Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / compiler / glsl / loop_analysis.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl_types.h"
25 #include "loop_analysis.h"
26 #include "ir_hierarchical_visitor.h"
27
28 static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
29
30 static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31 hash_table *);
32
33 static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34
35 /**
36 * Find an initializer of a variable outside a loop
37 *
38 * Works backwards from the loop to find the pre-loop value of the variable.
39 * This is used, for example, to find the initial value of loop induction
40 * variables.
41 *
42 * \param loop Loop where \c var is an induction variable
43 * \param var Variable whose initializer is to be found
44 *
45 * \return
46 * The \c ir_rvalue assigned to the variable outside the loop. May return
47 * \c NULL if no initializer can be found.
48 */
49 static ir_rvalue *
50 find_initial_value(ir_loop *loop, ir_variable *var)
51 {
52 for (exec_node *node = loop->prev; !node->is_head_sentinel();
53 node = node->prev) {
54 ir_instruction *ir = (ir_instruction *) node;
55
56 switch (ir->ir_type) {
57 case ir_type_call:
58 case ir_type_loop:
59 case ir_type_loop_jump:
60 case ir_type_return:
61 case ir_type_if:
62 return NULL;
63
64 case ir_type_function:
65 case ir_type_function_signature:
66 assert(!"Should not get here.");
67 return NULL;
68
69 case ir_type_assignment: {
70 ir_assignment *assign = ir->as_assignment();
71 ir_variable *assignee = assign->lhs->whole_variable_referenced();
72
73 if (assignee == var)
74 return (assign->condition != NULL) ? NULL : assign->rhs;
75
76 break;
77 }
78
79 default:
80 break;
81 }
82 }
83
84 return NULL;
85 }
86
87
88 static int
89 calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
90 enum ir_expression_operation op, bool continue_from_then,
91 bool swap_compare_operands, bool inc_before_terminator)
92 {
93 if (from == NULL || to == NULL || increment == NULL)
94 return -1;
95
96 void *mem_ctx = ralloc_context(NULL);
97
98 ir_expression *const sub =
99 new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
100
101 ir_expression *const div =
102 new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
103
104 ir_constant *iter = div->constant_expression_value(mem_ctx);
105 if (iter == NULL) {
106 ralloc_free(mem_ctx);
107 return -1;
108 }
109
110 if (!iter->type->is_integer_32()) {
111 const ir_expression_operation op = iter->type->is_double()
112 ? ir_unop_d2i : ir_unop_f2i;
113 ir_rvalue *cast =
114 new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
115
116 iter = cast->constant_expression_value(mem_ctx);
117 }
118
119 int iter_value = iter->get_int_component(0);
120
121 /* Code after this block works under assumption that iterator will be
122 * incremented or decremented until it hits the limit,
123 * however the loop condition can be false on the first iteration.
124 * Handle such loops first.
125 */
126 {
127 ir_rvalue *first_value = from;
128 if (inc_before_terminator) {
129 first_value =
130 new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
131 }
132
133 ir_expression *cmp = swap_compare_operands
134 ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
135 : new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
136 if (continue_from_then)
137 cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
138
139 ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
140 assert(cmp_result != NULL);
141 if (cmp_result->get_bool_component(0)) {
142 ralloc_free(mem_ctx);
143 return 0;
144 }
145 }
146
147 /* Make sure that the calculated number of iterations satisfies the exit
148 * condition. This is needed to catch off-by-one errors and some types of
149 * ill-formed loops. For example, we need to detect that the following
150 * loop does not have a maximum iteration count.
151 *
152 * for (float x = 0.0; x != 0.9; x += 0.2)
153 * ;
154 */
155 const int bias[] = { -1, 0, 1 };
156 bool valid_loop = false;
157
158 for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
159 /* Increment may be of type int, uint or float. */
160 switch (increment->type->base_type) {
161 case GLSL_TYPE_INT:
162 iter = new(mem_ctx) ir_constant(iter_value + bias[i]);
163 break;
164 case GLSL_TYPE_INT16:
165 iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
166 break;
167 case GLSL_TYPE_UINT:
168 iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
169 break;
170 case GLSL_TYPE_UINT16:
171 iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
172 break;
173 case GLSL_TYPE_FLOAT:
174 iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
175 break;
176 case GLSL_TYPE_FLOAT16:
177 iter = new(mem_ctx) ir_constant(float16_t(float(iter_value + bias[i])));
178 break;
179 case GLSL_TYPE_DOUBLE:
180 iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
181 break;
182 default:
183 unreachable("Unsupported type for loop iterator.");
184 }
185
186 ir_expression *const mul =
187 new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
188 increment);
189
190 ir_expression *const add =
191 new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
192
193 ir_expression *cmp = swap_compare_operands
194 ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
195 : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
196 if (continue_from_then)
197 cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
198
199 ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
200
201 assert(cmp_result != NULL);
202 if (cmp_result->get_bool_component(0)) {
203 iter_value += bias[i];
204 valid_loop = true;
205 break;
206 }
207 }
208
209 ralloc_free(mem_ctx);
210
211 if (inc_before_terminator) {
212 iter_value--;
213 }
214
215 return (valid_loop) ? iter_value : -1;
216 }
217
218 static bool
219 incremented_before_terminator(ir_loop *loop, ir_variable *var,
220 ir_if *terminator)
221 {
222 for (exec_node *node = loop->body_instructions.get_head();
223 !node->is_tail_sentinel();
224 node = node->get_next()) {
225 ir_instruction *ir = (ir_instruction *) node;
226
227 switch (ir->ir_type) {
228 case ir_type_if:
229 if (ir->as_if() == terminator)
230 return false;
231 break;
232
233 case ir_type_assignment: {
234 ir_assignment *assign = ir->as_assignment();
235 ir_variable *assignee = assign->lhs->whole_variable_referenced();
236
237 if (assignee == var) {
238 assert(assign->condition == NULL);
239 return true;
240 }
241
242 break;
243 }
244
245 default:
246 break;
247 }
248 }
249
250 unreachable("Unable to find induction variable");
251 }
252
253 /**
254 * Record the fact that the given loop variable was referenced inside the loop.
255 *
256 * \arg in_assignee is true if the reference was on the LHS of an assignment.
257 *
258 * \arg in_conditional_code_or_nested_loop is true if the reference occurred
259 * inside an if statement or a nested loop.
260 *
261 * \arg current_assignment is the ir_assignment node that the loop variable is
262 * on the LHS of, if any (ignored if \c in_assignee is false).
263 */
264 void
265 loop_variable::record_reference(bool in_assignee,
266 bool in_conditional_code_or_nested_loop,
267 ir_assignment *current_assignment)
268 {
269 if (in_assignee) {
270 assert(current_assignment != NULL);
271
272 if (in_conditional_code_or_nested_loop ||
273 current_assignment->condition != NULL) {
274 this->conditional_or_nested_assignment = true;
275 }
276
277 if (this->first_assignment == NULL) {
278 assert(this->num_assignments == 0);
279
280 this->first_assignment = current_assignment;
281 }
282
283 this->num_assignments++;
284 } else if (this->first_assignment == current_assignment) {
285 /* This catches the case where the variable is used in the RHS of an
286 * assignment where it is also in the LHS.
287 */
288 this->read_before_write = true;
289 }
290 }
291
292
293 loop_state::loop_state()
294 {
295 this->ht = _mesa_pointer_hash_table_create(NULL);
296 this->mem_ctx = ralloc_context(NULL);
297 this->loop_found = false;
298 }
299
300
301 loop_state::~loop_state()
302 {
303 _mesa_hash_table_destroy(this->ht, NULL);
304 ralloc_free(this->mem_ctx);
305 }
306
307
308 loop_variable_state *
309 loop_state::insert(ir_loop *ir)
310 {
311 loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
312
313 _mesa_hash_table_insert(this->ht, ir, ls);
314 this->loop_found = true;
315
316 return ls;
317 }
318
319
320 loop_variable_state *
321 loop_state::get(const ir_loop *ir)
322 {
323 hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
324 return entry ? (loop_variable_state *) entry->data : NULL;
325 }
326
327
328 loop_variable *
329 loop_variable_state::get(const ir_variable *ir)
330 {
331 if (ir == NULL)
332 return NULL;
333
334 hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
335 return entry ? (loop_variable *) entry->data : NULL;
336 }
337
338
339 loop_variable *
340 loop_variable_state::insert(ir_variable *var)
341 {
342 void *mem_ctx = ralloc_parent(this);
343 loop_variable *lv = rzalloc(mem_ctx, loop_variable);
344
345 lv->var = var;
346
347 _mesa_hash_table_insert(this->var_hash, lv->var, lv);
348 this->variables.push_tail(lv);
349
350 return lv;
351 }
352
353
354 loop_terminator *
355 loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
356 {
357 void *mem_ctx = ralloc_parent(this);
358 loop_terminator *t = new(mem_ctx) loop_terminator();
359
360 t->ir = if_stmt;
361 t->continue_from_then = continue_from_then;
362
363 this->terminators.push_tail(t);
364
365 return t;
366 }
367
368
369 /**
370 * If the given variable already is recorded in the state for this loop,
371 * return the corresponding loop_variable object that records information
372 * about it.
373 *
374 * Otherwise, create a new loop_variable object to record information about
375 * the variable, and set its \c read_before_write field appropriately based on
376 * \c in_assignee.
377 *
378 * \arg in_assignee is true if this variable was encountered on the LHS of an
379 * assignment.
380 */
381 loop_variable *
382 loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
383 {
384 loop_variable *lv = this->get(var);
385
386 if (lv == NULL) {
387 lv = this->insert(var);
388 lv->read_before_write = !in_assignee;
389 }
390
391 return lv;
392 }
393
394
395 namespace {
396
397 class loop_analysis : public ir_hierarchical_visitor {
398 public:
399 loop_analysis(loop_state *loops);
400
401 virtual ir_visitor_status visit(ir_loop_jump *);
402 virtual ir_visitor_status visit(ir_dereference_variable *);
403
404 virtual ir_visitor_status visit_enter(ir_call *);
405
406 virtual ir_visitor_status visit_enter(ir_loop *);
407 virtual ir_visitor_status visit_leave(ir_loop *);
408 virtual ir_visitor_status visit_enter(ir_assignment *);
409 virtual ir_visitor_status visit_leave(ir_assignment *);
410 virtual ir_visitor_status visit_enter(ir_if *);
411 virtual ir_visitor_status visit_leave(ir_if *);
412
413 loop_state *loops;
414
415 int if_statement_depth;
416
417 ir_assignment *current_assignment;
418
419 exec_list state;
420 };
421
422 } /* anonymous namespace */
423
424 loop_analysis::loop_analysis(loop_state *loops)
425 : loops(loops), if_statement_depth(0), current_assignment(NULL)
426 {
427 /* empty */
428 }
429
430
431 ir_visitor_status
432 loop_analysis::visit(ir_loop_jump *ir)
433 {
434 (void) ir;
435
436 assert(!this->state.is_empty());
437
438 loop_variable_state *const ls =
439 (loop_variable_state *) this->state.get_head();
440
441 ls->num_loop_jumps++;
442
443 return visit_continue;
444 }
445
446
447 ir_visitor_status
448 loop_analysis::visit_enter(ir_call *)
449 {
450 /* Mark every loop that we're currently analyzing as containing an ir_call
451 * (even those at outer nesting levels).
452 */
453 foreach_in_list(loop_variable_state, ls, &this->state) {
454 ls->contains_calls = true;
455 }
456
457 return visit_continue_with_parent;
458 }
459
460
461 ir_visitor_status
462 loop_analysis::visit(ir_dereference_variable *ir)
463 {
464 /* If we're not somewhere inside a loop, there's nothing to do.
465 */
466 if (this->state.is_empty())
467 return visit_continue;
468
469 bool nested = false;
470
471 foreach_in_list(loop_variable_state, ls, &this->state) {
472 ir_variable *var = ir->variable_referenced();
473 loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
474
475 lv->record_reference(this->in_assignee,
476 nested || this->if_statement_depth > 0,
477 this->current_assignment);
478 nested = true;
479 }
480
481 return visit_continue;
482 }
483
484 ir_visitor_status
485 loop_analysis::visit_enter(ir_loop *ir)
486 {
487 loop_variable_state *ls = this->loops->insert(ir);
488 this->state.push_head(ls);
489
490 return visit_continue;
491 }
492
493 ir_visitor_status
494 loop_analysis::visit_leave(ir_loop *ir)
495 {
496 loop_variable_state *const ls =
497 (loop_variable_state *) this->state.pop_head();
498
499 /* Function calls may contain side effects. These could alter any of our
500 * variables in ways that cannot be known, and may even terminate shader
501 * execution (say, calling discard in the fragment shader). So we can't
502 * rely on any of our analysis about assignments to variables.
503 *
504 * We could perform some conservative analysis (prove there's no statically
505 * possible assignment, etc.) but it isn't worth it for now; function
506 * inlining will allow us to unroll loops anyway.
507 */
508 if (ls->contains_calls)
509 return visit_continue;
510
511 foreach_in_list(ir_instruction, node, &ir->body_instructions) {
512 /* Skip over declarations at the start of a loop.
513 */
514 if (node->as_variable())
515 continue;
516
517 ir_if *if_stmt = ((ir_instruction *) node)->as_if();
518
519 if (if_stmt != NULL)
520 try_add_loop_terminator(ls, if_stmt);
521 }
522
523
524 foreach_in_list_safe(loop_variable, lv, &ls->variables) {
525 /* Move variables that are already marked as being loop constant to
526 * a separate list. These trivially don't need to be tested.
527 */
528 if (lv->is_loop_constant()) {
529 lv->remove();
530 ls->constants.push_tail(lv);
531 }
532 }
533
534 /* Each variable assigned in the loop that isn't already marked as being loop
535 * constant might still be loop constant. The requirements at this point
536 * are:
537 *
538 * - Variable is written before it is read.
539 *
540 * - Only one assignment to the variable.
541 *
542 * - All operands on the RHS of the assignment are also loop constants.
543 *
544 * The last requirement is the reason for the progress loop. A variable
545 * marked as a loop constant on one pass may allow other variables to be
546 * marked as loop constant on following passes.
547 */
548 bool progress;
549 do {
550 progress = false;
551
552 foreach_in_list_safe(loop_variable, lv, &ls->variables) {
553 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
554 continue;
555
556 /* Process the RHS of the assignment. If all of the variables
557 * accessed there are loop constants, then add this
558 */
559 ir_rvalue *const rhs = lv->first_assignment->rhs;
560 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
561 lv->rhs_clean = true;
562
563 if (lv->is_loop_constant()) {
564 progress = true;
565
566 lv->remove();
567 ls->constants.push_tail(lv);
568 }
569 }
570 }
571 } while (progress);
572
573 /* The remaining variables that are not loop invariant might be loop
574 * induction variables.
575 */
576 foreach_in_list_safe(loop_variable, lv, &ls->variables) {
577 /* If there is more than one assignment to a variable, it cannot be a
578 * loop induction variable. This isn't strictly true, but this is a
579 * very simple induction variable detector, and it can't handle more
580 * complex cases.
581 */
582 if (lv->num_assignments > 1)
583 continue;
584
585 /* All of the variables with zero assignments in the loop are loop
586 * invariant, and they should have already been filtered out.
587 */
588 assert(lv->num_assignments == 1);
589 assert(lv->first_assignment != NULL);
590
591 /* The assignment to the variable in the loop must be unconditional and
592 * not inside a nested loop.
593 */
594 if (lv->conditional_or_nested_assignment)
595 continue;
596
597 /* Basic loop induction variables have a single assignment in the loop
598 * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
599 * loop invariant.
600 */
601 ir_rvalue *const inc =
602 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
603 if (inc != NULL) {
604 lv->increment = inc;
605
606 lv->remove();
607 ls->induction_variables.push_tail(lv);
608 }
609 }
610
611 /* Search the loop terminating conditions for those of the form 'i < c'
612 * where i is a loop induction variable, c is a constant, and < is any
613 * relative operator. From each of these we can infer an iteration count.
614 * Also figure out which terminator (if any) produces the smallest
615 * iteration count--this is the limiting terminator.
616 */
617 foreach_in_list(loop_terminator, t, &ls->terminators) {
618 ir_if *if_stmt = t->ir;
619
620 /* If-statements can be either 'if (expr)' or 'if (deref)'. We only care
621 * about the former here.
622 */
623 ir_expression *cond = if_stmt->condition->as_expression();
624 if (cond == NULL)
625 continue;
626
627 switch (cond->operation) {
628 case ir_binop_less:
629 case ir_binop_gequal: {
630 /* The expressions that we care about will either be of the form
631 * 'counter < limit' or 'limit < counter'. Figure out which is
632 * which.
633 */
634 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
635 ir_constant *limit = cond->operands[1]->as_constant();
636 enum ir_expression_operation cmp = cond->operation;
637 bool swap_compare_operands = false;
638
639 if (limit == NULL) {
640 counter = cond->operands[1]->as_dereference_variable();
641 limit = cond->operands[0]->as_constant();
642 swap_compare_operands = true;
643 }
644
645 if ((counter == NULL) || (limit == NULL))
646 break;
647
648 ir_variable *var = counter->variable_referenced();
649
650 ir_rvalue *init = find_initial_value(ir, var);
651
652 loop_variable *lv = ls->get(var);
653 if (lv != NULL && lv->is_induction_var()) {
654 bool inc_before_terminator =
655 incremented_before_terminator(ir, var, t->ir);
656
657 t->iterations = calculate_iterations(init, limit, lv->increment,
658 cmp, t->continue_from_then,
659 swap_compare_operands,
660 inc_before_terminator);
661
662 if (t->iterations >= 0 &&
663 (ls->limiting_terminator == NULL ||
664 t->iterations < ls->limiting_terminator->iterations)) {
665 ls->limiting_terminator = t;
666 }
667 }
668 break;
669 }
670
671 default:
672 break;
673 }
674 }
675
676 return visit_continue;
677 }
678
679 ir_visitor_status
680 loop_analysis::visit_enter(ir_if *ir)
681 {
682 (void) ir;
683
684 if (!this->state.is_empty())
685 this->if_statement_depth++;
686
687 return visit_continue;
688 }
689
690 ir_visitor_status
691 loop_analysis::visit_leave(ir_if *ir)
692 {
693 (void) ir;
694
695 if (!this->state.is_empty())
696 this->if_statement_depth--;
697
698 return visit_continue;
699 }
700
701 ir_visitor_status
702 loop_analysis::visit_enter(ir_assignment *ir)
703 {
704 /* If we're not somewhere inside a loop, there's nothing to do.
705 */
706 if (this->state.is_empty())
707 return visit_continue_with_parent;
708
709 this->current_assignment = ir;
710
711 return visit_continue;
712 }
713
714 ir_visitor_status
715 loop_analysis::visit_leave(ir_assignment *ir)
716 {
717 /* Since the visit_enter exits with visit_continue_with_parent for this
718 * case, the loop state stack should never be empty here.
719 */
720 assert(!this->state.is_empty());
721
722 assert(this->current_assignment == ir);
723 this->current_assignment = NULL;
724
725 return visit_continue;
726 }
727
728
729 class examine_rhs : public ir_hierarchical_visitor {
730 public:
731 examine_rhs(hash_table *loop_variables)
732 {
733 this->only_uses_loop_constants = true;
734 this->loop_variables = loop_variables;
735 }
736
737 virtual ir_visitor_status visit(ir_dereference_variable *ir)
738 {
739 hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
740 ir->var);
741 loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
742
743 assert(lv != NULL);
744
745 if (lv->is_loop_constant()) {
746 return visit_continue;
747 } else {
748 this->only_uses_loop_constants = false;
749 return visit_stop;
750 }
751 }
752
753 hash_table *loop_variables;
754 bool only_uses_loop_constants;
755 };
756
757
758 bool
759 all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
760 {
761 examine_rhs v(variables);
762
763 ir->accept(&v);
764
765 return v.only_uses_loop_constants;
766 }
767
768
769 ir_rvalue *
770 get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
771 {
772 /* The RHS must be a binary expression.
773 */
774 ir_expression *const rhs = ir->rhs->as_expression();
775 if ((rhs == NULL)
776 || ((rhs->operation != ir_binop_add)
777 && (rhs->operation != ir_binop_sub)))
778 return NULL;
779
780 /* One of the of operands of the expression must be the variable assigned.
781 * If the operation is subtraction, the variable in question must be the
782 * "left" operand.
783 */
784 ir_variable *const var = ir->lhs->variable_referenced();
785
786 ir_variable *const op0 = rhs->operands[0]->variable_referenced();
787 ir_variable *const op1 = rhs->operands[1]->variable_referenced();
788
789 if (((op0 != var) && (op1 != var))
790 || ((op1 == var) && (rhs->operation == ir_binop_sub)))
791 return NULL;
792
793 ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
794
795 if (inc->as_constant() == NULL) {
796 ir_variable *const inc_var = inc->variable_referenced();
797 if (inc_var != NULL) {
798 hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
799 loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
800
801 if (lv == NULL || !lv->is_loop_constant()) {
802 assert(lv != NULL);
803 inc = NULL;
804 }
805 } else
806 inc = NULL;
807 }
808
809 if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
810 void *mem_ctx = ralloc_parent(ir);
811
812 inc = new(mem_ctx) ir_expression(ir_unop_neg,
813 inc->type,
814 inc->clone(mem_ctx, NULL),
815 NULL);
816 }
817
818 return inc;
819 }
820
821
822 /**
823 * Detect whether an if-statement is a loop terminating condition, if so
824 * add it to the list of loop terminators.
825 *
826 * Detects if-statements of the form
827 *
828 * (if (expression bool ...) (...then_instrs...break))
829 *
830 * or
831 *
832 * (if (expression bool ...) ... (...else_instrs...break))
833 */
834 void
835 try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
836 {
837 ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
838 ir_instruction *else_inst =
839 (ir_instruction *) ir->else_instructions.get_tail();
840
841 if (is_break(inst) || is_break(else_inst))
842 ls->insert(ir, is_break(else_inst));
843 }
844
845
846 loop_state *
847 analyze_loop_variables(exec_list *instructions)
848 {
849 loop_state *loops = new loop_state;
850 loop_analysis v(loops);
851
852 v.run(instructions);
853 return v.loops;
854 }