glsl: move to compiler/
[mesa.git] / src / compiler / glsl / lower_packed_varyings.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_varyings_to_packed.cpp
26 *
27 * This lowering pass generates GLSL code that manually packs varyings into
28 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29 * natively.
30 *
31 * For example, the following shader:
32 *
33 * out mat3x2 foo; // location=4, location_frac=0
34 * out vec3 bar[2]; // location=5, location_frac=2
35 *
36 * main()
37 * {
38 * ...
39 * }
40 *
41 * Is rewritten to:
42 *
43 * mat3x2 foo;
44 * vec3 bar[2];
45 * out vec4 packed4; // location=4, location_frac=0
46 * out vec4 packed5; // location=5, location_frac=0
47 * out vec4 packed6; // location=6, location_frac=0
48 *
49 * main()
50 * {
51 * ...
52 * packed4.xy = foo[0];
53 * packed4.zw = foo[1];
54 * packed5.xy = foo[2];
55 * packed5.zw = bar[0].xy;
56 * packed6.x = bar[0].z;
57 * packed6.yzw = bar[1];
58 * }
59 *
60 * This lowering pass properly handles "double parking" of a varying vector
61 * across two varying slots. For example, in the code above, two of the
62 * components of bar[0] are stored in packed5, and the remaining component is
63 * stored in packed6.
64 *
65 * Note that in theory, the extra instructions may cause some loss of
66 * performance. However, hopefully in most cases the performance loss will
67 * either be absorbed by a later optimization pass, or it will be offset by
68 * memory bandwidth savings (because fewer varyings are used).
69 *
70 * This lowering pass also packs flat floats, ints, and uints together, by
71 * using ivec4 as the base type of flat "varyings", and using appropriate
72 * casts to convert floats and uints into ints.
73 *
74 * This lowering pass also handles varyings whose type is a struct or an array
75 * of struct. Structs are packed in order and with no gaps, so there may be a
76 * performance penalty due to structure elements being double-parked.
77 *
78 * Lowering of geometry shader inputs is slightly more complex, since geometry
79 * inputs are always arrays, so we need to lower arrays to arrays. For
80 * example, the following input:
81 *
82 * in struct Foo {
83 * float f;
84 * vec3 v;
85 * vec2 a[2];
86 * } arr[3]; // location=4, location_frac=0
87 *
88 * Would get lowered like this if it occurred in a fragment shader:
89 *
90 * struct Foo {
91 * float f;
92 * vec3 v;
93 * vec2 a[2];
94 * } arr[3];
95 * in vec4 packed4; // location=4, location_frac=0
96 * in vec4 packed5; // location=5, location_frac=0
97 * in vec4 packed6; // location=6, location_frac=0
98 * in vec4 packed7; // location=7, location_frac=0
99 * in vec4 packed8; // location=8, location_frac=0
100 * in vec4 packed9; // location=9, location_frac=0
101 *
102 * main()
103 * {
104 * arr[0].f = packed4.x;
105 * arr[0].v = packed4.yzw;
106 * arr[0].a[0] = packed5.xy;
107 * arr[0].a[1] = packed5.zw;
108 * arr[1].f = packed6.x;
109 * arr[1].v = packed6.yzw;
110 * arr[1].a[0] = packed7.xy;
111 * arr[1].a[1] = packed7.zw;
112 * arr[2].f = packed8.x;
113 * arr[2].v = packed8.yzw;
114 * arr[2].a[0] = packed9.xy;
115 * arr[2].a[1] = packed9.zw;
116 * ...
117 * }
118 *
119 * But it would get lowered like this if it occurred in a geometry shader:
120 *
121 * struct Foo {
122 * float f;
123 * vec3 v;
124 * vec2 a[2];
125 * } arr[3];
126 * in vec4 packed4[3]; // location=4, location_frac=0
127 * in vec4 packed5[3]; // location=5, location_frac=0
128 *
129 * main()
130 * {
131 * arr[0].f = packed4[0].x;
132 * arr[0].v = packed4[0].yzw;
133 * arr[0].a[0] = packed5[0].xy;
134 * arr[0].a[1] = packed5[0].zw;
135 * arr[1].f = packed4[1].x;
136 * arr[1].v = packed4[1].yzw;
137 * arr[1].a[0] = packed5[1].xy;
138 * arr[1].a[1] = packed5[1].zw;
139 * arr[2].f = packed4[2].x;
140 * arr[2].v = packed4[2].yzw;
141 * arr[2].a[0] = packed5[2].xy;
142 * arr[2].a[1] = packed5[2].zw;
143 * ...
144 * }
145 */
146
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152
153 using namespace ir_builder;
154
155 namespace {
156
157 /**
158 * Visitor that performs varying packing. For each varying declared in the
159 * shader, this visitor determines whether it needs to be packed. If so, it
160 * demotes it to an ordinary global, creates new packed varyings, and
161 * generates assignments to convert between the original varying and the
162 * packed varying.
163 */
164 class lower_packed_varyings_visitor
165 {
166 public:
167 lower_packed_varyings_visitor(void *mem_ctx, unsigned locations_used,
168 ir_variable_mode mode,
169 unsigned gs_input_vertices,
170 exec_list *out_instructions,
171 exec_list *out_variables);
172
173 void run(struct gl_shader *shader);
174
175 private:
176 void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
177 void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
178 unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
179 ir_variable *unpacked_var, const char *name,
180 bool gs_input_toplevel, unsigned vertex_index);
181 unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
182 unsigned fine_location,
183 ir_variable *unpacked_var, const char *name,
184 bool gs_input_toplevel, unsigned vertex_index);
185 ir_dereference *get_packed_varying_deref(unsigned location,
186 ir_variable *unpacked_var,
187 const char *name,
188 unsigned vertex_index);
189 bool needs_lowering(ir_variable *var);
190
191 /**
192 * Memory context used to allocate new instructions for the shader.
193 */
194 void * const mem_ctx;
195
196 /**
197 * Number of generic varying slots which are used by this shader. This is
198 * used to allocate temporary intermediate data structures. If any varying
199 * used by this shader has a location greater than or equal to
200 * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
201 */
202 const unsigned locations_used;
203
204 /**
205 * Array of pointers to the packed varyings that have been created for each
206 * generic varying slot. NULL entries in this array indicate varying slots
207 * for which a packed varying has not been created yet.
208 */
209 ir_variable **packed_varyings;
210
211 /**
212 * Type of varying which is being lowered in this pass (either
213 * ir_var_shader_in or ir_var_shader_out).
214 */
215 const ir_variable_mode mode;
216
217 /**
218 * If we are currently lowering geometry shader inputs, the number of input
219 * vertices the geometry shader accepts. Otherwise zero.
220 */
221 const unsigned gs_input_vertices;
222
223 /**
224 * Exec list into which the visitor should insert the packing instructions.
225 * Caller provides this list; it should insert the instructions into the
226 * appropriate place in the shader once the visitor has finished running.
227 */
228 exec_list *out_instructions;
229
230 /**
231 * Exec list into which the visitor should insert any new variables.
232 */
233 exec_list *out_variables;
234 };
235
236 } /* anonymous namespace */
237
238 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
239 void *mem_ctx, unsigned locations_used, ir_variable_mode mode,
240 unsigned gs_input_vertices, exec_list *out_instructions,
241 exec_list *out_variables)
242 : mem_ctx(mem_ctx),
243 locations_used(locations_used),
244 packed_varyings((ir_variable **)
245 rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
246 locations_used)),
247 mode(mode),
248 gs_input_vertices(gs_input_vertices),
249 out_instructions(out_instructions),
250 out_variables(out_variables)
251 {
252 }
253
254 void
255 lower_packed_varyings_visitor::run(struct gl_shader *shader)
256 {
257 foreach_in_list(ir_instruction, node, shader->ir) {
258 ir_variable *var = node->as_variable();
259 if (var == NULL)
260 continue;
261
262 if (var->data.mode != this->mode ||
263 var->data.location < VARYING_SLOT_VAR0 ||
264 !this->needs_lowering(var))
265 continue;
266
267 /* This lowering pass is only capable of packing floats and ints
268 * together when their interpolation mode is "flat". Therefore, to be
269 * safe, caller should ensure that integral varyings always use flat
270 * interpolation, even when this is not required by GLSL.
271 */
272 assert(var->data.interpolation == INTERP_QUALIFIER_FLAT ||
273 !var->type->contains_integer());
274
275 /* Clone the variable for program resource list before
276 * it gets modified and lost.
277 */
278 if (!shader->packed_varyings)
279 shader->packed_varyings = new (shader) exec_list;
280
281 shader->packed_varyings->push_tail(var->clone(shader, NULL));
282
283 /* Change the old varying into an ordinary global. */
284 assert(var->data.mode != ir_var_temporary);
285 var->data.mode = ir_var_auto;
286
287 /* Create a reference to the old varying. */
288 ir_dereference_variable *deref
289 = new(this->mem_ctx) ir_dereference_variable(var);
290
291 /* Recursively pack or unpack it. */
292 this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
293 var->name, this->gs_input_vertices != 0, 0);
294 }
295 }
296
297 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
298
299 /**
300 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
301 * bitcasts if necessary to match up types.
302 *
303 * This function is called when packing varyings.
304 */
305 void
306 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
307 ir_rvalue *rhs)
308 {
309 if (lhs->type->base_type != rhs->type->base_type) {
310 /* Since we only mix types in flat varyings, and we always store flat
311 * varyings as type ivec4, we need only produce conversions from (uint
312 * or float) to int.
313 */
314 assert(lhs->type->base_type == GLSL_TYPE_INT);
315 switch (rhs->type->base_type) {
316 case GLSL_TYPE_UINT:
317 rhs = new(this->mem_ctx)
318 ir_expression(ir_unop_u2i, lhs->type, rhs);
319 break;
320 case GLSL_TYPE_FLOAT:
321 rhs = new(this->mem_ctx)
322 ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
323 break;
324 case GLSL_TYPE_DOUBLE:
325 assert(rhs->type->vector_elements <= 2);
326 if (rhs->type->vector_elements == 2) {
327 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
328
329 assert(lhs->type->vector_elements == 4);
330 this->out_variables->push_tail(t);
331 this->out_instructions->push_tail(
332 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
333 this->out_instructions->push_tail(
334 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
335 rhs = deref(t).val;
336 } else {
337 rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
338 }
339 break;
340 default:
341 assert(!"Unexpected type conversion while lowering varyings");
342 break;
343 }
344 }
345 this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
346 }
347
348
349 /**
350 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
351 * bitcasts if necessary to match up types.
352 *
353 * This function is called when unpacking varyings.
354 */
355 void
356 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
357 ir_rvalue *rhs)
358 {
359 if (lhs->type->base_type != rhs->type->base_type) {
360 /* Since we only mix types in flat varyings, and we always store flat
361 * varyings as type ivec4, we need only produce conversions from int to
362 * (uint or float).
363 */
364 assert(rhs->type->base_type == GLSL_TYPE_INT);
365 switch (lhs->type->base_type) {
366 case GLSL_TYPE_UINT:
367 rhs = new(this->mem_ctx)
368 ir_expression(ir_unop_i2u, lhs->type, rhs);
369 break;
370 case GLSL_TYPE_FLOAT:
371 rhs = new(this->mem_ctx)
372 ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
373 break;
374 case GLSL_TYPE_DOUBLE:
375 assert(lhs->type->vector_elements <= 2);
376 if (lhs->type->vector_elements == 2) {
377 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
378 assert(rhs->type->vector_elements == 4);
379 this->out_variables->push_tail(t);
380 this->out_instructions->push_tail(
381 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
382 this->out_instructions->push_tail(
383 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
384 rhs = deref(t).val;
385 } else {
386 rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
387 }
388 break;
389 default:
390 assert(!"Unexpected type conversion while lowering varyings");
391 break;
392 }
393 }
394 this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
395 }
396
397
398 /**
399 * Recursively pack or unpack the given varying (or portion of a varying) by
400 * traversing all of its constituent vectors.
401 *
402 * \param fine_location is the location where the first constituent vector
403 * should be packed--the word "fine" indicates that this location is expressed
404 * in multiples of a float, rather than multiples of a vec4 as is used
405 * elsewhere in Mesa.
406 *
407 * \param gs_input_toplevel should be set to true if we are lowering geometry
408 * shader inputs, and we are currently lowering the whole input variable
409 * (i.e. we are lowering the array whose index selects the vertex).
410 *
411 * \param vertex_index: if we are lowering geometry shader inputs, and the
412 * level of the array that we are currently lowering is *not* the top level,
413 * then this indicates which vertex we are currently lowering. Otherwise it
414 * is ignored.
415 *
416 * \return the location where the next constituent vector (after this one)
417 * should be packed.
418 */
419 unsigned
420 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
421 unsigned fine_location,
422 ir_variable *unpacked_var,
423 const char *name,
424 bool gs_input_toplevel,
425 unsigned vertex_index)
426 {
427 unsigned dmul = rvalue->type->is_double() ? 2 : 1;
428 /* When gs_input_toplevel is set, we should be looking at a geometry shader
429 * input array.
430 */
431 assert(!gs_input_toplevel || rvalue->type->is_array());
432
433 if (rvalue->type->is_record()) {
434 for (unsigned i = 0; i < rvalue->type->length; i++) {
435 if (i != 0)
436 rvalue = rvalue->clone(this->mem_ctx, NULL);
437 const char *field_name = rvalue->type->fields.structure[i].name;
438 ir_dereference_record *dereference_record = new(this->mem_ctx)
439 ir_dereference_record(rvalue, field_name);
440 char *deref_name
441 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
442 fine_location = this->lower_rvalue(dereference_record, fine_location,
443 unpacked_var, deref_name, false,
444 vertex_index);
445 }
446 return fine_location;
447 } else if (rvalue->type->is_array()) {
448 /* Arrays are packed/unpacked by considering each array element in
449 * sequence.
450 */
451 return this->lower_arraylike(rvalue, rvalue->type->array_size(),
452 fine_location, unpacked_var, name,
453 gs_input_toplevel, vertex_index);
454 } else if (rvalue->type->is_matrix()) {
455 /* Matrices are packed/unpacked by considering each column vector in
456 * sequence.
457 */
458 return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
459 fine_location, unpacked_var, name,
460 false, vertex_index);
461 } else if (rvalue->type->vector_elements * dmul +
462 fine_location % 4 > 4) {
463 /* This vector is going to be "double parked" across two varying slots,
464 * so handle it as two separate assignments. For doubles, a dvec3/dvec4
465 * can end up being spread over 3 slots. However the second splitting
466 * will happen later, here we just always want to split into 2.
467 */
468 unsigned left_components, right_components;
469 unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
470 unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
471 char left_swizzle_name[4] = { 0, 0, 0, 0 };
472 char right_swizzle_name[4] = { 0, 0, 0, 0 };
473
474 left_components = 4 - fine_location % 4;
475 if (rvalue->type->is_double()) {
476 /* We might actually end up with 0 left components! */
477 left_components /= 2;
478 }
479 right_components = rvalue->type->vector_elements - left_components;
480
481 for (unsigned i = 0; i < left_components; i++) {
482 left_swizzle_values[i] = i;
483 left_swizzle_name[i] = "xyzw"[i];
484 }
485 for (unsigned i = 0; i < right_components; i++) {
486 right_swizzle_values[i] = i + left_components;
487 right_swizzle_name[i] = "xyzw"[i + left_components];
488 }
489 ir_swizzle *left_swizzle = new(this->mem_ctx)
490 ir_swizzle(rvalue, left_swizzle_values, left_components);
491 ir_swizzle *right_swizzle = new(this->mem_ctx)
492 ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
493 right_components);
494 char *left_name
495 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
496 char *right_name
497 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
498 if (left_components)
499 fine_location = this->lower_rvalue(left_swizzle, fine_location,
500 unpacked_var, left_name, false,
501 vertex_index);
502 else
503 /* Top up the fine location to the next slot */
504 fine_location++;
505 return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
506 right_name, false, vertex_index);
507 } else {
508 /* No special handling is necessary; pack the rvalue into the
509 * varying.
510 */
511 unsigned swizzle_values[4] = { 0, 0, 0, 0 };
512 unsigned components = rvalue->type->vector_elements * dmul;
513 unsigned location = fine_location / 4;
514 unsigned location_frac = fine_location % 4;
515 for (unsigned i = 0; i < components; ++i)
516 swizzle_values[i] = i + location_frac;
517 ir_dereference *packed_deref =
518 this->get_packed_varying_deref(location, unpacked_var, name,
519 vertex_index);
520 ir_swizzle *swizzle = new(this->mem_ctx)
521 ir_swizzle(packed_deref, swizzle_values, components);
522 if (this->mode == ir_var_shader_out) {
523 this->bitwise_assign_pack(swizzle, rvalue);
524 } else {
525 this->bitwise_assign_unpack(rvalue, swizzle);
526 }
527 return fine_location + components;
528 }
529 }
530
531 /**
532 * Recursively pack or unpack a varying for which we need to iterate over its
533 * constituent elements, accessing each one using an ir_dereference_array.
534 * This takes care of both arrays and matrices, since ir_dereference_array
535 * treats a matrix like an array of its column vectors.
536 *
537 * \param gs_input_toplevel should be set to true if we are lowering geometry
538 * shader inputs, and we are currently lowering the whole input variable
539 * (i.e. we are lowering the array whose index selects the vertex).
540 *
541 * \param vertex_index: if we are lowering geometry shader inputs, and the
542 * level of the array that we are currently lowering is *not* the top level,
543 * then this indicates which vertex we are currently lowering. Otherwise it
544 * is ignored.
545 */
546 unsigned
547 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
548 unsigned array_size,
549 unsigned fine_location,
550 ir_variable *unpacked_var,
551 const char *name,
552 bool gs_input_toplevel,
553 unsigned vertex_index)
554 {
555 for (unsigned i = 0; i < array_size; i++) {
556 if (i != 0)
557 rvalue = rvalue->clone(this->mem_ctx, NULL);
558 ir_constant *constant = new(this->mem_ctx) ir_constant(i);
559 ir_dereference_array *dereference_array = new(this->mem_ctx)
560 ir_dereference_array(rvalue, constant);
561 if (gs_input_toplevel) {
562 /* Geometry shader inputs are a special case. Instead of storing
563 * each element of the array at a different location, all elements
564 * are at the same location, but with a different vertex index.
565 */
566 (void) this->lower_rvalue(dereference_array, fine_location,
567 unpacked_var, name, false, i);
568 } else {
569 char *subscripted_name
570 = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
571 fine_location =
572 this->lower_rvalue(dereference_array, fine_location,
573 unpacked_var, subscripted_name,
574 false, vertex_index);
575 }
576 }
577 return fine_location;
578 }
579
580 /**
581 * Retrieve the packed varying corresponding to the given varying location.
582 * If no packed varying has been created for the given varying location yet,
583 * create it and add it to the shader before returning it.
584 *
585 * The newly created varying inherits its interpolation parameters from \c
586 * unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
587 * vec4 otherwise.
588 *
589 * \param vertex_index: if we are lowering geometry shader inputs, then this
590 * indicates which vertex we are currently lowering. Otherwise it is ignored.
591 */
592 ir_dereference *
593 lower_packed_varyings_visitor::get_packed_varying_deref(
594 unsigned location, ir_variable *unpacked_var, const char *name,
595 unsigned vertex_index)
596 {
597 unsigned slot = location - VARYING_SLOT_VAR0;
598 assert(slot < locations_used);
599 if (this->packed_varyings[slot] == NULL) {
600 char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
601 const glsl_type *packed_type;
602 if (unpacked_var->data.interpolation == INTERP_QUALIFIER_FLAT)
603 packed_type = glsl_type::ivec4_type;
604 else
605 packed_type = glsl_type::vec4_type;
606 if (this->gs_input_vertices != 0) {
607 packed_type =
608 glsl_type::get_array_instance(packed_type,
609 this->gs_input_vertices);
610 }
611 ir_variable *packed_var = new(this->mem_ctx)
612 ir_variable(packed_type, packed_name, this->mode);
613 if (this->gs_input_vertices != 0) {
614 /* Prevent update_array_sizes() from messing with the size of the
615 * array.
616 */
617 packed_var->data.max_array_access = this->gs_input_vertices - 1;
618 }
619 packed_var->data.centroid = unpacked_var->data.centroid;
620 packed_var->data.sample = unpacked_var->data.sample;
621 packed_var->data.patch = unpacked_var->data.patch;
622 packed_var->data.interpolation = unpacked_var->data.interpolation;
623 packed_var->data.location = location;
624 packed_var->data.precision = unpacked_var->data.precision;
625 packed_var->data.always_active_io = unpacked_var->data.always_active_io;
626 unpacked_var->insert_before(packed_var);
627 this->packed_varyings[slot] = packed_var;
628 } else {
629 /* For geometry shader inputs, only update the packed variable name the
630 * first time we visit each component.
631 */
632 if (this->gs_input_vertices == 0 || vertex_index == 0) {
633 ralloc_asprintf_append((char **) &this->packed_varyings[slot]->name,
634 ",%s", name);
635 }
636 }
637
638 ir_dereference *deref = new(this->mem_ctx)
639 ir_dereference_variable(this->packed_varyings[slot]);
640 if (this->gs_input_vertices != 0) {
641 /* When lowering GS inputs, the packed variable is an array, so we need
642 * to dereference it using vertex_index.
643 */
644 ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
645 deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
646 }
647 return deref;
648 }
649
650 bool
651 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
652 {
653 /* Things composed of vec4's and varyings with explicitly assigned
654 * locations don't need lowering. Everything else does.
655 */
656 if (var->data.explicit_location)
657 return false;
658
659 const glsl_type *type = var->type->without_array();
660 if (type->vector_elements == 4 && !type->is_double())
661 return false;
662 return true;
663 }
664
665
666 /**
667 * Visitor that splices varying packing code before every use of EmitVertex()
668 * in a geometry shader.
669 */
670 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
671 {
672 public:
673 explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
674 const exec_list *instructions);
675
676 virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
677
678 private:
679 /**
680 * Memory context used to allocate new instructions for the shader.
681 */
682 void * const mem_ctx;
683
684 /**
685 * Instructions that should be spliced into place before each EmitVertex()
686 * call.
687 */
688 const exec_list *instructions;
689 };
690
691
692 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
693 void *mem_ctx, const exec_list *instructions)
694 : mem_ctx(mem_ctx), instructions(instructions)
695 {
696 }
697
698
699 ir_visitor_status
700 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
701 {
702 foreach_in_list(ir_instruction, ir, this->instructions) {
703 ev->insert_before(ir->clone(this->mem_ctx, NULL));
704 }
705 return visit_continue;
706 }
707
708
709 void
710 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
711 ir_variable_mode mode, unsigned gs_input_vertices,
712 gl_shader *shader)
713 {
714 exec_list *instructions = shader->ir;
715 ir_function *main_func = shader->symbols->get_function("main");
716 exec_list void_parameters;
717 ir_function_signature *main_func_sig
718 = main_func->matching_signature(NULL, &void_parameters, false);
719 exec_list new_instructions, new_variables;
720 lower_packed_varyings_visitor visitor(mem_ctx, locations_used, mode,
721 gs_input_vertices,
722 &new_instructions,
723 &new_variables);
724 visitor.run(shader);
725 if (mode == ir_var_shader_out) {
726 if (shader->Stage == MESA_SHADER_GEOMETRY) {
727 /* For geometry shaders, outputs need to be lowered before each call
728 * to EmitVertex()
729 */
730 lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
731
732 /* Add all the variables in first. */
733 main_func_sig->body.head->insert_before(&new_variables);
734
735 /* Now update all the EmitVertex instances */
736 splicer.run(instructions);
737 } else {
738 /* For other shader types, outputs need to be lowered at the end of
739 * main()
740 */
741 main_func_sig->body.append_list(&new_variables);
742 main_func_sig->body.append_list(&new_instructions);
743 }
744 } else {
745 /* Shader inputs need to be lowered at the beginning of main() */
746 main_func_sig->body.head->insert_before(&new_instructions);
747 main_func_sig->body.head->insert_before(&new_variables);
748 }
749 }