af09b7d03ee8c8d223069e670e83a53f7ab6d5fe
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = LINKING_FAILURE;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* Check the precision qualifier matches for uniform variables on
1115 * GLSL ES.
1116 */
1117 if (prog->IsES && !var->get_interface_type() &&
1118 existing->data.precision != var->data.precision) {
1119 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1120 linker_error(prog, "declarations for %s `%s` have "
1121 "mismatching precision qualifiers\n",
1122 mode_string(var), var->name);
1123 return;
1124 } else {
1125 linker_warning(prog, "declarations for %s `%s` have "
1126 "mismatching precision qualifiers\n",
1127 mode_string(var), var->name);
1128 }
1129 }
1130
1131 /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1132 *
1133 * "It is a link-time error if any particular shader interface
1134 * contains:
1135 *
1136 * - two different blocks, each having no instance name, and each
1137 * having a member of the same name, or
1138 *
1139 * - a variable outside a block, and a block with no instance name,
1140 * where the variable has the same name as a member in the block."
1141 */
1142 const glsl_type *var_itype = var->get_interface_type();
1143 const glsl_type *existing_itype = existing->get_interface_type();
1144 if (var_itype != existing_itype) {
1145 if (!var_itype || !existing_itype) {
1146 linker_error(prog, "declarations for %s `%s` are inside block "
1147 "`%s` and outside a block",
1148 mode_string(var), var->name,
1149 var_itype ? var_itype->name : existing_itype->name);
1150 return;
1151 } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1152 linker_error(prog, "declarations for %s `%s` are inside blocks "
1153 "`%s` and `%s`",
1154 mode_string(var), var->name,
1155 existing_itype->name,
1156 var_itype->name);
1157 return;
1158 }
1159 }
1160 } else
1161 variables->add_variable(var);
1162 }
1163 }
1164
1165
1166 /**
1167 * Perform validation of uniforms used across multiple shader stages
1168 */
1169 static void
1170 cross_validate_uniforms(struct gl_shader_program *prog)
1171 {
1172 glsl_symbol_table variables;
1173 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1174 if (prog->_LinkedShaders[i] == NULL)
1175 continue;
1176
1177 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1178 true);
1179 }
1180 }
1181
1182 /**
1183 * Accumulates the array of buffer blocks and checks that all definitions of
1184 * blocks agree on their contents.
1185 */
1186 static bool
1187 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1188 bool validate_ssbo)
1189 {
1190 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1191 struct gl_uniform_block *blks = NULL;
1192 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1193 &prog->data->NumUniformBlocks;
1194
1195 unsigned max_num_buffer_blocks = 0;
1196 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1197 if (prog->_LinkedShaders[i]) {
1198 if (validate_ssbo) {
1199 max_num_buffer_blocks +=
1200 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1201 } else {
1202 max_num_buffer_blocks +=
1203 prog->_LinkedShaders[i]->Program->info.num_ubos;
1204 }
1205 }
1206 }
1207
1208 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1209 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1210
1211 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1212 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1213 InterfaceBlockStageIndex[i][j] = -1;
1214
1215 if (sh == NULL)
1216 continue;
1217
1218 unsigned sh_num_blocks;
1219 struct gl_uniform_block **sh_blks;
1220 if (validate_ssbo) {
1221 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1222 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1223 } else {
1224 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1225 sh_blks = sh->Program->sh.UniformBlocks;
1226 }
1227
1228 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1229 int index = link_cross_validate_uniform_block(prog->data, &blks,
1230 num_blks, sh_blks[j]);
1231
1232 if (index == -1) {
1233 linker_error(prog, "buffer block `%s' has mismatching "
1234 "definitions\n", sh_blks[j]->Name);
1235
1236 for (unsigned k = 0; k <= i; k++) {
1237 delete[] InterfaceBlockStageIndex[k];
1238 }
1239
1240 /* Reset the block count. This will help avoid various segfaults
1241 * from api calls that assume the array exists due to the count
1242 * being non-zero.
1243 */
1244 *num_blks = 0;
1245 return false;
1246 }
1247
1248 InterfaceBlockStageIndex[i][index] = j;
1249 }
1250 }
1251
1252 /* Update per stage block pointers to point to the program list.
1253 * FIXME: We should be able to free the per stage blocks here.
1254 */
1255 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1256 for (unsigned j = 0; j < *num_blks; j++) {
1257 int stage_index = InterfaceBlockStageIndex[i][j];
1258
1259 if (stage_index != -1) {
1260 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1261
1262 struct gl_uniform_block **sh_blks = validate_ssbo ?
1263 sh->Program->sh.ShaderStorageBlocks :
1264 sh->Program->sh.UniformBlocks;
1265
1266 blks[j].stageref |= sh_blks[stage_index]->stageref;
1267 sh_blks[stage_index] = &blks[j];
1268 }
1269 }
1270 }
1271
1272 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1273 delete[] InterfaceBlockStageIndex[i];
1274 }
1275
1276 if (validate_ssbo)
1277 prog->data->ShaderStorageBlocks = blks;
1278 else
1279 prog->data->UniformBlocks = blks;
1280
1281 return true;
1282 }
1283
1284
1285 /**
1286 * Populates a shaders symbol table with all global declarations
1287 */
1288 static void
1289 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1290 {
1291 sh->symbols = new(sh) glsl_symbol_table;
1292
1293 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1294 }
1295
1296
1297 /**
1298 * Remap variables referenced in an instruction tree
1299 *
1300 * This is used when instruction trees are cloned from one shader and placed in
1301 * another. These trees will contain references to \c ir_variable nodes that
1302 * do not exist in the target shader. This function finds these \c ir_variable
1303 * references and replaces the references with matching variables in the target
1304 * shader.
1305 *
1306 * If there is no matching variable in the target shader, a clone of the
1307 * \c ir_variable is made and added to the target shader. The new variable is
1308 * added to \b both the instruction stream and the symbol table.
1309 *
1310 * \param inst IR tree that is to be processed.
1311 * \param symbols Symbol table containing global scope symbols in the
1312 * linked shader.
1313 * \param instructions Instruction stream where new variable declarations
1314 * should be added.
1315 */
1316 static void
1317 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1318 hash_table *temps)
1319 {
1320 class remap_visitor : public ir_hierarchical_visitor {
1321 public:
1322 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1323 {
1324 this->target = target;
1325 this->symbols = target->symbols;
1326 this->instructions = target->ir;
1327 this->temps = temps;
1328 }
1329
1330 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1331 {
1332 if (ir->var->data.mode == ir_var_temporary) {
1333 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1334 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1335
1336 assert(var != NULL);
1337 ir->var = var;
1338 return visit_continue;
1339 }
1340
1341 ir_variable *const existing =
1342 this->symbols->get_variable(ir->var->name);
1343 if (existing != NULL)
1344 ir->var = existing;
1345 else {
1346 ir_variable *copy = ir->var->clone(this->target, NULL);
1347
1348 this->symbols->add_variable(copy);
1349 this->instructions->push_head(copy);
1350 ir->var = copy;
1351 }
1352
1353 return visit_continue;
1354 }
1355
1356 private:
1357 struct gl_linked_shader *target;
1358 glsl_symbol_table *symbols;
1359 exec_list *instructions;
1360 hash_table *temps;
1361 };
1362
1363 remap_visitor v(target, temps);
1364
1365 inst->accept(&v);
1366 }
1367
1368
1369 /**
1370 * Move non-declarations from one instruction stream to another
1371 *
1372 * The intended usage pattern of this function is to pass the pointer to the
1373 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1374 * pointer) for \c last and \c false for \c make_copies on the first
1375 * call. Successive calls pass the return value of the previous call for
1376 * \c last and \c true for \c make_copies.
1377 *
1378 * \param instructions Source instruction stream
1379 * \param last Instruction after which new instructions should be
1380 * inserted in the target instruction stream
1381 * \param make_copies Flag selecting whether instructions in \c instructions
1382 * should be copied (via \c ir_instruction::clone) into the
1383 * target list or moved.
1384 *
1385 * \return
1386 * The new "last" instruction in the target instruction stream. This pointer
1387 * is suitable for use as the \c last parameter of a later call to this
1388 * function.
1389 */
1390 static exec_node *
1391 move_non_declarations(exec_list *instructions, exec_node *last,
1392 bool make_copies, gl_linked_shader *target)
1393 {
1394 hash_table *temps = NULL;
1395
1396 if (make_copies)
1397 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1398 _mesa_key_pointer_equal);
1399
1400 foreach_in_list_safe(ir_instruction, inst, instructions) {
1401 if (inst->as_function())
1402 continue;
1403
1404 ir_variable *var = inst->as_variable();
1405 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1406 continue;
1407
1408 assert(inst->as_assignment()
1409 || inst->as_call()
1410 || inst->as_if() /* for initializers with the ?: operator */
1411 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1412
1413 if (make_copies) {
1414 inst = inst->clone(target, NULL);
1415
1416 if (var != NULL)
1417 _mesa_hash_table_insert(temps, var, inst);
1418 else
1419 remap_variables(inst, target, temps);
1420 } else {
1421 inst->remove();
1422 }
1423
1424 last->insert_after(inst);
1425 last = inst;
1426 }
1427
1428 if (make_copies)
1429 _mesa_hash_table_destroy(temps, NULL);
1430
1431 return last;
1432 }
1433
1434
1435 /**
1436 * This class is only used in link_intrastage_shaders() below but declaring
1437 * it inside that function leads to compiler warnings with some versions of
1438 * gcc.
1439 */
1440 class array_sizing_visitor : public deref_type_updater {
1441 public:
1442 array_sizing_visitor()
1443 : mem_ctx(ralloc_context(NULL)),
1444 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1445 _mesa_key_pointer_equal))
1446 {
1447 }
1448
1449 ~array_sizing_visitor()
1450 {
1451 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1452 ralloc_free(this->mem_ctx);
1453 }
1454
1455 virtual ir_visitor_status visit(ir_variable *var)
1456 {
1457 const glsl_type *type_without_array;
1458 bool implicit_sized_array = var->data.implicit_sized_array;
1459 fixup_type(&var->type, var->data.max_array_access,
1460 var->data.from_ssbo_unsized_array,
1461 &implicit_sized_array);
1462 var->data.implicit_sized_array = implicit_sized_array;
1463 type_without_array = var->type->without_array();
1464 if (var->type->is_interface()) {
1465 if (interface_contains_unsized_arrays(var->type)) {
1466 const glsl_type *new_type =
1467 resize_interface_members(var->type,
1468 var->get_max_ifc_array_access(),
1469 var->is_in_shader_storage_block());
1470 var->type = new_type;
1471 var->change_interface_type(new_type);
1472 }
1473 } else if (type_without_array->is_interface()) {
1474 if (interface_contains_unsized_arrays(type_without_array)) {
1475 const glsl_type *new_type =
1476 resize_interface_members(type_without_array,
1477 var->get_max_ifc_array_access(),
1478 var->is_in_shader_storage_block());
1479 var->change_interface_type(new_type);
1480 var->type = update_interface_members_array(var->type, new_type);
1481 }
1482 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1483 /* Store a pointer to the variable in the unnamed_interfaces
1484 * hashtable.
1485 */
1486 hash_entry *entry =
1487 _mesa_hash_table_search(this->unnamed_interfaces,
1488 ifc_type);
1489
1490 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1491
1492 if (interface_vars == NULL) {
1493 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1494 ifc_type->length);
1495 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1496 interface_vars);
1497 }
1498 unsigned index = ifc_type->field_index(var->name);
1499 assert(index < ifc_type->length);
1500 assert(interface_vars[index] == NULL);
1501 interface_vars[index] = var;
1502 }
1503 return visit_continue;
1504 }
1505
1506 /**
1507 * For each unnamed interface block that was discovered while running the
1508 * visitor, adjust the interface type to reflect the newly assigned array
1509 * sizes, and fix up the ir_variable nodes to point to the new interface
1510 * type.
1511 */
1512 void fixup_unnamed_interface_types()
1513 {
1514 hash_table_call_foreach(this->unnamed_interfaces,
1515 fixup_unnamed_interface_type, NULL);
1516 }
1517
1518 private:
1519 /**
1520 * If the type pointed to by \c type represents an unsized array, replace
1521 * it with a sized array whose size is determined by max_array_access.
1522 */
1523 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1524 bool from_ssbo_unsized_array, bool *implicit_sized)
1525 {
1526 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1527 *type = glsl_type::get_array_instance((*type)->fields.array,
1528 max_array_access + 1);
1529 *implicit_sized = true;
1530 assert(*type != NULL);
1531 }
1532 }
1533
1534 static const glsl_type *
1535 update_interface_members_array(const glsl_type *type,
1536 const glsl_type *new_interface_type)
1537 {
1538 const glsl_type *element_type = type->fields.array;
1539 if (element_type->is_array()) {
1540 const glsl_type *new_array_type =
1541 update_interface_members_array(element_type, new_interface_type);
1542 return glsl_type::get_array_instance(new_array_type, type->length);
1543 } else {
1544 return glsl_type::get_array_instance(new_interface_type,
1545 type->length);
1546 }
1547 }
1548
1549 /**
1550 * Determine whether the given interface type contains unsized arrays (if
1551 * it doesn't, array_sizing_visitor doesn't need to process it).
1552 */
1553 static bool interface_contains_unsized_arrays(const glsl_type *type)
1554 {
1555 for (unsigned i = 0; i < type->length; i++) {
1556 const glsl_type *elem_type = type->fields.structure[i].type;
1557 if (elem_type->is_unsized_array())
1558 return true;
1559 }
1560 return false;
1561 }
1562
1563 /**
1564 * Create a new interface type based on the given type, with unsized arrays
1565 * replaced by sized arrays whose size is determined by
1566 * max_ifc_array_access.
1567 */
1568 static const glsl_type *
1569 resize_interface_members(const glsl_type *type,
1570 const int *max_ifc_array_access,
1571 bool is_ssbo)
1572 {
1573 unsigned num_fields = type->length;
1574 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1575 memcpy(fields, type->fields.structure,
1576 num_fields * sizeof(*fields));
1577 for (unsigned i = 0; i < num_fields; i++) {
1578 bool implicit_sized_array = fields[i].implicit_sized_array;
1579 /* If SSBO last member is unsized array, we don't replace it by a sized
1580 * array.
1581 */
1582 if (is_ssbo && i == (num_fields - 1))
1583 fixup_type(&fields[i].type, max_ifc_array_access[i],
1584 true, &implicit_sized_array);
1585 else
1586 fixup_type(&fields[i].type, max_ifc_array_access[i],
1587 false, &implicit_sized_array);
1588 fields[i].implicit_sized_array = implicit_sized_array;
1589 }
1590 glsl_interface_packing packing =
1591 (glsl_interface_packing) type->interface_packing;
1592 bool row_major = (bool) type->interface_row_major;
1593 const glsl_type *new_ifc_type =
1594 glsl_type::get_interface_instance(fields, num_fields,
1595 packing, row_major, type->name);
1596 delete [] fields;
1597 return new_ifc_type;
1598 }
1599
1600 static void fixup_unnamed_interface_type(const void *key, void *data,
1601 void *)
1602 {
1603 const glsl_type *ifc_type = (const glsl_type *) key;
1604 ir_variable **interface_vars = (ir_variable **) data;
1605 unsigned num_fields = ifc_type->length;
1606 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1607 memcpy(fields, ifc_type->fields.structure,
1608 num_fields * sizeof(*fields));
1609 bool interface_type_changed = false;
1610 for (unsigned i = 0; i < num_fields; i++) {
1611 if (interface_vars[i] != NULL &&
1612 fields[i].type != interface_vars[i]->type) {
1613 fields[i].type = interface_vars[i]->type;
1614 interface_type_changed = true;
1615 }
1616 }
1617 if (!interface_type_changed) {
1618 delete [] fields;
1619 return;
1620 }
1621 glsl_interface_packing packing =
1622 (glsl_interface_packing) ifc_type->interface_packing;
1623 bool row_major = (bool) ifc_type->interface_row_major;
1624 const glsl_type *new_ifc_type =
1625 glsl_type::get_interface_instance(fields, num_fields, packing,
1626 row_major, ifc_type->name);
1627 delete [] fields;
1628 for (unsigned i = 0; i < num_fields; i++) {
1629 if (interface_vars[i] != NULL)
1630 interface_vars[i]->change_interface_type(new_ifc_type);
1631 }
1632 }
1633
1634 /**
1635 * Memory context used to allocate the data in \c unnamed_interfaces.
1636 */
1637 void *mem_ctx;
1638
1639 /**
1640 * Hash table from const glsl_type * to an array of ir_variable *'s
1641 * pointing to the ir_variables constituting each unnamed interface block.
1642 */
1643 hash_table *unnamed_interfaces;
1644 };
1645
1646 static bool
1647 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1648 struct gl_shader_program *prog)
1649 {
1650 /* We will validate doubles at a later stage */
1651 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1652 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1653 "multiple of 4 or if its applied to a type that is "
1654 "or contains a double a multiple of 8.",
1655 prog->TransformFeedback.BufferStride[idx]);
1656 return false;
1657 }
1658
1659 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1660 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1661 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1662 "limit has been exceeded.");
1663 return false;
1664 }
1665
1666 return true;
1667 }
1668
1669 /**
1670 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1671 * for later use.
1672 */
1673 static void
1674 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1675 struct gl_shader_program *prog,
1676 struct gl_shader **shader_list,
1677 unsigned num_shaders)
1678 {
1679 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1680 prog->TransformFeedback.BufferStride[i] = 0;
1681 }
1682
1683 for (unsigned i = 0; i < num_shaders; i++) {
1684 struct gl_shader *shader = shader_list[i];
1685
1686 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1687 if (shader->TransformFeedbackBufferStride[j]) {
1688 if (prog->TransformFeedback.BufferStride[j] == 0) {
1689 prog->TransformFeedback.BufferStride[j] =
1690 shader->TransformFeedbackBufferStride[j];
1691 if (!validate_xfb_buffer_stride(ctx, j, prog))
1692 return;
1693 } else if (prog->TransformFeedback.BufferStride[j] !=
1694 shader->TransformFeedbackBufferStride[j]){
1695 linker_error(prog,
1696 "intrastage shaders defined with conflicting "
1697 "xfb_stride for buffer %d (%d and %d)\n", j,
1698 prog->TransformFeedback.BufferStride[j],
1699 shader->TransformFeedbackBufferStride[j]);
1700 return;
1701 }
1702 }
1703 }
1704 }
1705 }
1706
1707 /**
1708 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1709 * global scope.
1710 */
1711 static void
1712 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1713 struct gl_shader **shader_list,
1714 unsigned num_shaders)
1715 {
1716 bool bindless_sampler, bindless_image;
1717 bool bound_sampler, bound_image;
1718
1719 bindless_sampler = bindless_image = false;
1720 bound_sampler = bound_image = false;
1721
1722 for (unsigned i = 0; i < num_shaders; i++) {
1723 struct gl_shader *shader = shader_list[i];
1724
1725 if (shader->bindless_sampler)
1726 bindless_sampler = true;
1727 if (shader->bindless_image)
1728 bindless_image = true;
1729 if (shader->bound_sampler)
1730 bound_sampler = true;
1731 if (shader->bound_image)
1732 bound_image = true;
1733
1734 if ((bindless_sampler && bound_sampler) ||
1735 (bindless_image && bound_image)) {
1736 /* From section 4.4.6 of the ARB_bindless_texture spec:
1737 *
1738 * "If both bindless_sampler and bound_sampler, or bindless_image
1739 * and bound_image, are declared at global scope in any
1740 * compilation unit, a link- time error will be generated."
1741 */
1742 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1743 "bindless_image and bound_image, can't be declared at "
1744 "global scope");
1745 }
1746 }
1747 }
1748
1749 /**
1750 * Performs the cross-validation of tessellation control shader vertices and
1751 * layout qualifiers for the attached tessellation control shaders,
1752 * and propagates them to the linked TCS and linked shader program.
1753 */
1754 static void
1755 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1756 struct gl_program *gl_prog,
1757 struct gl_shader **shader_list,
1758 unsigned num_shaders)
1759 {
1760 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1761 return;
1762
1763 gl_prog->info.tess.tcs_vertices_out = 0;
1764
1765 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1766 *
1767 * "All tessellation control shader layout declarations in a program
1768 * must specify the same output patch vertex count. There must be at
1769 * least one layout qualifier specifying an output patch vertex count
1770 * in any program containing tessellation control shaders; however,
1771 * such a declaration is not required in all tessellation control
1772 * shaders."
1773 */
1774
1775 for (unsigned i = 0; i < num_shaders; i++) {
1776 struct gl_shader *shader = shader_list[i];
1777
1778 if (shader->info.TessCtrl.VerticesOut != 0) {
1779 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1780 gl_prog->info.tess.tcs_vertices_out !=
1781 (unsigned) shader->info.TessCtrl.VerticesOut) {
1782 linker_error(prog, "tessellation control shader defined with "
1783 "conflicting output vertex count (%d and %d)\n",
1784 gl_prog->info.tess.tcs_vertices_out,
1785 shader->info.TessCtrl.VerticesOut);
1786 return;
1787 }
1788 gl_prog->info.tess.tcs_vertices_out =
1789 shader->info.TessCtrl.VerticesOut;
1790 }
1791 }
1792
1793 /* Just do the intrastage -> interstage propagation right now,
1794 * since we already know we're in the right type of shader program
1795 * for doing it.
1796 */
1797 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1798 linker_error(prog, "tessellation control shader didn't declare "
1799 "vertices out layout qualifier\n");
1800 return;
1801 }
1802 }
1803
1804
1805 /**
1806 * Performs the cross-validation of tessellation evaluation shader
1807 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1808 * for the attached tessellation evaluation shaders, and propagates them
1809 * to the linked TES and linked shader program.
1810 */
1811 static void
1812 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1813 struct gl_program *gl_prog,
1814 struct gl_shader **shader_list,
1815 unsigned num_shaders)
1816 {
1817 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1818 return;
1819
1820 int point_mode = -1;
1821 unsigned vertex_order = 0;
1822
1823 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1824 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1825
1826 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1827 *
1828 * "At least one tessellation evaluation shader (compilation unit) in
1829 * a program must declare a primitive mode in its input layout.
1830 * Declaration vertex spacing, ordering, and point mode identifiers is
1831 * optional. It is not required that all tessellation evaluation
1832 * shaders in a program declare a primitive mode. If spacing or
1833 * vertex ordering declarations are omitted, the tessellation
1834 * primitive generator will use equal spacing or counter-clockwise
1835 * vertex ordering, respectively. If a point mode declaration is
1836 * omitted, the tessellation primitive generator will produce lines or
1837 * triangles according to the primitive mode."
1838 */
1839
1840 for (unsigned i = 0; i < num_shaders; i++) {
1841 struct gl_shader *shader = shader_list[i];
1842
1843 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1844 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1845 gl_prog->info.tess.primitive_mode !=
1846 shader->info.TessEval.PrimitiveMode) {
1847 linker_error(prog, "tessellation evaluation shader defined with "
1848 "conflicting input primitive modes.\n");
1849 return;
1850 }
1851 gl_prog->info.tess.primitive_mode =
1852 shader->info.TessEval.PrimitiveMode;
1853 }
1854
1855 if (shader->info.TessEval.Spacing != 0) {
1856 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1857 shader->info.TessEval.Spacing) {
1858 linker_error(prog, "tessellation evaluation shader defined with "
1859 "conflicting vertex spacing.\n");
1860 return;
1861 }
1862 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1863 }
1864
1865 if (shader->info.TessEval.VertexOrder != 0) {
1866 if (vertex_order != 0 &&
1867 vertex_order != shader->info.TessEval.VertexOrder) {
1868 linker_error(prog, "tessellation evaluation shader defined with "
1869 "conflicting ordering.\n");
1870 return;
1871 }
1872 vertex_order = shader->info.TessEval.VertexOrder;
1873 }
1874
1875 if (shader->info.TessEval.PointMode != -1) {
1876 if (point_mode != -1 &&
1877 point_mode != shader->info.TessEval.PointMode) {
1878 linker_error(prog, "tessellation evaluation shader defined with "
1879 "conflicting point modes.\n");
1880 return;
1881 }
1882 point_mode = shader->info.TessEval.PointMode;
1883 }
1884
1885 }
1886
1887 /* Just do the intrastage -> interstage propagation right now,
1888 * since we already know we're in the right type of shader program
1889 * for doing it.
1890 */
1891 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1892 linker_error(prog,
1893 "tessellation evaluation shader didn't declare input "
1894 "primitive modes.\n");
1895 return;
1896 }
1897
1898 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1899 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1900
1901 if (vertex_order == 0 || vertex_order == GL_CCW)
1902 gl_prog->info.tess.ccw = true;
1903 else
1904 gl_prog->info.tess.ccw = false;
1905
1906
1907 if (point_mode == -1 || point_mode == GL_FALSE)
1908 gl_prog->info.tess.point_mode = false;
1909 else
1910 gl_prog->info.tess.point_mode = true;
1911 }
1912
1913
1914 /**
1915 * Performs the cross-validation of layout qualifiers specified in
1916 * redeclaration of gl_FragCoord for the attached fragment shaders,
1917 * and propagates them to the linked FS and linked shader program.
1918 */
1919 static void
1920 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1921 struct gl_linked_shader *linked_shader,
1922 struct gl_shader **shader_list,
1923 unsigned num_shaders)
1924 {
1925 bool redeclares_gl_fragcoord = false;
1926 bool uses_gl_fragcoord = false;
1927 bool origin_upper_left = false;
1928 bool pixel_center_integer = false;
1929
1930 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1931 (prog->data->Version < 150 &&
1932 !prog->ARB_fragment_coord_conventions_enable))
1933 return;
1934
1935 for (unsigned i = 0; i < num_shaders; i++) {
1936 struct gl_shader *shader = shader_list[i];
1937 /* From the GLSL 1.50 spec, page 39:
1938 *
1939 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1940 * it must be redeclared in all the fragment shaders in that program
1941 * that have a static use gl_FragCoord."
1942 */
1943 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1944 shader->uses_gl_fragcoord)
1945 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1946 uses_gl_fragcoord)) {
1947 linker_error(prog, "fragment shader defined with conflicting "
1948 "layout qualifiers for gl_FragCoord\n");
1949 }
1950
1951 /* From the GLSL 1.50 spec, page 39:
1952 *
1953 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1954 * single program must have the same set of qualifiers."
1955 */
1956 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1957 (shader->origin_upper_left != origin_upper_left ||
1958 shader->pixel_center_integer != pixel_center_integer)) {
1959 linker_error(prog, "fragment shader defined with conflicting "
1960 "layout qualifiers for gl_FragCoord\n");
1961 }
1962
1963 /* Update the linked shader state. Note that uses_gl_fragcoord should
1964 * accumulate the results. The other values should replace. If there
1965 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1966 * are already known to be the same.
1967 */
1968 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1969 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1970 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1971 origin_upper_left = shader->origin_upper_left;
1972 pixel_center_integer = shader->pixel_center_integer;
1973 }
1974
1975 linked_shader->Program->info.fs.early_fragment_tests |=
1976 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1977 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1978 linked_shader->Program->info.fs.post_depth_coverage |=
1979 shader->PostDepthCoverage;
1980
1981 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1982 }
1983 }
1984
1985 /**
1986 * Performs the cross-validation of geometry shader max_vertices and
1987 * primitive type layout qualifiers for the attached geometry shaders,
1988 * and propagates them to the linked GS and linked shader program.
1989 */
1990 static void
1991 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1992 struct gl_program *gl_prog,
1993 struct gl_shader **shader_list,
1994 unsigned num_shaders)
1995 {
1996 /* No in/out qualifiers defined for anything but GLSL 1.50+
1997 * geometry shaders so far.
1998 */
1999 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2000 prog->data->Version < 150)
2001 return;
2002
2003 int vertices_out = -1;
2004
2005 gl_prog->info.gs.invocations = 0;
2006 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2007 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2008
2009 /* From the GLSL 1.50 spec, page 46:
2010 *
2011 * "All geometry shader output layout declarations in a program
2012 * must declare the same layout and same value for
2013 * max_vertices. There must be at least one geometry output
2014 * layout declaration somewhere in a program, but not all
2015 * geometry shaders (compilation units) are required to
2016 * declare it."
2017 */
2018
2019 for (unsigned i = 0; i < num_shaders; i++) {
2020 struct gl_shader *shader = shader_list[i];
2021
2022 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2023 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2024 gl_prog->info.gs.input_primitive !=
2025 shader->info.Geom.InputType) {
2026 linker_error(prog, "geometry shader defined with conflicting "
2027 "input types\n");
2028 return;
2029 }
2030 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2031 }
2032
2033 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2034 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2035 gl_prog->info.gs.output_primitive !=
2036 shader->info.Geom.OutputType) {
2037 linker_error(prog, "geometry shader defined with conflicting "
2038 "output types\n");
2039 return;
2040 }
2041 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2042 }
2043
2044 if (shader->info.Geom.VerticesOut != -1) {
2045 if (vertices_out != -1 &&
2046 vertices_out != shader->info.Geom.VerticesOut) {
2047 linker_error(prog, "geometry shader defined with conflicting "
2048 "output vertex count (%d and %d)\n",
2049 vertices_out, shader->info.Geom.VerticesOut);
2050 return;
2051 }
2052 vertices_out = shader->info.Geom.VerticesOut;
2053 }
2054
2055 if (shader->info.Geom.Invocations != 0) {
2056 if (gl_prog->info.gs.invocations != 0 &&
2057 gl_prog->info.gs.invocations !=
2058 (unsigned) shader->info.Geom.Invocations) {
2059 linker_error(prog, "geometry shader defined with conflicting "
2060 "invocation count (%d and %d)\n",
2061 gl_prog->info.gs.invocations,
2062 shader->info.Geom.Invocations);
2063 return;
2064 }
2065 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2066 }
2067 }
2068
2069 /* Just do the intrastage -> interstage propagation right now,
2070 * since we already know we're in the right type of shader program
2071 * for doing it.
2072 */
2073 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2074 linker_error(prog,
2075 "geometry shader didn't declare primitive input type\n");
2076 return;
2077 }
2078
2079 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2080 linker_error(prog,
2081 "geometry shader didn't declare primitive output type\n");
2082 return;
2083 }
2084
2085 if (vertices_out == -1) {
2086 linker_error(prog,
2087 "geometry shader didn't declare max_vertices\n");
2088 return;
2089 } else {
2090 gl_prog->info.gs.vertices_out = vertices_out;
2091 }
2092
2093 if (gl_prog->info.gs.invocations == 0)
2094 gl_prog->info.gs.invocations = 1;
2095 }
2096
2097
2098 /**
2099 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2100 * qualifiers for the attached compute shaders, and propagate them to the
2101 * linked CS and linked shader program.
2102 */
2103 static void
2104 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2105 struct gl_program *gl_prog,
2106 struct gl_shader **shader_list,
2107 unsigned num_shaders)
2108 {
2109 /* This function is called for all shader stages, but it only has an effect
2110 * for compute shaders.
2111 */
2112 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2113 return;
2114
2115 for (int i = 0; i < 3; i++)
2116 gl_prog->info.cs.local_size[i] = 0;
2117
2118 gl_prog->info.cs.local_size_variable = false;
2119
2120 /* From the ARB_compute_shader spec, in the section describing local size
2121 * declarations:
2122 *
2123 * If multiple compute shaders attached to a single program object
2124 * declare local work-group size, the declarations must be identical;
2125 * otherwise a link-time error results. Furthermore, if a program
2126 * object contains any compute shaders, at least one must contain an
2127 * input layout qualifier specifying the local work sizes of the
2128 * program, or a link-time error will occur.
2129 */
2130 for (unsigned sh = 0; sh < num_shaders; sh++) {
2131 struct gl_shader *shader = shader_list[sh];
2132
2133 if (shader->info.Comp.LocalSize[0] != 0) {
2134 if (gl_prog->info.cs.local_size[0] != 0) {
2135 for (int i = 0; i < 3; i++) {
2136 if (gl_prog->info.cs.local_size[i] !=
2137 shader->info.Comp.LocalSize[i]) {
2138 linker_error(prog, "compute shader defined with conflicting "
2139 "local sizes\n");
2140 return;
2141 }
2142 }
2143 }
2144 for (int i = 0; i < 3; i++) {
2145 gl_prog->info.cs.local_size[i] =
2146 shader->info.Comp.LocalSize[i];
2147 }
2148 } else if (shader->info.Comp.LocalSizeVariable) {
2149 if (gl_prog->info.cs.local_size[0] != 0) {
2150 /* The ARB_compute_variable_group_size spec says:
2151 *
2152 * If one compute shader attached to a program declares a
2153 * variable local group size and a second compute shader
2154 * attached to the same program declares a fixed local group
2155 * size, a link-time error results.
2156 */
2157 linker_error(prog, "compute shader defined with both fixed and "
2158 "variable local group size\n");
2159 return;
2160 }
2161 gl_prog->info.cs.local_size_variable = true;
2162 }
2163 }
2164
2165 /* Just do the intrastage -> interstage propagation right now,
2166 * since we already know we're in the right type of shader program
2167 * for doing it.
2168 */
2169 if (gl_prog->info.cs.local_size[0] == 0 &&
2170 !gl_prog->info.cs.local_size_variable) {
2171 linker_error(prog, "compute shader must contain a fixed or a variable "
2172 "local group size\n");
2173 return;
2174 }
2175 }
2176
2177
2178 /**
2179 * Combine a group of shaders for a single stage to generate a linked shader
2180 *
2181 * \note
2182 * If this function is supplied a single shader, it is cloned, and the new
2183 * shader is returned.
2184 */
2185 struct gl_linked_shader *
2186 link_intrastage_shaders(void *mem_ctx,
2187 struct gl_context *ctx,
2188 struct gl_shader_program *prog,
2189 struct gl_shader **shader_list,
2190 unsigned num_shaders,
2191 bool allow_missing_main)
2192 {
2193 struct gl_uniform_block *ubo_blocks = NULL;
2194 struct gl_uniform_block *ssbo_blocks = NULL;
2195 unsigned num_ubo_blocks = 0;
2196 unsigned num_ssbo_blocks = 0;
2197
2198 /* Check that global variables defined in multiple shaders are consistent.
2199 */
2200 glsl_symbol_table variables;
2201 for (unsigned i = 0; i < num_shaders; i++) {
2202 if (shader_list[i] == NULL)
2203 continue;
2204 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2205 }
2206
2207 if (!prog->data->LinkStatus)
2208 return NULL;
2209
2210 /* Check that interface blocks defined in multiple shaders are consistent.
2211 */
2212 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2213 num_shaders);
2214 if (!prog->data->LinkStatus)
2215 return NULL;
2216
2217 /* Check that there is only a single definition of each function signature
2218 * across all shaders.
2219 */
2220 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2221 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2222 ir_function *const f = node->as_function();
2223
2224 if (f == NULL)
2225 continue;
2226
2227 for (unsigned j = i + 1; j < num_shaders; j++) {
2228 ir_function *const other =
2229 shader_list[j]->symbols->get_function(f->name);
2230
2231 /* If the other shader has no function (and therefore no function
2232 * signatures) with the same name, skip to the next shader.
2233 */
2234 if (other == NULL)
2235 continue;
2236
2237 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2238 if (!sig->is_defined)
2239 continue;
2240
2241 ir_function_signature *other_sig =
2242 other->exact_matching_signature(NULL, &sig->parameters);
2243
2244 if (other_sig != NULL && other_sig->is_defined) {
2245 linker_error(prog, "function `%s' is multiply defined\n",
2246 f->name);
2247 return NULL;
2248 }
2249 }
2250 }
2251 }
2252 }
2253
2254 /* Find the shader that defines main, and make a clone of it.
2255 *
2256 * Starting with the clone, search for undefined references. If one is
2257 * found, find the shader that defines it. Clone the reference and add
2258 * it to the shader. Repeat until there are no undefined references or
2259 * until a reference cannot be resolved.
2260 */
2261 gl_shader *main = NULL;
2262 for (unsigned i = 0; i < num_shaders; i++) {
2263 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2264 main = shader_list[i];
2265 break;
2266 }
2267 }
2268
2269 if (main == NULL && allow_missing_main)
2270 main = shader_list[0];
2271
2272 if (main == NULL) {
2273 linker_error(prog, "%s shader lacks `main'\n",
2274 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2275 return NULL;
2276 }
2277
2278 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2279 linked->Stage = shader_list[0]->Stage;
2280
2281 /* Create program and attach it to the linked shader */
2282 struct gl_program *gl_prog =
2283 ctx->Driver.NewProgram(ctx,
2284 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2285 prog->Name, false);
2286 if (!gl_prog) {
2287 prog->data->LinkStatus = LINKING_FAILURE;
2288 _mesa_delete_linked_shader(ctx, linked);
2289 return NULL;
2290 }
2291
2292 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2293
2294 /* Don't use _mesa_reference_program() just take ownership */
2295 linked->Program = gl_prog;
2296
2297 linked->ir = new(linked) exec_list;
2298 clone_ir_list(mem_ctx, linked->ir, main->ir);
2299
2300 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2301 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2302 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2303 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2304 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2305
2306 if (linked->Stage != MESA_SHADER_FRAGMENT)
2307 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2308
2309 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2310
2311 populate_symbol_table(linked, shader_list[0]->symbols);
2312
2313 /* The pointer to the main function in the final linked shader (i.e., the
2314 * copy of the original shader that contained the main function).
2315 */
2316 ir_function_signature *const main_sig =
2317 _mesa_get_main_function_signature(linked->symbols);
2318
2319 /* Move any instructions other than variable declarations or function
2320 * declarations into main.
2321 */
2322 if (main_sig != NULL) {
2323 exec_node *insertion_point =
2324 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2325 linked);
2326
2327 for (unsigned i = 0; i < num_shaders; i++) {
2328 if (shader_list[i] == main)
2329 continue;
2330
2331 insertion_point = move_non_declarations(shader_list[i]->ir,
2332 insertion_point, true, linked);
2333 }
2334 }
2335
2336 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2337 _mesa_delete_linked_shader(ctx, linked);
2338 return NULL;
2339 }
2340
2341 /* Make a pass over all variable declarations to ensure that arrays with
2342 * unspecified sizes have a size specified. The size is inferred from the
2343 * max_array_access field.
2344 */
2345 array_sizing_visitor v;
2346 v.run(linked->ir);
2347 v.fixup_unnamed_interface_types();
2348
2349 /* Link up uniform blocks defined within this stage. */
2350 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2351 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2352
2353 if (!prog->data->LinkStatus) {
2354 _mesa_delete_linked_shader(ctx, linked);
2355 return NULL;
2356 }
2357
2358 /* Copy ubo blocks to linked shader list */
2359 linked->Program->sh.UniformBlocks =
2360 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2361 ralloc_steal(linked, ubo_blocks);
2362 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2363 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2364 }
2365 linked->Program->info.num_ubos = num_ubo_blocks;
2366
2367 /* Copy ssbo blocks to linked shader list */
2368 linked->Program->sh.ShaderStorageBlocks =
2369 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2370 ralloc_steal(linked, ssbo_blocks);
2371 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2372 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2373 }
2374 linked->Program->info.num_ssbos = num_ssbo_blocks;
2375
2376 /* At this point linked should contain all of the linked IR, so
2377 * validate it to make sure nothing went wrong.
2378 */
2379 validate_ir_tree(linked->ir);
2380
2381 /* Set the size of geometry shader input arrays */
2382 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2383 unsigned num_vertices =
2384 vertices_per_prim(gl_prog->info.gs.input_primitive);
2385 array_resize_visitor input_resize_visitor(num_vertices, prog,
2386 MESA_SHADER_GEOMETRY);
2387 foreach_in_list(ir_instruction, ir, linked->ir) {
2388 ir->accept(&input_resize_visitor);
2389 }
2390 }
2391
2392 if (ctx->Const.VertexID_is_zero_based)
2393 lower_vertex_id(linked);
2394
2395 if (ctx->Const.LowerCsDerivedVariables)
2396 lower_cs_derived(linked);
2397
2398 #ifdef DEBUG
2399 /* Compute the source checksum. */
2400 linked->SourceChecksum = 0;
2401 for (unsigned i = 0; i < num_shaders; i++) {
2402 if (shader_list[i] == NULL)
2403 continue;
2404 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2405 }
2406 #endif
2407
2408 return linked;
2409 }
2410
2411 /**
2412 * Update the sizes of linked shader uniform arrays to the maximum
2413 * array index used.
2414 *
2415 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2416 *
2417 * If one or more elements of an array are active,
2418 * GetActiveUniform will return the name of the array in name,
2419 * subject to the restrictions listed above. The type of the array
2420 * is returned in type. The size parameter contains the highest
2421 * array element index used, plus one. The compiler or linker
2422 * determines the highest index used. There will be only one
2423 * active uniform reported by the GL per uniform array.
2424
2425 */
2426 static void
2427 update_array_sizes(struct gl_shader_program *prog)
2428 {
2429 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2430 if (prog->_LinkedShaders[i] == NULL)
2431 continue;
2432
2433 bool types_were_updated = false;
2434
2435 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2436 ir_variable *const var = node->as_variable();
2437
2438 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2439 !var->type->is_array())
2440 continue;
2441
2442 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2443 * will not be eliminated. Since we always do std140, just
2444 * don't resize arrays in UBOs.
2445 *
2446 * Atomic counters are supposed to get deterministic
2447 * locations assigned based on the declaration ordering and
2448 * sizes, array compaction would mess that up.
2449 *
2450 * Subroutine uniforms are not removed.
2451 */
2452 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2453 var->type->contains_subroutine() || var->constant_initializer)
2454 continue;
2455
2456 int size = var->data.max_array_access;
2457 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2458 if (prog->_LinkedShaders[j] == NULL)
2459 continue;
2460
2461 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2462 ir_variable *other_var = node2->as_variable();
2463 if (!other_var)
2464 continue;
2465
2466 if (strcmp(var->name, other_var->name) == 0 &&
2467 other_var->data.max_array_access > size) {
2468 size = other_var->data.max_array_access;
2469 }
2470 }
2471 }
2472
2473 if (size + 1 != (int)var->type->length) {
2474 /* If this is a built-in uniform (i.e., it's backed by some
2475 * fixed-function state), adjust the number of state slots to
2476 * match the new array size. The number of slots per array entry
2477 * is not known. It seems safe to assume that the total number of
2478 * slots is an integer multiple of the number of array elements.
2479 * Determine the number of slots per array element by dividing by
2480 * the old (total) size.
2481 */
2482 const unsigned num_slots = var->get_num_state_slots();
2483 if (num_slots > 0) {
2484 var->set_num_state_slots((size + 1)
2485 * (num_slots / var->type->length));
2486 }
2487
2488 var->type = glsl_type::get_array_instance(var->type->fields.array,
2489 size + 1);
2490 types_were_updated = true;
2491 }
2492 }
2493
2494 /* Update the types of dereferences in case we changed any. */
2495 if (types_were_updated) {
2496 deref_type_updater v;
2497 v.run(prog->_LinkedShaders[i]->ir);
2498 }
2499 }
2500 }
2501
2502 /**
2503 * Resize tessellation evaluation per-vertex inputs to the size of
2504 * tessellation control per-vertex outputs.
2505 */
2506 static void
2507 resize_tes_inputs(struct gl_context *ctx,
2508 struct gl_shader_program *prog)
2509 {
2510 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2511 return;
2512
2513 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2514 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2515
2516 /* If no control shader is present, then the TES inputs are statically
2517 * sized to MaxPatchVertices; the actual size of the arrays won't be
2518 * known until draw time.
2519 */
2520 const int num_vertices = tcs
2521 ? tcs->Program->info.tess.tcs_vertices_out
2522 : ctx->Const.MaxPatchVertices;
2523
2524 array_resize_visitor input_resize_visitor(num_vertices, prog,
2525 MESA_SHADER_TESS_EVAL);
2526 foreach_in_list(ir_instruction, ir, tes->ir) {
2527 ir->accept(&input_resize_visitor);
2528 }
2529
2530 if (tcs) {
2531 /* Convert the gl_PatchVerticesIn system value into a constant, since
2532 * the value is known at this point.
2533 */
2534 foreach_in_list(ir_instruction, ir, tes->ir) {
2535 ir_variable *var = ir->as_variable();
2536 if (var && var->data.mode == ir_var_system_value &&
2537 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2538 void *mem_ctx = ralloc_parent(var);
2539 var->data.location = 0;
2540 var->data.explicit_location = false;
2541 var->data.mode = ir_var_auto;
2542 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2543 }
2544 }
2545 }
2546 }
2547
2548 /**
2549 * Find a contiguous set of available bits in a bitmask.
2550 *
2551 * \param used_mask Bits representing used (1) and unused (0) locations
2552 * \param needed_count Number of contiguous bits needed.
2553 *
2554 * \return
2555 * Base location of the available bits on success or -1 on failure.
2556 */
2557 static int
2558 find_available_slots(unsigned used_mask, unsigned needed_count)
2559 {
2560 unsigned needed_mask = (1 << needed_count) - 1;
2561 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2562
2563 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2564 * cannot optimize possibly infinite loops" for the loop below.
2565 */
2566 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2567 return -1;
2568
2569 for (int i = 0; i <= max_bit_to_test; i++) {
2570 if ((needed_mask & ~used_mask) == needed_mask)
2571 return i;
2572
2573 needed_mask <<= 1;
2574 }
2575
2576 return -1;
2577 }
2578
2579
2580 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2581
2582 /**
2583 * Assign locations for either VS inputs or FS outputs
2584 *
2585 * \param mem_ctx Temporary ralloc context used for linking
2586 * \param prog Shader program whose variables need locations assigned
2587 * \param constants Driver specific constant values for the program.
2588 * \param target_index Selector for the program target to receive location
2589 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2590 * \c MESA_SHADER_FRAGMENT.
2591 *
2592 * \return
2593 * If locations are successfully assigned, true is returned. Otherwise an
2594 * error is emitted to the shader link log and false is returned.
2595 */
2596 static bool
2597 assign_attribute_or_color_locations(void *mem_ctx,
2598 gl_shader_program *prog,
2599 struct gl_constants *constants,
2600 unsigned target_index)
2601 {
2602 /* Maximum number of generic locations. This corresponds to either the
2603 * maximum number of draw buffers or the maximum number of generic
2604 * attributes.
2605 */
2606 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2607 constants->Program[target_index].MaxAttribs :
2608 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2609
2610 /* Mark invalid locations as being used.
2611 */
2612 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2613 unsigned double_storage_locations = 0;
2614
2615 assert((target_index == MESA_SHADER_VERTEX)
2616 || (target_index == MESA_SHADER_FRAGMENT));
2617
2618 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2619 if (sh == NULL)
2620 return true;
2621
2622 /* Operate in a total of four passes.
2623 *
2624 * 1. Invalidate the location assignments for all vertex shader inputs.
2625 *
2626 * 2. Assign locations for inputs that have user-defined (via
2627 * glBindVertexAttribLocation) locations and outputs that have
2628 * user-defined locations (via glBindFragDataLocation).
2629 *
2630 * 3. Sort the attributes without assigned locations by number of slots
2631 * required in decreasing order. Fragmentation caused by attribute
2632 * locations assigned by the application may prevent large attributes
2633 * from having enough contiguous space.
2634 *
2635 * 4. Assign locations to any inputs without assigned locations.
2636 */
2637
2638 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2639 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2640
2641 const enum ir_variable_mode direction =
2642 (target_index == MESA_SHADER_VERTEX)
2643 ? ir_var_shader_in : ir_var_shader_out;
2644
2645
2646 /* Temporary storage for the set of attributes that need locations assigned.
2647 */
2648 struct temp_attr {
2649 unsigned slots;
2650 ir_variable *var;
2651
2652 /* Used below in the call to qsort. */
2653 static int compare(const void *a, const void *b)
2654 {
2655 const temp_attr *const l = (const temp_attr *) a;
2656 const temp_attr *const r = (const temp_attr *) b;
2657
2658 /* Reversed because we want a descending order sort below. */
2659 return r->slots - l->slots;
2660 }
2661 } to_assign[32];
2662 assert(max_index <= 32);
2663
2664 /* Temporary array for the set of attributes that have locations assigned,
2665 * for the purpose of checking overlapping slots/components of (non-ES)
2666 * fragment shader outputs.
2667 */
2668 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2669 unsigned assigned_attr = 0;
2670
2671 unsigned num_attr = 0;
2672
2673 foreach_in_list(ir_instruction, node, sh->ir) {
2674 ir_variable *const var = node->as_variable();
2675
2676 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2677 continue;
2678
2679 if (var->data.explicit_location) {
2680 var->data.is_unmatched_generic_inout = 0;
2681 if ((var->data.location >= (int)(max_index + generic_base))
2682 || (var->data.location < 0)) {
2683 linker_error(prog,
2684 "invalid explicit location %d specified for `%s'\n",
2685 (var->data.location < 0)
2686 ? var->data.location
2687 : var->data.location - generic_base,
2688 var->name);
2689 return false;
2690 }
2691 } else if (target_index == MESA_SHADER_VERTEX) {
2692 unsigned binding;
2693
2694 if (prog->AttributeBindings->get(binding, var->name)) {
2695 assert(binding >= VERT_ATTRIB_GENERIC0);
2696 var->data.location = binding;
2697 var->data.is_unmatched_generic_inout = 0;
2698 }
2699 } else if (target_index == MESA_SHADER_FRAGMENT) {
2700 unsigned binding;
2701 unsigned index;
2702 const char *name = var->name;
2703 const glsl_type *type = var->type;
2704
2705 while (type) {
2706 /* Check if there's a binding for the variable name */
2707 if (prog->FragDataBindings->get(binding, name)) {
2708 assert(binding >= FRAG_RESULT_DATA0);
2709 var->data.location = binding;
2710 var->data.is_unmatched_generic_inout = 0;
2711
2712 if (prog->FragDataIndexBindings->get(index, name)) {
2713 var->data.index = index;
2714 }
2715 break;
2716 }
2717
2718 /* If not, but it's an array type, look for name[0] */
2719 if (type->is_array()) {
2720 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2721 type = type->fields.array;
2722 continue;
2723 }
2724
2725 break;
2726 }
2727 }
2728
2729 if (strcmp(var->name, "gl_LastFragData") == 0)
2730 continue;
2731
2732 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2733 *
2734 * "Output binding assignments will cause LinkProgram to fail:
2735 * ...
2736 * If the program has an active output assigned to a location greater
2737 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2738 * an active output assigned an index greater than or equal to one;"
2739 */
2740 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2741 var->data.location - generic_base >=
2742 (int) constants->MaxDualSourceDrawBuffers) {
2743 linker_error(prog,
2744 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2745 "with index %u for %s\n",
2746 var->data.location - generic_base, var->data.index,
2747 var->name);
2748 return false;
2749 }
2750
2751 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2752
2753 /* If the variable is not a built-in and has a location statically
2754 * assigned in the shader (presumably via a layout qualifier), make sure
2755 * that it doesn't collide with other assigned locations. Otherwise,
2756 * add it to the list of variables that need linker-assigned locations.
2757 */
2758 if (var->data.location != -1) {
2759 if (var->data.location >= generic_base && var->data.index < 1) {
2760 /* From page 61 of the OpenGL 4.0 spec:
2761 *
2762 * "LinkProgram will fail if the attribute bindings assigned
2763 * by BindAttribLocation do not leave not enough space to
2764 * assign a location for an active matrix attribute or an
2765 * active attribute array, both of which require multiple
2766 * contiguous generic attributes."
2767 *
2768 * I think above text prohibits the aliasing of explicit and
2769 * automatic assignments. But, aliasing is allowed in manual
2770 * assignments of attribute locations. See below comments for
2771 * the details.
2772 *
2773 * From OpenGL 4.0 spec, page 61:
2774 *
2775 * "It is possible for an application to bind more than one
2776 * attribute name to the same location. This is referred to as
2777 * aliasing. This will only work if only one of the aliased
2778 * attributes is active in the executable program, or if no
2779 * path through the shader consumes more than one attribute of
2780 * a set of attributes aliased to the same location. A link
2781 * error can occur if the linker determines that every path
2782 * through the shader consumes multiple aliased attributes,
2783 * but implementations are not required to generate an error
2784 * in this case."
2785 *
2786 * From GLSL 4.30 spec, page 54:
2787 *
2788 * "A program will fail to link if any two non-vertex shader
2789 * input variables are assigned to the same location. For
2790 * vertex shaders, multiple input variables may be assigned
2791 * to the same location using either layout qualifiers or via
2792 * the OpenGL API. However, such aliasing is intended only to
2793 * support vertex shaders where each execution path accesses
2794 * at most one input per each location. Implementations are
2795 * permitted, but not required, to generate link-time errors
2796 * if they detect that every path through the vertex shader
2797 * executable accesses multiple inputs assigned to any single
2798 * location. For all shader types, a program will fail to link
2799 * if explicit location assignments leave the linker unable
2800 * to find space for other variables without explicit
2801 * assignments."
2802 *
2803 * From OpenGL ES 3.0 spec, page 56:
2804 *
2805 * "Binding more than one attribute name to the same location
2806 * is referred to as aliasing, and is not permitted in OpenGL
2807 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2808 * fail when this condition exists. However, aliasing is
2809 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2810 * This will only work if only one of the aliased attributes
2811 * is active in the executable program, or if no path through
2812 * the shader consumes more than one attribute of a set of
2813 * attributes aliased to the same location. A link error can
2814 * occur if the linker determines that every path through the
2815 * shader consumes multiple aliased attributes, but implemen-
2816 * tations are not required to generate an error in this case."
2817 *
2818 * After looking at above references from OpenGL, OpenGL ES and
2819 * GLSL specifications, we allow aliasing of vertex input variables
2820 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2821 *
2822 * NOTE: This is not required by the spec but its worth mentioning
2823 * here that we're not doing anything to make sure that no path
2824 * through the vertex shader executable accesses multiple inputs
2825 * assigned to any single location.
2826 */
2827
2828 /* Mask representing the contiguous slots that will be used by
2829 * this attribute.
2830 */
2831 const unsigned attr = var->data.location - generic_base;
2832 const unsigned use_mask = (1 << slots) - 1;
2833 const char *const string = (target_index == MESA_SHADER_VERTEX)
2834 ? "vertex shader input" : "fragment shader output";
2835
2836 /* Generate a link error if the requested locations for this
2837 * attribute exceed the maximum allowed attribute location.
2838 */
2839 if (attr + slots > max_index) {
2840 linker_error(prog,
2841 "insufficient contiguous locations "
2842 "available for %s `%s' %d %d %d\n", string,
2843 var->name, used_locations, use_mask, attr);
2844 return false;
2845 }
2846
2847 /* Generate a link error if the set of bits requested for this
2848 * attribute overlaps any previously allocated bits.
2849 */
2850 if ((~(use_mask << attr) & used_locations) != used_locations) {
2851 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2852 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2853 * 4.40 spec:
2854 *
2855 * "Additionally, for fragment shader outputs, if two
2856 * variables are placed within the same location, they
2857 * must have the same underlying type (floating-point or
2858 * integer). No component aliasing of output variables or
2859 * members is allowed.
2860 */
2861 for (unsigned i = 0; i < assigned_attr; i++) {
2862 unsigned assigned_slots =
2863 assigned[i]->type->count_attribute_slots(false);
2864 unsigned assig_attr =
2865 assigned[i]->data.location - generic_base;
2866 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2867
2868 if ((assigned_use_mask << assig_attr) &
2869 (use_mask << attr)) {
2870
2871 const glsl_type *assigned_type =
2872 assigned[i]->type->without_array();
2873 const glsl_type *type = var->type->without_array();
2874 if (assigned_type->base_type != type->base_type) {
2875 linker_error(prog, "types do not match for aliased"
2876 " %ss %s and %s\n", string,
2877 assigned[i]->name, var->name);
2878 return false;
2879 }
2880
2881 unsigned assigned_component_mask =
2882 ((1 << assigned_type->vector_elements) - 1) <<
2883 assigned[i]->data.location_frac;
2884 unsigned component_mask =
2885 ((1 << type->vector_elements) - 1) <<
2886 var->data.location_frac;
2887 if (assigned_component_mask & component_mask) {
2888 linker_error(prog, "overlapping component is "
2889 "assigned to %ss %s and %s "
2890 "(component=%d)\n",
2891 string, assigned[i]->name, var->name,
2892 var->data.location_frac);
2893 return false;
2894 }
2895 }
2896 }
2897 } else if (target_index == MESA_SHADER_FRAGMENT ||
2898 (prog->IsES && prog->data->Version >= 300)) {
2899 linker_error(prog, "overlapping location is assigned "
2900 "to %s `%s' %d %d %d\n", string, var->name,
2901 used_locations, use_mask, attr);
2902 return false;
2903 } else {
2904 linker_warning(prog, "overlapping location is assigned "
2905 "to %s `%s' %d %d %d\n", string, var->name,
2906 used_locations, use_mask, attr);
2907 }
2908 }
2909
2910 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2911 /* Only track assigned variables for non-ES fragment shaders
2912 * to avoid overflowing the array.
2913 *
2914 * At most one variable per fragment output component should
2915 * reach this.
2916 */
2917 assert(assigned_attr < ARRAY_SIZE(assigned));
2918 assigned[assigned_attr] = var;
2919 assigned_attr++;
2920 }
2921
2922 used_locations |= (use_mask << attr);
2923
2924 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2925 *
2926 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2927 * active attribute variables may fail to link, unless
2928 * device-dependent optimizations are able to make the program
2929 * fit within available hardware resources. For the purposes
2930 * of this test, attribute variables of the type dvec3, dvec4,
2931 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2932 * count as consuming twice as many attributes as equivalent
2933 * single-precision types. While these types use the same number
2934 * of generic attributes as their single-precision equivalents,
2935 * implementations are permitted to consume two single-precision
2936 * vectors of internal storage for each three- or four-component
2937 * double-precision vector."
2938 *
2939 * Mark this attribute slot as taking up twice as much space
2940 * so we can count it properly against limits. According to
2941 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2942 * is optional behavior, but it seems preferable.
2943 */
2944 if (var->type->without_array()->is_dual_slot())
2945 double_storage_locations |= (use_mask << attr);
2946 }
2947
2948 continue;
2949 }
2950
2951 if (num_attr >= max_index) {
2952 linker_error(prog, "too many %s (max %u)",
2953 target_index == MESA_SHADER_VERTEX ?
2954 "vertex shader inputs" : "fragment shader outputs",
2955 max_index);
2956 return false;
2957 }
2958 to_assign[num_attr].slots = slots;
2959 to_assign[num_attr].var = var;
2960 num_attr++;
2961 }
2962
2963 if (target_index == MESA_SHADER_VERTEX) {
2964 unsigned total_attribs_size =
2965 _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
2966 _mesa_bitcount(double_storage_locations);
2967 if (total_attribs_size > max_index) {
2968 linker_error(prog,
2969 "attempt to use %d vertex attribute slots only %d available ",
2970 total_attribs_size, max_index);
2971 return false;
2972 }
2973 }
2974
2975 /* If all of the attributes were assigned locations by the application (or
2976 * are built-in attributes with fixed locations), return early. This should
2977 * be the common case.
2978 */
2979 if (num_attr == 0)
2980 return true;
2981
2982 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2983
2984 if (target_index == MESA_SHADER_VERTEX) {
2985 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2986 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2987 * reserved to prevent it from being automatically allocated below.
2988 */
2989 find_deref_visitor find("gl_Vertex");
2990 find.run(sh->ir);
2991 if (find.variable_found())
2992 used_locations |= (1 << 0);
2993 }
2994
2995 for (unsigned i = 0; i < num_attr; i++) {
2996 /* Mask representing the contiguous slots that will be used by this
2997 * attribute.
2998 */
2999 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3000
3001 int location = find_available_slots(used_locations, to_assign[i].slots);
3002
3003 if (location < 0) {
3004 const char *const string = (target_index == MESA_SHADER_VERTEX)
3005 ? "vertex shader input" : "fragment shader output";
3006
3007 linker_error(prog,
3008 "insufficient contiguous locations "
3009 "available for %s `%s'\n",
3010 string, to_assign[i].var->name);
3011 return false;
3012 }
3013
3014 to_assign[i].var->data.location = generic_base + location;
3015 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3016 used_locations |= (use_mask << location);
3017
3018 if (to_assign[i].var->type->without_array()->is_dual_slot())
3019 double_storage_locations |= (use_mask << location);
3020 }
3021
3022 /* Now that we have all the locations, from the GL 4.5 core spec, section
3023 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3024 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3025 * as equivalent single-precision types.
3026 */
3027 if (target_index == MESA_SHADER_VERTEX) {
3028 unsigned total_attribs_size =
3029 _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3030 _mesa_bitcount(double_storage_locations);
3031 if (total_attribs_size > max_index) {
3032 linker_error(prog,
3033 "attempt to use %d vertex attribute slots only %d available ",
3034 total_attribs_size, max_index);
3035 return false;
3036 }
3037 }
3038
3039 return true;
3040 }
3041
3042 /**
3043 * Match explicit locations of outputs to inputs and deactivate the
3044 * unmatch flag if found so we don't optimise them away.
3045 */
3046 static void
3047 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3048 gl_linked_shader *consumer)
3049 {
3050 glsl_symbol_table parameters;
3051 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3052 { {NULL, NULL} };
3053
3054 /* Find all shader outputs in the "producer" stage.
3055 */
3056 foreach_in_list(ir_instruction, node, producer->ir) {
3057 ir_variable *const var = node->as_variable();
3058
3059 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3060 continue;
3061
3062 if (var->data.explicit_location &&
3063 var->data.location >= VARYING_SLOT_VAR0) {
3064 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3065 if (explicit_locations[idx][var->data.location_frac] == NULL)
3066 explicit_locations[idx][var->data.location_frac] = var;
3067 }
3068 }
3069
3070 /* Match inputs to outputs */
3071 foreach_in_list(ir_instruction, node, consumer->ir) {
3072 ir_variable *const input = node->as_variable();
3073
3074 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3075 continue;
3076
3077 ir_variable *output = NULL;
3078 if (input->data.explicit_location
3079 && input->data.location >= VARYING_SLOT_VAR0) {
3080 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3081 [input->data.location_frac];
3082
3083 if (output != NULL){
3084 input->data.is_unmatched_generic_inout = 0;
3085 output->data.is_unmatched_generic_inout = 0;
3086 }
3087 }
3088 }
3089 }
3090
3091 /**
3092 * Store the gl_FragDepth layout in the gl_shader_program struct.
3093 */
3094 static void
3095 store_fragdepth_layout(struct gl_shader_program *prog)
3096 {
3097 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3098 return;
3099 }
3100
3101 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3102
3103 /* We don't look up the gl_FragDepth symbol directly because if
3104 * gl_FragDepth is not used in the shader, it's removed from the IR.
3105 * However, the symbol won't be removed from the symbol table.
3106 *
3107 * We're only interested in the cases where the variable is NOT removed
3108 * from the IR.
3109 */
3110 foreach_in_list(ir_instruction, node, ir) {
3111 ir_variable *const var = node->as_variable();
3112
3113 if (var == NULL || var->data.mode != ir_var_shader_out) {
3114 continue;
3115 }
3116
3117 if (strcmp(var->name, "gl_FragDepth") == 0) {
3118 switch (var->data.depth_layout) {
3119 case ir_depth_layout_none:
3120 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3121 return;
3122 case ir_depth_layout_any:
3123 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3124 return;
3125 case ir_depth_layout_greater:
3126 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3127 return;
3128 case ir_depth_layout_less:
3129 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3130 return;
3131 case ir_depth_layout_unchanged:
3132 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3133 return;
3134 default:
3135 assert(0);
3136 return;
3137 }
3138 }
3139 }
3140 }
3141
3142 /**
3143 * Validate the resources used by a program versus the implementation limits
3144 */
3145 static void
3146 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3147 {
3148 unsigned total_uniform_blocks = 0;
3149 unsigned total_shader_storage_blocks = 0;
3150
3151 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3152 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3153
3154 if (sh == NULL)
3155 continue;
3156
3157 if (sh->Program->info.num_textures >
3158 ctx->Const.Program[i].MaxTextureImageUnits) {
3159 linker_error(prog, "Too many %s shader texture samplers\n",
3160 _mesa_shader_stage_to_string(i));
3161 }
3162
3163 if (sh->num_uniform_components >
3164 ctx->Const.Program[i].MaxUniformComponents) {
3165 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3166 linker_warning(prog, "Too many %s shader default uniform block "
3167 "components, but the driver will try to optimize "
3168 "them out; this is non-portable out-of-spec "
3169 "behavior\n",
3170 _mesa_shader_stage_to_string(i));
3171 } else {
3172 linker_error(prog, "Too many %s shader default uniform block "
3173 "components\n",
3174 _mesa_shader_stage_to_string(i));
3175 }
3176 }
3177
3178 if (sh->num_combined_uniform_components >
3179 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3180 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3181 linker_warning(prog, "Too many %s shader uniform components, "
3182 "but the driver will try to optimize them out; "
3183 "this is non-portable out-of-spec behavior\n",
3184 _mesa_shader_stage_to_string(i));
3185 } else {
3186 linker_error(prog, "Too many %s shader uniform components\n",
3187 _mesa_shader_stage_to_string(i));
3188 }
3189 }
3190
3191 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3192 total_uniform_blocks += sh->Program->info.num_ubos;
3193
3194 const unsigned max_uniform_blocks =
3195 ctx->Const.Program[i].MaxUniformBlocks;
3196 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3197 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3198 _mesa_shader_stage_to_string(i),
3199 sh->Program->info.num_ubos, max_uniform_blocks);
3200 }
3201
3202 const unsigned max_shader_storage_blocks =
3203 ctx->Const.Program[i].MaxShaderStorageBlocks;
3204 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3205 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3206 _mesa_shader_stage_to_string(i),
3207 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3208 }
3209 }
3210
3211 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3212 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3213 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3214 }
3215
3216 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3217 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3218 total_shader_storage_blocks,
3219 ctx->Const.MaxCombinedShaderStorageBlocks);
3220 }
3221
3222 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3223 if (prog->data->UniformBlocks[i].UniformBufferSize >
3224 ctx->Const.MaxUniformBlockSize) {
3225 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3226 prog->data->UniformBlocks[i].Name,
3227 prog->data->UniformBlocks[i].UniformBufferSize,
3228 ctx->Const.MaxUniformBlockSize);
3229 }
3230 }
3231
3232 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3233 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3234 ctx->Const.MaxShaderStorageBlockSize) {
3235 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3236 prog->data->ShaderStorageBlocks[i].Name,
3237 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3238 ctx->Const.MaxShaderStorageBlockSize);
3239 }
3240 }
3241 }
3242
3243 static void
3244 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3245 {
3246 unsigned mask = prog->data->linked_stages;
3247 while (mask) {
3248 const int i = u_bit_scan(&mask);
3249 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3250
3251 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3252 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3253 continue;
3254
3255 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3256
3257 if (!uni)
3258 continue;
3259
3260 int count = 0;
3261 if (p->sh.NumSubroutineFunctions == 0) {
3262 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3263 continue;
3264 }
3265 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3266 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3267 for (int k = 0; k < fn->num_compat_types; k++) {
3268 if (fn->types[k] == uni->type) {
3269 count++;
3270 break;
3271 }
3272 }
3273 }
3274 uni->num_compatible_subroutines = count;
3275 }
3276 }
3277 }
3278
3279 static void
3280 check_subroutine_resources(struct gl_shader_program *prog)
3281 {
3282 unsigned mask = prog->data->linked_stages;
3283 while (mask) {
3284 const int i = u_bit_scan(&mask);
3285 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3286
3287 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3288 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3289 _mesa_shader_stage_to_string(i));
3290 }
3291 }
3292 }
3293 /**
3294 * Validate shader image resources.
3295 */
3296 static void
3297 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3298 {
3299 unsigned total_image_units = 0;
3300 unsigned fragment_outputs = 0;
3301 unsigned total_shader_storage_blocks = 0;
3302
3303 if (!ctx->Extensions.ARB_shader_image_load_store)
3304 return;
3305
3306 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3307 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3308
3309 if (sh) {
3310 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3311 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3312 _mesa_shader_stage_to_string(i),
3313 sh->Program->info.num_images,
3314 ctx->Const.Program[i].MaxImageUniforms);
3315
3316 total_image_units += sh->Program->info.num_images;
3317 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3318
3319 if (i == MESA_SHADER_FRAGMENT) {
3320 foreach_in_list(ir_instruction, node, sh->ir) {
3321 ir_variable *var = node->as_variable();
3322 if (var && var->data.mode == ir_var_shader_out)
3323 /* since there are no double fs outputs - pass false */
3324 fragment_outputs += var->type->count_attribute_slots(false);
3325 }
3326 }
3327 }
3328 }
3329
3330 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3331 linker_error(prog, "Too many combined image uniforms\n");
3332
3333 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3334 ctx->Const.MaxCombinedShaderOutputResources)
3335 linker_error(prog, "Too many combined image uniforms, shader storage "
3336 " buffers and fragment outputs\n");
3337 }
3338
3339
3340 /**
3341 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3342 * for a variable, checks for overlaps between other uniforms using explicit
3343 * locations.
3344 */
3345 static int
3346 reserve_explicit_locations(struct gl_shader_program *prog,
3347 string_to_uint_map *map, ir_variable *var)
3348 {
3349 unsigned slots = var->type->uniform_locations();
3350 unsigned max_loc = var->data.location + slots - 1;
3351 unsigned return_value = slots;
3352
3353 /* Resize remap table if locations do not fit in the current one. */
3354 if (max_loc + 1 > prog->NumUniformRemapTable) {
3355 prog->UniformRemapTable =
3356 reralloc(prog, prog->UniformRemapTable,
3357 gl_uniform_storage *,
3358 max_loc + 1);
3359
3360 if (!prog->UniformRemapTable) {
3361 linker_error(prog, "Out of memory during linking.\n");
3362 return -1;
3363 }
3364
3365 /* Initialize allocated space. */
3366 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3367 prog->UniformRemapTable[i] = NULL;
3368
3369 prog->NumUniformRemapTable = max_loc + 1;
3370 }
3371
3372 for (unsigned i = 0; i < slots; i++) {
3373 unsigned loc = var->data.location + i;
3374
3375 /* Check if location is already used. */
3376 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3377
3378 /* Possibly same uniform from a different stage, this is ok. */
3379 unsigned hash_loc;
3380 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3381 return_value = 0;
3382 continue;
3383 }
3384
3385 /* ARB_explicit_uniform_location specification states:
3386 *
3387 * "No two default-block uniform variables in the program can have
3388 * the same location, even if they are unused, otherwise a compiler
3389 * or linker error will be generated."
3390 */
3391 linker_error(prog,
3392 "location qualifier for uniform %s overlaps "
3393 "previously used location\n",
3394 var->name);
3395 return -1;
3396 }
3397
3398 /* Initialize location as inactive before optimization
3399 * rounds and location assignment.
3400 */
3401 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3402 }
3403
3404 /* Note, base location used for arrays. */
3405 map->put(var->data.location, var->name);
3406
3407 return return_value;
3408 }
3409
3410 static bool
3411 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3412 struct gl_program *p,
3413 ir_variable *var)
3414 {
3415 unsigned slots = var->type->uniform_locations();
3416 unsigned max_loc = var->data.location + slots - 1;
3417
3418 /* Resize remap table if locations do not fit in the current one. */
3419 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3420 p->sh.SubroutineUniformRemapTable =
3421 reralloc(p, p->sh.SubroutineUniformRemapTable,
3422 gl_uniform_storage *,
3423 max_loc + 1);
3424
3425 if (!p->sh.SubroutineUniformRemapTable) {
3426 linker_error(prog, "Out of memory during linking.\n");
3427 return false;
3428 }
3429
3430 /* Initialize allocated space. */
3431 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3432 p->sh.SubroutineUniformRemapTable[i] = NULL;
3433
3434 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3435 }
3436
3437 for (unsigned i = 0; i < slots; i++) {
3438 unsigned loc = var->data.location + i;
3439
3440 /* Check if location is already used. */
3441 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3442
3443 /* ARB_explicit_uniform_location specification states:
3444 * "No two subroutine uniform variables can have the same location
3445 * in the same shader stage, otherwise a compiler or linker error
3446 * will be generated."
3447 */
3448 linker_error(prog,
3449 "location qualifier for uniform %s overlaps "
3450 "previously used location\n",
3451 var->name);
3452 return false;
3453 }
3454
3455 /* Initialize location as inactive before optimization
3456 * rounds and location assignment.
3457 */
3458 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3459 }
3460
3461 return true;
3462 }
3463 /**
3464 * Check and reserve all explicit uniform locations, called before
3465 * any optimizations happen to handle also inactive uniforms and
3466 * inactive array elements that may get trimmed away.
3467 */
3468 static void
3469 check_explicit_uniform_locations(struct gl_context *ctx,
3470 struct gl_shader_program *prog)
3471 {
3472 prog->NumExplicitUniformLocations = 0;
3473
3474 if (!ctx->Extensions.ARB_explicit_uniform_location)
3475 return;
3476
3477 /* This map is used to detect if overlapping explicit locations
3478 * occur with the same uniform (from different stage) or a different one.
3479 */
3480 string_to_uint_map *uniform_map = new string_to_uint_map;
3481
3482 if (!uniform_map) {
3483 linker_error(prog, "Out of memory during linking.\n");
3484 return;
3485 }
3486
3487 unsigned entries_total = 0;
3488 unsigned mask = prog->data->linked_stages;
3489 while (mask) {
3490 const int i = u_bit_scan(&mask);
3491 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3492
3493 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3494 ir_variable *var = node->as_variable();
3495 if (!var || var->data.mode != ir_var_uniform)
3496 continue;
3497
3498 if (var->data.explicit_location) {
3499 bool ret = false;
3500 if (var->type->without_array()->is_subroutine())
3501 ret = reserve_subroutine_explicit_locations(prog, p, var);
3502 else {
3503 int slots = reserve_explicit_locations(prog, uniform_map,
3504 var);
3505 if (slots != -1) {
3506 ret = true;
3507 entries_total += slots;
3508 }
3509 }
3510 if (!ret) {
3511 delete uniform_map;
3512 return;
3513 }
3514 }
3515 }
3516 }
3517
3518 struct empty_uniform_block *current_block = NULL;
3519
3520 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3521 /* We found empty space in UniformRemapTable. */
3522 if (prog->UniformRemapTable[i] == NULL) {
3523 /* We've found the beginning of a new continous block of empty slots */
3524 if (!current_block || current_block->start + current_block->slots != i) {
3525 current_block = rzalloc(prog, struct empty_uniform_block);
3526 current_block->start = i;
3527 exec_list_push_tail(&prog->EmptyUniformLocations,
3528 &current_block->link);
3529 }
3530
3531 /* The current block continues, so we simply increment its slots */
3532 current_block->slots++;
3533 }
3534 }
3535
3536 delete uniform_map;
3537 prog->NumExplicitUniformLocations = entries_total;
3538 }
3539
3540 static bool
3541 should_add_buffer_variable(struct gl_shader_program *shProg,
3542 GLenum type, const char *name)
3543 {
3544 bool found_interface = false;
3545 unsigned block_name_len = 0;
3546 const char *block_name_dot = strchr(name, '.');
3547
3548 /* These rules only apply to buffer variables. So we return
3549 * true for the rest of types.
3550 */
3551 if (type != GL_BUFFER_VARIABLE)
3552 return true;
3553
3554 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3555 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3556 block_name_len = strlen(block_name);
3557
3558 const char *block_square_bracket = strchr(block_name, '[');
3559 if (block_square_bracket) {
3560 /* The block is part of an array of named interfaces,
3561 * for the name comparison we ignore the "[x]" part.
3562 */
3563 block_name_len -= strlen(block_square_bracket);
3564 }
3565
3566 if (block_name_dot) {
3567 /* Check if the variable name starts with the interface
3568 * name. The interface name (if present) should have the
3569 * length than the interface block name we are comparing to.
3570 */
3571 unsigned len = strlen(name) - strlen(block_name_dot);
3572 if (len != block_name_len)
3573 continue;
3574 }
3575
3576 if (strncmp(block_name, name, block_name_len) == 0) {
3577 found_interface = true;
3578 break;
3579 }
3580 }
3581
3582 /* We remove the interface name from the buffer variable name,
3583 * including the dot that follows it.
3584 */
3585 if (found_interface)
3586 name = name + block_name_len + 1;
3587
3588 /* The ARB_program_interface_query spec says:
3589 *
3590 * "For an active shader storage block member declared as an array, an
3591 * entry will be generated only for the first array element, regardless
3592 * of its type. For arrays of aggregate types, the enumeration rules
3593 * are applied recursively for the single enumerated array element."
3594 */
3595 const char *struct_first_dot = strchr(name, '.');
3596 const char *first_square_bracket = strchr(name, '[');
3597
3598 /* The buffer variable is on top level and it is not an array */
3599 if (!first_square_bracket) {
3600 return true;
3601 /* The shader storage block member is a struct, then generate the entry */
3602 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3603 return true;
3604 } else {
3605 /* Shader storage block member is an array, only generate an entry for the
3606 * first array element.
3607 */
3608 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3609 return true;
3610 }
3611
3612 return false;
3613 }
3614
3615 static bool
3616 add_program_resource(struct gl_shader_program *prog,
3617 struct set *resource_set,
3618 GLenum type, const void *data, uint8_t stages)
3619 {
3620 assert(data);
3621
3622 /* If resource already exists, do not add it again. */
3623 if (_mesa_set_search(resource_set, data))
3624 return true;
3625
3626 prog->data->ProgramResourceList =
3627 reralloc(prog->data,
3628 prog->data->ProgramResourceList,
3629 gl_program_resource,
3630 prog->data->NumProgramResourceList + 1);
3631
3632 if (!prog->data->ProgramResourceList) {
3633 linker_error(prog, "Out of memory during linking.\n");
3634 return false;
3635 }
3636
3637 struct gl_program_resource *res =
3638 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3639
3640 res->Type = type;
3641 res->Data = data;
3642 res->StageReferences = stages;
3643
3644 prog->data->NumProgramResourceList++;
3645
3646 _mesa_set_add(resource_set, data);
3647
3648 return true;
3649 }
3650
3651 /* Function checks if a variable var is a packed varying and
3652 * if given name is part of packed varying's list.
3653 *
3654 * If a variable is a packed varying, it has a name like
3655 * 'packed:a,b,c' where a, b and c are separate variables.
3656 */
3657 static bool
3658 included_in_packed_varying(ir_variable *var, const char *name)
3659 {
3660 if (strncmp(var->name, "packed:", 7) != 0)
3661 return false;
3662
3663 char *list = strdup(var->name + 7);
3664 assert(list);
3665
3666 bool found = false;
3667 char *saveptr;
3668 char *token = strtok_r(list, ",", &saveptr);
3669 while (token) {
3670 if (strcmp(token, name) == 0) {
3671 found = true;
3672 break;
3673 }
3674 token = strtok_r(NULL, ",", &saveptr);
3675 }
3676 free(list);
3677 return found;
3678 }
3679
3680 /**
3681 * Function builds a stage reference bitmask from variable name.
3682 */
3683 static uint8_t
3684 build_stageref(struct gl_shader_program *shProg, const char *name,
3685 unsigned mode)
3686 {
3687 uint8_t stages = 0;
3688
3689 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3690 * used for reference mask in gl_program_resource will need to be changed.
3691 */
3692 assert(MESA_SHADER_STAGES < 8);
3693
3694 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3695 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3696 if (!sh)
3697 continue;
3698
3699 /* Shader symbol table may contain variables that have
3700 * been optimized away. Search IR for the variable instead.
3701 */
3702 foreach_in_list(ir_instruction, node, sh->ir) {
3703 ir_variable *var = node->as_variable();
3704 if (var) {
3705 unsigned baselen = strlen(var->name);
3706
3707 if (included_in_packed_varying(var, name)) {
3708 stages |= (1 << i);
3709 break;
3710 }
3711
3712 /* Type needs to match if specified, otherwise we might
3713 * pick a variable with same name but different interface.
3714 */
3715 if (var->data.mode != mode)
3716 continue;
3717
3718 if (strncmp(var->name, name, baselen) == 0) {
3719 /* Check for exact name matches but also check for arrays and
3720 * structs.
3721 */
3722 if (name[baselen] == '\0' ||
3723 name[baselen] == '[' ||
3724 name[baselen] == '.') {
3725 stages |= (1 << i);
3726 break;
3727 }
3728 }
3729 }
3730 }
3731 }
3732 return stages;
3733 }
3734
3735 /**
3736 * Create gl_shader_variable from ir_variable class.
3737 */
3738 static gl_shader_variable *
3739 create_shader_variable(struct gl_shader_program *shProg,
3740 const ir_variable *in,
3741 const char *name, const glsl_type *type,
3742 const glsl_type *interface_type,
3743 bool use_implicit_location, int location,
3744 const glsl_type *outermost_struct_type)
3745 {
3746 /* Allocate zero-initialized memory to ensure that bitfield padding
3747 * is zero.
3748 */
3749 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3750 if (!out)
3751 return NULL;
3752
3753 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3754 * expect to see gl_VertexID in the program resource list. Pretend.
3755 */
3756 if (in->data.mode == ir_var_system_value &&
3757 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3758 out->name = ralloc_strdup(shProg, "gl_VertexID");
3759 } else if ((in->data.mode == ir_var_shader_out &&
3760 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3761 (in->data.mode == ir_var_system_value &&
3762 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3763 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3764 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3765 } else if ((in->data.mode == ir_var_shader_out &&
3766 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3767 (in->data.mode == ir_var_system_value &&
3768 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3769 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3770 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3771 } else {
3772 out->name = ralloc_strdup(shProg, name);
3773 }
3774
3775 if (!out->name)
3776 return NULL;
3777
3778 /* The ARB_program_interface_query spec says:
3779 *
3780 * "Not all active variables are assigned valid locations; the
3781 * following variables will have an effective location of -1:
3782 *
3783 * * uniforms declared as atomic counters;
3784 *
3785 * * members of a uniform block;
3786 *
3787 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3788 *
3789 * * inputs or outputs not declared with a "location" layout
3790 * qualifier, except for vertex shader inputs and fragment shader
3791 * outputs."
3792 */
3793 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3794 !(in->data.explicit_location || use_implicit_location)) {
3795 out->location = -1;
3796 } else {
3797 out->location = location;
3798 }
3799
3800 out->type = type;
3801 out->outermost_struct_type = outermost_struct_type;
3802 out->interface_type = interface_type;
3803 out->component = in->data.location_frac;
3804 out->index = in->data.index;
3805 out->patch = in->data.patch;
3806 out->mode = in->data.mode;
3807 out->interpolation = in->data.interpolation;
3808 out->explicit_location = in->data.explicit_location;
3809 out->precision = in->data.precision;
3810
3811 return out;
3812 }
3813
3814 static bool
3815 add_shader_variable(const struct gl_context *ctx,
3816 struct gl_shader_program *shProg,
3817 struct set *resource_set,
3818 unsigned stage_mask,
3819 GLenum programInterface, ir_variable *var,
3820 const char *name, const glsl_type *type,
3821 bool use_implicit_location, int location,
3822 bool inouts_share_location,
3823 const glsl_type *outermost_struct_type = NULL)
3824 {
3825 const glsl_type *interface_type = var->get_interface_type();
3826
3827 if (outermost_struct_type == NULL) {
3828 if (var->data.from_named_ifc_block) {
3829 const char *interface_name = interface_type->name;
3830
3831 if (interface_type->is_array()) {
3832 /* Issue #16 of the ARB_program_interface_query spec says:
3833 *
3834 * "* If a variable is a member of an interface block without an
3835 * instance name, it is enumerated using just the variable name.
3836 *
3837 * * If a variable is a member of an interface block with an
3838 * instance name, it is enumerated as "BlockName.Member", where
3839 * "BlockName" is the name of the interface block (not the
3840 * instance name) and "Member" is the name of the variable."
3841 *
3842 * In particular, it indicates that it should be "BlockName",
3843 * not "BlockName[array length]". The conformance suite and
3844 * dEQP both require this behavior.
3845 *
3846 * Here, we unwrap the extra array level added by named interface
3847 * block array lowering so we have the correct variable type. We
3848 * also unwrap the interface type when constructing the name.
3849 *
3850 * We leave interface_type the same so that ES 3.x SSO pipeline
3851 * validation can enforce the rules requiring array length to
3852 * match on interface blocks.
3853 */
3854 type = type->fields.array;
3855
3856 interface_name = interface_type->fields.array->name;
3857 }
3858
3859 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3860 }
3861 }
3862
3863 switch (type->base_type) {
3864 case GLSL_TYPE_STRUCT: {
3865 /* The ARB_program_interface_query spec says:
3866 *
3867 * "For an active variable declared as a structure, a separate entry
3868 * will be generated for each active structure member. The name of
3869 * each entry is formed by concatenating the name of the structure,
3870 * the "." character, and the name of the structure member. If a
3871 * structure member to enumerate is itself a structure or array,
3872 * these enumeration rules are applied recursively."
3873 */
3874 if (outermost_struct_type == NULL)
3875 outermost_struct_type = type;
3876
3877 unsigned field_location = location;
3878 for (unsigned i = 0; i < type->length; i++) {
3879 const struct glsl_struct_field *field = &type->fields.structure[i];
3880 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3881 if (!add_shader_variable(ctx, shProg, resource_set,
3882 stage_mask, programInterface,
3883 var, field_name, field->type,
3884 use_implicit_location, field_location,
3885 false, outermost_struct_type))
3886 return false;
3887
3888 field_location += field->type->count_attribute_slots(false);
3889 }
3890 return true;
3891 }
3892
3893 case GLSL_TYPE_ARRAY: {
3894 /* The ARB_program_interface_query spec says:
3895 *
3896 * "For an active variable declared as an array of basic types, a
3897 * single entry will be generated, with its name string formed by
3898 * concatenating the name of the array and the string "[0]"."
3899 *
3900 * "For an active variable declared as an array of an aggregate data
3901 * type (structures or arrays), a separate entry will be generated
3902 * for each active array element, unless noted immediately below.
3903 * The name of each entry is formed by concatenating the name of
3904 * the array, the "[" character, an integer identifying the element
3905 * number, and the "]" character. These enumeration rules are
3906 * applied recursively, treating each enumerated array element as a
3907 * separate active variable."
3908 */
3909 const struct glsl_type *array_type = type->fields.array;
3910 if (array_type->base_type == GLSL_TYPE_STRUCT ||
3911 array_type->base_type == GLSL_TYPE_ARRAY) {
3912 unsigned elem_location = location;
3913 unsigned stride = inouts_share_location ? 0 :
3914 array_type->count_attribute_slots(false);
3915 for (unsigned i = 0; i < type->length; i++) {
3916 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3917 if (!add_shader_variable(ctx, shProg, resource_set,
3918 stage_mask, programInterface,
3919 var, elem, array_type,
3920 use_implicit_location, elem_location,
3921 false, outermost_struct_type))
3922 return false;
3923 elem_location += stride;
3924 }
3925 return true;
3926 }
3927 /* fallthrough */
3928 }
3929
3930 default: {
3931 /* The ARB_program_interface_query spec says:
3932 *
3933 * "For an active variable declared as a single instance of a basic
3934 * type, a single entry will be generated, using the variable name
3935 * from the shader source."
3936 */
3937 gl_shader_variable *sha_v =
3938 create_shader_variable(shProg, var, name, type, interface_type,
3939 use_implicit_location, location,
3940 outermost_struct_type);
3941 if (!sha_v)
3942 return false;
3943
3944 return add_program_resource(shProg, resource_set,
3945 programInterface, sha_v, stage_mask);
3946 }
3947 }
3948 }
3949
3950 static bool
3951 inout_has_same_location(const ir_variable *var, unsigned stage)
3952 {
3953 if (!var->data.patch &&
3954 ((var->data.mode == ir_var_shader_out &&
3955 stage == MESA_SHADER_TESS_CTRL) ||
3956 (var->data.mode == ir_var_shader_in &&
3957 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3958 stage == MESA_SHADER_GEOMETRY))))
3959 return true;
3960 else
3961 return false;
3962 }
3963
3964 static bool
3965 add_interface_variables(const struct gl_context *ctx,
3966 struct gl_shader_program *shProg,
3967 struct set *resource_set,
3968 unsigned stage, GLenum programInterface)
3969 {
3970 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3971
3972 foreach_in_list(ir_instruction, node, ir) {
3973 ir_variable *var = node->as_variable();
3974
3975 if (!var || var->data.how_declared == ir_var_hidden)
3976 continue;
3977
3978 int loc_bias;
3979
3980 switch (var->data.mode) {
3981 case ir_var_system_value:
3982 case ir_var_shader_in:
3983 if (programInterface != GL_PROGRAM_INPUT)
3984 continue;
3985 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3986 : int(VARYING_SLOT_VAR0);
3987 break;
3988 case ir_var_shader_out:
3989 if (programInterface != GL_PROGRAM_OUTPUT)
3990 continue;
3991 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3992 : int(VARYING_SLOT_VAR0);
3993 break;
3994 default:
3995 continue;
3996 };
3997
3998 if (var->data.patch)
3999 loc_bias = int(VARYING_SLOT_PATCH0);
4000
4001 /* Skip packed varyings, packed varyings are handled separately
4002 * by add_packed_varyings.
4003 */
4004 if (strncmp(var->name, "packed:", 7) == 0)
4005 continue;
4006
4007 /* Skip fragdata arrays, these are handled separately
4008 * by add_fragdata_arrays.
4009 */
4010 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4011 continue;
4012
4013 const bool vs_input_or_fs_output =
4014 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4015 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4016
4017 if (!add_shader_variable(ctx, shProg, resource_set,
4018 1 << stage, programInterface,
4019 var, var->name, var->type, vs_input_or_fs_output,
4020 var->data.location - loc_bias,
4021 inout_has_same_location(var, stage)))
4022 return false;
4023 }
4024 return true;
4025 }
4026
4027 static bool
4028 add_packed_varyings(const struct gl_context *ctx,
4029 struct gl_shader_program *shProg,
4030 struct set *resource_set,
4031 int stage, GLenum type)
4032 {
4033 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4034 GLenum iface;
4035
4036 if (!sh || !sh->packed_varyings)
4037 return true;
4038
4039 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4040 ir_variable *var = node->as_variable();
4041 if (var) {
4042 switch (var->data.mode) {
4043 case ir_var_shader_in:
4044 iface = GL_PROGRAM_INPUT;
4045 break;
4046 case ir_var_shader_out:
4047 iface = GL_PROGRAM_OUTPUT;
4048 break;
4049 default:
4050 unreachable("unexpected type");
4051 }
4052
4053 if (type == iface) {
4054 const int stage_mask =
4055 build_stageref(shProg, var->name, var->data.mode);
4056 if (!add_shader_variable(ctx, shProg, resource_set,
4057 stage_mask,
4058 iface, var, var->name, var->type, false,
4059 var->data.location - VARYING_SLOT_VAR0,
4060 inout_has_same_location(var, stage)))
4061 return false;
4062 }
4063 }
4064 }
4065 return true;
4066 }
4067
4068 static bool
4069 add_fragdata_arrays(const struct gl_context *ctx,
4070 struct gl_shader_program *shProg,
4071 struct set *resource_set)
4072 {
4073 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4074
4075 if (!sh || !sh->fragdata_arrays)
4076 return true;
4077
4078 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4079 ir_variable *var = node->as_variable();
4080 if (var) {
4081 assert(var->data.mode == ir_var_shader_out);
4082
4083 if (!add_shader_variable(ctx, shProg, resource_set,
4084 1 << MESA_SHADER_FRAGMENT,
4085 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4086 true, var->data.location - FRAG_RESULT_DATA0,
4087 false))
4088 return false;
4089 }
4090 }
4091 return true;
4092 }
4093
4094 static char*
4095 get_top_level_name(const char *name)
4096 {
4097 const char *first_dot = strchr(name, '.');
4098 const char *first_square_bracket = strchr(name, '[');
4099 int name_size = 0;
4100
4101 /* The ARB_program_interface_query spec says:
4102 *
4103 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4104 * the number of active array elements of the top-level shader storage
4105 * block member containing to the active variable is written to
4106 * <params>. If the top-level block member is not declared as an
4107 * array, the value one is written to <params>. If the top-level block
4108 * member is an array with no declared size, the value zero is written
4109 * to <params>."
4110 */
4111
4112 /* The buffer variable is on top level.*/
4113 if (!first_square_bracket && !first_dot)
4114 name_size = strlen(name);
4115 else if ((!first_square_bracket ||
4116 (first_dot && first_dot < first_square_bracket)))
4117 name_size = first_dot - name;
4118 else
4119 name_size = first_square_bracket - name;
4120
4121 return strndup(name, name_size);
4122 }
4123
4124 static char*
4125 get_var_name(const char *name)
4126 {
4127 const char *first_dot = strchr(name, '.');
4128
4129 if (!first_dot)
4130 return strdup(name);
4131
4132 return strndup(first_dot+1, strlen(first_dot) - 1);
4133 }
4134
4135 static bool
4136 is_top_level_shader_storage_block_member(const char* name,
4137 const char* interface_name,
4138 const char* field_name)
4139 {
4140 bool result = false;
4141
4142 /* If the given variable is already a top-level shader storage
4143 * block member, then return array_size = 1.
4144 * We could have two possibilities: if we have an instanced
4145 * shader storage block or not instanced.
4146 *
4147 * For the first, we check create a name as it was in top level and
4148 * compare it with the real name. If they are the same, then
4149 * the variable is already at top-level.
4150 *
4151 * Full instanced name is: interface name + '.' + var name +
4152 * NULL character
4153 */
4154 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4155 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4156 if (!full_instanced_name) {
4157 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4158 return false;
4159 }
4160
4161 snprintf(full_instanced_name, name_length, "%s.%s",
4162 interface_name, field_name);
4163
4164 /* Check if its top-level shader storage block member of an
4165 * instanced interface block, or of a unnamed interface block.
4166 */
4167 if (strcmp(name, full_instanced_name) == 0 ||
4168 strcmp(name, field_name) == 0)
4169 result = true;
4170
4171 free(full_instanced_name);
4172 return result;
4173 }
4174
4175 static int
4176 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4177 char *interface_name, char *var_name)
4178 {
4179 /* The ARB_program_interface_query spec says:
4180 *
4181 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4182 * the number of active array elements of the top-level shader storage
4183 * block member containing to the active variable is written to
4184 * <params>. If the top-level block member is not declared as an
4185 * array, the value one is written to <params>. If the top-level block
4186 * member is an array with no declared size, the value zero is written
4187 * to <params>."
4188 */
4189 if (is_top_level_shader_storage_block_member(uni->name,
4190 interface_name,
4191 var_name))
4192 return 1;
4193 else if (field->type->is_unsized_array())
4194 return 0;
4195 else if (field->type->is_array())
4196 return field->type->length;
4197
4198 return 1;
4199 }
4200
4201 static int
4202 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4203 const glsl_type *interface, const glsl_struct_field *field,
4204 char *interface_name, char *var_name)
4205 {
4206 /* The ARB_program_interface_query spec says:
4207 *
4208 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4209 * identifying the stride between array elements of the top-level
4210 * shader storage block member containing the active variable is
4211 * written to <params>. For top-level block members declared as
4212 * arrays, the value written is the difference, in basic machine units,
4213 * between the offsets of the active variable for consecutive elements
4214 * in the top-level array. For top-level block members not declared as
4215 * an array, zero is written to <params>."
4216 */
4217 if (field->type->is_array()) {
4218 const enum glsl_matrix_layout matrix_layout =
4219 glsl_matrix_layout(field->matrix_layout);
4220 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4221 const glsl_type *array_type = field->type->fields.array;
4222
4223 if (is_top_level_shader_storage_block_member(uni->name,
4224 interface_name,
4225 var_name))
4226 return 0;
4227
4228 if (GLSL_INTERFACE_PACKING_STD140 ==
4229 interface->
4230 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4231 if (array_type->is_record() || array_type->is_array())
4232 return glsl_align(array_type->std140_size(row_major), 16);
4233 else
4234 return MAX2(array_type->std140_base_alignment(row_major), 16);
4235 } else {
4236 return array_type->std430_array_stride(row_major);
4237 }
4238 }
4239 return 0;
4240 }
4241
4242 static void
4243 calculate_array_size_and_stride(struct gl_context *ctx,
4244 struct gl_shader_program *shProg,
4245 struct gl_uniform_storage *uni)
4246 {
4247 int block_index = uni->block_index;
4248 int array_size = -1;
4249 int array_stride = -1;
4250 char *var_name = get_top_level_name(uni->name);
4251 char *interface_name =
4252 get_top_level_name(uni->is_shader_storage ?
4253 shProg->data->ShaderStorageBlocks[block_index].Name :
4254 shProg->data->UniformBlocks[block_index].Name);
4255
4256 if (strcmp(var_name, interface_name) == 0) {
4257 /* Deal with instanced array of SSBOs */
4258 char *temp_name = get_var_name(uni->name);
4259 if (!temp_name) {
4260 linker_error(shProg, "Out of memory during linking.\n");
4261 goto write_top_level_array_size_and_stride;
4262 }
4263 free(var_name);
4264 var_name = get_top_level_name(temp_name);
4265 free(temp_name);
4266 if (!var_name) {
4267 linker_error(shProg, "Out of memory during linking.\n");
4268 goto write_top_level_array_size_and_stride;
4269 }
4270 }
4271
4272 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4273 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4274 if (sh == NULL)
4275 continue;
4276
4277 foreach_in_list(ir_instruction, node, sh->ir) {
4278 ir_variable *var = node->as_variable();
4279 if (!var || !var->get_interface_type() ||
4280 var->data.mode != ir_var_shader_storage)
4281 continue;
4282
4283 const glsl_type *interface = var->get_interface_type();
4284
4285 if (strcmp(interface_name, interface->name) != 0)
4286 continue;
4287
4288 for (unsigned i = 0; i < interface->length; i++) {
4289 const glsl_struct_field *field = &interface->fields.structure[i];
4290 if (strcmp(field->name, var_name) != 0)
4291 continue;
4292
4293 array_stride = get_array_stride(ctx, uni, interface, field,
4294 interface_name, var_name);
4295 array_size = get_array_size(uni, field, interface_name, var_name);
4296 goto write_top_level_array_size_and_stride;
4297 }
4298 }
4299 }
4300 write_top_level_array_size_and_stride:
4301 free(interface_name);
4302 free(var_name);
4303 uni->top_level_array_stride = array_stride;
4304 uni->top_level_array_size = array_size;
4305 }
4306
4307 /**
4308 * Builds up a list of program resources that point to existing
4309 * resource data.
4310 */
4311 void
4312 build_program_resource_list(struct gl_context *ctx,
4313 struct gl_shader_program *shProg)
4314 {
4315 /* Rebuild resource list. */
4316 if (shProg->data->ProgramResourceList) {
4317 ralloc_free(shProg->data->ProgramResourceList);
4318 shProg->data->ProgramResourceList = NULL;
4319 shProg->data->NumProgramResourceList = 0;
4320 }
4321
4322 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4323
4324 /* Determine first input and final output stage. These are used to
4325 * detect which variables should be enumerated in the resource list
4326 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4327 */
4328 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4329 if (!shProg->_LinkedShaders[i])
4330 continue;
4331 if (input_stage == MESA_SHADER_STAGES)
4332 input_stage = i;
4333 output_stage = i;
4334 }
4335
4336 /* Empty shader, no resources. */
4337 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4338 return;
4339
4340 struct set *resource_set = _mesa_set_create(NULL,
4341 _mesa_hash_pointer,
4342 _mesa_key_pointer_equal);
4343
4344 /* Program interface needs to expose varyings in case of SSO. */
4345 if (shProg->SeparateShader) {
4346 if (!add_packed_varyings(ctx, shProg, resource_set,
4347 input_stage, GL_PROGRAM_INPUT))
4348 return;
4349
4350 if (!add_packed_varyings(ctx, shProg, resource_set,
4351 output_stage, GL_PROGRAM_OUTPUT))
4352 return;
4353 }
4354
4355 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4356 return;
4357
4358 /* Add inputs and outputs to the resource list. */
4359 if (!add_interface_variables(ctx, shProg, resource_set,
4360 input_stage, GL_PROGRAM_INPUT))
4361 return;
4362
4363 if (!add_interface_variables(ctx, shProg, resource_set,
4364 output_stage, GL_PROGRAM_OUTPUT))
4365 return;
4366
4367 if (shProg->last_vert_prog) {
4368 struct gl_transform_feedback_info *linked_xfb =
4369 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4370
4371 /* Add transform feedback varyings. */
4372 if (linked_xfb->NumVarying > 0) {
4373 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4374 if (!add_program_resource(shProg, resource_set,
4375 GL_TRANSFORM_FEEDBACK_VARYING,
4376 &linked_xfb->Varyings[i], 0))
4377 return;
4378 }
4379 }
4380
4381 /* Add transform feedback buffers. */
4382 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4383 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4384 linked_xfb->Buffers[i].Binding = i;
4385 if (!add_program_resource(shProg, resource_set,
4386 GL_TRANSFORM_FEEDBACK_BUFFER,
4387 &linked_xfb->Buffers[i], 0))
4388 return;
4389 }
4390 }
4391 }
4392
4393 /* Add uniforms from uniform storage. */
4394 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4395 /* Do not add uniforms internally used by Mesa. */
4396 if (shProg->data->UniformStorage[i].hidden)
4397 continue;
4398
4399 uint8_t stageref =
4400 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4401 ir_var_uniform);
4402
4403 /* Add stagereferences for uniforms in a uniform block. */
4404 bool is_shader_storage =
4405 shProg->data->UniformStorage[i].is_shader_storage;
4406 int block_index = shProg->data->UniformStorage[i].block_index;
4407 if (block_index != -1) {
4408 stageref |= is_shader_storage ?
4409 shProg->data->ShaderStorageBlocks[block_index].stageref :
4410 shProg->data->UniformBlocks[block_index].stageref;
4411 }
4412
4413 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4414 if (!should_add_buffer_variable(shProg, type,
4415 shProg->data->UniformStorage[i].name))
4416 continue;
4417
4418 if (is_shader_storage) {
4419 calculate_array_size_and_stride(ctx, shProg,
4420 &shProg->data->UniformStorage[i]);
4421 }
4422
4423 if (!add_program_resource(shProg, resource_set, type,
4424 &shProg->data->UniformStorage[i], stageref))
4425 return;
4426 }
4427
4428 /* Add program uniform blocks. */
4429 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4430 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4431 &shProg->data->UniformBlocks[i], 0))
4432 return;
4433 }
4434
4435 /* Add program shader storage blocks. */
4436 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4437 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4438 &shProg->data->ShaderStorageBlocks[i], 0))
4439 return;
4440 }
4441
4442 /* Add atomic counter buffers. */
4443 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4444 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4445 &shProg->data->AtomicBuffers[i], 0))
4446 return;
4447 }
4448
4449 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4450 GLenum type;
4451 if (!shProg->data->UniformStorage[i].hidden)
4452 continue;
4453
4454 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4455 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4456 !shProg->data->UniformStorage[i].type->is_subroutine())
4457 continue;
4458
4459 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4460 /* add shader subroutines */
4461 if (!add_program_resource(shProg, resource_set,
4462 type, &shProg->data->UniformStorage[i], 0))
4463 return;
4464 }
4465 }
4466
4467 unsigned mask = shProg->data->linked_stages;
4468 while (mask) {
4469 const int i = u_bit_scan(&mask);
4470 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4471
4472 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4473 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4474 if (!add_program_resource(shProg, resource_set,
4475 type, &p->sh.SubroutineFunctions[j], 0))
4476 return;
4477 }
4478 }
4479
4480 _mesa_set_destroy(resource_set, NULL);
4481 }
4482
4483 /**
4484 * This check is done to make sure we allow only constant expression
4485 * indexing and "constant-index-expression" (indexing with an expression
4486 * that includes loop induction variable).
4487 */
4488 static bool
4489 validate_sampler_array_indexing(struct gl_context *ctx,
4490 struct gl_shader_program *prog)
4491 {
4492 dynamic_sampler_array_indexing_visitor v;
4493 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4494 if (prog->_LinkedShaders[i] == NULL)
4495 continue;
4496
4497 bool no_dynamic_indexing =
4498 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4499
4500 /* Search for array derefs in shader. */
4501 v.run(prog->_LinkedShaders[i]->ir);
4502 if (v.uses_dynamic_sampler_array_indexing()) {
4503 const char *msg = "sampler arrays indexed with non-constant "
4504 "expressions is forbidden in GLSL %s %u";
4505 /* Backend has indicated that it has no dynamic indexing support. */
4506 if (no_dynamic_indexing) {
4507 linker_error(prog, msg, prog->IsES ? "ES" : "",
4508 prog->data->Version);
4509 return false;
4510 } else {
4511 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4512 prog->data->Version);
4513 }
4514 }
4515 }
4516 return true;
4517 }
4518
4519 static void
4520 link_assign_subroutine_types(struct gl_shader_program *prog)
4521 {
4522 unsigned mask = prog->data->linked_stages;
4523 while (mask) {
4524 const int i = u_bit_scan(&mask);
4525 gl_program *p = prog->_LinkedShaders[i]->Program;
4526
4527 p->sh.MaxSubroutineFunctionIndex = 0;
4528 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4529 ir_function *fn = node->as_function();
4530 if (!fn)
4531 continue;
4532
4533 if (fn->is_subroutine)
4534 p->sh.NumSubroutineUniformTypes++;
4535
4536 if (!fn->num_subroutine_types)
4537 continue;
4538
4539 /* these should have been calculated earlier. */
4540 assert(fn->subroutine_index != -1);
4541 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4542 linker_error(prog, "Too many subroutine functions declared.\n");
4543 return;
4544 }
4545 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4546 struct gl_subroutine_function,
4547 p->sh.NumSubroutineFunctions + 1);
4548 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4549 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4550 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4551 ralloc_array(p, const struct glsl_type *,
4552 fn->num_subroutine_types);
4553
4554 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4555 * GLSL 4.5 spec:
4556 *
4557 * "Each subroutine with an index qualifier in the shader must be
4558 * given a unique index, otherwise a compile or link error will be
4559 * generated."
4560 */
4561 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4562 if (p->sh.SubroutineFunctions[j].index != -1 &&
4563 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4564 linker_error(prog, "each subroutine index qualifier in the "
4565 "shader must be unique\n");
4566 return;
4567 }
4568 }
4569 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4570 fn->subroutine_index;
4571
4572 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4573 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4574
4575 for (int j = 0; j < fn->num_subroutine_types; j++)
4576 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4577 p->sh.NumSubroutineFunctions++;
4578 }
4579 }
4580 }
4581
4582 static void
4583 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4584 {
4585 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4586
4587 foreach_in_list(ir_instruction, node, ir) {
4588 ir_variable *const var = node->as_variable();
4589
4590 if (var == NULL || var->data.mode != io_mode)
4591 continue;
4592
4593 /* Don't set always active on builtins that haven't been redeclared */
4594 if (var->data.how_declared == ir_var_declared_implicitly)
4595 continue;
4596
4597 var->data.always_active_io = true;
4598 }
4599 }
4600
4601 /**
4602 * When separate shader programs are enabled, only input/outputs between
4603 * the stages of a multi-stage separate program can be safely removed
4604 * from the shader interface. Other inputs/outputs must remain active.
4605 */
4606 static void
4607 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4608 {
4609 unsigned first, last;
4610 assert(prog->SeparateShader);
4611
4612 first = MESA_SHADER_STAGES;
4613 last = 0;
4614
4615 /* Determine first and last stage. Excluding the compute stage */
4616 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4617 if (!prog->_LinkedShaders[i])
4618 continue;
4619 if (first == MESA_SHADER_STAGES)
4620 first = i;
4621 last = i;
4622 }
4623
4624 if (first == MESA_SHADER_STAGES)
4625 return;
4626
4627 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4628 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4629 if (!sh)
4630 continue;
4631
4632 /* Prevent the removal of inputs to the first and outputs from the last
4633 * stage, unless they are the initial pipeline inputs or final pipeline
4634 * outputs, respectively.
4635 *
4636 * The removal of IO between shaders in the same program is always
4637 * allowed.
4638 */
4639 if (stage == first && stage != MESA_SHADER_VERTEX)
4640 set_always_active_io(sh->ir, ir_var_shader_in);
4641 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4642 set_always_active_io(sh->ir, ir_var_shader_out);
4643 }
4644 }
4645
4646 static void
4647 link_and_validate_uniforms(struct gl_context *ctx,
4648 struct gl_shader_program *prog)
4649 {
4650 update_array_sizes(prog);
4651 link_assign_uniform_locations(prog, ctx);
4652
4653 link_assign_atomic_counter_resources(ctx, prog);
4654 link_calculate_subroutine_compat(prog);
4655 check_resources(ctx, prog);
4656 check_subroutine_resources(prog);
4657 check_image_resources(ctx, prog);
4658 link_check_atomic_counter_resources(ctx, prog);
4659 }
4660
4661 static bool
4662 link_varyings_and_uniforms(unsigned first, unsigned last,
4663 struct gl_context *ctx,
4664 struct gl_shader_program *prog, void *mem_ctx)
4665 {
4666 /* Mark all generic shader inputs and outputs as unpaired. */
4667 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4668 if (prog->_LinkedShaders[i] != NULL) {
4669 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4670 }
4671 }
4672
4673 unsigned prev = first;
4674 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4675 if (prog->_LinkedShaders[i] == NULL)
4676 continue;
4677
4678 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4679 prog->_LinkedShaders[i]);
4680 prev = i;
4681 }
4682
4683 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4684 MESA_SHADER_VERTEX)) {
4685 return false;
4686 }
4687
4688 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4689 MESA_SHADER_FRAGMENT)) {
4690 return false;
4691 }
4692
4693 prog->last_vert_prog = NULL;
4694 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4695 if (prog->_LinkedShaders[i] == NULL)
4696 continue;
4697
4698 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4699 break;
4700 }
4701
4702 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4703 return false;
4704
4705 link_and_validate_uniforms(ctx, prog);
4706
4707 if (!prog->data->LinkStatus)
4708 return false;
4709
4710 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4711 if (prog->_LinkedShaders[i] == NULL)
4712 continue;
4713
4714 const struct gl_shader_compiler_options *options =
4715 &ctx->Const.ShaderCompilerOptions[i];
4716
4717 if (options->LowerBufferInterfaceBlocks)
4718 lower_ubo_reference(prog->_LinkedShaders[i],
4719 options->ClampBlockIndicesToArrayBounds,
4720 ctx->Const.UseSTD430AsDefaultPacking);
4721
4722 if (i == MESA_SHADER_COMPUTE)
4723 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4724
4725 lower_vector_derefs(prog->_LinkedShaders[i]);
4726 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4727 }
4728
4729 return true;
4730 }
4731
4732 static void
4733 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4734 unsigned stage)
4735 {
4736 if (ctx->Const.GLSLOptimizeConservatively) {
4737 /* Run it just once. */
4738 do_common_optimization(ir, true, false,
4739 &ctx->Const.ShaderCompilerOptions[stage],
4740 ctx->Const.NativeIntegers);
4741 } else {
4742 /* Repeat it until it stops making changes. */
4743 while (do_common_optimization(ir, true, false,
4744 &ctx->Const.ShaderCompilerOptions[stage],
4745 ctx->Const.NativeIntegers))
4746 ;
4747 }
4748 }
4749
4750 void
4751 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4752 {
4753 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4754 prog->data->Validated = false;
4755
4756 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4757 *
4758 * "Linking can fail for a variety of reasons as specified in the
4759 * OpenGL Shading Language Specification, as well as any of the
4760 * following reasons:
4761 *
4762 * - No shader objects are attached to program."
4763 *
4764 * The Compatibility Profile specification does not list the error. In
4765 * Compatibility Profile missing shader stages are replaced by
4766 * fixed-function. This applies to the case where all stages are
4767 * missing.
4768 */
4769 if (prog->NumShaders == 0) {
4770 if (ctx->API != API_OPENGL_COMPAT)
4771 linker_error(prog, "no shaders attached to the program\n");
4772 return;
4773 }
4774
4775 #ifdef ENABLE_SHADER_CACHE
4776 if (shader_cache_read_program_metadata(ctx, prog))
4777 return;
4778 #endif
4779
4780 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4781
4782 prog->ARB_fragment_coord_conventions_enable = false;
4783
4784 /* Separate the shaders into groups based on their type.
4785 */
4786 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4787 unsigned num_shaders[MESA_SHADER_STAGES];
4788
4789 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4790 shader_list[i] = (struct gl_shader **)
4791 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4792 num_shaders[i] = 0;
4793 }
4794
4795 unsigned min_version = UINT_MAX;
4796 unsigned max_version = 0;
4797 for (unsigned i = 0; i < prog->NumShaders; i++) {
4798 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4799 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4800
4801 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4802 linker_error(prog, "all shaders must use same shading "
4803 "language version\n");
4804 goto done;
4805 }
4806
4807 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4808 prog->ARB_fragment_coord_conventions_enable = true;
4809 }
4810
4811 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4812 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4813 num_shaders[shader_type]++;
4814 }
4815
4816 /* In desktop GLSL, different shader versions may be linked together. In
4817 * GLSL ES, all shader versions must be the same.
4818 */
4819 if (prog->Shaders[0]->IsES && min_version != max_version) {
4820 linker_error(prog, "all shaders must use same shading "
4821 "language version\n");
4822 goto done;
4823 }
4824
4825 prog->data->Version = max_version;
4826 prog->IsES = prog->Shaders[0]->IsES;
4827
4828 /* Some shaders have to be linked with some other shaders present.
4829 */
4830 if (!prog->SeparateShader) {
4831 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4832 num_shaders[MESA_SHADER_VERTEX] == 0) {
4833 linker_error(prog, "Geometry shader must be linked with "
4834 "vertex shader\n");
4835 goto done;
4836 }
4837 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4838 num_shaders[MESA_SHADER_VERTEX] == 0) {
4839 linker_error(prog, "Tessellation evaluation shader must be linked "
4840 "with vertex shader\n");
4841 goto done;
4842 }
4843 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4844 num_shaders[MESA_SHADER_VERTEX] == 0) {
4845 linker_error(prog, "Tessellation control shader must be linked with "
4846 "vertex shader\n");
4847 goto done;
4848 }
4849
4850 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4851 *
4852 * "Linking can fail for [...] any of the following reasons:
4853 *
4854 * * program contains an object to form a tessellation control
4855 * shader [...] and [...] the program is not separable and
4856 * contains no object to form a tessellation evaluation shader"
4857 *
4858 * The OpenGL spec is contradictory. It allows linking without a tess
4859 * eval shader, but that can only be used with transform feedback and
4860 * rasterization disabled. However, transform feedback isn't allowed
4861 * with GL_PATCHES, so it can't be used.
4862 *
4863 * More investigation showed that the idea of transform feedback after
4864 * a tess control shader was dropped, because some hw vendors couldn't
4865 * support tessellation without a tess eval shader, but the linker
4866 * section wasn't updated to reflect that.
4867 *
4868 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4869 * spec bug.
4870 *
4871 * Do what's reasonable and always require a tess eval shader if a tess
4872 * control shader is present.
4873 */
4874 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4875 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4876 linker_error(prog, "Tessellation control shader must be linked with "
4877 "tessellation evaluation shader\n");
4878 goto done;
4879 }
4880
4881 if (prog->IsES) {
4882 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4883 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4884 linker_error(prog, "GLSL ES requires non-separable programs "
4885 "containing a tessellation evaluation shader to also "
4886 "be linked with a tessellation control shader\n");
4887 goto done;
4888 }
4889 }
4890 }
4891
4892 /* Compute shaders have additional restrictions. */
4893 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4894 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4895 linker_error(prog, "Compute shaders may not be linked with any other "
4896 "type of shader\n");
4897 }
4898
4899 /* Link all shaders for a particular stage and validate the result.
4900 */
4901 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4902 if (num_shaders[stage] > 0) {
4903 gl_linked_shader *const sh =
4904 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4905 num_shaders[stage], false);
4906
4907 if (!prog->data->LinkStatus) {
4908 if (sh)
4909 _mesa_delete_linked_shader(ctx, sh);
4910 goto done;
4911 }
4912
4913 switch (stage) {
4914 case MESA_SHADER_VERTEX:
4915 validate_vertex_shader_executable(prog, sh, ctx);
4916 break;
4917 case MESA_SHADER_TESS_CTRL:
4918 /* nothing to be done */
4919 break;
4920 case MESA_SHADER_TESS_EVAL:
4921 validate_tess_eval_shader_executable(prog, sh, ctx);
4922 break;
4923 case MESA_SHADER_GEOMETRY:
4924 validate_geometry_shader_executable(prog, sh, ctx);
4925 break;
4926 case MESA_SHADER_FRAGMENT:
4927 validate_fragment_shader_executable(prog, sh);
4928 break;
4929 }
4930 if (!prog->data->LinkStatus) {
4931 if (sh)
4932 _mesa_delete_linked_shader(ctx, sh);
4933 goto done;
4934 }
4935
4936 prog->_LinkedShaders[stage] = sh;
4937 prog->data->linked_stages |= 1 << stage;
4938 }
4939 }
4940
4941 /* Here begins the inter-stage linking phase. Some initial validation is
4942 * performed, then locations are assigned for uniforms, attributes, and
4943 * varyings.
4944 */
4945 cross_validate_uniforms(prog);
4946 if (!prog->data->LinkStatus)
4947 goto done;
4948
4949 unsigned first, last, prev;
4950
4951 first = MESA_SHADER_STAGES;
4952 last = 0;
4953
4954 /* Determine first and last stage. */
4955 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4956 if (!prog->_LinkedShaders[i])
4957 continue;
4958 if (first == MESA_SHADER_STAGES)
4959 first = i;
4960 last = i;
4961 }
4962
4963 check_explicit_uniform_locations(ctx, prog);
4964 link_assign_subroutine_types(prog);
4965
4966 if (!prog->data->LinkStatus)
4967 goto done;
4968
4969 resize_tes_inputs(ctx, prog);
4970
4971 /* Validate the inputs of each stage with the output of the preceding
4972 * stage.
4973 */
4974 prev = first;
4975 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4976 if (prog->_LinkedShaders[i] == NULL)
4977 continue;
4978
4979 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4980 prog->_LinkedShaders[i]);
4981 if (!prog->data->LinkStatus)
4982 goto done;
4983
4984 cross_validate_outputs_to_inputs(ctx, prog,
4985 prog->_LinkedShaders[prev],
4986 prog->_LinkedShaders[i]);
4987 if (!prog->data->LinkStatus)
4988 goto done;
4989
4990 prev = i;
4991 }
4992
4993 /* The cross validation of outputs/inputs above validates explicit locations
4994 * but for SSO programs we need to do this also for the inputs in the
4995 * first stage and outputs of the last stage included in the program, since
4996 * there is no cross validation for these.
4997 */
4998 if (prog->SeparateShader)
4999 validate_sso_explicit_locations(ctx, prog,
5000 (gl_shader_stage) first,
5001 (gl_shader_stage) last);
5002
5003 /* Cross-validate uniform blocks between shader stages */
5004 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5005 if (!prog->data->LinkStatus)
5006 goto done;
5007
5008 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5009 if (prog->_LinkedShaders[i] != NULL)
5010 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5011 }
5012
5013 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5014 * it before optimization because we want most of the checks to get
5015 * dropped thanks to constant propagation.
5016 *
5017 * This rule also applies to GLSL ES 3.00.
5018 */
5019 if (max_version >= (prog->IsES ? 300 : 130)) {
5020 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5021 if (sh) {
5022 lower_discard_flow(sh->ir);
5023 }
5024 }
5025
5026 if (prog->SeparateShader)
5027 disable_varying_optimizations_for_sso(prog);
5028
5029 /* Process UBOs */
5030 if (!interstage_cross_validate_uniform_blocks(prog, false))
5031 goto done;
5032
5033 /* Process SSBOs */
5034 if (!interstage_cross_validate_uniform_blocks(prog, true))
5035 goto done;
5036
5037 /* Do common optimization before assigning storage for attributes,
5038 * uniforms, and varyings. Later optimization could possibly make
5039 * some of that unused.
5040 */
5041 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5042 if (prog->_LinkedShaders[i] == NULL)
5043 continue;
5044
5045 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5046 if (!prog->data->LinkStatus)
5047 goto done;
5048
5049 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5050 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5051 }
5052
5053 if (ctx->Const.LowerTessLevel) {
5054 lower_tess_level(prog->_LinkedShaders[i]);
5055 }
5056
5057 /* Call opts before lowering const arrays to uniforms so we can const
5058 * propagate any elements accessed directly.
5059 */
5060 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5061
5062 /* Call opts after lowering const arrays to copy propagate things. */
5063 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5064 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5065
5066 propagate_invariance(prog->_LinkedShaders[i]->ir);
5067 }
5068
5069 /* Validation for special cases where we allow sampler array indexing
5070 * with loop induction variable. This check emits a warning or error
5071 * depending if backend can handle dynamic indexing.
5072 */
5073 if ((!prog->IsES && prog->data->Version < 130) ||
5074 (prog->IsES && prog->data->Version < 300)) {
5075 if (!validate_sampler_array_indexing(ctx, prog))
5076 goto done;
5077 }
5078
5079 /* Check and validate stream emissions in geometry shaders */
5080 validate_geometry_shader_emissions(ctx, prog);
5081
5082 store_fragdepth_layout(prog);
5083
5084 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5085 goto done;
5086
5087 /* Linking varyings can cause some extra, useless swizzles to be generated
5088 * due to packing and unpacking.
5089 */
5090 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5091 if (prog->_LinkedShaders[i] == NULL)
5092 continue;
5093
5094 optimize_swizzles(prog->_LinkedShaders[i]->ir);
5095 }
5096
5097 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5098 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5099 * anything about shader linking when one of the shaders (vertex or
5100 * fragment shader) is absent. So, the extension shouldn't change the
5101 * behavior specified in GLSL specification.
5102 *
5103 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5104 * "Linking can fail for a variety of reasons as specified in the
5105 * OpenGL ES Shading Language Specification, as well as any of the
5106 * following reasons:
5107 *
5108 * ...
5109 *
5110 * * program contains objects to form either a vertex shader or
5111 * fragment shader, and program is not separable, and does not
5112 * contain objects to form both a vertex shader and fragment
5113 * shader."
5114 *
5115 * However, the only scenario in 3.1+ where we don't require them both is
5116 * when we have a compute shader. For example:
5117 *
5118 * - No shaders is a link error.
5119 * - Geom or Tess without a Vertex shader is a link error which means we
5120 * always require a Vertex shader and hence a Fragment shader.
5121 * - Finally a Compute shader linked with any other stage is a link error.
5122 */
5123 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5124 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5125 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5126 linker_error(prog, "program lacks a vertex shader\n");
5127 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5128 linker_error(prog, "program lacks a fragment shader\n");
5129 }
5130 }
5131
5132 done:
5133 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5134 free(shader_list[i]);
5135 if (prog->_LinkedShaders[i] == NULL)
5136 continue;
5137
5138 /* Do a final validation step to make sure that the IR wasn't
5139 * invalidated by any modifications performed after intrastage linking.
5140 */
5141 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5142
5143 /* Retain any live IR, but trash the rest. */
5144 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5145
5146 /* The symbol table in the linked shaders may contain references to
5147 * variables that were removed (e.g., unused uniforms). Since it may
5148 * contain junk, there is no possible valid use. Delete it and set the
5149 * pointer to NULL.
5150 */
5151 delete prog->_LinkedShaders[i]->symbols;
5152 prog->_LinkedShaders[i]->symbols = NULL;
5153 }
5154
5155 ralloc_free(mem_ctx);
5156 }