glsl/linker: add DisableTransformFeedbackPacking workaround
[mesa.git] / src / compiler / glsl / lower_packed_varyings.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_varyings_to_packed.cpp
26 *
27 * This lowering pass generates GLSL code that manually packs varyings into
28 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29 * natively.
30 *
31 * For example, the following shader:
32 *
33 * out mat3x2 foo; // location=4, location_frac=0
34 * out vec3 bar[2]; // location=5, location_frac=2
35 *
36 * main()
37 * {
38 * ...
39 * }
40 *
41 * Is rewritten to:
42 *
43 * mat3x2 foo;
44 * vec3 bar[2];
45 * out vec4 packed4; // location=4, location_frac=0
46 * out vec4 packed5; // location=5, location_frac=0
47 * out vec4 packed6; // location=6, location_frac=0
48 *
49 * main()
50 * {
51 * ...
52 * packed4.xy = foo[0];
53 * packed4.zw = foo[1];
54 * packed5.xy = foo[2];
55 * packed5.zw = bar[0].xy;
56 * packed6.x = bar[0].z;
57 * packed6.yzw = bar[1];
58 * }
59 *
60 * This lowering pass properly handles "double parking" of a varying vector
61 * across two varying slots. For example, in the code above, two of the
62 * components of bar[0] are stored in packed5, and the remaining component is
63 * stored in packed6.
64 *
65 * Note that in theory, the extra instructions may cause some loss of
66 * performance. However, hopefully in most cases the performance loss will
67 * either be absorbed by a later optimization pass, or it will be offset by
68 * memory bandwidth savings (because fewer varyings are used).
69 *
70 * This lowering pass also packs flat floats, ints, and uints together, by
71 * using ivec4 as the base type of flat "varyings", and using appropriate
72 * casts to convert floats and uints into ints.
73 *
74 * This lowering pass also handles varyings whose type is a struct or an array
75 * of struct. Structs are packed in order and with no gaps, so there may be a
76 * performance penalty due to structure elements being double-parked.
77 *
78 * Lowering of geometry shader inputs is slightly more complex, since geometry
79 * inputs are always arrays, so we need to lower arrays to arrays. For
80 * example, the following input:
81 *
82 * in struct Foo {
83 * float f;
84 * vec3 v;
85 * vec2 a[2];
86 * } arr[3]; // location=4, location_frac=0
87 *
88 * Would get lowered like this if it occurred in a fragment shader:
89 *
90 * struct Foo {
91 * float f;
92 * vec3 v;
93 * vec2 a[2];
94 * } arr[3];
95 * in vec4 packed4; // location=4, location_frac=0
96 * in vec4 packed5; // location=5, location_frac=0
97 * in vec4 packed6; // location=6, location_frac=0
98 * in vec4 packed7; // location=7, location_frac=0
99 * in vec4 packed8; // location=8, location_frac=0
100 * in vec4 packed9; // location=9, location_frac=0
101 *
102 * main()
103 * {
104 * arr[0].f = packed4.x;
105 * arr[0].v = packed4.yzw;
106 * arr[0].a[0] = packed5.xy;
107 * arr[0].a[1] = packed5.zw;
108 * arr[1].f = packed6.x;
109 * arr[1].v = packed6.yzw;
110 * arr[1].a[0] = packed7.xy;
111 * arr[1].a[1] = packed7.zw;
112 * arr[2].f = packed8.x;
113 * arr[2].v = packed8.yzw;
114 * arr[2].a[0] = packed9.xy;
115 * arr[2].a[1] = packed9.zw;
116 * ...
117 * }
118 *
119 * But it would get lowered like this if it occurred in a geometry shader:
120 *
121 * struct Foo {
122 * float f;
123 * vec3 v;
124 * vec2 a[2];
125 * } arr[3];
126 * in vec4 packed4[3]; // location=4, location_frac=0
127 * in vec4 packed5[3]; // location=5, location_frac=0
128 *
129 * main()
130 * {
131 * arr[0].f = packed4[0].x;
132 * arr[0].v = packed4[0].yzw;
133 * arr[0].a[0] = packed5[0].xy;
134 * arr[0].a[1] = packed5[0].zw;
135 * arr[1].f = packed4[1].x;
136 * arr[1].v = packed4[1].yzw;
137 * arr[1].a[0] = packed5[1].xy;
138 * arr[1].a[1] = packed5[1].zw;
139 * arr[2].f = packed4[2].x;
140 * arr[2].v = packed4[2].yzw;
141 * arr[2].a[0] = packed5[2].xy;
142 * arr[2].a[1] = packed5[2].zw;
143 * ...
144 * }
145 */
146
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152 #include "main/mtypes.h"
153
154 using namespace ir_builder;
155
156 namespace {
157
158 /**
159 * Visitor that performs varying packing. For each varying declared in the
160 * shader, this visitor determines whether it needs to be packed. If so, it
161 * demotes it to an ordinary global, creates new packed varyings, and
162 * generates assignments to convert between the original varying and the
163 * packed varying.
164 */
165 class lower_packed_varyings_visitor
166 {
167 public:
168 lower_packed_varyings_visitor(void *mem_ctx,
169 unsigned locations_used,
170 const uint8_t *components,
171 ir_variable_mode mode,
172 unsigned gs_input_vertices,
173 exec_list *out_instructions,
174 exec_list *out_variables,
175 bool disable_varying_packing,
176 bool disable_xfb_packing,
177 bool xfb_enabled);
178
179 void run(struct gl_linked_shader *shader);
180
181 private:
182 void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
183 void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
184 unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
185 ir_variable *unpacked_var, const char *name,
186 bool gs_input_toplevel, unsigned vertex_index);
187 unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
188 unsigned fine_location,
189 ir_variable *unpacked_var, const char *name,
190 bool gs_input_toplevel, unsigned vertex_index);
191 ir_dereference *get_packed_varying_deref(unsigned location,
192 ir_variable *unpacked_var,
193 const char *name,
194 unsigned vertex_index);
195 bool needs_lowering(ir_variable *var);
196
197 /**
198 * Memory context used to allocate new instructions for the shader.
199 */
200 void * const mem_ctx;
201
202 /**
203 * Number of generic varying slots which are used by this shader. This is
204 * used to allocate temporary intermediate data structures. If any varying
205 * used by this shader has a location greater than or equal to
206 * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
207 */
208 const unsigned locations_used;
209
210 const uint8_t* components;
211
212 /**
213 * Array of pointers to the packed varyings that have been created for each
214 * generic varying slot. NULL entries in this array indicate varying slots
215 * for which a packed varying has not been created yet.
216 */
217 ir_variable **packed_varyings;
218
219 /**
220 * Type of varying which is being lowered in this pass (either
221 * ir_var_shader_in or ir_var_shader_out).
222 */
223 const ir_variable_mode mode;
224
225 /**
226 * If we are currently lowering geometry shader inputs, the number of input
227 * vertices the geometry shader accepts. Otherwise zero.
228 */
229 const unsigned gs_input_vertices;
230
231 /**
232 * Exec list into which the visitor should insert the packing instructions.
233 * Caller provides this list; it should insert the instructions into the
234 * appropriate place in the shader once the visitor has finished running.
235 */
236 exec_list *out_instructions;
237
238 /**
239 * Exec list into which the visitor should insert any new variables.
240 */
241 exec_list *out_variables;
242
243 bool disable_varying_packing;
244 bool disable_xfb_packing;
245 bool xfb_enabled;
246 };
247
248 } /* anonymous namespace */
249
250 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
251 void *mem_ctx, unsigned locations_used, const uint8_t *components,
252 ir_variable_mode mode,
253 unsigned gs_input_vertices, exec_list *out_instructions,
254 exec_list *out_variables, bool disable_varying_packing,
255 bool disable_xfb_packing, bool xfb_enabled)
256 : mem_ctx(mem_ctx),
257 locations_used(locations_used),
258 components(components),
259 packed_varyings((ir_variable **)
260 rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
261 locations_used)),
262 mode(mode),
263 gs_input_vertices(gs_input_vertices),
264 out_instructions(out_instructions),
265 out_variables(out_variables),
266 disable_varying_packing(disable_varying_packing),
267 disable_xfb_packing(disable_xfb_packing),
268 xfb_enabled(xfb_enabled)
269 {
270 }
271
272 void
273 lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
274 {
275 foreach_in_list(ir_instruction, node, shader->ir) {
276 ir_variable *var = node->as_variable();
277 if (var == NULL)
278 continue;
279
280 if (var->data.mode != this->mode ||
281 var->data.location < VARYING_SLOT_VAR0 ||
282 !this->needs_lowering(var))
283 continue;
284
285 /* This lowering pass is only capable of packing floats and ints
286 * together when their interpolation mode is "flat". Treat integers as
287 * being flat when the interpolation mode is none.
288 */
289 assert(var->data.interpolation == INTERP_MODE_FLAT ||
290 var->data.interpolation == INTERP_MODE_NONE ||
291 !var->type->contains_integer());
292
293 /* Clone the variable for program resource list before
294 * it gets modified and lost.
295 */
296 if (!shader->packed_varyings)
297 shader->packed_varyings = new (shader) exec_list;
298
299 shader->packed_varyings->push_tail(var->clone(shader, NULL));
300
301 /* Change the old varying into an ordinary global. */
302 assert(var->data.mode != ir_var_temporary);
303 var->data.mode = ir_var_auto;
304
305 /* Create a reference to the old varying. */
306 ir_dereference_variable *deref
307 = new(this->mem_ctx) ir_dereference_variable(var);
308
309 /* Recursively pack or unpack it. */
310 this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
311 var->name, this->gs_input_vertices != 0, 0);
312 }
313 }
314
315 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
316
317 /**
318 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
319 * bitcasts if necessary to match up types.
320 *
321 * This function is called when packing varyings.
322 */
323 void
324 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
325 ir_rvalue *rhs)
326 {
327 if (lhs->type->base_type != rhs->type->base_type) {
328 /* Since we only mix types in flat varyings, and we always store flat
329 * varyings as type ivec4, we need only produce conversions from (uint
330 * or float) to int.
331 */
332 assert(lhs->type->base_type == GLSL_TYPE_INT);
333 switch (rhs->type->base_type) {
334 case GLSL_TYPE_UINT:
335 rhs = new(this->mem_ctx)
336 ir_expression(ir_unop_u2i, lhs->type, rhs);
337 break;
338 case GLSL_TYPE_FLOAT:
339 rhs = new(this->mem_ctx)
340 ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
341 break;
342 case GLSL_TYPE_DOUBLE:
343 assert(rhs->type->vector_elements <= 2);
344 if (rhs->type->vector_elements == 2) {
345 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
346
347 assert(lhs->type->vector_elements == 4);
348 this->out_variables->push_tail(t);
349 this->out_instructions->push_tail(
350 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
351 this->out_instructions->push_tail(
352 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
353 rhs = deref(t).val;
354 } else {
355 rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
356 }
357 break;
358 case GLSL_TYPE_INT64:
359 assert(rhs->type->vector_elements <= 2);
360 if (rhs->type->vector_elements == 2) {
361 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
362
363 assert(lhs->type->vector_elements == 4);
364 this->out_variables->push_tail(t);
365 this->out_instructions->push_tail(
366 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_x(rhs->clone(mem_ctx, NULL))), 0x3));
367 this->out_instructions->push_tail(
368 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_y(rhs)), 0xc));
369 rhs = deref(t).val;
370 } else {
371 rhs = expr(ir_unop_unpack_int_2x32, rhs);
372 }
373 break;
374 case GLSL_TYPE_UINT64:
375 assert(rhs->type->vector_elements <= 2);
376 if (rhs->type->vector_elements == 2) {
377 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
378
379 assert(lhs->type->vector_elements == 4);
380 this->out_variables->push_tail(t);
381 this->out_instructions->push_tail(
382 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
383 this->out_instructions->push_tail(
384 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_y(rhs))), 0xc));
385 rhs = deref(t).val;
386 } else {
387 rhs = u2i(expr(ir_unop_unpack_uint_2x32, rhs));
388 }
389 break;
390 case GLSL_TYPE_SAMPLER:
391 rhs = u2i(expr(ir_unop_unpack_sampler_2x32, rhs));
392 break;
393 case GLSL_TYPE_IMAGE:
394 rhs = u2i(expr(ir_unop_unpack_image_2x32, rhs));
395 break;
396 default:
397 assert(!"Unexpected type conversion while lowering varyings");
398 break;
399 }
400 }
401 this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
402 }
403
404
405 /**
406 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
407 * bitcasts if necessary to match up types.
408 *
409 * This function is called when unpacking varyings.
410 */
411 void
412 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
413 ir_rvalue *rhs)
414 {
415 if (lhs->type->base_type != rhs->type->base_type) {
416 /* Since we only mix types in flat varyings, and we always store flat
417 * varyings as type ivec4, we need only produce conversions from int to
418 * (uint or float).
419 */
420 assert(rhs->type->base_type == GLSL_TYPE_INT);
421 switch (lhs->type->base_type) {
422 case GLSL_TYPE_UINT:
423 rhs = new(this->mem_ctx)
424 ir_expression(ir_unop_i2u, lhs->type, rhs);
425 break;
426 case GLSL_TYPE_FLOAT:
427 rhs = new(this->mem_ctx)
428 ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
429 break;
430 case GLSL_TYPE_DOUBLE:
431 assert(lhs->type->vector_elements <= 2);
432 if (lhs->type->vector_elements == 2) {
433 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
434 assert(rhs->type->vector_elements == 4);
435 this->out_variables->push_tail(t);
436 this->out_instructions->push_tail(
437 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
438 this->out_instructions->push_tail(
439 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
440 rhs = deref(t).val;
441 } else {
442 rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
443 }
444 break;
445 case GLSL_TYPE_INT64:
446 assert(lhs->type->vector_elements <= 2);
447 if (lhs->type->vector_elements == 2) {
448 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
449 assert(rhs->type->vector_elements == 4);
450 this->out_variables->push_tail(t);
451 this->out_instructions->push_tail(
452 assign(t, expr(ir_unop_pack_int_2x32, swizzle_xy(rhs->clone(mem_ctx, NULL))), 0x1));
453 this->out_instructions->push_tail(
454 assign(t, expr(ir_unop_pack_int_2x32, swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2)), 0x2));
455 rhs = deref(t).val;
456 } else {
457 rhs = expr(ir_unop_pack_int_2x32, rhs);
458 }
459 break;
460 case GLSL_TYPE_UINT64:
461 assert(lhs->type->vector_elements <= 2);
462 if (lhs->type->vector_elements == 2) {
463 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
464 assert(rhs->type->vector_elements == 4);
465 this->out_variables->push_tail(t);
466 this->out_instructions->push_tail(
467 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
468 this->out_instructions->push_tail(
469 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
470 rhs = deref(t).val;
471 } else {
472 rhs = expr(ir_unop_pack_uint_2x32, i2u(rhs));
473 }
474 break;
475 case GLSL_TYPE_SAMPLER:
476 rhs = new(mem_ctx)
477 ir_expression(ir_unop_pack_sampler_2x32, lhs->type, i2u(rhs));
478 break;
479 case GLSL_TYPE_IMAGE:
480 rhs = new(mem_ctx)
481 ir_expression(ir_unop_pack_image_2x32, lhs->type, i2u(rhs));
482 break;
483 default:
484 assert(!"Unexpected type conversion while lowering varyings");
485 break;
486 }
487 }
488 this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
489 }
490
491
492 /**
493 * Recursively pack or unpack the given varying (or portion of a varying) by
494 * traversing all of its constituent vectors.
495 *
496 * \param fine_location is the location where the first constituent vector
497 * should be packed--the word "fine" indicates that this location is expressed
498 * in multiples of a float, rather than multiples of a vec4 as is used
499 * elsewhere in Mesa.
500 *
501 * \param gs_input_toplevel should be set to true if we are lowering geometry
502 * shader inputs, and we are currently lowering the whole input variable
503 * (i.e. we are lowering the array whose index selects the vertex).
504 *
505 * \param vertex_index: if we are lowering geometry shader inputs, and the
506 * level of the array that we are currently lowering is *not* the top level,
507 * then this indicates which vertex we are currently lowering. Otherwise it
508 * is ignored.
509 *
510 * \return the location where the next constituent vector (after this one)
511 * should be packed.
512 */
513 unsigned
514 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
515 unsigned fine_location,
516 ir_variable *unpacked_var,
517 const char *name,
518 bool gs_input_toplevel,
519 unsigned vertex_index)
520 {
521 unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
522 /* When gs_input_toplevel is set, we should be looking at a geometry shader
523 * input array.
524 */
525 assert(!gs_input_toplevel || rvalue->type->is_array());
526
527 if (rvalue->type->is_struct()) {
528 for (unsigned i = 0; i < rvalue->type->length; i++) {
529 if (i != 0)
530 rvalue = rvalue->clone(this->mem_ctx, NULL);
531 const char *field_name = rvalue->type->fields.structure[i].name;
532 ir_dereference_record *dereference_record = new(this->mem_ctx)
533 ir_dereference_record(rvalue, field_name);
534 char *deref_name
535 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
536 fine_location = this->lower_rvalue(dereference_record, fine_location,
537 unpacked_var, deref_name, false,
538 vertex_index);
539 }
540 return fine_location;
541 } else if (rvalue->type->is_array()) {
542 /* Arrays are packed/unpacked by considering each array element in
543 * sequence.
544 */
545 return this->lower_arraylike(rvalue, rvalue->type->array_size(),
546 fine_location, unpacked_var, name,
547 gs_input_toplevel, vertex_index);
548 } else if (rvalue->type->is_matrix()) {
549 /* Matrices are packed/unpacked by considering each column vector in
550 * sequence.
551 */
552 return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
553 fine_location, unpacked_var, name,
554 false, vertex_index);
555 } else if (rvalue->type->vector_elements * dmul +
556 fine_location % 4 > 4) {
557 /* This vector is going to be "double parked" across two varying slots,
558 * so handle it as two separate assignments. For doubles, a dvec3/dvec4
559 * can end up being spread over 3 slots. However the second splitting
560 * will happen later, here we just always want to split into 2.
561 */
562 unsigned left_components, right_components;
563 unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
564 unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
565 char left_swizzle_name[4] = { 0, 0, 0, 0 };
566 char right_swizzle_name[4] = { 0, 0, 0, 0 };
567
568 left_components = 4 - fine_location % 4;
569 if (rvalue->type->is_64bit()) {
570 /* We might actually end up with 0 left components! */
571 left_components /= 2;
572 }
573 right_components = rvalue->type->vector_elements - left_components;
574
575 for (unsigned i = 0; i < left_components; i++) {
576 left_swizzle_values[i] = i;
577 left_swizzle_name[i] = "xyzw"[i];
578 }
579 for (unsigned i = 0; i < right_components; i++) {
580 right_swizzle_values[i] = i + left_components;
581 right_swizzle_name[i] = "xyzw"[i + left_components];
582 }
583 ir_swizzle *left_swizzle = new(this->mem_ctx)
584 ir_swizzle(rvalue, left_swizzle_values, left_components);
585 ir_swizzle *right_swizzle = new(this->mem_ctx)
586 ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
587 right_components);
588 char *left_name
589 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
590 char *right_name
591 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
592 if (left_components)
593 fine_location = this->lower_rvalue(left_swizzle, fine_location,
594 unpacked_var, left_name, false,
595 vertex_index);
596 else
597 /* Top up the fine location to the next slot */
598 fine_location++;
599 return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
600 right_name, false, vertex_index);
601 } else {
602 /* No special handling is necessary; pack the rvalue into the
603 * varying.
604 */
605 unsigned swizzle_values[4] = { 0, 0, 0, 0 };
606 unsigned components = rvalue->type->vector_elements * dmul;
607 unsigned location = fine_location / 4;
608 unsigned location_frac = fine_location % 4;
609 for (unsigned i = 0; i < components; ++i)
610 swizzle_values[i] = i + location_frac;
611 ir_dereference *packed_deref =
612 this->get_packed_varying_deref(location, unpacked_var, name,
613 vertex_index);
614 if (unpacked_var->data.stream != 0) {
615 assert(unpacked_var->data.stream < 4);
616 ir_variable *packed_var = packed_deref->variable_referenced();
617 for (unsigned i = 0; i < components; ++i) {
618 packed_var->data.stream |=
619 unpacked_var->data.stream << (2 * (location_frac + i));
620 }
621 }
622 ir_swizzle *swizzle = new(this->mem_ctx)
623 ir_swizzle(packed_deref, swizzle_values, components);
624 if (this->mode == ir_var_shader_out) {
625 this->bitwise_assign_pack(swizzle, rvalue);
626 } else {
627 this->bitwise_assign_unpack(rvalue, swizzle);
628 }
629 return fine_location + components;
630 }
631 }
632
633 /**
634 * Recursively pack or unpack a varying for which we need to iterate over its
635 * constituent elements, accessing each one using an ir_dereference_array.
636 * This takes care of both arrays and matrices, since ir_dereference_array
637 * treats a matrix like an array of its column vectors.
638 *
639 * \param gs_input_toplevel should be set to true if we are lowering geometry
640 * shader inputs, and we are currently lowering the whole input variable
641 * (i.e. we are lowering the array whose index selects the vertex).
642 *
643 * \param vertex_index: if we are lowering geometry shader inputs, and the
644 * level of the array that we are currently lowering is *not* the top level,
645 * then this indicates which vertex we are currently lowering. Otherwise it
646 * is ignored.
647 */
648 unsigned
649 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
650 unsigned array_size,
651 unsigned fine_location,
652 ir_variable *unpacked_var,
653 const char *name,
654 bool gs_input_toplevel,
655 unsigned vertex_index)
656 {
657 for (unsigned i = 0; i < array_size; i++) {
658 if (i != 0)
659 rvalue = rvalue->clone(this->mem_ctx, NULL);
660 ir_constant *constant = new(this->mem_ctx) ir_constant(i);
661 ir_dereference_array *dereference_array = new(this->mem_ctx)
662 ir_dereference_array(rvalue, constant);
663 if (gs_input_toplevel) {
664 /* Geometry shader inputs are a special case. Instead of storing
665 * each element of the array at a different location, all elements
666 * are at the same location, but with a different vertex index.
667 */
668 (void) this->lower_rvalue(dereference_array, fine_location,
669 unpacked_var, name, false, i);
670 } else {
671 char *subscripted_name
672 = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
673 fine_location =
674 this->lower_rvalue(dereference_array, fine_location,
675 unpacked_var, subscripted_name,
676 false, vertex_index);
677 }
678 }
679 return fine_location;
680 }
681
682 /**
683 * Retrieve the packed varying corresponding to the given varying location.
684 * If no packed varying has been created for the given varying location yet,
685 * create it and add it to the shader before returning it.
686 *
687 * The newly created varying inherits its interpolation parameters from \c
688 * unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
689 * vec4 otherwise.
690 *
691 * \param vertex_index: if we are lowering geometry shader inputs, then this
692 * indicates which vertex we are currently lowering. Otherwise it is ignored.
693 */
694 ir_dereference *
695 lower_packed_varyings_visitor::get_packed_varying_deref(
696 unsigned location, ir_variable *unpacked_var, const char *name,
697 unsigned vertex_index)
698 {
699 unsigned slot = location - VARYING_SLOT_VAR0;
700 assert(slot < locations_used);
701 if (this->packed_varyings[slot] == NULL) {
702 char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
703 const glsl_type *packed_type;
704 assert(components[slot] != 0);
705 if (unpacked_var->is_interpolation_flat())
706 packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
707 else
708 packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
709 if (this->gs_input_vertices != 0) {
710 packed_type =
711 glsl_type::get_array_instance(packed_type,
712 this->gs_input_vertices);
713 }
714 ir_variable *packed_var = new(this->mem_ctx)
715 ir_variable(packed_type, packed_name, this->mode);
716 if (this->gs_input_vertices != 0) {
717 /* Prevent update_array_sizes() from messing with the size of the
718 * array.
719 */
720 packed_var->data.max_array_access = this->gs_input_vertices - 1;
721 }
722 packed_var->data.centroid = unpacked_var->data.centroid;
723 packed_var->data.sample = unpacked_var->data.sample;
724 packed_var->data.patch = unpacked_var->data.patch;
725 packed_var->data.interpolation =
726 packed_type->without_array() == glsl_type::ivec4_type
727 ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
728 packed_var->data.location = location;
729 packed_var->data.precision = unpacked_var->data.precision;
730 packed_var->data.always_active_io = unpacked_var->data.always_active_io;
731 packed_var->data.stream = 1u << 31;
732 unpacked_var->insert_before(packed_var);
733 this->packed_varyings[slot] = packed_var;
734 } else {
735 ir_variable *var = this->packed_varyings[slot];
736
737 /* The slot needs to be marked as always active if any variable that got
738 * packed there was.
739 */
740 var->data.always_active_io |= unpacked_var->data.always_active_io;
741
742 /* For geometry shader inputs, only update the packed variable name the
743 * first time we visit each component.
744 */
745 if (this->gs_input_vertices == 0 || vertex_index == 0) {
746 if (var->is_name_ralloced())
747 ralloc_asprintf_append((char **) &var->name, ",%s", name);
748 else
749 var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
750 }
751 }
752
753 ir_dereference *deref = new(this->mem_ctx)
754 ir_dereference_variable(this->packed_varyings[slot]);
755 if (this->gs_input_vertices != 0) {
756 /* When lowering GS inputs, the packed variable is an array, so we need
757 * to dereference it using vertex_index.
758 */
759 ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
760 deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
761 }
762 return deref;
763 }
764
765 bool
766 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
767 {
768 /* Things composed of vec4's, varyings with explicitly assigned
769 * locations or varyings marked as must_be_shader_input (which might be used
770 * by interpolateAt* functions) shouldn't be lowered. Everything else can be.
771 */
772 if (var->data.explicit_location || var->data.must_be_shader_input)
773 return false;
774
775 const glsl_type *type = var->type;
776
777 /* Some drivers (e.g. panfrost) don't support packing of transform
778 * feedback varyings.
779 */
780 if (disable_xfb_packing && var->data.is_xfb &&
781 !(type->is_array() || type->is_struct() || type->is_matrix()) &&
782 xfb_enabled)
783 return false;
784
785 /* Override disable_varying_packing if the var is only used by transform
786 * feedback. Also override it if transform feedback is enabled and the
787 * variable is an array, struct or matrix as the elements of these types
788 * will always have the same interpolation and therefore are safe to pack.
789 */
790 if (disable_varying_packing && !var->data.is_xfb_only &&
791 !((type->is_array() || type->is_struct() || type->is_matrix()) &&
792 xfb_enabled))
793 return false;
794
795 type = type->without_array();
796 if (type->vector_elements == 4 && !type->is_64bit())
797 return false;
798 return true;
799 }
800
801
802 /**
803 * Visitor that splices varying packing code before every use of EmitVertex()
804 * in a geometry shader.
805 */
806 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
807 {
808 public:
809 explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
810 const exec_list *instructions);
811
812 virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
813
814 private:
815 /**
816 * Memory context used to allocate new instructions for the shader.
817 */
818 void * const mem_ctx;
819
820 /**
821 * Instructions that should be spliced into place before each EmitVertex()
822 * call.
823 */
824 const exec_list *instructions;
825 };
826
827
828 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
829 void *mem_ctx, const exec_list *instructions)
830 : mem_ctx(mem_ctx), instructions(instructions)
831 {
832 }
833
834
835 ir_visitor_status
836 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
837 {
838 foreach_in_list(ir_instruction, ir, this->instructions) {
839 ev->insert_before(ir->clone(this->mem_ctx, NULL));
840 }
841 return visit_continue;
842 }
843
844 /**
845 * Visitor that splices varying packing code before every return.
846 */
847 class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
848 {
849 public:
850 explicit lower_packed_varyings_return_splicer(void *mem_ctx,
851 const exec_list *instructions);
852
853 virtual ir_visitor_status visit_leave(ir_return *ret);
854
855 private:
856 /**
857 * Memory context used to allocate new instructions for the shader.
858 */
859 void * const mem_ctx;
860
861 /**
862 * Instructions that should be spliced into place before each return.
863 */
864 const exec_list *instructions;
865 };
866
867
868 lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
869 void *mem_ctx, const exec_list *instructions)
870 : mem_ctx(mem_ctx), instructions(instructions)
871 {
872 }
873
874
875 ir_visitor_status
876 lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
877 {
878 foreach_in_list(ir_instruction, ir, this->instructions) {
879 ret->insert_before(ir->clone(this->mem_ctx, NULL));
880 }
881 return visit_continue;
882 }
883
884 void
885 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
886 const uint8_t *components,
887 ir_variable_mode mode, unsigned gs_input_vertices,
888 gl_linked_shader *shader, bool disable_varying_packing,
889 bool disable_xfb_packing, bool xfb_enabled)
890 {
891 exec_list *instructions = shader->ir;
892 ir_function *main_func = shader->symbols->get_function("main");
893 exec_list void_parameters;
894 ir_function_signature *main_func_sig
895 = main_func->matching_signature(NULL, &void_parameters, false);
896 exec_list new_instructions, new_variables;
897 lower_packed_varyings_visitor visitor(mem_ctx,
898 locations_used,
899 components,
900 mode,
901 gs_input_vertices,
902 &new_instructions,
903 &new_variables,
904 disable_varying_packing,
905 disable_xfb_packing,
906 xfb_enabled);
907 visitor.run(shader);
908 if (mode == ir_var_shader_out) {
909 if (shader->Stage == MESA_SHADER_GEOMETRY) {
910 /* For geometry shaders, outputs need to be lowered before each call
911 * to EmitVertex()
912 */
913 lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
914
915 /* Add all the variables in first. */
916 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
917
918 /* Now update all the EmitVertex instances */
919 splicer.run(instructions);
920 } else {
921 /* For other shader types, outputs need to be lowered before each
922 * return statement and at the end of main()
923 */
924
925 lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
926
927 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
928
929 splicer.run(instructions);
930
931 /* Lower outputs at the end of main() if the last instruction is not
932 * a return statement
933 */
934 if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
935 main_func_sig->body.append_list(&new_instructions);
936 }
937 }
938 } else {
939 /* Shader inputs need to be lowered at the beginning of main() */
940 main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
941 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
942 }
943 }