Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / compiler / glsl / opt_rebalance_tree.cpp
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_rebalance_tree.cpp
26 *
27 * Rebalances a reduction expression tree.
28 *
29 * For reduction operations (e.g., x + y + z + w) we generate an expression
30 * tree like
31 *
32 * +
33 * / \
34 * + w
35 * / \
36 * + z
37 * / \
38 * x y
39 *
40 * which we can rebalance into
41 *
42 * +
43 * / \
44 * / \
45 * + +
46 * / \ / \
47 * x y z w
48 *
49 * to get a better instruction scheduling.
50 *
51 * See "Tree Rebalancing in Optimal Editor Time and Space" by Quentin F. Stout
52 * and Bette L. Warren.
53 *
54 * Also see http://penguin.ewu.edu/~trolfe/DSWpaper/ for a very readable
55 * explanation of the of the tree_to_vine() (rightward rotation) and
56 * vine_to_tree() (leftward rotation) algorithms.
57 */
58
59 #include "ir.h"
60 #include "ir_visitor.h"
61 #include "ir_rvalue_visitor.h"
62 #include "ir_optimization.h"
63 #include "main/macros.h" /* for MAX2 */
64
65 /* The DSW algorithm generates a degenerate tree (really, a linked list) in
66 * tree_to_vine(). We'd rather not leave a binary expression with only one
67 * operand, so trivial modifications (the ternary operators below) are needed
68 * to ensure that we only rotate around the ir_expression nodes of the tree.
69 */
70 static unsigned
71 tree_to_vine(ir_expression *root)
72 {
73 unsigned size = 0;
74 ir_rvalue *vine_tail = root;
75 ir_rvalue *remainder = root->operands[1];
76
77 while (remainder != NULL) {
78 ir_expression *remainder_temp = remainder->as_expression();
79 ir_expression *remainder_left = remainder_temp ?
80 remainder_temp->operands[0]->as_expression() : NULL;
81
82 if (remainder_left == NULL) {
83 /* move vine_tail down one */
84 vine_tail = remainder;
85 remainder = remainder->as_expression() ?
86 ((ir_expression *)remainder)->operands[1] : NULL;
87 size++;
88 } else {
89 /* rotate */
90 ir_expression *tempptr = remainder_left;
91 ((ir_expression *)remainder)->operands[0] = tempptr->operands[1];
92 tempptr->operands[1] = remainder;
93 remainder = tempptr;
94 ((ir_expression *)vine_tail)->operands[1] = tempptr;
95 }
96 }
97
98 return size;
99 }
100
101 static void
102 compression(ir_expression *root, unsigned count)
103 {
104 ir_expression *scanner = root;
105
106 for (unsigned i = 0; i < count; i++) {
107 ir_expression *child = (ir_expression *)scanner->operands[1];
108 scanner->operands[1] = child->operands[1];
109 scanner = (ir_expression *)scanner->operands[1];
110 child->operands[1] = scanner->operands[0];
111 scanner->operands[0] = child;
112 }
113 }
114
115 static void
116 vine_to_tree(ir_expression *root, unsigned size)
117 {
118 int n = size - 1;
119 for (int m = n / 2; m > 0; m = n / 2) {
120 compression(root, m);
121 n -= m + 1;
122 }
123 }
124
125 namespace {
126
127 class ir_rebalance_visitor : public ir_rvalue_enter_visitor {
128 public:
129 ir_rebalance_visitor()
130 {
131 progress = false;
132 }
133
134 virtual ir_visitor_status visit_enter(ir_assignment *ir);
135
136 void handle_rvalue(ir_rvalue **rvalue);
137
138 bool progress;
139 };
140
141 struct is_reduction_data {
142 ir_expression_operation operation;
143 const glsl_type *type;
144 unsigned num_expr;
145 bool is_reduction;
146 bool contains_constant;
147 };
148
149 } /* anonymous namespace */
150
151 ir_visitor_status
152 ir_rebalance_visitor::visit_enter(ir_assignment *ir)
153 {
154 ir_variable *var = ir->lhs->variable_referenced();
155 if (var->data.invariant || var->data.precise) {
156 /* If we're assigning to an invariant variable, just bail. Tree
157 * rebalancing (reassociation) isn't precision-safe.
158 */
159 return visit_continue_with_parent;
160 } else {
161 return visit_continue;
162 }
163 }
164
165 static bool
166 is_reduction_operation(ir_expression_operation operation)
167 {
168 switch (operation) {
169 case ir_binop_add:
170 case ir_binop_mul:
171 case ir_binop_bit_and:
172 case ir_binop_bit_xor:
173 case ir_binop_bit_or:
174 case ir_binop_logic_and:
175 case ir_binop_logic_xor:
176 case ir_binop_logic_or:
177 case ir_binop_min:
178 case ir_binop_max:
179 return true;
180 default:
181 return false;
182 }
183 }
184
185 /* Note that this function does not attempt to recognize that reduction trees
186 * are already balanced.
187 *
188 * We return false from this function for a number of reasons other than an
189 * expression tree not being a mathematical reduction. Namely,
190 *
191 * - if the tree contains multiple constants that we may be able to combine.
192 * - if the tree contains matrices:
193 * - they might contain vec4's with many constant components that we can
194 * simplify after splitting.
195 * - applying the matrix chain ordering optimization is more than just
196 * balancing an expression tree.
197 * - if the tree contains operations on multiple types.
198 * - if the tree contains ir_dereference_{array,record}, since foo[a+b] + c
199 * would trick the visiting pass.
200 */
201 static void
202 is_reduction(ir_instruction *ir, void *data)
203 {
204 struct is_reduction_data *ird = (struct is_reduction_data *)data;
205 if (!ird->is_reduction)
206 return;
207
208 /* We don't want to balance a tree that contains multiple constants, since
209 * we'll be able to constant fold them if they're not in separate subtrees.
210 */
211 if (ir->as_constant()) {
212 if (ird->contains_constant) {
213 ird->is_reduction = false;
214 }
215 ird->contains_constant = true;
216 return;
217 }
218
219 /* Array/record dereferences have subtrees that are not part of the expr
220 * tree we're balancing. Skip trees containing them.
221 */
222 if (ir->ir_type == ir_type_dereference_array ||
223 ir->ir_type == ir_type_dereference_record) {
224 ird->is_reduction = false;
225 return;
226 }
227
228 ir_expression *expr = ir->as_expression();
229 if (!expr)
230 return;
231
232 /* Non-constant matrices might still contain constant vec4 that we can
233 * constant fold once split up. Handling matrices will need some more
234 * work.
235 */
236 if (expr->type->is_matrix() ||
237 expr->operands[0]->type->is_matrix() ||
238 (expr->operands[1] && expr->operands[1]->type->is_matrix())) {
239 ird->is_reduction = false;
240 return;
241 }
242
243 if (ird->type != NULL && ird->type != expr->type) {
244 ird->is_reduction = false;
245 return;
246 }
247 ird->type = expr->type;
248
249 ird->num_expr++;
250 if (is_reduction_operation(expr->operation)) {
251 if (ird->operation != 0 && ird->operation != expr->operation)
252 ird->is_reduction = false;
253 ird->operation = expr->operation;
254 } else {
255 ird->is_reduction = false;
256 }
257 }
258
259 static ir_rvalue *
260 handle_expression(ir_expression *expr)
261 {
262 struct is_reduction_data ird;
263 ird.operation = (ir_expression_operation)0;
264 ird.type = NULL;
265 ird.num_expr = 0;
266 ird.is_reduction = true;
267 ird.contains_constant = false;
268
269 visit_tree(expr, is_reduction, (void *)&ird);
270
271 if (ird.is_reduction && ird.num_expr > 2) {
272 ir_constant z = ir_constant(0.0f);
273 ir_expression pseudo_root = ir_expression(ir_binop_add, &z, expr);
274
275 unsigned size = tree_to_vine(&pseudo_root);
276 vine_to_tree(&pseudo_root, size);
277
278 expr = (ir_expression *)pseudo_root.operands[1];
279 }
280 return expr;
281 }
282
283 static void
284 update_types(ir_instruction *ir, void *)
285 {
286 ir_expression *expr = ir->as_expression();
287 if (!expr)
288 return;
289
290 const glsl_type *const new_type =
291 glsl_type::get_instance(expr->type->base_type,
292 MAX2(expr->operands[0]->type->vector_elements,
293 expr->operands[1]->type->vector_elements),
294 1);
295 assert(new_type != glsl_type::error_type);
296 expr->type = new_type;
297 }
298
299 void
300 ir_rebalance_visitor::handle_rvalue(ir_rvalue **rvalue)
301 {
302 if (!*rvalue)
303 return;
304
305 ir_expression *expr = (*rvalue)->as_expression();
306 if (!expr || !is_reduction_operation(expr->operation))
307 return;
308
309 ir_rvalue *new_rvalue = handle_expression(expr);
310
311 /* If we failed to rebalance the tree (e.g., because it wasn't a reduction,
312 * or some other set of cases) new_rvalue will point to the same root as
313 * before.
314 *
315 * Similarly, if the tree rooted at *rvalue was a reduction and was already
316 * balanced, the algorithm will rearrange the tree but will ultimately
317 * return an identical tree, so this check will handle that as well and
318 * will not set progress = true.
319 */
320 if (new_rvalue == *rvalue)
321 return;
322
323 visit_tree(new_rvalue, NULL, NULL, update_types);
324
325 *rvalue = new_rvalue;
326 this->progress = true;
327 }
328
329 bool
330 do_rebalance_tree(exec_list *instructions)
331 {
332 ir_rebalance_visitor v;
333
334 v.run(instructions);
335
336 return v.progress;
337 }