475 if (is_struct) {
476 /* structs don't have a defined underlying base type so just treat all
477 * component slots as used and set the bit size to 0. If there is
478 * location aliasing, we'll fail anyway later.
479 */
480 last_comp = 4;
481 base_type_bit_size = 0;
482 } else {
483 unsigned dmul = type_without_array->is_64bit() ? 2 : 1;
484 last_comp = component + type_without_array->vector_elements * dmul;
485 base_type_bit_size =
486 glsl_base_type_get_bit_size(type_without_array->base_type);
487 }
488
489 while (location < location_limit) {
490 unsigned comp = 0;
491 while (comp < 4) {
492 struct explicit_location_info *info =
493 &explicit_locations[location][comp];
494
495 if (info->var) {
496 if (info->var->type->without_array()->is_struct() || is_struct) {
497 /* Structs cannot share location since they are incompatible
498 * with any other underlying numerical type.
499 */
500 linker_error(prog,
501 "%s shader has multiple %sputs sharing the "
502 "same location that don't have the same "
503 "underlying numerical type. Struct variable '%s', "
504 "location %u\n",
505 _mesa_shader_stage_to_string(stage),
506 var->data.mode == ir_var_shader_in ? "in" : "out",
507 is_struct ? var->name : info->var->name,
508 location);
509 return false;
510 } else if (comp >= component && comp < last_comp) {
511 /* Component aliasing is not allowed */
512 linker_error(prog,
513 "%s shader has multiple %sputs explicitly "
514 "assigned to location %d and component %d\n",
515 _mesa_shader_stage_to_string(stage),
516 var->data.mode == ir_var_shader_in ? "in" : "out",
517 location, comp);
518 return false;
519 } else {
520 /* From the OpenGL 4.60.5 spec, section 4.4.1 Input Layout
521 * Qualifiers, Page 67, (Location aliasing):
522 *
523 * " Further, when location aliasing, the aliases sharing the
524 * location must have the same underlying numerical type
525 * and bit width (floating-point or integer, 32-bit versus
526 * 64-bit, etc.) and the same auxiliary storage and
527 * interpolation qualification."
528 */
529
530 /* If the underlying numerical type isn't integer, implicitly
531 * it will be float or else we would have failed by now.
532 */
533 if (info->base_type_is_integer != base_type_is_integer) {
534 linker_error(prog,
535 "%s shader has multiple %sputs sharing the "
536 "same location that don't have the same "
537 "underlying numerical type. Location %u "
538 "component %u.\n",
539 _mesa_shader_stage_to_string(stage),
540 var->data.mode == ir_var_shader_in ?
541 "in" : "out", location, comp);
542 return false;
543 }
544
545 if (info->base_type_bit_size != base_type_bit_size) {
546 linker_error(prog,
547 "%s shader has multiple %sputs sharing the "
548 "same location that don't have the same "
549 "underlying numerical bit size. Location %u "
550 "component %u.\n",
551 _mesa_shader_stage_to_string(stage),
552 var->data.mode == ir_var_shader_in ?
553 "in" : "out", location, comp);
554 return false;
555 }
556
557 if (info->interpolation != interpolation) {
558 linker_error(prog,
559 "%s shader has multiple %sputs sharing the "
560 "same location that don't have the same "
561 "interpolation qualification. Location %u "
562 "component %u.\n",
563 _mesa_shader_stage_to_string(stage),
564 var->data.mode == ir_var_shader_in ?
565 "in" : "out", location, comp);
566 return false;
567 }
568
569 if (info->centroid != centroid ||
570 info->sample != sample ||
571 info->patch != patch) {
572 linker_error(prog,
573 "%s shader has multiple %sputs sharing the "
574 "same location that don't have the same "
575 "auxiliary storage qualification. Location %u "
576 "component %u.\n",
577 _mesa_shader_stage_to_string(stage),
578 var->data.mode == ir_var_shader_in ?
579 "in" : "out", location, comp);
580 return false;
581 }
582 }
583 } else if (comp >= component && comp < last_comp) {
584 info->var = var;
585 info->base_type_is_integer = base_type_is_integer;
586 info->base_type_bit_size = base_type_bit_size;
587 info->interpolation = interpolation;
588 info->centroid = centroid;
589 info->sample = sample;
590 info->patch = patch;
591 }
592
593 comp++;
594
595 /* We need to do some special handling for doubles as dvec3 and
596 * dvec4 consume two consecutive locations. We don't need to
597 * worry about components beginning at anything other than 0 as
598 * the spec does not allow this for dvec3 and dvec4.
599 */
600 if (comp == 4 && last_comp > 4) {
601 last_comp = last_comp - 4;
602 /* Bump location index and reset the component index */
603 location++;
604 comp = 0;
605 component = 0;
606 }
607 }
608
609 location++;
610 }
611
612 return true;
613 }
614
615 static bool
616 validate_explicit_variable_location(struct gl_context *ctx,
617 struct explicit_location_info explicit_locations[][4],
618 ir_variable *var,
619 gl_shader_program *prog,
620 gl_linked_shader *sh)
621 {
622 const glsl_type *type = get_varying_type(var, sh->Stage);
623 unsigned num_elements = type->count_attribute_slots(false);
624 unsigned idx = compute_variable_location_slot(var, sh->Stage);
625 unsigned slot_limit = idx + num_elements;
626
627 /* Vertex shader inputs and fragment shader outputs are validated in
628 * assign_attribute_or_color_locations() so we should not attempt to
629 * validate them again here.
630 */
631 unsigned slot_max;
632 if (var->data.mode == ir_var_shader_out) {
633 assert(sh->Stage != MESA_SHADER_FRAGMENT);
634 slot_max =
635 ctx->Const.Program[sh->Stage].MaxOutputComponents / 4;
636 } else {
637 assert(var->data.mode == ir_var_shader_in);
638 assert(sh->Stage != MESA_SHADER_VERTEX);
639 slot_max =
640 ctx->Const.Program[sh->Stage].MaxInputComponents / 4;
641 }
642
643 if (slot_limit > slot_max) {
644 linker_error(prog,
645 "Invalid location %u in %s shader\n",
646 idx, _mesa_shader_stage_to_string(sh->Stage));
647 return false;
648 }
649
650 const glsl_type *type_without_array = type->without_array();
651 if (type_without_array->is_interface()) {
652 for (unsigned i = 0; i < type_without_array->length; i++) {
653 glsl_struct_field *field = &type_without_array->fields.structure[i];
654 unsigned field_location = field->location -
655 (field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
656 if (!check_location_aliasing(explicit_locations, var,
657 field_location,
658 0, field_location + 1,
659 field->type,
660 field->interpolation,
661 field->centroid,
662 field->sample,
663 field->patch,
664 prog, sh->Stage)) {
665 return false;
666 }
667 }
668 } else if (!check_location_aliasing(explicit_locations, var,
669 idx, var->data.location_frac,
670 slot_limit, type,
671 var->data.interpolation,
672 var->data.centroid,
673 var->data.sample,
674 var->data.patch,
675 prog, sh->Stage)) {
676 return false;
677 }
678
679 return true;
680 }
681
682 /**
683 * Validate explicit locations for the inputs to the first stage and the
684 * outputs of the last stage in a program, if those are not the VS and FS
685 * shaders.
686 */
687 void
688 validate_first_and_last_interface_explicit_locations(struct gl_context *ctx,
689 struct gl_shader_program *prog,
690 gl_shader_stage first_stage,
691 gl_shader_stage last_stage)
692 {
693 /* VS inputs and FS outputs are validated in
694 * assign_attribute_or_color_locations()
695 */
696 bool validate_first_stage = first_stage != MESA_SHADER_VERTEX;
697 bool validate_last_stage = last_stage != MESA_SHADER_FRAGMENT;
698 if (!validate_first_stage && !validate_last_stage)
699 return;
700
701 struct explicit_location_info explicit_locations[MAX_VARYING][4];
702
703 gl_shader_stage stages[2] = { first_stage, last_stage };
704 bool validate_stage[2] = { validate_first_stage, validate_last_stage };
705 ir_variable_mode var_direction[2] = { ir_var_shader_in, ir_var_shader_out };
706
707 for (unsigned i = 0; i < 2; i++) {
708 if (!validate_stage[i])
709 continue;
710
711 gl_shader_stage stage = stages[i];
712
713 gl_linked_shader *sh = prog->_LinkedShaders[stage];
714 assert(sh);
715
716 memset(explicit_locations, 0, sizeof(explicit_locations));
717
718 foreach_in_list(ir_instruction, node, sh->ir) {
719 ir_variable *const var = node->as_variable();
720
721 if (var == NULL ||
722 !var->data.explicit_location ||
723 var->data.location < VARYING_SLOT_VAR0 ||
724 var->data.mode != var_direction[i])
725 continue;
726
727 if (!validate_explicit_variable_location(
728 ctx, explicit_locations, var, prog, sh)) {
729 return;
730 }
731 }
732 }
733 }
734
735 /**
736 * Validate that outputs from one stage match inputs of another
737 */
738 void
739 cross_validate_outputs_to_inputs(struct gl_context *ctx,
740 struct gl_shader_program *prog,
741 gl_linked_shader *producer,
742 gl_linked_shader *consumer)
743 {
744 glsl_symbol_table parameters;
745 struct explicit_location_info output_explicit_locations[MAX_VARYING][4] = {};
746 struct explicit_location_info input_explicit_locations[MAX_VARYING][4] = {};
747
748 /* Find all shader outputs in the "producer" stage.
749 */
750 foreach_in_list(ir_instruction, node, producer->ir) {
751 ir_variable *const var = node->as_variable();
752
753 if (var == NULL || var->data.mode != ir_var_shader_out)
754 continue;
755
756 if (!var->data.explicit_location
757 || var->data.location < VARYING_SLOT_VAR0)
758 parameters.add_variable(var);
759 else {
760 /* User-defined varyings with explicit locations are handled
761 * differently because they do not need to have matching names.
762 */
763 if (!validate_explicit_variable_location(ctx,
764 output_explicit_locations,
765 var, prog, producer)) {
766 return;
767 }
768 }
769 }
770
771
772 /* Find all shader inputs in the "consumer" stage. Any variables that have
773 * matching outputs already in the symbol table must have the same type and
774 * qualifiers.
775 *
776 * Exception: if the consumer is the geometry shader, then the inputs
777 * should be arrays and the type of the array element should match the type
778 * of the corresponding producer output.
779 */
780 foreach_in_list(ir_instruction, node, consumer->ir) {
781 ir_variable *const input = node->as_variable();
782
783 if (input == NULL || input->data.mode != ir_var_shader_in)
784 continue;
785
786 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
787 const ir_variable *const front_color =
788 parameters.get_variable("gl_FrontColor");
789
790 const ir_variable *const back_color =
791 parameters.get_variable("gl_BackColor");
792
793 cross_validate_front_and_back_color(ctx, prog, input,
794 front_color, back_color,
795 consumer->Stage, producer->Stage);
796 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
797 const ir_variable *const front_color =
798 parameters.get_variable("gl_FrontSecondaryColor");
799
800 const ir_variable *const back_color =
801 parameters.get_variable("gl_BackSecondaryColor");
802
803 cross_validate_front_and_back_color(ctx, prog, input,
804 front_color, back_color,
805 consumer->Stage, producer->Stage);
806 } else {
807 /* The rules for connecting inputs and outputs change in the presence
808 * of explicit locations. In this case, we no longer care about the
809 * names of the variables. Instead, we care only about the
810 * explicitly assigned location.
811 */
812 ir_variable *output = NULL;
813 if (input->data.explicit_location
814 && input->data.location >= VARYING_SLOT_VAR0) {
815
816 const glsl_type *type = get_varying_type(input, consumer->Stage);
817 unsigned num_elements = type->count_attribute_slots(false);
818 unsigned idx =
819 compute_variable_location_slot(input, consumer->Stage);
820 unsigned slot_limit = idx + num_elements;
821
822 if (!validate_explicit_variable_location(ctx,
823 input_explicit_locations,
824 input, prog, consumer)) {
825 return;
826 }
827
828 while (idx < slot_limit) {
829 if (idx >= MAX_VARYING) {
830 linker_error(prog,
831 "Invalid location %u in %s shader\n", idx,
832 _mesa_shader_stage_to_string(consumer->Stage));
833 return;
834 }
835
836 output = output_explicit_locations[idx][input->data.location_frac].var;
837
838 if (output == NULL) {
839 /* A linker failure should only happen when there is no
840 * output declaration and there is Static Use of the
841 * declared input.
842 */
843 if (input->data.used) {
844 linker_error(prog,
845 "%s shader input `%s' with explicit location "
846 "has no matching output\n",
847 _mesa_shader_stage_to_string(consumer->Stage),
848 input->name);
849 break;
850 }
851 } else if (input->data.location != output->data.location) {
852 linker_error(prog,
853 "%s shader input `%s' with explicit location "
854 "has no matching output\n",
855 _mesa_shader_stage_to_string(consumer->Stage),
856 input->name);
857 break;
858 }
859 idx++;
860 }
861 } else {
862 output = parameters.get_variable(input->name);
863 }
864
865 if (output != NULL) {
866 /* Interface blocks have their own validation elsewhere so don't
867 * try validating them here.
868 */
869 if (!(input->get_interface_type() &&
870 output->get_interface_type()))
871 cross_validate_types_and_qualifiers(ctx, prog, input, output,
872 consumer->Stage,
873 producer->Stage);
874 } else {
875 /* Check for input vars with unmatched output vars in prev stage
876 * taking into account that interface blocks could have a matching
877 * output but with different name, so we ignore them.
878 */
879 assert(!input->data.assigned);
880 if (input->data.used && !input->get_interface_type() &&
881 !input->data.explicit_location)
882 linker_error(prog,
883 "%s shader input `%s' "
884 "has no matching output in the previous stage\n",
885 _mesa_shader_stage_to_string(consumer->Stage),
886 input->name);
887 }
888 }
889 }
890 }
891
892 /**
893 * Demote shader inputs and outputs that are not used in other stages, and
894 * remove them via dead code elimination.
895 */
896 static void
897 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
898 gl_linked_shader *sh,
899 enum ir_variable_mode mode)
900 {
901 if (is_separate_shader_object)
902 return;
903
904 foreach_in_list(ir_instruction, node, sh->ir) {
905 ir_variable *const var = node->as_variable();
906
907 if (var == NULL || var->data.mode != int(mode))
908 continue;
909
910 /* A shader 'in' or 'out' variable is only really an input or output if
911 * its value is used by other shader stages. This will cause the
912 * variable to have a location assigned.
913 */
914 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
915 assert(var->data.mode != ir_var_temporary);
916
917 /* Assign zeros to demoted inputs to allow more optimizations. */
918 if (var->data.mode == ir_var_shader_in && !var->constant_value)
919 var->constant_value = ir_constant::zero(var, var->type);
920
921 var->data.mode = ir_var_auto;
922 }
923 }
924
925 /* Eliminate code that is now dead due to unused inputs/outputs being
926 * demoted.
927 */
928 while (do_dead_code(sh->ir, false))
929 ;
930
931 }
932
933 /**
934 * Initialize this object based on a string that was passed to
935 * glTransformFeedbackVaryings.
936 *
937 * If the input is mal-formed, this call still succeeds, but it sets
938 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
939 * will fail to find any matching variable.
940 */
941 void
942 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
943 const char *input)
944 {
945 /* We don't have to be pedantic about what is a valid GLSL variable name,
946 * because any variable with an invalid name can't exist in the IR anyway.
947 */
948
949 this->location = -1;
950 this->orig_name = input;
951 this->lowered_builtin_array_variable = none;
952 this->skip_components = 0;
953 this->next_buffer_separator = false;
954 this->matched_candidate = NULL;
955 this->stream_id = 0;
956 this->buffer = 0;
957 this->offset = 0;
958
959 if (ctx->Extensions.ARB_transform_feedback3) {
960 /* Parse gl_NextBuffer. */
961 if (strcmp(input, "gl_NextBuffer") == 0) {
962 this->next_buffer_separator = true;
963 return;
964 }
965
966 /* Parse gl_SkipComponents. */
967 if (strcmp(input, "gl_SkipComponents1") == 0)
968 this->skip_components = 1;
969 else if (strcmp(input, "gl_SkipComponents2") == 0)
970 this->skip_components = 2;
971 else if (strcmp(input, "gl_SkipComponents3") == 0)
972 this->skip_components = 3;
973 else if (strcmp(input, "gl_SkipComponents4") == 0)
974 this->skip_components = 4;
975
976 if (this->skip_components)
977 return;
978 }
979
980 /* Parse a declaration. */
981 const char *base_name_end;
982 long subscript = parse_program_resource_name(input, &base_name_end);
983 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
984 if (this->var_name == NULL) {
985 _mesa_error_no_memory(__func__);
986 return;
987 }
988
989 if (subscript >= 0) {
990 this->array_subscript = subscript;
991 this->is_subscripted = true;
992 } else {
993 this->is_subscripted = false;
994 }
995
996 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
997 * class must behave specially to account for the fact that gl_ClipDistance
998 * is converted from a float[8] to a vec4[2].
999 */
1000 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
1001 strcmp(this->var_name, "gl_ClipDistance") == 0) {
1002 this->lowered_builtin_array_variable = clip_distance;
1003 }
1004 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
1005 strcmp(this->var_name, "gl_CullDistance") == 0) {
1006 this->lowered_builtin_array_variable = cull_distance;
1007 }
1008
1009 if (ctx->Const.LowerTessLevel &&
1010 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
1011 this->lowered_builtin_array_variable = tess_level_outer;
1012 if (ctx->Const.LowerTessLevel &&
1013 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
1014 this->lowered_builtin_array_variable = tess_level_inner;
1015 }
1016
1017
1018 /**
1019 * Determine whether two tfeedback_decl objects refer to the same variable and
1020 * array index (if applicable).
1021 */
1022 bool
1023 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
1024 {
1025 assert(x.is_varying() && y.is_varying());
1026
1027 if (strcmp(x.var_name, y.var_name) != 0)
1028 return false;
1029 if (x.is_subscripted != y.is_subscripted)
1030 return false;
1031 if (x.is_subscripted && x.array_subscript != y.array_subscript)
1032 return false;
1033 return true;
1034 }
1035
1036
1037 /**
1038 * Assign a location and stream ID for this tfeedback_decl object based on the
1039 * transform feedback candidate found by find_candidate.
1040 *
1041 * If an error occurs, the error is reported through linker_error() and false
1042 * is returned.
1043 */
1044 bool
1045 tfeedback_decl::assign_location(struct gl_context *ctx,
1046 struct gl_shader_program *prog)
1047 {
1048 assert(this->is_varying());
1049
1050 unsigned fine_location
1051 = this->matched_candidate->toplevel_var->data.location * 4
1052 + this->matched_candidate->toplevel_var->data.location_frac
1053 + this->matched_candidate->offset;
1054 const unsigned dmul =
1055 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
1056
1057 if (this->matched_candidate->type->is_array()) {
1058 /* Array variable */
1059 const unsigned matrix_cols =
1060 this->matched_candidate->type->fields.array->matrix_columns;
1061 const unsigned vector_elements =
1062 this->matched_candidate->type->fields.array->vector_elements;
1063 unsigned actual_array_size;
1064 switch (this->lowered_builtin_array_variable) {
1065 case clip_distance:
1066 actual_array_size = prog->last_vert_prog ?
1067 prog->last_vert_prog->info.clip_distance_array_size : 0;
1068 break;
1069 case cull_distance:
1070 actual_array_size = prog->last_vert_prog ?
1071 prog->last_vert_prog->info.cull_distance_array_size : 0;
1072 break;
1073 case tess_level_outer:
1074 actual_array_size = 4;
1075 break;
1076 case tess_level_inner:
1077 actual_array_size = 2;
1078 break;
1079 case none:
1080 default:
1081 actual_array_size = this->matched_candidate->type->array_size();
1082 break;
1083 }
1084
1085 if (this->is_subscripted) {
1086 /* Check array bounds. */
1087 if (this->array_subscript >= actual_array_size) {
1088 linker_error(prog, "Transform feedback varying %s has index "
1089 "%i, but the array size is %u.",
1090 this->orig_name, this->array_subscript,
1091 actual_array_size);
1092 return false;
1093 }
1094 unsigned array_elem_size = this->lowered_builtin_array_variable ?
1095 1 : vector_elements * matrix_cols * dmul;
1096 fine_location += array_elem_size * this->array_subscript;
1097 this->size = 1;
1098 } else {
1099 this->size = actual_array_size;
1100 }
1101 this->vector_elements = vector_elements;
1102 this->matrix_columns = matrix_cols;
1103 if (this->lowered_builtin_array_variable)
1104 this->type = GL_FLOAT;
1105 else
1106 this->type = this->matched_candidate->type->fields.array->gl_type;
1107 } else {
1108 /* Regular variable (scalar, vector, or matrix) */
1109 if (this->is_subscripted) {
1110 linker_error(prog, "Transform feedback varying %s requested, "
1111 "but %s is not an array.",
1112 this->orig_name, this->var_name);
1113 return false;
1114 }
1115 this->size = 1;
1116 this->vector_elements = this->matched_candidate->type->vector_elements;
1117 this->matrix_columns = this->matched_candidate->type->matrix_columns;
1118 this->type = this->matched_candidate->type->gl_type;
1119 }
1120 this->location = fine_location / 4;
1121 this->location_frac = fine_location % 4;
1122
1123 /* From GL_EXT_transform_feedback:
1124 * A program will fail to link if:
1125 *
1126 * * the total number of components to capture in any varying
1127 * variable in <varyings> is greater than the constant
1128 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
1129 * buffer mode is SEPARATE_ATTRIBS_EXT;
1130 */
1131 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1132 this->num_components() >
1133 ctx->Const.MaxTransformFeedbackSeparateComponents) {
1134 linker_error(prog, "Transform feedback varying %s exceeds "
1135 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
1136 this->orig_name);
1137 return false;
1138 }
1139
1140 /* Only transform feedback varyings can be assigned to non-zero streams,
1141 * so assign the stream id here.
1142 */
1143 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
1144
1145 unsigned array_offset = this->array_subscript * 4 * dmul;
1146 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
1147 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
1148 this->offset = this->matched_candidate->toplevel_var->data.offset +
1149 array_offset + struct_offset;
1150
1151 return true;
1152 }
1153
1154
1155 unsigned
1156 tfeedback_decl::get_num_outputs() const
1157 {
1158 if (!this->is_varying()) {
1159 return 0;
1160 }
1161 return (this->num_components() + this->location_frac + 3)/4;
1162 }
1163
1164
1165 /**
1166 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1167 *
1168 * If an error occurs, the error is reported through linker_error() and false
1169 * is returned.
1170 */
1171 bool
1172 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
1173 struct gl_transform_feedback_info *info,
1174 unsigned buffer, unsigned buffer_index,
1175 const unsigned max_outputs,
1176 BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS],
1177 bool *explicit_stride, bool has_xfb_qualifiers,
1178 const void* mem_ctx) const
1179 {
1180 unsigned xfb_offset = 0;
1181 unsigned size = this->size;
1182 /* Handle gl_SkipComponents. */
1183 if (this->skip_components) {
1184 info->Buffers[buffer].Stride += this->skip_components;
1185 size = this->skip_components;
1186 goto store_varying;
1187 }
1188
1189 if (this->next_buffer_separator) {
1190 size = 0;
1191 goto store_varying;
1192 }
1193
1194 if (has_xfb_qualifiers) {
1195 xfb_offset = this->offset / 4;
1196 } else {
1197 xfb_offset = info->Buffers[buffer].Stride;
1198 }
1199 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
1200
1201 {
1202 unsigned location = this->location;
1203 unsigned location_frac = this->location_frac;
1204 unsigned num_components = this->num_components();
1205
1206 /* From GL_EXT_transform_feedback:
1207 *
1208 * " A program will fail to link if:
1209 *
1210 * * the total number of components to capture is greater than the
1211 * constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1212 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT."
1213 *
1214 * From GL_ARB_enhanced_layouts:
1215 *
1216 * " The resulting stride (implicit or explicit) must be less than or
1217 * equal to the implementation-dependent constant
1218 * gl_MaxTransformFeedbackInterleavedComponents."
1219 */
1220 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
1221 has_xfb_qualifiers) &&
1222 xfb_offset + num_components >
1223 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1224 linker_error(prog,
1225 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1226 "limit has been exceeded.");
1227 return false;
1228 }
1229
1230 /* From the OpenGL 4.60.5 spec, section 4.4.2. Output Layout Qualifiers,
1231 * Page 76, (Transform Feedback Layout Qualifiers):
1232 *
1233 * " No aliasing in output buffers is allowed: It is a compile-time or
1234 * link-time error to specify variables with overlapping transform
1235 * feedback offsets."
1236 */
1237 const unsigned max_components =
1238 ctx->Const.MaxTransformFeedbackInterleavedComponents;
1239 const unsigned first_component = xfb_offset;
1240 const unsigned last_component = xfb_offset + num_components - 1;
1241 const unsigned start_word = BITSET_BITWORD(first_component);
1242 const unsigned end_word = BITSET_BITWORD(last_component);
1243 BITSET_WORD *used;
1244 assert(last_component < max_components);
1245
1246 if (!used_components[buffer]) {
1247 used_components[buffer] =
1248 rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_components));
1249 }
1250 used = used_components[buffer];
1251
1252 for (unsigned word = start_word; word <= end_word; word++) {
1253 unsigned start_range = 0;
1254 unsigned end_range = BITSET_WORDBITS - 1;
1255
1256 if (word == start_word)
1257 start_range = first_component % BITSET_WORDBITS;
1258
1259 if (word == end_word)
1260 end_range = last_component % BITSET_WORDBITS;
1261
1262 if (used[word] & BITSET_RANGE(start_range, end_range)) {
1263 linker_error(prog,
1264 "variable '%s', xfb_offset (%d) is causing aliasing.",
1265 this->orig_name, xfb_offset * 4);
1266 return false;
1267 }
1268 used[word] |= BITSET_RANGE(start_range, end_range);
1269 }
1270
1271 while (num_components > 0) {
1272 unsigned output_size = MIN2(num_components, 4 - location_frac);
1273 assert((info->NumOutputs == 0 && max_outputs == 0) ||
1274 info->NumOutputs < max_outputs);
1275
1276 /* From the ARB_enhanced_layouts spec:
1277 *
1278 * "If such a block member or variable is not written during a shader
1279 * invocation, the buffer contents at the assigned offset will be
1280 * undefined. Even if there are no static writes to a variable or
1281 * member that is assigned a transform feedback offset, the space is
1282 * still allocated in the buffer and still affects the stride."
1283 */
1284 if (this->is_varying_written()) {
1285 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
1286 info->Outputs[info->NumOutputs].OutputRegister = location;
1287 info->Outputs[info->NumOutputs].NumComponents = output_size;
1288 info->Outputs[info->NumOutputs].StreamId = stream_id;
1289 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1290 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
1291 ++info->NumOutputs;
1292 }
1293 info->Buffers[buffer].Stream = this->stream_id;
1294 xfb_offset += output_size;
1295
1296 num_components -= output_size;
1297 location++;
1298 location_frac = 0;
1299 }
1300 }
1301
1302 if (explicit_stride && explicit_stride[buffer]) {
1303 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
1304 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1305 "multiple of 8 as its applied to a type that is or "
1306 "contains a double.",
1307 info->Buffers[buffer].Stride * 4);
1308 return false;
1309 }
1310
1311 if (xfb_offset > info->Buffers[buffer].Stride) {
1312 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
1313 "buffer (%d)", xfb_offset * 4,
1314 info->Buffers[buffer].Stride * 4, buffer);
1315 return false;
1316 }
1317 } else {
1318 info->Buffers[buffer].Stride = xfb_offset;
1319 }
1320
1321 store_varying:
1322 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
1323 this->orig_name);
1324 info->Varyings[info->NumVarying].Type = this->type;
1325 info->Varyings[info->NumVarying].Size = size;
1326 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
1327 info->NumVarying++;
1328 info->Buffers[buffer].NumVaryings++;
1329
1330 return true;
1331 }
1332
1333
1334 const tfeedback_candidate *
1335 tfeedback_decl::find_candidate(gl_shader_program *prog,
1336 hash_table *tfeedback_candidates)
1337 {
1338 const char *name = this->var_name;
1339 switch (this->lowered_builtin_array_variable) {
1340 case none:
1341 name = this->var_name;
1342 break;
1343 case clip_distance:
1344 name = "gl_ClipDistanceMESA";
1345 break;
1346 case cull_distance:
1347 name = "gl_CullDistanceMESA";
1348 break;
1349 case tess_level_outer:
1350 name = "gl_TessLevelOuterMESA";
1351 break;
1352 case tess_level_inner:
1353 name = "gl_TessLevelInnerMESA";
1354 break;
1355 }
1356 hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name);
1357
1358 this->matched_candidate = entry ?
1359 (const tfeedback_candidate *) entry->data : NULL;
1360
1361 if (!this->matched_candidate) {
1362 /* From GL_EXT_transform_feedback:
1363 * A program will fail to link if:
1364 *
1365 * * any variable name specified in the <varyings> array is not
1366 * declared as an output in the geometry shader (if present) or
1367 * the vertex shader (if no geometry shader is present);
1368 */
1369 linker_error(prog, "Transform feedback varying %s undeclared.",
1370 this->orig_name);
1371 }
1372
1373 return this->matched_candidate;
1374 }
1375
1376
1377 /**
1378 * Parse all the transform feedback declarations that were passed to
1379 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1380 *
1381 * If an error occurs, the error is reported through linker_error() and false
1382 * is returned.
1383 */
1384 static bool
1385 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1386 const void *mem_ctx, unsigned num_names,
1387 char **varying_names, tfeedback_decl *decls)
1388 {
1389 for (unsigned i = 0; i < num_names; ++i) {
1390 decls[i].init(ctx, mem_ctx, varying_names[i]);
1391
1392 if (!decls[i].is_varying())
1393 continue;
1394
1395 /* From GL_EXT_transform_feedback:
1396 * A program will fail to link if:
1397 *
1398 * * any two entries in the <varyings> array specify the same varying
1399 * variable;
1400 *
1401 * We interpret this to mean "any two entries in the <varyings> array
1402 * specify the same varying variable and array index", since transform
1403 * feedback of arrays would be useless otherwise.
1404 */
1405 for (unsigned j = 0; j < i; ++j) {
1406 if (decls[j].is_varying()) {
1407 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1408 linker_error(prog, "Transform feedback varying %s specified "
1409 "more than once.", varying_names[i]);
1410 return false;
1411 }
1412 }
1413 }
1414 }
1415 return true;
1416 }
1417
1418
1419 static int
1420 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1421 {
1422 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1423 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1424
1425 if (x->get_buffer() != y->get_buffer())
1426 return x->get_buffer() - y->get_buffer();
1427 return x->get_offset() - y->get_offset();
1428 }
1429
1430 /**
1431 * Store transform feedback location assignments into
1432 * prog->sh.LinkedTransformFeedback based on the data stored in
1433 * tfeedback_decls.
1434 *
1435 * If an error occurs, the error is reported through linker_error() and false
1436 * is returned.
1437 */
1438 static bool
1439 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1440 unsigned num_tfeedback_decls,
1441 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers,
1442 const void *mem_ctx)
1443 {
1444 if (!prog->last_vert_prog)
1445 return true;
1446
1447 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1448 * tracking the number of buffers doesn't overflow.
1449 */
1450 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1451
1452 bool separate_attribs_mode =
1453 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1454
1455 struct gl_program *xfb_prog = prog->last_vert_prog;
1456 xfb_prog->sh.LinkedTransformFeedback =
1457 rzalloc(xfb_prog, struct gl_transform_feedback_info);
1458
1459 /* The xfb_offset qualifier does not have to be used in increasing order
1460 * however some drivers expect to receive the list of transform feedback
1461 * declarations in order so sort it now for convenience.
1462 */
1463 if (has_xfb_qualifiers) {
1464 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1465 cmp_xfb_offset);
1466 }
1467
1468 xfb_prog->sh.LinkedTransformFeedback->Varyings =
1469 rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info,
1470 num_tfeedback_decls);
1471
1472 unsigned num_outputs = 0;
1473 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1474 if (tfeedback_decls[i].is_varying_written())
1475 num_outputs += tfeedback_decls[i].get_num_outputs();
1476 }
1477
1478 xfb_prog->sh.LinkedTransformFeedback->Outputs =
1479 rzalloc_array(xfb_prog, struct gl_transform_feedback_output,
1480 num_outputs);
1481
1482 unsigned num_buffers = 0;
1483 unsigned buffers = 0;
1484 BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS] = {};
1485
1486 if (!has_xfb_qualifiers && separate_attribs_mode) {
1487 /* GL_SEPARATE_ATTRIBS */
1488 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1489 if (!tfeedback_decls[i].store(ctx, prog,
1490 xfb_prog->sh.LinkedTransformFeedback,
1491 num_buffers, num_buffers, num_outputs,
1492 used_components, NULL,
1493 has_xfb_qualifiers, mem_ctx))
1494 return false;
1495
1496 buffers |= 1 << num_buffers;
1497 num_buffers++;
1498 }
1499 }
1500 else {
1501 /* GL_INVERLEAVED_ATTRIBS */
1502 int buffer_stream_id = -1;
1503 unsigned buffer =
1504 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1505 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1506
1507 /* Apply any xfb_stride global qualifiers */
1508 if (has_xfb_qualifiers) {
1509 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1510 if (prog->TransformFeedback.BufferStride[j]) {
1511 explicit_stride[j] = true;
1512 xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride =
1513 prog->TransformFeedback.BufferStride[j] / 4;
1514 }
1515 }
1516 }
1517
1518 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1519 if (has_xfb_qualifiers &&
1520 buffer != tfeedback_decls[i].get_buffer()) {
1521 /* we have moved to the next buffer so reset stream id */
1522 buffer_stream_id = -1;
1523 num_buffers++;
1524 }
1525
1526 if (tfeedback_decls[i].is_next_buffer_separator()) {
1527 if (!tfeedback_decls[i].store(ctx, prog,
1528 xfb_prog->sh.LinkedTransformFeedback,
1529 buffer, num_buffers, num_outputs,
1530 used_components, explicit_stride,
1531 has_xfb_qualifiers, mem_ctx))
1532 return false;
1533 num_buffers++;
1534 buffer_stream_id = -1;
1535 continue;
1536 }
1537
1538 if (has_xfb_qualifiers) {
1539 buffer = tfeedback_decls[i].get_buffer();
1540 } else {
1541 buffer = num_buffers;
1542 }
1543
1544 if (tfeedback_decls[i].is_varying()) {
1545 if (buffer_stream_id == -1) {
1546 /* First varying writing to this buffer: remember its stream */
1547 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1548
1549 /* Only mark a buffer as active when there is a varying
1550 * attached to it. This behaviour is based on a revised version
1551 * of section 13.2.2 of the GL 4.6 spec.
1552 */
1553 buffers |= 1 << buffer;
1554 } else if (buffer_stream_id !=
1555 (int) tfeedback_decls[i].get_stream_id()) {
1556 /* Varying writes to the same buffer from a different stream */
1557 linker_error(prog,
1558 "Transform feedback can't capture varyings belonging "
1559 "to different vertex streams in a single buffer. "
1560 "Varying %s writes to buffer from stream %u, other "
1561 "varyings in the same buffer write from stream %u.",
1562 tfeedback_decls[i].name(),
1563 tfeedback_decls[i].get_stream_id(),
1564 buffer_stream_id);
1565 return false;
1566 }
1567 }
1568
1569 if (!tfeedback_decls[i].store(ctx, prog,
1570 xfb_prog->sh.LinkedTransformFeedback,
1571 buffer, num_buffers, num_outputs,
1572 used_components, explicit_stride,
1573 has_xfb_qualifiers, mem_ctx))
1574 return false;
1575 }
1576 }
1577
1578 assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs);
1579
1580 xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers;
1581 return true;
1582 }
1583
1584 namespace {
1585
1586 /**
1587 * Data structure recording the relationship between outputs of one shader
1588 * stage (the "producer") and inputs of another (the "consumer").
1589 */
1590 class varying_matches
1591 {
1592 public:
1593 varying_matches(bool disable_varying_packing,
1594 bool disable_xfb_packing,
1595 bool xfb_enabled,
1596 bool enhanced_layouts_enabled,
1597 gl_shader_stage producer_stage,
1598 gl_shader_stage consumer_stage);
1599 ~varying_matches();
1600 void record(ir_variable *producer_var, ir_variable *consumer_var);
1601 unsigned assign_locations(struct gl_shader_program *prog,
1602 uint8_t components[],
1603 uint64_t reserved_slots);
1604 void store_locations() const;
1605
1606 private:
1607 bool is_varying_packing_safe(const glsl_type *type,
1608 const ir_variable *var) const;
1609
1610 /**
1611 * If true, this driver disables varying packing, so all varyings need to
1612 * be aligned on slot boundaries, and take up a number of slots equal to
1613 * their number of matrix columns times their array size.
1614 *
1615 * Packing may also be disabled because our current packing method is not
1616 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1617 * guaranteed to match across stages.
1618 */
1619 const bool disable_varying_packing;
1620
1621 /**
1622 * If true, this driver disables packing for varyings used by transform
1623 * feedback.
1624 */
1625 const bool disable_xfb_packing;
1626
1627 /**
1628 * If true, this driver has transform feedback enabled. The transform
1629 * feedback code usually requires at least some packing be done even
1630 * when varying packing is disabled, fortunately where transform feedback
1631 * requires packing it's safe to override the disabled setting. See
1632 * is_varying_packing_safe().
1633 */
1634 const bool xfb_enabled;
1635
1636 const bool enhanced_layouts_enabled;
1637
1638 /**
1639 * Enum representing the order in which varyings are packed within a
1640 * packing class.
1641 *
1642 * Currently we pack vec4's first, then vec2's, then scalar values, then
1643 * vec3's. This order ensures that the only vectors that are at risk of
1644 * having to be "double parked" (split between two adjacent varying slots)
1645 * are the vec3's.
1646 */
1647 enum packing_order_enum {
1648 PACKING_ORDER_VEC4,
1649 PACKING_ORDER_VEC2,
1650 PACKING_ORDER_SCALAR,
1651 PACKING_ORDER_VEC3,
1652 };
1653
1654 static unsigned compute_packing_class(const ir_variable *var);
1655 static packing_order_enum compute_packing_order(const ir_variable *var);
1656 static int match_comparator(const void *x_generic, const void *y_generic);
1657 static int xfb_comparator(const void *x_generic, const void *y_generic);
1658 static int not_xfb_comparator(const void *x_generic, const void *y_generic);
1659
1660 /**
1661 * Structure recording the relationship between a single producer output
1662 * and a single consumer input.
1663 */
1664 struct match {
1665 /**
1666 * Packing class for this varying, computed by compute_packing_class().
1667 */
1668 unsigned packing_class;
1669
1670 /**
1671 * Packing order for this varying, computed by compute_packing_order().
1672 */
1673 packing_order_enum packing_order;
1674 unsigned num_components;
1675
1676 /**
1677 * The output variable in the producer stage.
1678 */
1679 ir_variable *producer_var;
1680
1681 /**
1682 * The input variable in the consumer stage.
1683 */
1684 ir_variable *consumer_var;
1685
1686 /**
1687 * The location which has been assigned for this varying. This is
1688 * expressed in multiples of a float, with the first generic varying
1689 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1690 * value 0.
1691 */
1692 unsigned generic_location;
1693 } *matches;
1694
1695 /**
1696 * The number of elements in the \c matches array that are currently in
1697 * use.
1698 */
1699 unsigned num_matches;
1700
1701 /**
1702 * The number of elements that were set aside for the \c matches array when
1703 * it was allocated.
1704 */
1705 unsigned matches_capacity;
1706
1707 gl_shader_stage producer_stage;
1708 gl_shader_stage consumer_stage;
1709 };
1710
1711 } /* anonymous namespace */
1712
1713 varying_matches::varying_matches(bool disable_varying_packing,
1714 bool disable_xfb_packing,
1715 bool xfb_enabled,
1716 bool enhanced_layouts_enabled,
1717 gl_shader_stage producer_stage,
1718 gl_shader_stage consumer_stage)
1719 : disable_varying_packing(disable_varying_packing),
1720 disable_xfb_packing(disable_xfb_packing),
1721 xfb_enabled(xfb_enabled),
1722 enhanced_layouts_enabled(enhanced_layouts_enabled),
1723 producer_stage(producer_stage),
1724 consumer_stage(consumer_stage)
1725 {
1726 /* Note: this initial capacity is rather arbitrarily chosen to be large
1727 * enough for many cases without wasting an unreasonable amount of space.
1728 * varying_matches::record() will resize the array if there are more than
1729 * this number of varyings.
1730 */
1731 this->matches_capacity = 8;
1732 this->matches = (match *)
1733 malloc(sizeof(*this->matches) * this->matches_capacity);
1734 this->num_matches = 0;
1735 }
1736
1737
1738 varying_matches::~varying_matches()
1739 {
1740 free(this->matches);
1741 }
1742
1743
1744 /**
1745 * Packing is always safe on individual arrays, structures, and matrices. It
1746 * is also safe if the varying is only used for transform feedback.
1747 */
1748 bool
1749 varying_matches::is_varying_packing_safe(const glsl_type *type,
1750 const ir_variable *var) const
1751 {
1752 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1753 consumer_stage == MESA_SHADER_TESS_CTRL ||
1754 producer_stage == MESA_SHADER_TESS_CTRL)
1755 return false;
1756
1757 return xfb_enabled && (type->is_array() || type->is_struct() ||
1758 type->is_matrix() || var->data.is_xfb_only);
1759 }
1760
1761
1762 /**
1763 * Record the given producer/consumer variable pair in the list of variables
1764 * that should later be assigned locations.
1765 *
1766 * It is permissible for \c consumer_var to be NULL (this happens if a
1767 * variable is output by the producer and consumed by transform feedback, but
1768 * not consumed by the consumer).
1769 *
1770 * If \c producer_var has already been paired up with a consumer_var, or
1771 * producer_var is part of fixed pipeline functionality (and hence already has
1772 * a location assigned), this function has no effect.
1773 *
1774 * Note: as a side effect this function may change the interpolation type of
1775 * \c producer_var, but only when the change couldn't possibly affect
1776 * rendering.
1777 */
1778 void
1779 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1780 {
1781 assert(producer_var != NULL || consumer_var != NULL);
1782
1783 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1784 producer_var->data.explicit_location)) ||
1785 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1786 consumer_var->data.explicit_location))) {
1787 /* Either a location already exists for this variable (since it is part
1788 * of fixed functionality), or it has already been recorded as part of a
1789 * previous match.
1790 */
1791 return;
1792 }
1793
1794 bool needs_flat_qualifier = consumer_var == NULL &&
1795 (producer_var->type->contains_integer() ||
1796 producer_var->type->contains_double());
1797
1798 if (!disable_varying_packing &&
1799 (!disable_xfb_packing || producer_var == NULL || !producer_var->data.is_xfb) &&
1800 (needs_flat_qualifier ||
1801 (consumer_stage != MESA_SHADER_NONE && consumer_stage != MESA_SHADER_FRAGMENT))) {
1802 /* Since this varying is not being consumed by the fragment shader, its
1803 * interpolation type varying cannot possibly affect rendering.
1804 * Also, this variable is non-flat and is (or contains) an integer
1805 * or a double.
1806 * If the consumer stage is unknown, don't modify the interpolation
1807 * type as it could affect rendering later with separate shaders.
1808 *
1809 * lower_packed_varyings requires all integer varyings to flat,
1810 * regardless of where they appear. We can trivially satisfy that
1811 * requirement by changing the interpolation type to flat here.
1812 */
1813 if (producer_var) {
1814 producer_var->data.centroid = false;
1815 producer_var->data.sample = false;
1816 producer_var->data.interpolation = INTERP_MODE_FLAT;
1817 }
1818
1819 if (consumer_var) {
1820 consumer_var->data.centroid = false;
1821 consumer_var->data.sample = false;
1822 consumer_var->data.interpolation = INTERP_MODE_FLAT;
1823 }
1824 }
1825
1826 if (this->num_matches == this->matches_capacity) {
1827 this->matches_capacity *= 2;
1828 this->matches = (match *)
1829 realloc(this->matches,
1830 sizeof(*this->matches) * this->matches_capacity);
1831 }
1832
1833 /* We must use the consumer to compute the packing class because in GL4.4+
1834 * there is no guarantee interpolation qualifiers will match across stages.
1835 *
1836 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1837 *
1838 * "The type and presence of interpolation qualifiers of variables with
1839 * the same name declared in all linked shaders for the same cross-stage
1840 * interface must match, otherwise the link command will fail.
1841 *
1842 * When comparing an output from one stage to an input of a subsequent
1843 * stage, the input and output don't match if their interpolation
1844 * qualifiers (or lack thereof) are not the same."
1845 *
1846 * This text was also in at least revison 7 of the 4.40 spec but is no
1847 * longer in revision 9 and not in the 4.50 spec.
1848 */
1849 const ir_variable *const var = (consumer_var != NULL)
1850 ? consumer_var : producer_var;
1851 const gl_shader_stage stage = (consumer_var != NULL)
1852 ? consumer_stage : producer_stage;
1853 const glsl_type *type = get_varying_type(var, stage);
1854
1855 if (producer_var && consumer_var &&
1856 consumer_var->data.must_be_shader_input) {
1857 producer_var->data.must_be_shader_input = 1;
1858 }
1859
1860 this->matches[this->num_matches].packing_class
1861 = this->compute_packing_class(var);
1862 this->matches[this->num_matches].packing_order
1863 = this->compute_packing_order(var);
1864 if ((this->disable_varying_packing && !is_varying_packing_safe(type, var)) ||
1865 (this->disable_xfb_packing && var->data.is_xfb) ||
1866 var->data.must_be_shader_input) {
1867 unsigned slots = type->count_attribute_slots(false);
1868 this->matches[this->num_matches].num_components = slots * 4;
1869 } else {
1870 this->matches[this->num_matches].num_components
1871 = type->component_slots();
1872 }
1873
1874 this->matches[this->num_matches].producer_var = producer_var;
1875 this->matches[this->num_matches].consumer_var = consumer_var;
1876 this->num_matches++;
1877 if (producer_var)
1878 producer_var->data.is_unmatched_generic_inout = 0;
1879 if (consumer_var)
1880 consumer_var->data.is_unmatched_generic_inout = 0;
1881 }
1882
1883
1884 /**
1885 * Choose locations for all of the variable matches that were previously
1886 * passed to varying_matches::record().
1887 * \param components returns array[slot] of number of components used
1888 * per slot (1, 2, 3 or 4)
1889 * \param reserved_slots bitmask indicating which varying slots are already
1890 * allocated
1891 * \return number of slots (4-element vectors) allocated
1892 */
1893 unsigned
1894 varying_matches::assign_locations(struct gl_shader_program *prog,
1895 uint8_t components[],
1896 uint64_t reserved_slots)
1897 {
1898 /* If packing has been disabled then we cannot safely sort the varyings by
1899 * class as it may mean we are using a version of OpenGL where
1900 * interpolation qualifiers are not guaranteed to be matching across
1901 * shaders, sorting in this case could result in mismatching shader
1902 * interfaces.
1903 * When packing is disabled the sort orders varyings used by transform
1904 * feedback first, but also depends on *undefined behaviour* of qsort to
1905 * reverse the order of the varyings. See: xfb_comparator().
1906 *
1907 * If packing is only disabled for xfb varyings (mutually exclusive with
1908 * disable_varying_packing), we then group varyings depending on if they
1909 * are captured for transform feedback. The same *undefined behaviour* is
1910 * taken advantage of.
1911 */
1912 if (this->disable_varying_packing) {
1913 /* Only sort varyings that are only used by transform feedback. */
1914 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1915 &varying_matches::xfb_comparator);
1916 } else if (this->disable_xfb_packing) {
1917 /* Only sort varyings that are NOT used by transform feedback. */
1918 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1919 &varying_matches::not_xfb_comparator);
1920 } else {
1921 /* Sort varying matches into an order that makes them easy to pack. */
1922 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1923 &varying_matches::match_comparator);
1924 }
1925
1926 unsigned generic_location = 0;
1927 unsigned generic_patch_location = MAX_VARYING*4;
1928 bool previous_var_xfb = false;
1929 bool previous_var_xfb_only = false;
1930 unsigned previous_packing_class = ~0u;
1931
1932 /* For tranform feedback separate mode, we know the number of attributes
1933 * is <= the number of buffers. So packing isn't critical. In fact,
1934 * packing vec3 attributes can cause trouble because splitting a vec3
1935 * effectively creates an additional transform feedback output. The
1936 * extra TFB output may exceed device driver limits.
1937 */
1938 const bool dont_pack_vec3 =
1939 (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1940 prog->TransformFeedback.NumVarying > 0);
1941
1942 for (unsigned i = 0; i < this->num_matches; i++) {
1943 unsigned *location = &generic_location;
1944 const ir_variable *var;
1945 const glsl_type *type;
1946 bool is_vertex_input = false;
1947
1948 if (matches[i].consumer_var) {
1949 var = matches[i].consumer_var;
1950 type = get_varying_type(var, consumer_stage);
1951 if (consumer_stage == MESA_SHADER_VERTEX)
1952 is_vertex_input = true;
1953 } else {
1954 var = matches[i].producer_var;
1955 type = get_varying_type(var, producer_stage);
1956 }
1957
1958 if (var->data.patch)
1959 location = &generic_patch_location;
1960
1961 /* Advance to the next slot if this varying has a different packing
1962 * class than the previous one, and we're not already on a slot
1963 * boundary.
1964 *
1965 * Also advance if varying packing is disabled for transform feedback,
1966 * and previous or current varying is used for transform feedback.
1967 *
1968 * Also advance to the next slot if packing is disabled. This makes sure
1969 * we don't assign varyings the same locations which is possible
1970 * because we still pack individual arrays, records and matrices even
1971 * when packing is disabled. Note we don't advance to the next slot if
1972 * we can pack varyings together that are only used for transform
1973 * feedback.
1974 */
1975 if (var->data.must_be_shader_input ||
1976 (this->disable_xfb_packing &&
1977 (previous_var_xfb || var->data.is_xfb)) ||
1978 (this->disable_varying_packing &&
1979 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1980 (previous_packing_class != this->matches[i].packing_class) ||
1981 (this->matches[i].packing_order == PACKING_ORDER_VEC3 &&
1982 dont_pack_vec3)) {
1983 *location = ALIGN(*location, 4);
1984 }
1985
1986 previous_var_xfb = var->data.is_xfb;
1987 previous_var_xfb_only = var->data.is_xfb_only;
1988 previous_packing_class = this->matches[i].packing_class;
1989
1990 /* The number of components taken up by this variable. For vertex shader
1991 * inputs, we use the number of slots * 4, as they have different
1992 * counting rules.
1993 */
1994 unsigned num_components = is_vertex_input ?
1995 type->count_attribute_slots(is_vertex_input) * 4 :
1996 this->matches[i].num_components;
1997
1998 /* The last slot for this variable, inclusive. */
1999 unsigned slot_end = *location + num_components - 1;
2000
2001 /* FIXME: We could be smarter in the below code and loop back over
2002 * trying to fill any locations that we skipped because we couldn't pack
2003 * the varying between an explicit location. For now just let the user
2004 * hit the linking error if we run out of room and suggest they use
2005 * explicit locations.
2006 */
2007 while (slot_end < MAX_VARYING * 4u) {
2008 const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
2009 const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
2010
2011 assert(slots > 0);
2012
2013 if ((reserved_slots & slot_mask) == 0) {
2014 break;
2015 }
2016
2017 *location = ALIGN(*location + 1, 4);
2018 slot_end = *location + num_components - 1;
2019 }
2020
2021 if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
2022 linker_error(prog, "insufficient contiguous locations available for "
2023 "%s it is possible an array or struct could not be "
2024 "packed between varyings with explicit locations. Try "
2025 "using an explicit location for arrays and structs.",
2026 var->name);
2027 }
2028
2029 if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
2030 for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
2031 components[j] = 4;
2032 components[slot_end / 4u] = (slot_end & 3) + 1;
2033 }
2034
2035 this->matches[i].generic_location = *location;
2036
2037 *location = slot_end + 1;
2038 }
2039
2040 return (generic_location + 3) / 4;
2041 }
2042
2043
2044 /**
2045 * Update the producer and consumer shaders to reflect the locations
2046 * assignments that were made by varying_matches::assign_locations().
2047 */
2048 void
2049 varying_matches::store_locations() const
2050 {
2051 /* Check is location needs to be packed with lower_packed_varyings() or if
2052 * we can just use ARB_enhanced_layouts packing.
2053 */
2054 bool pack_loc[MAX_VARYINGS_INCL_PATCH] = { 0 };
2055 const glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} };
2056
2057 for (unsigned i = 0; i < this->num_matches; i++) {
2058 ir_variable *producer_var = this->matches[i].producer_var;
2059 ir_variable *consumer_var = this->matches[i].consumer_var;
2060 unsigned generic_location = this->matches[i].generic_location;
2061 unsigned slot = generic_location / 4;
2062 unsigned offset = generic_location % 4;
2063
2064 if (producer_var) {
2065 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
2066 producer_var->data.location_frac = offset;
2067 }
2068
2069 if (consumer_var) {
2070 assert(consumer_var->data.location == -1);
2071 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
2072 consumer_var->data.location_frac = offset;
2073 }
2074
2075 /* Find locations suitable for native packing via
2076 * ARB_enhanced_layouts.
2077 */
2078 if (producer_var && consumer_var) {
2079 if (enhanced_layouts_enabled) {
2080 const glsl_type *type =
2081 get_varying_type(producer_var, producer_stage);
2082 if (type->is_array() || type->is_matrix() || type->is_struct() ||
2083 type->is_double()) {
2084 unsigned comp_slots = type->component_slots() + offset;
2085 unsigned slots = comp_slots / 4;
2086 if (comp_slots % 4)
2087 slots += 1;
2088
2089 for (unsigned j = 0; j < slots; j++) {
2090 pack_loc[slot + j] = true;
2091 }
2092 } else if (offset + type->vector_elements > 4) {
2093 pack_loc[slot] = true;
2094 pack_loc[slot + 1] = true;
2095 } else {
2096 loc_type[slot][offset] = type;
2097 }
2098 }
2099 }
2100 }
2101
2102 /* Attempt to use ARB_enhanced_layouts for more efficient packing if
2103 * suitable.
2104 */
2105 if (enhanced_layouts_enabled) {
2106 for (unsigned i = 0; i < this->num_matches; i++) {
2107 ir_variable *producer_var = this->matches[i].producer_var;
2108 ir_variable *consumer_var = this->matches[i].consumer_var;
2109 unsigned generic_location = this->matches[i].generic_location;
2110 unsigned slot = generic_location / 4;
2111
2112 if (pack_loc[slot] || !producer_var || !consumer_var)
2113 continue;
2114
2115 const glsl_type *type =
2116 get_varying_type(producer_var, producer_stage);
2117 bool type_match = true;
2118 for (unsigned j = 0; j < 4; j++) {
2119 if (loc_type[slot][j]) {
2120 if (type->base_type != loc_type[slot][j]->base_type)
2121 type_match = false;
2122 }
2123 }
2124
2125 if (type_match) {
2126 producer_var->data.explicit_location = 1;
2127 consumer_var->data.explicit_location = 1;
2128 producer_var->data.explicit_component = 1;
2129 consumer_var->data.explicit_component = 1;
2130 }
2131 }
2132 }
2133 }
2134
2135
2136 /**
2137 * Compute the "packing class" of the given varying. This is an unsigned
2138 * integer with the property that two variables in the same packing class can
2139 * be safely backed into the same vec4.
2140 */
2141 unsigned
2142 varying_matches::compute_packing_class(const ir_variable *var)
2143 {
2144 /* Without help from the back-end, there is no way to pack together
2145 * variables with different interpolation types, because
2146 * lower_packed_varyings must choose exactly one interpolation type for
2147 * each packed varying it creates.
2148 *
2149 * However, we can safely pack together floats, ints, and uints, because:
2150 *
2151 * - varyings of base type "int" and "uint" must use the "flat"
2152 * interpolation type, which can only occur in GLSL 1.30 and above.
2153 *
2154 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
2155 * can store flat floats as ints without losing any information (using
2156 * the ir_unop_bitcast_* opcodes).
2157 *
2158 * Therefore, the packing class depends only on the interpolation type.
2159 */
2160 const unsigned interp = var->is_interpolation_flat()
2161 ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation;
2162
2163 assert(interp < (1 << 3));
2164
2165 const unsigned packing_class = (interp << 0) |
2166 (var->data.centroid << 3) |
2167 (var->data.sample << 4) |
2168 (var->data.patch << 5) |
2169 (var->data.must_be_shader_input << 6);
2170
2171 return packing_class;
2172 }
2173
2174
2175 /**
2176 * Compute the "packing order" of the given varying. This is a sort key we
2177 * use to determine when to attempt to pack the given varying relative to
2178 * other varyings in the same packing class.
2179 */
2180 varying_matches::packing_order_enum
2181 varying_matches::compute_packing_order(const ir_variable *var)
2182 {
2183 const glsl_type *element_type = var->type;
2184
2185 while (element_type->is_array()) {
2186 element_type = element_type->fields.array;
2187 }
2188
2189 switch (element_type->component_slots() % 4) {
2190 case 1: return PACKING_ORDER_SCALAR;
2191 case 2: return PACKING_ORDER_VEC2;
2192 case 3: return PACKING_ORDER_VEC3;
2193 case 0: return PACKING_ORDER_VEC4;
2194 default:
2195 assert(!"Unexpected value of vector_elements");
2196 return PACKING_ORDER_VEC4;
2197 }
2198 }
2199
2200
2201 /**
2202 * Comparison function passed to qsort() to sort varyings by packing_class and
2203 * then by packing_order.
2204 */
2205 int
2206 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
2207 {
2208 const match *x = (const match *) x_generic;
2209 const match *y = (const match *) y_generic;
2210
2211 if (x->packing_class != y->packing_class)
2212 return x->packing_class - y->packing_class;
2213 return x->packing_order - y->packing_order;
2214 }
2215
2216
2217 /**
2218 * Comparison function passed to qsort() to sort varyings used only by
2219 * transform feedback when packing of other varyings is disabled.
2220 */
2221 int
2222 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
2223 {
2224 const match *x = (const match *) x_generic;
2225
2226 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
2227 return match_comparator(x_generic, y_generic);
2228
2229 /* FIXME: When the comparator returns 0 it means the elements being
2230 * compared are equivalent. However the qsort documentation says:
2231 *
2232 * "The order of equivalent elements is undefined."
2233 *
2234 * In practice the sort ends up reversing the order of the varyings which
2235 * means locations are also assigned in this reversed order and happens to
2236 * be what we want. This is also whats happening in
2237 * varying_matches::match_comparator().
2238 */
2239 return 0;
2240 }
2241
2242
2243 /**
2244 * Comparison function passed to qsort() to sort varyings NOT used by
2245 * transform feedback when packing of xfb varyings is disabled.
2246 */
2247 int
2248 varying_matches::not_xfb_comparator(const void *x_generic, const void *y_generic)
2249 {
2250 const match *x = (const match *) x_generic;
2251
2252 if (x->producer_var != NULL && !x->producer_var->data.is_xfb)
2253 return match_comparator(x_generic, y_generic);
2254
2255 /* FIXME: When the comparator returns 0 it means the elements being
2256 * compared are equivalent. However the qsort documentation says:
2257 *
2258 * "The order of equivalent elements is undefined."
2259 *
2260 * In practice the sort ends up reversing the order of the varyings which
2261 * means locations are also assigned in this reversed order and happens to
2262 * be what we want. This is also whats happening in
2263 * varying_matches::match_comparator().
2264 */
2265 return 0;
2266 }
2267
2268
2269 /**
2270 * Is the given variable a varying variable to be counted against the
2271 * limit in ctx->Const.MaxVarying?
2272 * This includes variables such as texcoords, colors and generic
2273 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
2274 */
2275 static bool
2276 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
2277 {
2278 /* Only fragment shaders will take a varying variable as an input */
2279 if (stage == MESA_SHADER_FRAGMENT &&
2280 var->data.mode == ir_var_shader_in) {
2281 switch (var->data.location) {
2282 case VARYING_SLOT_POS:
2283 case VARYING_SLOT_FACE:
2284 case VARYING_SLOT_PNTC:
2285 return false;
2286 default:
2287 return true;
2288 }
2289 }
2290 return false;
2291 }
2292
2293
2294 /**
2295 * Visitor class that generates tfeedback_candidate structs describing all
2296 * possible targets of transform feedback.
2297 *
2298 * tfeedback_candidate structs are stored in the hash table
2299 * tfeedback_candidates, which is passed to the constructor. This hash table
2300 * maps varying names to instances of the tfeedback_candidate struct.
2301 */
2302 class tfeedback_candidate_generator : public program_resource_visitor
2303 {
2304 public:
2305 tfeedback_candidate_generator(void *mem_ctx,
2306 hash_table *tfeedback_candidates,
2307 gl_shader_stage stage)
2308 : mem_ctx(mem_ctx),
2309 tfeedback_candidates(tfeedback_candidates),
2310 stage(stage),
2311 toplevel_var(NULL),
2312 varying_floats(0)
2313 {
2314 }
2315
2316 void process(ir_variable *var)
2317 {
2318 /* All named varying interface blocks should be flattened by now */
2319 assert(!var->is_interface_instance());
2320 assert(var->data.mode == ir_var_shader_out);
2321
2322 this->toplevel_var = var;
2323 this->varying_floats = 0;
2324 const glsl_type *t =
2325 var->data.from_named_ifc_block ? var->get_interface_type() : var->type;
2326 if (!var->data.patch && stage == MESA_SHADER_TESS_CTRL) {
2327 assert(t->is_array());
2328 t = t->fields.array;
2329 }
2330 program_resource_visitor::process(var, t, false);
2331 }
2332
2333 private:
2334 virtual void visit_field(const glsl_type *type, const char *name,
2335 bool /* row_major */,
2336 const glsl_type * /* record_type */,
2337 const enum glsl_interface_packing,
2338 bool /* last_field */)
2339 {
2340 assert(!type->without_array()->is_struct());
2341 assert(!type->without_array()->is_interface());
2342
2343 tfeedback_candidate *candidate
2344 = rzalloc(this->mem_ctx, tfeedback_candidate);
2345 candidate->toplevel_var = this->toplevel_var;
2346 candidate->type = type;
2347 candidate->offset = this->varying_floats;
2348 _mesa_hash_table_insert(this->tfeedback_candidates,
2349 ralloc_strdup(this->mem_ctx, name),
2350 candidate);
2351 this->varying_floats += type->component_slots();
2352 }
2353
2354 /**
2355 * Memory context used to allocate hash table keys and values.
2356 */
2357 void * const mem_ctx;
2358
2359 /**
2360 * Hash table in which tfeedback_candidate objects should be stored.
2361 */
2362 hash_table * const tfeedback_candidates;
2363
2364 gl_shader_stage stage;
2365
2366 /**
2367 * Pointer to the toplevel variable that is being traversed.
2368 */
2369 ir_variable *toplevel_var;
2370
2371 /**
2372 * Total number of varying floats that have been visited so far. This is
2373 * used to determine the offset to each varying within the toplevel
2374 * variable.
2375 */
2376 unsigned varying_floats;
2377 };
2378
2379
2380 namespace linker {
2381
2382 void
2383 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
2384 hash_table *consumer_inputs,
2385 hash_table *consumer_interface_inputs,
2386 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2387 {
2388 memset(consumer_inputs_with_locations,
2389 0,
2390 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
2391
2392 foreach_in_list(ir_instruction, node, ir) {
2393 ir_variable *const input_var = node->as_variable();
2394
2395 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
2396 /* All interface blocks should have been lowered by this point */
2397 assert(!input_var->type->is_interface());
2398
2399 if (input_var->data.explicit_location) {
2400 /* assign_varying_locations only cares about finding the
2401 * ir_variable at the start of a contiguous location block.
2402 *
2403 * - For !producer, consumer_inputs_with_locations isn't used.
2404 *
2405 * - For !consumer, consumer_inputs_with_locations is empty.
2406 *
2407 * For consumer && producer, if you were trying to set some
2408 * ir_variable to the middle of a location block on the other side
2409 * of producer/consumer, cross_validate_outputs_to_inputs() should
2410 * be link-erroring due to either type mismatch or location
2411 * overlaps. If the variables do match up, then they've got a
2412 * matching data.location and you only looked at
2413 * consumer_inputs_with_locations[var->data.location], not any
2414 * following entries for the array/structure.
2415 */
2416 consumer_inputs_with_locations[input_var->data.location] =
2417 input_var;
2418 } else if (input_var->get_interface_type() != NULL) {
2419 char *const iface_field_name =
2420 ralloc_asprintf(mem_ctx, "%s.%s",
2421 input_var->get_interface_type()->without_array()->name,
2422 input_var->name);
2423 _mesa_hash_table_insert(consumer_interface_inputs,
2424 iface_field_name, input_var);
2425 } else {
2426 _mesa_hash_table_insert(consumer_inputs,
2427 ralloc_strdup(mem_ctx, input_var->name),
2428 input_var);
2429 }
2430 }
2431 }
2432 }
2433
2434 /**
2435 * Find a variable from the consumer that "matches" the specified variable
2436 *
2437 * This function only finds inputs with names that match. There is no
2438 * validation (here) that the types, etc. are compatible.
2439 */
2440 ir_variable *
2441 get_matching_input(void *mem_ctx,
2442 const ir_variable *output_var,
2443 hash_table *consumer_inputs,
2444 hash_table *consumer_interface_inputs,
2445 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2446 {
2447 ir_variable *input_var;
2448
2449 if (output_var->data.explicit_location) {
2450 input_var = consumer_inputs_with_locations[output_var->data.location];
2451 } else if (output_var->get_interface_type() != NULL) {
2452 char *const iface_field_name =
2453 ralloc_asprintf(mem_ctx, "%s.%s",
2454 output_var->get_interface_type()->without_array()->name,
2455 output_var->name);
2456 hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
2457 input_var = entry ? (ir_variable *) entry->data : NULL;
2458 } else {
2459 hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name);
2460 input_var = entry ? (ir_variable *) entry->data : NULL;
2461 }
2462
2463 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2464 ? NULL : input_var;
2465 }
2466
2467 }
2468
2469 static int
2470 io_variable_cmp(const void *_a, const void *_b)
2471 {
2472 const ir_variable *const a = *(const ir_variable **) _a;
2473 const ir_variable *const b = *(const ir_variable **) _b;
2474
2475 if (a->data.explicit_location && b->data.explicit_location)
2476 return b->data.location - a->data.location;
2477
2478 if (a->data.explicit_location && !b->data.explicit_location)
2479 return 1;
2480
2481 if (!a->data.explicit_location && b->data.explicit_location)
2482 return -1;
2483
2484 return -strcmp(a->name, b->name);
2485 }
2486
2487 /**
2488 * Sort the shader IO variables into canonical order
2489 */
2490 static void
2491 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
2492 {
2493 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
2494 unsigned num_variables = 0;
2495
2496 foreach_in_list(ir_instruction, node, ir) {
2497 ir_variable *const var = node->as_variable();
2498
2499 if (var == NULL || var->data.mode != io_mode)
2500 continue;
2501
2502 /* If we have already encountered more I/O variables that could
2503 * successfully link, bail.
2504 */
2505 if (num_variables == ARRAY_SIZE(var_table))
2506 return;
2507
2508 var_table[num_variables++] = var;
2509 }
2510
2511 if (num_variables == 0)
2512 return;
2513
2514 /* Sort the list in reverse order (io_variable_cmp handles this). Later
2515 * we're going to push the variables on to the IR list as a stack, so we
2516 * want the last variable (in canonical order) to be first in the list.
2517 */
2518 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
2519
2520 /* Remove the variable from it's current location in the IR, and put it at
2521 * the front.
2522 */
2523 for (unsigned i = 0; i < num_variables; i++) {
2524 var_table[i]->remove();
2525 ir->push_head(var_table[i]);
2526 }
2527 }
2528
2529 /**
2530 * Generate a bitfield map of the explicit locations for shader varyings.
2531 *
2532 * Note: For Tessellation shaders we are sitting right on the limits of the
2533 * 64 bit map. Per-vertex and per-patch both have separate location domains
2534 * with a max of MAX_VARYING.
2535 */
2536 static uint64_t
2537 reserved_varying_slot(struct gl_linked_shader *stage,
2538 ir_variable_mode io_mode)
2539 {
2540 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
2541 /* Avoid an overflow of the returned value */
2542 assert(MAX_VARYINGS_INCL_PATCH <= 64);
2543
2544 uint64_t slots = 0;
2545 int var_slot;
2546
2547 if (!stage)
2548 return slots;
2549
2550 foreach_in_list(ir_instruction, node, stage->ir) {
2551 ir_variable *const var = node->as_variable();
2552
2553 if (var == NULL || var->data.mode != io_mode ||
2554 !var->data.explicit_location ||
2555 var->data.location < VARYING_SLOT_VAR0)
2556 continue;
2557
2558 var_slot = var->data.location - VARYING_SLOT_VAR0;
2559
2560 unsigned num_elements = get_varying_type(var, stage->Stage)
2561 ->count_attribute_slots(io_mode == ir_var_shader_in &&
2562 stage->Stage == MESA_SHADER_VERTEX);
2563 for (unsigned i = 0; i < num_elements; i++) {
2564 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
2565 slots |= UINT64_C(1) << var_slot;
2566 var_slot += 1;
2567 }
2568 }
2569
2570 return slots;
2571 }
2572
2573
2574 /**
2575 * Assign locations for all variables that are produced in one pipeline stage
2576 * (the "producer") and consumed in the next stage (the "consumer").
2577 *
2578 * Variables produced by the producer may also be consumed by transform
2579 * feedback.
2580 *
2581 * \param num_tfeedback_decls is the number of declarations indicating
2582 * variables that may be consumed by transform feedback.
2583 *
2584 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2585 * representing the result of parsing the strings passed to
2586 * glTransformFeedbackVaryings(). assign_location() will be called for
2587 * each of these objects that matches one of the outputs of the
2588 * producer.
2589 *
2590 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2591 * be NULL. In this case, varying locations are assigned solely based on the
2592 * requirements of transform feedback.
2593 */
2594 static bool
2595 assign_varying_locations(struct gl_context *ctx,
2596 void *mem_ctx,
2597 struct gl_shader_program *prog,
2598 gl_linked_shader *producer,
2599 gl_linked_shader *consumer,
2600 unsigned num_tfeedback_decls,
2601 tfeedback_decl *tfeedback_decls,
2602 const uint64_t reserved_slots)
2603 {
2604 /* Tessellation shaders treat inputs and outputs as shared memory and can
2605 * access inputs and outputs of other invocations.
2606 * Therefore, they can't be lowered to temps easily (and definitely not
2607 * efficiently).
2608 */
2609 bool unpackable_tess =
2610 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
2611 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
2612 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
2613
2614 /* Transform feedback code assumes varying arrays are packed, so if the
2615 * driver has disabled varying packing, make sure to at least enable
2616 * packing required by transform feedback. See below for exception.
2617 */
2618 bool xfb_enabled =
2619 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2620
2621 /* Some drivers actually requires packing to be explicitly disabled
2622 * for varyings used by transform feedback.
2623 */
2624 bool disable_xfb_packing =
2625 ctx->Const.DisableTransformFeedbackPacking;
2626
2627 /* Disable packing on outward facing interfaces for SSO because in ES we
2628 * need to retain the unpacked varying information for draw time
2629 * validation.
2630 *
2631 * Packing is still enabled on individual arrays, structs, and matrices as
2632 * these are required by the transform feedback code and it is still safe
2633 * to do so. We also enable packing when a varying is only used for
2634 * transform feedback and its not a SSO.
2635 */
2636 bool disable_varying_packing =
2637 ctx->Const.DisableVaryingPacking || unpackable_tess;
2638 if (prog->SeparateShader && (producer == NULL || consumer == NULL))
2639 disable_varying_packing = true;
2640
2641 varying_matches matches(disable_varying_packing,
2642 disable_xfb_packing,
2643 xfb_enabled,
2644 ctx->Extensions.ARB_enhanced_layouts,
2645 producer ? producer->Stage : MESA_SHADER_NONE,
2646 consumer ? consumer->Stage : MESA_SHADER_NONE);
2647 void *hash_table_ctx = ralloc_context(NULL);
2648 hash_table *tfeedback_candidates =
2649 _mesa_hash_table_create(hash_table_ctx, _mesa_hash_string,
2650 _mesa_key_string_equal);
2651 hash_table *consumer_inputs =
2652 _mesa_hash_table_create(hash_table_ctx, _mesa_hash_string,
2653 _mesa_key_string_equal);
2654 hash_table *consumer_interface_inputs =
2655 _mesa_hash_table_create(hash_table_ctx, _mesa_hash_string,
2656 _mesa_key_string_equal);
2657 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2658 NULL,
2659 };
2660
2661 unsigned consumer_vertices = 0;
2662 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2663 consumer_vertices = prog->Geom.VerticesIn;
2664
2665 /* Operate in a total of four passes.
2666 *
2667 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2668 * that inputs / outputs of separable shaders will be assigned
2669 * predictable locations regardless of the order in which declarations
2670 * appeared in the shader source.
2671 *
2672 * 2. Assign locations for any matching inputs and outputs.
2673 *
2674 * 3. Mark output variables in the producer that do not have locations as
2675 * not being outputs. This lets the optimizer eliminate them.
2676 *
2677 * 4. Mark input variables in the consumer that do not have locations as
2678 * not being inputs. This lets the optimizer eliminate them.
2679 */
2680 if (consumer)
2681 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2682
2683 if (producer)
2684 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2685
2686 if (consumer)
2687 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2688 consumer_inputs,
2689 consumer_interface_inputs,
2690 consumer_inputs_with_locations);
2691
2692 if (producer) {
2693 foreach_in_list(ir_instruction, node, producer->ir) {
2694 ir_variable *const output_var = node->as_variable();
2695
2696 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2697 continue;
2698
2699 /* Only geometry shaders can use non-zero streams */
2700 assert(output_var->data.stream == 0 ||
2701 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2702 producer->Stage == MESA_SHADER_GEOMETRY));
2703
2704 if (num_tfeedback_decls > 0) {
2705 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates, producer->Stage);
2706 /* From OpenGL 4.6 (Core Profile) spec, section 11.1.2.1
2707 * ("Vertex Shader Variables / Output Variables")
2708 *
2709 * "Each program object can specify a set of output variables from
2710 * one shader to be recorded in transform feedback mode (see
2711 * section 13.3). The variables that can be recorded are those
2712 * emitted by the first active shader, in order, from the
2713 * following list:
2714 *
2715 * * geometry shader
2716 * * tessellation evaluation shader
2717 * * tessellation control shader
2718 * * vertex shader"
2719 *
2720 * But on OpenGL ES 3.2, section 11.1.2.1 ("Vertex Shader
2721 * Variables / Output Variables") tessellation control shader is
2722 * not included in the stages list.
2723 */
2724 if (!prog->IsES || producer->Stage != MESA_SHADER_TESS_CTRL) {
2725 g.process(output_var);
2726 }
2727 }
2728
2729 ir_variable *const input_var =
2730 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2731 consumer_interface_inputs,
2732 consumer_inputs_with_locations);
2733
2734 /* If a matching input variable was found, add this output (and the
2735 * input) to the set. If this is a separable program and there is no
2736 * consumer stage, add the output.
2737 *
2738 * Always add TCS outputs. They are shared by all invocations
2739 * within a patch and can be used as shared memory.
2740 */
2741 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2742 producer->Stage == MESA_SHADER_TESS_CTRL) {
2743 matches.record(output_var, input_var);
2744 }
2745
2746 /* Only stream 0 outputs can be consumed in the next stage */
2747 if (input_var && output_var->data.stream != 0) {
2748 linker_error(prog, "output %s is assigned to stream=%d but "
2749 "is linked to an input, which requires stream=0",
2750 output_var->name, output_var->data.stream);
2751 ralloc_free(hash_table_ctx);
2752 return false;
2753 }
2754 }
2755 } else {
2756 /* If there's no producer stage, then this must be a separable program.
2757 * For example, we may have a program that has just a fragment shader.
2758 * Later this program will be used with some arbitrary vertex (or
2759 * geometry) shader program. This means that locations must be assigned
2760 * for all the inputs.
2761 */
2762 foreach_in_list(ir_instruction, node, consumer->ir) {
2763 ir_variable *const input_var = node->as_variable();
2764 if (input_var && input_var->data.mode == ir_var_shader_in) {
2765 matches.record(NULL, input_var);
2766 }
2767 }
2768 }
2769
2770 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2771 if (!tfeedback_decls[i].is_varying())
2772 continue;
2773
2774 const tfeedback_candidate *matched_candidate
2775 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2776
2777 if (matched_candidate == NULL) {
2778 ralloc_free(hash_table_ctx);
2779 return false;
2780 }
2781
2782 /* Mark xfb varyings as always active */
2783 matched_candidate->toplevel_var->data.always_active_io = 1;
2784
2785 /* Mark any corresponding inputs as always active also. We must do this
2786 * because we have a NIR pass that lowers vectors to scalars and another
2787 * that removes unused varyings.
2788 * We don't split varyings marked as always active because there is no
2789 * point in doing so. This means we need to mark both sides of the
2790 * interface as always active otherwise we will have a mismatch and
2791 * start removing things we shouldn't.
2792 */
2793 ir_variable *const input_var =
2794 linker::get_matching_input(mem_ctx, matched_candidate->toplevel_var,
2795 consumer_inputs,
2796 consumer_interface_inputs,
2797 consumer_inputs_with_locations);
2798 if (input_var) {
2799 input_var->data.is_xfb = 1;
2800 input_var->data.always_active_io = 1;
2801 }
2802
2803 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2804 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2805 matches.record(matched_candidate->toplevel_var, NULL);
2806 }
2807 }
2808
2809 uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
2810 const unsigned slots_used = matches.assign_locations(
2811 prog, components, reserved_slots);
2812 matches.store_locations();
2813
2814 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2815 if (tfeedback_decls[i].is_varying()) {
2816 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2817 ralloc_free(hash_table_ctx);
2818 return false;
2819 }
2820 }
2821 }
2822 ralloc_free(hash_table_ctx);
2823
2824 if (consumer && producer) {
2825 foreach_in_list(ir_instruction, node, consumer->ir) {
2826 ir_variable *const var = node->as_variable();
2827
2828 if (var && var->data.mode == ir_var_shader_in &&
2829 var->data.is_unmatched_generic_inout) {
2830 if (!prog->IsES && prog->data->Version <= 120) {
2831 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2832 *
2833 * Only those varying variables used (i.e. read) in
2834 * the fragment shader executable must be written to
2835 * by the vertex shader executable; declaring
2836 * superfluous varying variables in a vertex shader is
2837 * permissible.
2838 *
2839 * We interpret this text as meaning that the VS must
2840 * write the variable for the FS to read it. See
2841 * "glsl1-varying read but not written" in piglit.
2842 */
2843 linker_error(prog, "%s shader varying %s not written "
2844 "by %s shader\n.",
2845 _mesa_shader_stage_to_string(consumer->Stage),
2846 var->name,
2847 _mesa_shader_stage_to_string(producer->Stage));
2848 } else {
2849 linker_warning(prog, "%s shader varying %s not written "
2850 "by %s shader\n.",
2851 _mesa_shader_stage_to_string(consumer->Stage),
2852 var->name,
2853 _mesa_shader_stage_to_string(producer->Stage));
2854 }
2855 }
2856 }
2857
2858 /* Now that validation is done its safe to remove unused varyings. As
2859 * we have both a producer and consumer its safe to remove unused
2860 * varyings even if the program is a SSO because the stages are being
2861 * linked together i.e. we have a multi-stage SSO.
2862 */
2863 remove_unused_shader_inputs_and_outputs(false, producer,
2864 ir_var_shader_out);
2865 remove_unused_shader_inputs_and_outputs(false, consumer,
2866 ir_var_shader_in);
2867 }
2868
2869 if (producer) {
2870 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out,
2871 0, producer, disable_varying_packing,
2872 disable_xfb_packing, xfb_enabled);
2873 }
2874
2875 if (consumer) {
2876 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in,
2877 consumer_vertices, consumer, disable_varying_packing,
2878 disable_xfb_packing, xfb_enabled);
2879 }
2880
2881 return true;
2882 }
2883
2884 static bool
2885 check_against_output_limit(struct gl_context *ctx,
2886 struct gl_shader_program *prog,
2887 gl_linked_shader *producer,
2888 unsigned num_explicit_locations)
2889 {
2890 unsigned output_vectors = num_explicit_locations;
2891
2892 foreach_in_list(ir_instruction, node, producer->ir) {
2893 ir_variable *const var = node->as_variable();
2894
2895 if (var && !var->data.explicit_location &&
2896 var->data.mode == ir_var_shader_out &&
2897 var_counts_against_varying_limit(producer->Stage, var)) {
2898 /* outputs for fragment shader can't be doubles */
2899 output_vectors += var->type->count_attribute_slots(false);
2900 }
2901 }
2902
2903 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2904 unsigned max_output_components =
2905 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2906
2907 const unsigned output_components = output_vectors * 4;
2908 if (output_components > max_output_components) {
2909 if (ctx->API == API_OPENGLES2 || prog->IsES)
2910 linker_error(prog, "%s shader uses too many output vectors "
2911 "(%u > %u)\n",
2912 _mesa_shader_stage_to_string(producer->Stage),
2913 output_vectors,
2914 max_output_components / 4);
2915 else
2916 linker_error(prog, "%s shader uses too many output components "
2917 "(%u > %u)\n",
2918 _mesa_shader_stage_to_string(producer->Stage),
2919 output_components,
2920 max_output_components);
2921
2922 return false;
2923 }
2924
2925 return true;
2926 }
2927
2928 static bool
2929 check_against_input_limit(struct gl_context *ctx,
2930 struct gl_shader_program *prog,
2931 gl_linked_shader *consumer,
2932 unsigned num_explicit_locations)
2933 {
2934 unsigned input_vectors = num_explicit_locations;
2935
2936 foreach_in_list(ir_instruction, node, consumer->ir) {
2937 ir_variable *const var = node->as_variable();
2938
2939 if (var && !var->data.explicit_location &&
2940 var->data.mode == ir_var_shader_in &&
2941 var_counts_against_varying_limit(consumer->Stage, var)) {
2942 /* vertex inputs aren't varying counted */
2943 input_vectors += var->type->count_attribute_slots(false);
2944 }
2945 }
2946
2947 assert(consumer->Stage != MESA_SHADER_VERTEX);
2948 unsigned max_input_components =
2949 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2950
2951 const unsigned input_components = input_vectors * 4;
2952 if (input_components > max_input_components) {
2953 if (ctx->API == API_OPENGLES2 || prog->IsES)
2954 linker_error(prog, "%s shader uses too many input vectors "
2955 "(%u > %u)\n",
2956 _mesa_shader_stage_to_string(consumer->Stage),
2957 input_vectors,
2958 max_input_components / 4);
2959 else
2960 linker_error(prog, "%s shader uses too many input components "
2961 "(%u > %u)\n",
2962 _mesa_shader_stage_to_string(consumer->Stage),
2963 input_components,
2964 max_input_components);
2965
2966 return false;
2967 }
2968
2969 return true;
2970 }
2971
2972 bool
2973 link_varyings(struct gl_shader_program *prog, unsigned first, unsigned last,
2974 struct gl_context *ctx, void *mem_ctx)
2975 {
2976 bool has_xfb_qualifiers = false;
2977 unsigned num_tfeedback_decls = 0;
2978 char **varying_names = NULL;
2979 tfeedback_decl *tfeedback_decls = NULL;
2980
2981 /* From the ARB_enhanced_layouts spec:
2982 *
2983 * "If the shader used to record output variables for transform feedback
2984 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
2985 * qualifiers, the values specified by TransformFeedbackVaryings are
2986 * ignored, and the set of variables captured for transform feedback is
2987 * instead derived from the specified layout qualifiers."
2988 */
2989 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
2990 /* Find last stage before fragment shader */
2991 if (prog->_LinkedShaders[i]) {
2992 has_xfb_qualifiers =
2993 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
2994 prog, &num_tfeedback_decls,
2995 &varying_names);
2996 break;
2997 }
2998 }
2999
3000 if (!has_xfb_qualifiers) {
3001 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
3002 varying_names = prog->TransformFeedback.VaryingNames;
3003 }
3004
3005 if (num_tfeedback_decls != 0) {
3006 /* From GL_EXT_transform_feedback:
3007 * A program will fail to link if:
3008 *
3009 * * the <count> specified by TransformFeedbackVaryingsEXT is
3010 * non-zero, but the program object has no vertex or geometry
3011 * shader;
3012 */
3013 if (first >= MESA_SHADER_FRAGMENT) {
3014 linker_error(prog, "Transform feedback varyings specified, but "
3015 "no vertex, tessellation, or geometry shader is "
3016 "present.\n");
3017 return false;
3018 }
3019
3020 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
3021 num_tfeedback_decls);
3022 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
3023 varying_names, tfeedback_decls))
3024 return false;
3025 }
3026
3027 /* If there is no fragment shader we need to set transform feedback.
3028 *
3029 * For SSO we also need to assign output locations. We assign them here
3030 * because we need to do it for both single stage programs and multi stage
3031 * programs.
3032 */
3033 if (last < MESA_SHADER_FRAGMENT &&
3034 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
3035 const uint64_t reserved_out_slots =
3036 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
3037 if (!assign_varying_locations(ctx, mem_ctx, prog,
3038 prog->_LinkedShaders[last], NULL,
3039 num_tfeedback_decls, tfeedback_decls,
3040 reserved_out_slots))
3041 return false;
3042 }
3043
3044 if (last <= MESA_SHADER_FRAGMENT) {
3045 /* Remove unused varyings from the first/last stage unless SSO */
3046 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
3047 prog->_LinkedShaders[first],
3048 ir_var_shader_in);
3049 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
3050 prog->_LinkedShaders[last],
3051 ir_var_shader_out);
3052
3053 /* If the program is made up of only a single stage */
3054 if (first == last) {
3055 gl_linked_shader *const sh = prog->_LinkedShaders[last];
3056
3057 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
3058 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
3059 tfeedback_decls);
3060
3061 if (prog->SeparateShader) {
3062 const uint64_t reserved_slots =
3063 reserved_varying_slot(sh, ir_var_shader_in);
3064
3065 /* Assign input locations for SSO, output locations are already
3066 * assigned.
3067 */
3068 if (!assign_varying_locations(ctx, mem_ctx, prog,
3069 NULL /* producer */,
3070 sh /* consumer */,
3071 0 /* num_tfeedback_decls */,
3072 NULL /* tfeedback_decls */,
3073 reserved_slots))
3074 return false;
3075 }
3076 } else {
3077 /* Linking the stages in the opposite order (from fragment to vertex)
3078 * ensures that inter-shader outputs written to in an earlier stage
3079 * are eliminated if they are (transitively) not used in a later
3080 * stage.
3081 */
3082 int next = last;
3083 for (int i = next - 1; i >= 0; i--) {
3084 if (prog->_LinkedShaders[i] == NULL && i != 0)
3085 continue;
3086
3087 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
3088 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
3089
3090 const uint64_t reserved_out_slots =
3091 reserved_varying_slot(sh_i, ir_var_shader_out);
3092 const uint64_t reserved_in_slots =
3093 reserved_varying_slot(sh_next, ir_var_shader_in);
3094
3095 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3096 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3097 tfeedback_decls);
3098
3099 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3100 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3101 tfeedback_decls,
3102 reserved_out_slots | reserved_in_slots))
3103 return false;
3104
3105 /* This must be done after all dead varyings are eliminated. */
3106 if (sh_i != NULL) {
3107 unsigned slots_used = util_bitcount64(reserved_out_slots);
3108 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
3109 return false;
3110 }
3111 }
3112
3113 unsigned slots_used = util_bitcount64(reserved_in_slots);
3114 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
3115 return false;
3116
3117 next = i;
3118 }
3119 }
3120 }
3121
3122 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
3123 has_xfb_qualifiers, mem_ctx))
3124 return false;
3125
3126 return true;
3127 }