280f441665377f42ca5a1ec6f160660e204b002d
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "util/format/u_format.h"
41 #include "compiler/nir_types.h"
42 #include "compiler/shader_enums.h"
43 #include "compiler/shader_info.h"
44 #define XXH_INLINE_ALL
45 #include "util/xxhash.h"
46 #include <stdio.h>
47
48 #ifndef NDEBUG
49 #include "util/debug.h"
50 #endif /* NDEBUG */
51
52 #include "nir_opcodes.h"
53
54 #if defined(_WIN32) && !defined(snprintf)
55 #define snprintf _snprintf
56 #endif
57
58 #ifdef __cplusplus
59 extern "C" {
60 #endif
61
62 #define NIR_FALSE 0u
63 #define NIR_TRUE (~0u)
64 #define NIR_MAX_VEC_COMPONENTS 16
65 #define NIR_MAX_MATRIX_COLUMNS 4
66 #define NIR_STREAM_PACKED (1 << 8)
67 typedef uint16_t nir_component_mask_t;
68
69 static inline bool
70 nir_num_components_valid(unsigned num_components)
71 {
72 return (num_components >= 1 &&
73 num_components <= 4) ||
74 num_components == 8 ||
75 num_components == 16;
76 }
77
78 /** Defines a cast function
79 *
80 * This macro defines a cast function from in_type to out_type where
81 * out_type is some structure type that contains a field of type out_type.
82 *
83 * Note that you have to be a bit careful as the generated cast function
84 * destroys constness.
85 */
86 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
87 type_field, type_value) \
88 static inline out_type * \
89 name(const in_type *parent) \
90 { \
91 assert(parent && parent->type_field == type_value); \
92 return exec_node_data(out_type, parent, field); \
93 }
94
95 struct nir_function;
96 struct nir_shader;
97 struct nir_instr;
98 struct nir_builder;
99
100
101 /**
102 * Description of built-in state associated with a uniform
103 *
104 * \sa nir_variable::state_slots
105 */
106 typedef struct {
107 gl_state_index16 tokens[STATE_LENGTH];
108 uint16_t swizzle;
109 } nir_state_slot;
110
111 typedef enum {
112 nir_var_shader_in = (1 << 0),
113 nir_var_shader_out = (1 << 1),
114 nir_var_shader_temp = (1 << 2),
115 nir_var_function_temp = (1 << 3),
116 nir_var_uniform = (1 << 4),
117 nir_var_mem_ubo = (1 << 5),
118 nir_var_system_value = (1 << 6),
119 nir_var_mem_ssbo = (1 << 7),
120 nir_var_mem_shared = (1 << 8),
121 nir_var_mem_global = (1 << 9),
122 nir_var_mem_push_const = (1 << 10), /* not actually used for variables */
123 nir_num_variable_modes = 11,
124 nir_var_all = (1 << nir_num_variable_modes) - 1,
125 } nir_variable_mode;
126
127 /**
128 * Rounding modes.
129 */
130 typedef enum {
131 nir_rounding_mode_undef = 0,
132 nir_rounding_mode_rtne = 1, /* round to nearest even */
133 nir_rounding_mode_ru = 2, /* round up */
134 nir_rounding_mode_rd = 3, /* round down */
135 nir_rounding_mode_rtz = 4, /* round towards zero */
136 } nir_rounding_mode;
137
138 typedef union {
139 bool b;
140 float f32;
141 double f64;
142 int8_t i8;
143 uint8_t u8;
144 int16_t i16;
145 uint16_t u16;
146 int32_t i32;
147 uint32_t u32;
148 int64_t i64;
149 uint64_t u64;
150 } nir_const_value;
151
152 #define nir_const_value_to_array(arr, c, components, m) \
153 { \
154 for (unsigned i = 0; i < components; ++i) \
155 arr[i] = c[i].m; \
156 } while (false)
157
158 static inline nir_const_value
159 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
160 {
161 nir_const_value v;
162 memset(&v, 0, sizeof(v));
163
164 switch (bit_size) {
165 case 1: v.b = x; break;
166 case 8: v.u8 = x; break;
167 case 16: v.u16 = x; break;
168 case 32: v.u32 = x; break;
169 case 64: v.u64 = x; break;
170 default:
171 unreachable("Invalid bit size");
172 }
173
174 return v;
175 }
176
177 static inline nir_const_value
178 nir_const_value_for_int(int64_t i, unsigned bit_size)
179 {
180 nir_const_value v;
181 memset(&v, 0, sizeof(v));
182
183 assert(bit_size <= 64);
184 if (bit_size < 64) {
185 assert(i >= (-(1ll << (bit_size - 1))));
186 assert(i < (1ll << (bit_size - 1)));
187 }
188
189 return nir_const_value_for_raw_uint(i, bit_size);
190 }
191
192 static inline nir_const_value
193 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
194 {
195 nir_const_value v;
196 memset(&v, 0, sizeof(v));
197
198 assert(bit_size <= 64);
199 if (bit_size < 64)
200 assert(u < (1ull << bit_size));
201
202 return nir_const_value_for_raw_uint(u, bit_size);
203 }
204
205 static inline nir_const_value
206 nir_const_value_for_bool(bool b, unsigned bit_size)
207 {
208 /* Booleans use a 0/-1 convention */
209 return nir_const_value_for_int(-(int)b, bit_size);
210 }
211
212 /* This one isn't inline because it requires half-float conversion */
213 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
214
215 static inline int64_t
216 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
217 {
218 switch (bit_size) {
219 /* int1_t uses 0/-1 convention */
220 case 1: return -(int)value.b;
221 case 8: return value.i8;
222 case 16: return value.i16;
223 case 32: return value.i32;
224 case 64: return value.i64;
225 default:
226 unreachable("Invalid bit size");
227 }
228 }
229
230 static inline uint64_t
231 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
232 {
233 switch (bit_size) {
234 case 1: return value.b;
235 case 8: return value.u8;
236 case 16: return value.u16;
237 case 32: return value.u32;
238 case 64: return value.u64;
239 default:
240 unreachable("Invalid bit size");
241 }
242 }
243
244 static inline bool
245 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
246 {
247 int64_t i = nir_const_value_as_int(value, bit_size);
248
249 /* Booleans of any size use 0/-1 convention */
250 assert(i == 0 || i == -1);
251
252 return i;
253 }
254
255 /* This one isn't inline because it requires half-float conversion */
256 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
257
258 typedef struct nir_constant {
259 /**
260 * Value of the constant.
261 *
262 * The field used to back the values supplied by the constant is determined
263 * by the type associated with the \c nir_variable. Constants may be
264 * scalars, vectors, or matrices.
265 */
266 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
267
268 /* we could get this from the var->type but makes clone *much* easier to
269 * not have to care about the type.
270 */
271 unsigned num_elements;
272
273 /* Array elements / Structure Fields */
274 struct nir_constant **elements;
275 } nir_constant;
276
277 /**
278 * \brief Layout qualifiers for gl_FragDepth.
279 *
280 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
281 * with a layout qualifier.
282 */
283 typedef enum {
284 nir_depth_layout_none, /**< No depth layout is specified. */
285 nir_depth_layout_any,
286 nir_depth_layout_greater,
287 nir_depth_layout_less,
288 nir_depth_layout_unchanged
289 } nir_depth_layout;
290
291 /**
292 * Enum keeping track of how a variable was declared.
293 */
294 typedef enum {
295 /**
296 * Normal declaration.
297 */
298 nir_var_declared_normally = 0,
299
300 /**
301 * Variable is implicitly generated by the compiler and should not be
302 * visible via the API.
303 */
304 nir_var_hidden,
305 } nir_var_declaration_type;
306
307 /**
308 * Either a uniform, global variable, shader input, or shader output. Based on
309 * ir_variable - it should be easy to translate between the two.
310 */
311
312 typedef struct nir_variable {
313 struct exec_node node;
314
315 /**
316 * Declared type of the variable
317 */
318 const struct glsl_type *type;
319
320 /**
321 * Declared name of the variable
322 */
323 char *name;
324
325 struct nir_variable_data {
326 /**
327 * Storage class of the variable.
328 *
329 * \sa nir_variable_mode
330 */
331 nir_variable_mode mode:11;
332
333 /**
334 * Is the variable read-only?
335 *
336 * This is set for variables declared as \c const, shader inputs,
337 * and uniforms.
338 */
339 unsigned read_only:1;
340 unsigned centroid:1;
341 unsigned sample:1;
342 unsigned patch:1;
343 unsigned invariant:1;
344
345 /**
346 * Precision qualifier.
347 *
348 * In desktop GLSL we do not care about precision qualifiers at all, in
349 * fact, the spec says that precision qualifiers are ignored.
350 *
351 * To make things easy, we make it so that this field is always
352 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
353 * have the same precision value and the checks we add in the compiler
354 * for this field will never break a desktop shader compile.
355 */
356 unsigned precision:2;
357
358 /**
359 * Can this variable be coalesced with another?
360 *
361 * This is set by nir_lower_io_to_temporaries to say that any
362 * copies involving this variable should stay put. Propagating it can
363 * duplicate the resulting load/store, which is not wanted, and may
364 * result in a load/store of the variable with an indirect offset which
365 * the backend may not be able to handle.
366 */
367 unsigned cannot_coalesce:1;
368
369 /**
370 * When separate shader programs are enabled, only input/outputs between
371 * the stages of a multi-stage separate program can be safely removed
372 * from the shader interface. Other input/outputs must remains active.
373 *
374 * This is also used to make sure xfb varyings that are unused by the
375 * fragment shader are not removed.
376 */
377 unsigned always_active_io:1;
378
379 /**
380 * Interpolation mode for shader inputs / outputs
381 *
382 * \sa glsl_interp_mode
383 */
384 unsigned interpolation:3;
385
386 /**
387 * If non-zero, then this variable may be packed along with other variables
388 * into a single varying slot, so this offset should be applied when
389 * accessing components. For example, an offset of 1 means that the x
390 * component of this variable is actually stored in component y of the
391 * location specified by \c location.
392 */
393 unsigned location_frac:2;
394
395 /**
396 * If true, this variable represents an array of scalars that should
397 * be tightly packed. In other words, consecutive array elements
398 * should be stored one component apart, rather than one slot apart.
399 */
400 unsigned compact:1;
401
402 /**
403 * Whether this is a fragment shader output implicitly initialized with
404 * the previous contents of the specified render target at the
405 * framebuffer location corresponding to this shader invocation.
406 */
407 unsigned fb_fetch_output:1;
408
409 /**
410 * Non-zero if this variable is considered bindless as defined by
411 * ARB_bindless_texture.
412 */
413 unsigned bindless:1;
414
415 /**
416 * Was an explicit binding set in the shader?
417 */
418 unsigned explicit_binding:1;
419
420 /**
421 * Was the location explicitly set in the shader?
422 *
423 * If the location is explicitly set in the shader, it \b cannot be changed
424 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
425 * no effect).
426 */
427 unsigned explicit_location:1;
428
429 /**
430 * Was a transfer feedback buffer set in the shader?
431 */
432 unsigned explicit_xfb_buffer:1;
433
434 /**
435 * Was a transfer feedback stride set in the shader?
436 */
437 unsigned explicit_xfb_stride:1;
438
439 /**
440 * Was an explicit offset set in the shader?
441 */
442 unsigned explicit_offset:1;
443
444 /**
445 * Layout of the matrix. Uses glsl_matrix_layout values.
446 */
447 unsigned matrix_layout:2;
448
449 /**
450 * Non-zero if this variable was created by lowering a named interface
451 * block.
452 */
453 unsigned from_named_ifc_block:1;
454
455 /**
456 * How the variable was declared. See nir_var_declaration_type.
457 *
458 * This is used to detect variables generated by the compiler, so should
459 * not be visible via the API.
460 */
461 unsigned how_declared:2;
462
463 /**
464 * Is this variable per-view? If so, we know it must be an array with
465 * size corresponding to the number of views.
466 */
467 unsigned per_view:1;
468
469 /**
470 * \brief Layout qualifier for gl_FragDepth.
471 *
472 * This is not equal to \c ir_depth_layout_none if and only if this
473 * variable is \c gl_FragDepth and a layout qualifier is specified.
474 */
475 nir_depth_layout depth_layout:3;
476
477 /**
478 * Vertex stream output identifier.
479 *
480 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
481 * indicate the stream of the i-th component.
482 */
483 unsigned stream:9;
484
485 /**
486 * Access flags for memory variables (SSBO/global), image uniforms, and
487 * bindless images in uniforms/inputs/outputs.
488 */
489 enum gl_access_qualifier access:8;
490
491 /**
492 * Descriptor set binding for sampler or UBO.
493 */
494 unsigned descriptor_set:5;
495
496 /**
497 * output index for dual source blending.
498 */
499 unsigned index;
500
501 /**
502 * Initial binding point for a sampler or UBO.
503 *
504 * For array types, this represents the binding point for the first element.
505 */
506 unsigned binding;
507
508 /**
509 * Storage location of the base of this variable
510 *
511 * The precise meaning of this field depends on the nature of the variable.
512 *
513 * - Vertex shader input: one of the values from \c gl_vert_attrib.
514 * - Vertex shader output: one of the values from \c gl_varying_slot.
515 * - Geometry shader input: one of the values from \c gl_varying_slot.
516 * - Geometry shader output: one of the values from \c gl_varying_slot.
517 * - Fragment shader input: one of the values from \c gl_varying_slot.
518 * - Fragment shader output: one of the values from \c gl_frag_result.
519 * - Uniforms: Per-stage uniform slot number for default uniform block.
520 * - Uniforms: Index within the uniform block definition for UBO members.
521 * - Non-UBO Uniforms: uniform slot number.
522 * - Other: This field is not currently used.
523 *
524 * If the variable is a uniform, shader input, or shader output, and the
525 * slot has not been assigned, the value will be -1.
526 */
527 int location;
528
529 /**
530 * The actual location of the variable in the IR. Only valid for inputs,
531 * outputs, and uniforms (including samplers and images).
532 */
533 unsigned driver_location;
534
535 /**
536 * Location an atomic counter or transform feedback is stored at.
537 */
538 unsigned offset;
539
540 union {
541 struct {
542 /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
543 enum pipe_format format;
544 } image;
545
546 struct {
547 /**
548 * Transform feedback buffer.
549 */
550 uint16_t buffer:2;
551
552 /**
553 * Transform feedback stride.
554 */
555 uint16_t stride;
556 } xfb;
557 };
558 } data;
559
560 /**
561 * Identifier for this variable generated by nir_index_vars() that is unique
562 * among other variables in the same exec_list.
563 */
564 unsigned index;
565
566 /* Number of nir_variable_data members */
567 uint16_t num_members;
568
569 /**
570 * Built-in state that backs this uniform
571 *
572 * Once set at variable creation, \c state_slots must remain invariant.
573 * This is because, ideally, this array would be shared by all clones of
574 * this variable in the IR tree. In other words, we'd really like for it
575 * to be a fly-weight.
576 *
577 * If the variable is not a uniform, \c num_state_slots will be zero and
578 * \c state_slots will be \c NULL.
579 */
580 /*@{*/
581 uint16_t num_state_slots; /**< Number of state slots used */
582 nir_state_slot *state_slots; /**< State descriptors. */
583 /*@}*/
584
585 /**
586 * Constant expression assigned in the initializer of the variable
587 *
588 * This field should only be used temporarily by creators of NIR shaders
589 * and then lower_constant_initializers can be used to get rid of them.
590 * Most of the rest of NIR ignores this field or asserts that it's NULL.
591 */
592 nir_constant *constant_initializer;
593
594 /**
595 * Global variable assigned in the initializer of the variable
596 * This field should only be used temporarily by creators of NIR shaders
597 * and then lower_constant_initializers can be used to get rid of them.
598 * Most of the rest of NIR ignores this field or asserts that it's NULL.
599 */
600 struct nir_variable *pointer_initializer;
601
602 /**
603 * For variables that are in an interface block or are an instance of an
604 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
605 *
606 * \sa ir_variable::location
607 */
608 const struct glsl_type *interface_type;
609
610 /**
611 * Description of per-member data for per-member struct variables
612 *
613 * This is used for variables which are actually an amalgamation of
614 * multiple entities such as a struct of built-in values or a struct of
615 * inputs each with their own layout specifier. This is only allowed on
616 * variables with a struct or array of array of struct type.
617 */
618 struct nir_variable_data *members;
619 } nir_variable;
620
621
622 static inline bool
623 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
624 {
625 /* This isn't a shader variable */
626 assert(!(modes & nir_var_function_temp));
627 return var->data.mode & modes;
628 }
629
630 #define nir_foreach_variable(var, var_list) \
631 foreach_list_typed(nir_variable, var, node, var_list)
632
633 #define nir_foreach_variable_safe(var, var_list) \
634 foreach_list_typed_safe(nir_variable, var, node, var_list)
635
636 #define nir_foreach_variable_with_modes(var, shader, modes) \
637 nir_foreach_variable(var, nir_variable_list_for_mode(shader, modes)) \
638 if (_nir_shader_variable_has_mode(var, modes))
639
640 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
641 nir_foreach_variable_safe(var, nir_variable_list_for_mode(shader, modes)) \
642 if (_nir_shader_variable_has_mode(var, modes))
643
644 #define nir_foreach_shader_in_variable(var, shader) \
645 nir_foreach_variable(var, &(shader)->inputs)
646
647 #define nir_foreach_shader_in_variable_safe(var, shader) \
648 nir_foreach_variable_safe(var, &(shader)->inputs)
649
650 #define nir_foreach_shader_out_variable(var, shader) \
651 nir_foreach_variable(var, &(shader)->outputs)
652
653 #define nir_foreach_shader_out_variable_safe(var, shader) \
654 nir_foreach_variable_safe(var, &(shader)->outputs)
655
656 #define nir_foreach_uniform_variable(var, shader) \
657 nir_foreach_variable(var, &(shader)->uniforms) \
658 if (var->data.mode == nir_var_uniform)
659
660 #define nir_foreach_uniform_variable_safe(var, shader) \
661 nir_foreach_variable_safe(var, &(shader)->uniforms) \
662 if (var->data.mode == nir_var_uniform)
663
664 static inline bool
665 nir_variable_is_global(const nir_variable *var)
666 {
667 return var->data.mode != nir_var_function_temp;
668 }
669
670 typedef struct nir_register {
671 struct exec_node node;
672
673 unsigned num_components; /** < number of vector components */
674 unsigned num_array_elems; /** < size of array (0 for no array) */
675
676 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
677 uint8_t bit_size;
678
679 /** generic register index. */
680 unsigned index;
681
682 /** only for debug purposes, can be NULL */
683 const char *name;
684
685 /** set of nir_srcs where this register is used (read from) */
686 struct list_head uses;
687
688 /** set of nir_dests where this register is defined (written to) */
689 struct list_head defs;
690
691 /** set of nir_ifs where this register is used as a condition */
692 struct list_head if_uses;
693 } nir_register;
694
695 #define nir_foreach_register(reg, reg_list) \
696 foreach_list_typed(nir_register, reg, node, reg_list)
697 #define nir_foreach_register_safe(reg, reg_list) \
698 foreach_list_typed_safe(nir_register, reg, node, reg_list)
699
700 typedef enum PACKED {
701 nir_instr_type_alu,
702 nir_instr_type_deref,
703 nir_instr_type_call,
704 nir_instr_type_tex,
705 nir_instr_type_intrinsic,
706 nir_instr_type_load_const,
707 nir_instr_type_jump,
708 nir_instr_type_ssa_undef,
709 nir_instr_type_phi,
710 nir_instr_type_parallel_copy,
711 } nir_instr_type;
712
713 typedef struct nir_instr {
714 struct exec_node node;
715 struct nir_block *block;
716 nir_instr_type type;
717
718 /* A temporary for optimization and analysis passes to use for storing
719 * flags. For instance, DCE uses this to store the "dead/live" info.
720 */
721 uint8_t pass_flags;
722
723 /** generic instruction index. */
724 unsigned index;
725 } nir_instr;
726
727 static inline nir_instr *
728 nir_instr_next(nir_instr *instr)
729 {
730 struct exec_node *next = exec_node_get_next(&instr->node);
731 if (exec_node_is_tail_sentinel(next))
732 return NULL;
733 else
734 return exec_node_data(nir_instr, next, node);
735 }
736
737 static inline nir_instr *
738 nir_instr_prev(nir_instr *instr)
739 {
740 struct exec_node *prev = exec_node_get_prev(&instr->node);
741 if (exec_node_is_head_sentinel(prev))
742 return NULL;
743 else
744 return exec_node_data(nir_instr, prev, node);
745 }
746
747 static inline bool
748 nir_instr_is_first(const nir_instr *instr)
749 {
750 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
751 }
752
753 static inline bool
754 nir_instr_is_last(const nir_instr *instr)
755 {
756 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
757 }
758
759 typedef struct nir_ssa_def {
760 /** for debugging only, can be NULL */
761 const char* name;
762
763 /** generic SSA definition index. */
764 unsigned index;
765
766 /** Index into the live_in and live_out bitfields */
767 unsigned live_index;
768
769 /** Instruction which produces this SSA value. */
770 nir_instr *parent_instr;
771
772 /** set of nir_instrs where this register is used (read from) */
773 struct list_head uses;
774
775 /** set of nir_ifs where this register is used as a condition */
776 struct list_head if_uses;
777
778 uint8_t num_components;
779
780 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
781 uint8_t bit_size;
782
783 /**
784 * True if this SSA value may have different values in different SIMD
785 * invocations of the shader. This is set by nir_divergence_analysis.
786 */
787 bool divergent;
788 } nir_ssa_def;
789
790 struct nir_src;
791
792 typedef struct {
793 nir_register *reg;
794 struct nir_src *indirect; /** < NULL for no indirect offset */
795 unsigned base_offset;
796
797 /* TODO use-def chain goes here */
798 } nir_reg_src;
799
800 typedef struct {
801 nir_instr *parent_instr;
802 struct list_head def_link;
803
804 nir_register *reg;
805 struct nir_src *indirect; /** < NULL for no indirect offset */
806 unsigned base_offset;
807
808 /* TODO def-use chain goes here */
809 } nir_reg_dest;
810
811 struct nir_if;
812
813 typedef struct nir_src {
814 union {
815 /** Instruction that consumes this value as a source. */
816 nir_instr *parent_instr;
817 struct nir_if *parent_if;
818 };
819
820 struct list_head use_link;
821
822 union {
823 nir_reg_src reg;
824 nir_ssa_def *ssa;
825 };
826
827 bool is_ssa;
828 } nir_src;
829
830 static inline nir_src
831 nir_src_init(void)
832 {
833 nir_src src = { { NULL } };
834 return src;
835 }
836
837 #define NIR_SRC_INIT nir_src_init()
838
839 #define nir_foreach_use(src, reg_or_ssa_def) \
840 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
841
842 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
843 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
844
845 #define nir_foreach_if_use(src, reg_or_ssa_def) \
846 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
847
848 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
849 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
850
851 typedef struct {
852 union {
853 nir_reg_dest reg;
854 nir_ssa_def ssa;
855 };
856
857 bool is_ssa;
858 } nir_dest;
859
860 static inline nir_dest
861 nir_dest_init(void)
862 {
863 nir_dest dest = { { { NULL } } };
864 return dest;
865 }
866
867 #define NIR_DEST_INIT nir_dest_init()
868
869 #define nir_foreach_def(dest, reg) \
870 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
871
872 #define nir_foreach_def_safe(dest, reg) \
873 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
874
875 static inline nir_src
876 nir_src_for_ssa(nir_ssa_def *def)
877 {
878 nir_src src = NIR_SRC_INIT;
879
880 src.is_ssa = true;
881 src.ssa = def;
882
883 return src;
884 }
885
886 static inline nir_src
887 nir_src_for_reg(nir_register *reg)
888 {
889 nir_src src = NIR_SRC_INIT;
890
891 src.is_ssa = false;
892 src.reg.reg = reg;
893 src.reg.indirect = NULL;
894 src.reg.base_offset = 0;
895
896 return src;
897 }
898
899 static inline nir_dest
900 nir_dest_for_reg(nir_register *reg)
901 {
902 nir_dest dest = NIR_DEST_INIT;
903
904 dest.reg.reg = reg;
905
906 return dest;
907 }
908
909 static inline unsigned
910 nir_src_bit_size(nir_src src)
911 {
912 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
913 }
914
915 static inline unsigned
916 nir_src_num_components(nir_src src)
917 {
918 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
919 }
920
921 static inline bool
922 nir_src_is_const(nir_src src)
923 {
924 return src.is_ssa &&
925 src.ssa->parent_instr->type == nir_instr_type_load_const;
926 }
927
928 static inline bool
929 nir_src_is_divergent(nir_src src)
930 {
931 assert(src.is_ssa);
932 return src.ssa->divergent;
933 }
934
935 static inline unsigned
936 nir_dest_bit_size(nir_dest dest)
937 {
938 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
939 }
940
941 static inline unsigned
942 nir_dest_num_components(nir_dest dest)
943 {
944 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
945 }
946
947 static inline bool
948 nir_dest_is_divergent(nir_dest dest)
949 {
950 assert(dest.is_ssa);
951 return dest.ssa.divergent;
952 }
953
954 /* Are all components the same, ie. .xxxx */
955 static inline bool
956 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
957 {
958 for (unsigned i = 1; i < nr_comp; i++)
959 if (swiz[i] != swiz[0])
960 return false;
961 return true;
962 }
963
964 /* Are all components sequential, ie. .yzw */
965 static inline bool
966 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
967 {
968 for (unsigned i = 1; i < nr_comp; i++)
969 if (swiz[i] != (swiz[0] + i))
970 return false;
971 return true;
972 }
973
974 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
975 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
976
977 typedef struct {
978 nir_src src;
979
980 /**
981 * \name input modifiers
982 */
983 /*@{*/
984 /**
985 * For inputs interpreted as floating point, flips the sign bit. For
986 * inputs interpreted as integers, performs the two's complement negation.
987 */
988 bool negate;
989
990 /**
991 * Clears the sign bit for floating point values, and computes the integer
992 * absolute value for integers. Note that the negate modifier acts after
993 * the absolute value modifier, therefore if both are set then all inputs
994 * will become negative.
995 */
996 bool abs;
997 /*@}*/
998
999 /**
1000 * For each input component, says which component of the register it is
1001 * chosen from. Note that which elements of the swizzle are used and which
1002 * are ignored are based on the write mask for most opcodes - for example,
1003 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
1004 * a swizzle of {2, x, 1, 0} where x means "don't care."
1005 */
1006 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1007 } nir_alu_src;
1008
1009 typedef struct {
1010 nir_dest dest;
1011
1012 /**
1013 * \name saturate output modifier
1014 *
1015 * Only valid for opcodes that output floating-point numbers. Clamps the
1016 * output to between 0.0 and 1.0 inclusive.
1017 */
1018
1019 bool saturate;
1020
1021 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
1022 } nir_alu_dest;
1023
1024 /** NIR sized and unsized types
1025 *
1026 * The values in this enum are carefully chosen so that the sized type is
1027 * just the unsized type OR the number of bits.
1028 */
1029 typedef enum PACKED {
1030 nir_type_invalid = 0, /* Not a valid type */
1031 nir_type_int = 2,
1032 nir_type_uint = 4,
1033 nir_type_bool = 6,
1034 nir_type_float = 128,
1035 nir_type_bool1 = 1 | nir_type_bool,
1036 nir_type_bool8 = 8 | nir_type_bool,
1037 nir_type_bool16 = 16 | nir_type_bool,
1038 nir_type_bool32 = 32 | nir_type_bool,
1039 nir_type_int1 = 1 | nir_type_int,
1040 nir_type_int8 = 8 | nir_type_int,
1041 nir_type_int16 = 16 | nir_type_int,
1042 nir_type_int32 = 32 | nir_type_int,
1043 nir_type_int64 = 64 | nir_type_int,
1044 nir_type_uint1 = 1 | nir_type_uint,
1045 nir_type_uint8 = 8 | nir_type_uint,
1046 nir_type_uint16 = 16 | nir_type_uint,
1047 nir_type_uint32 = 32 | nir_type_uint,
1048 nir_type_uint64 = 64 | nir_type_uint,
1049 nir_type_float16 = 16 | nir_type_float,
1050 nir_type_float32 = 32 | nir_type_float,
1051 nir_type_float64 = 64 | nir_type_float,
1052 } nir_alu_type;
1053
1054 #define NIR_ALU_TYPE_SIZE_MASK 0x79
1055 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1056
1057 static inline unsigned
1058 nir_alu_type_get_type_size(nir_alu_type type)
1059 {
1060 return type & NIR_ALU_TYPE_SIZE_MASK;
1061 }
1062
1063 static inline nir_alu_type
1064 nir_alu_type_get_base_type(nir_alu_type type)
1065 {
1066 return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1067 }
1068
1069 static inline nir_alu_type
1070 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1071 {
1072 switch (base_type) {
1073 case GLSL_TYPE_BOOL:
1074 return nir_type_bool1;
1075 break;
1076 case GLSL_TYPE_UINT:
1077 return nir_type_uint32;
1078 break;
1079 case GLSL_TYPE_INT:
1080 return nir_type_int32;
1081 break;
1082 case GLSL_TYPE_UINT16:
1083 return nir_type_uint16;
1084 break;
1085 case GLSL_TYPE_INT16:
1086 return nir_type_int16;
1087 break;
1088 case GLSL_TYPE_UINT8:
1089 return nir_type_uint8;
1090 case GLSL_TYPE_INT8:
1091 return nir_type_int8;
1092 case GLSL_TYPE_UINT64:
1093 return nir_type_uint64;
1094 break;
1095 case GLSL_TYPE_INT64:
1096 return nir_type_int64;
1097 break;
1098 case GLSL_TYPE_FLOAT:
1099 return nir_type_float32;
1100 break;
1101 case GLSL_TYPE_FLOAT16:
1102 return nir_type_float16;
1103 break;
1104 case GLSL_TYPE_DOUBLE:
1105 return nir_type_float64;
1106 break;
1107
1108 case GLSL_TYPE_SAMPLER:
1109 case GLSL_TYPE_IMAGE:
1110 case GLSL_TYPE_ATOMIC_UINT:
1111 case GLSL_TYPE_STRUCT:
1112 case GLSL_TYPE_INTERFACE:
1113 case GLSL_TYPE_ARRAY:
1114 case GLSL_TYPE_VOID:
1115 case GLSL_TYPE_SUBROUTINE:
1116 case GLSL_TYPE_FUNCTION:
1117 case GLSL_TYPE_ERROR:
1118 return nir_type_invalid;
1119 }
1120
1121 unreachable("unknown type");
1122 }
1123
1124 static inline nir_alu_type
1125 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1126 {
1127 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1128 }
1129
1130 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1131 nir_rounding_mode rnd);
1132
1133 static inline nir_op
1134 nir_op_vec(unsigned components)
1135 {
1136 switch (components) {
1137 case 1: return nir_op_mov;
1138 case 2: return nir_op_vec2;
1139 case 3: return nir_op_vec3;
1140 case 4: return nir_op_vec4;
1141 case 8: return nir_op_vec8;
1142 case 16: return nir_op_vec16;
1143 default: unreachable("bad component count");
1144 }
1145 }
1146
1147 static inline bool
1148 nir_op_is_vec(nir_op op)
1149 {
1150 switch (op) {
1151 case nir_op_mov:
1152 case nir_op_vec2:
1153 case nir_op_vec3:
1154 case nir_op_vec4:
1155 case nir_op_vec8:
1156 case nir_op_vec16:
1157 return true;
1158 default:
1159 return false;
1160 }
1161 }
1162
1163 static inline bool
1164 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1165 {
1166 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1167 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1168 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1169 }
1170
1171 static inline bool
1172 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1173 {
1174 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1175 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1176 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1177 }
1178
1179 static inline bool
1180 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1181 {
1182 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1183 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1184 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1185 }
1186
1187 static inline bool
1188 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1189 {
1190 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1191 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1192 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1193 }
1194
1195 static inline bool
1196 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1197 {
1198 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1199 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1200 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1201 }
1202
1203 static inline bool
1204 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1205 {
1206 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1207 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1208 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1209 }
1210
1211 static inline bool
1212 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1213 {
1214 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1215 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1216 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1217 }
1218
1219 static inline nir_rounding_mode
1220 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1221 nir_alu_type type)
1222 {
1223 if (nir_alu_type_get_base_type(type) != nir_type_float)
1224 return nir_rounding_mode_undef;
1225
1226 unsigned bit_size = nir_alu_type_get_type_size(type);
1227
1228 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1229 return nir_rounding_mode_rtz;
1230 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1231 return nir_rounding_mode_rtne;
1232 return nir_rounding_mode_undef;
1233 }
1234
1235 static inline bool
1236 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1237 {
1238 bool result =
1239 nir_has_any_rounding_mode_rtne(execution_mode) ||
1240 nir_has_any_rounding_mode_rtz(execution_mode);
1241 return result;
1242 }
1243
1244 typedef enum {
1245 /**
1246 * Operation where the first two sources are commutative.
1247 *
1248 * For 2-source operations, this just mathematical commutativity. Some
1249 * 3-source operations, like ffma, are only commutative in the first two
1250 * sources.
1251 */
1252 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1253 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1254 } nir_op_algebraic_property;
1255
1256 typedef struct {
1257 const char *name;
1258
1259 uint8_t num_inputs;
1260
1261 /**
1262 * The number of components in the output
1263 *
1264 * If non-zero, this is the size of the output and input sizes are
1265 * explicitly given; swizzle and writemask are still in effect, but if
1266 * the output component is masked out, then the input component may
1267 * still be in use.
1268 *
1269 * If zero, the opcode acts in the standard, per-component manner; the
1270 * operation is performed on each component (except the ones that are
1271 * masked out) with the input being taken from the input swizzle for
1272 * that component.
1273 *
1274 * The size of some of the inputs may be given (i.e. non-zero) even
1275 * though output_size is zero; in that case, the inputs with a zero
1276 * size act per-component, while the inputs with non-zero size don't.
1277 */
1278 uint8_t output_size;
1279
1280 /**
1281 * The type of vector that the instruction outputs. Note that the
1282 * staurate modifier is only allowed on outputs with the float type.
1283 */
1284
1285 nir_alu_type output_type;
1286
1287 /**
1288 * The number of components in each input
1289 */
1290 uint8_t input_sizes[NIR_MAX_VEC_COMPONENTS];
1291
1292 /**
1293 * The type of vector that each input takes. Note that negate and
1294 * absolute value are only allowed on inputs with int or float type and
1295 * behave differently on the two.
1296 */
1297 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1298
1299 nir_op_algebraic_property algebraic_properties;
1300
1301 /* Whether this represents a numeric conversion opcode */
1302 bool is_conversion;
1303 } nir_op_info;
1304
1305 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1306
1307 typedef struct nir_alu_instr {
1308 nir_instr instr;
1309 nir_op op;
1310
1311 /** Indicates that this ALU instruction generates an exact value
1312 *
1313 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1314 * really equivalent to either. This indicates that the value generated by
1315 * this operation is high-precision and any code transformations that touch
1316 * it must ensure that the resulting value is bit-for-bit identical to the
1317 * original.
1318 */
1319 bool exact:1;
1320
1321 /**
1322 * Indicates that this instruction do not cause wrapping to occur, in the
1323 * form of overflow or underflow.
1324 */
1325 bool no_signed_wrap:1;
1326 bool no_unsigned_wrap:1;
1327
1328 nir_alu_dest dest;
1329 nir_alu_src src[];
1330 } nir_alu_instr;
1331
1332 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1333 nir_alu_instr *instr);
1334 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1335 nir_alu_instr *instr);
1336
1337 /* is this source channel used? */
1338 static inline bool
1339 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1340 unsigned channel)
1341 {
1342 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1343 return channel < nir_op_infos[instr->op].input_sizes[src];
1344
1345 return (instr->dest.write_mask >> channel) & 1;
1346 }
1347
1348 static inline nir_component_mask_t
1349 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1350 {
1351 nir_component_mask_t read_mask = 0;
1352 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1353 if (!nir_alu_instr_channel_used(instr, src, c))
1354 continue;
1355
1356 read_mask |= (1 << instr->src[src].swizzle[c]);
1357 }
1358 return read_mask;
1359 }
1360
1361 /**
1362 * Get the number of channels used for a source
1363 */
1364 static inline unsigned
1365 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1366 {
1367 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1368 return nir_op_infos[instr->op].input_sizes[src];
1369
1370 return nir_dest_num_components(instr->dest.dest);
1371 }
1372
1373 static inline bool
1374 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1375 {
1376 switch (instr->op) {
1377 case nir_op_flt:
1378 case nir_op_fge:
1379 case nir_op_feq:
1380 case nir_op_fne:
1381 case nir_op_ilt:
1382 case nir_op_ult:
1383 case nir_op_ige:
1384 case nir_op_uge:
1385 case nir_op_ieq:
1386 case nir_op_ine:
1387 case nir_op_i2b1:
1388 case nir_op_f2b1:
1389 case nir_op_inot:
1390 return true;
1391 default:
1392 return false;
1393 }
1394 }
1395
1396 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1397 nir_alu_type full_type);
1398
1399 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1400 unsigned src1, unsigned src2);
1401
1402 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1403 const nir_alu_instr *alu2,
1404 unsigned src1, unsigned src2);
1405
1406 typedef enum {
1407 nir_deref_type_var,
1408 nir_deref_type_array,
1409 nir_deref_type_array_wildcard,
1410 nir_deref_type_ptr_as_array,
1411 nir_deref_type_struct,
1412 nir_deref_type_cast,
1413 } nir_deref_type;
1414
1415 typedef struct {
1416 nir_instr instr;
1417
1418 /** The type of this deref instruction */
1419 nir_deref_type deref_type;
1420
1421 /** The mode of the underlying variable */
1422 nir_variable_mode mode;
1423
1424 /** The dereferenced type of the resulting pointer value */
1425 const struct glsl_type *type;
1426
1427 union {
1428 /** Variable being dereferenced if deref_type is a deref_var */
1429 nir_variable *var;
1430
1431 /** Parent deref if deref_type is not deref_var */
1432 nir_src parent;
1433 };
1434
1435 /** Additional deref parameters */
1436 union {
1437 struct {
1438 nir_src index;
1439 } arr;
1440
1441 struct {
1442 unsigned index;
1443 } strct;
1444
1445 struct {
1446 unsigned ptr_stride;
1447 } cast;
1448 };
1449
1450 /** Destination to store the resulting "pointer" */
1451 nir_dest dest;
1452 } nir_deref_instr;
1453
1454 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1455
1456 static inline nir_deref_instr *
1457 nir_deref_instr_parent(const nir_deref_instr *instr)
1458 {
1459 if (instr->deref_type == nir_deref_type_var)
1460 return NULL;
1461 else
1462 return nir_src_as_deref(instr->parent);
1463 }
1464
1465 static inline nir_variable *
1466 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1467 {
1468 while (instr->deref_type != nir_deref_type_var) {
1469 if (instr->deref_type == nir_deref_type_cast)
1470 return NULL;
1471
1472 instr = nir_deref_instr_parent(instr);
1473 }
1474
1475 return instr->var;
1476 }
1477
1478 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1479 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1480 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1481
1482 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1483
1484 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1485
1486 typedef struct {
1487 nir_instr instr;
1488
1489 struct nir_function *callee;
1490
1491 unsigned num_params;
1492 nir_src params[];
1493 } nir_call_instr;
1494
1495 #include "nir_intrinsics.h"
1496
1497 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1498
1499 /** Represents an intrinsic
1500 *
1501 * An intrinsic is an instruction type for handling things that are
1502 * more-or-less regular operations but don't just consume and produce SSA
1503 * values like ALU operations do. Intrinsics are not for things that have
1504 * special semantic meaning such as phi nodes and parallel copies.
1505 * Examples of intrinsics include variable load/store operations, system
1506 * value loads, and the like. Even though texturing more-or-less falls
1507 * under this category, texturing is its own instruction type because
1508 * trying to represent texturing with intrinsics would lead to a
1509 * combinatorial explosion of intrinsic opcodes.
1510 *
1511 * By having a single instruction type for handling a lot of different
1512 * cases, optimization passes can look for intrinsics and, for the most
1513 * part, completely ignore them. Each intrinsic type also has a few
1514 * possible flags that govern whether or not they can be reordered or
1515 * eliminated. That way passes like dead code elimination can still work
1516 * on intrisics without understanding the meaning of each.
1517 *
1518 * Each intrinsic has some number of constant indices, some number of
1519 * variables, and some number of sources. What these sources, variables,
1520 * and indices mean depends on the intrinsic and is documented with the
1521 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1522 * instructions are the only types of instruction that can operate on
1523 * variables.
1524 */
1525 typedef struct {
1526 nir_instr instr;
1527
1528 nir_intrinsic_op intrinsic;
1529
1530 nir_dest dest;
1531
1532 /** number of components if this is a vectorized intrinsic
1533 *
1534 * Similarly to ALU operations, some intrinsics are vectorized.
1535 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1536 * For vectorized intrinsics, the num_components field specifies the
1537 * number of destination components and the number of source components
1538 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1539 */
1540 uint8_t num_components;
1541
1542 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1543
1544 nir_src src[];
1545 } nir_intrinsic_instr;
1546
1547 static inline nir_variable *
1548 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1549 {
1550 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1551 }
1552
1553 typedef enum {
1554 /* Memory ordering. */
1555 NIR_MEMORY_ACQUIRE = 1 << 0,
1556 NIR_MEMORY_RELEASE = 1 << 1,
1557 NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1558
1559 /* Memory visibility operations. */
1560 NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1561 NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1562 } nir_memory_semantics;
1563
1564 typedef enum {
1565 NIR_SCOPE_NONE,
1566 NIR_SCOPE_INVOCATION,
1567 NIR_SCOPE_SUBGROUP,
1568 NIR_SCOPE_WORKGROUP,
1569 NIR_SCOPE_QUEUE_FAMILY,
1570 NIR_SCOPE_DEVICE,
1571 } nir_scope;
1572
1573 /**
1574 * \name NIR intrinsics semantic flags
1575 *
1576 * information about what the compiler can do with the intrinsics.
1577 *
1578 * \sa nir_intrinsic_info::flags
1579 */
1580 typedef enum {
1581 /**
1582 * whether the intrinsic can be safely eliminated if none of its output
1583 * value is not being used.
1584 */
1585 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1586
1587 /**
1588 * Whether the intrinsic can be reordered with respect to any other
1589 * intrinsic, i.e. whether the only reordering dependencies of the
1590 * intrinsic are due to the register reads/writes.
1591 */
1592 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1593 } nir_intrinsic_semantic_flag;
1594
1595 /**
1596 * \name NIR intrinsics const-index flag
1597 *
1598 * Indicates the usage of a const_index slot.
1599 *
1600 * \sa nir_intrinsic_info::index_map
1601 */
1602 typedef enum {
1603 /**
1604 * Generally instructions that take a offset src argument, can encode
1605 * a constant 'base' value which is added to the offset.
1606 */
1607 NIR_INTRINSIC_BASE = 1,
1608
1609 /**
1610 * For store instructions, a writemask for the store.
1611 */
1612 NIR_INTRINSIC_WRMASK,
1613
1614 /**
1615 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1616 */
1617 NIR_INTRINSIC_STREAM_ID,
1618
1619 /**
1620 * The clip-plane id for load_user_clip_plane intrinsic.
1621 */
1622 NIR_INTRINSIC_UCP_ID,
1623
1624 /**
1625 * The amount of data, starting from BASE, that this instruction may
1626 * access. This is used to provide bounds if the offset is not constant.
1627 */
1628 NIR_INTRINSIC_RANGE,
1629
1630 /**
1631 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1632 */
1633 NIR_INTRINSIC_DESC_SET,
1634
1635 /**
1636 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1637 */
1638 NIR_INTRINSIC_BINDING,
1639
1640 /**
1641 * Component offset.
1642 */
1643 NIR_INTRINSIC_COMPONENT,
1644
1645 /**
1646 * Interpolation mode (only meaningful for FS inputs).
1647 */
1648 NIR_INTRINSIC_INTERP_MODE,
1649
1650 /**
1651 * A binary nir_op to use when performing a reduction or scan operation
1652 */
1653 NIR_INTRINSIC_REDUCTION_OP,
1654
1655 /**
1656 * Cluster size for reduction operations
1657 */
1658 NIR_INTRINSIC_CLUSTER_SIZE,
1659
1660 /**
1661 * Parameter index for a load_param intrinsic
1662 */
1663 NIR_INTRINSIC_PARAM_IDX,
1664
1665 /**
1666 * Image dimensionality for image intrinsics
1667 *
1668 * One of GLSL_SAMPLER_DIM_*
1669 */
1670 NIR_INTRINSIC_IMAGE_DIM,
1671
1672 /**
1673 * Non-zero if we are accessing an array image
1674 */
1675 NIR_INTRINSIC_IMAGE_ARRAY,
1676
1677 /**
1678 * Image format for image intrinsics
1679 */
1680 NIR_INTRINSIC_FORMAT,
1681
1682 /**
1683 * Access qualifiers for image and memory access intrinsics
1684 */
1685 NIR_INTRINSIC_ACCESS,
1686
1687 /**
1688 * Alignment for offsets and addresses
1689 *
1690 * These two parameters, specify an alignment in terms of a multiplier and
1691 * an offset. The offset or address parameter X of the intrinsic is
1692 * guaranteed to satisfy the following:
1693 *
1694 * (X - align_offset) % align_mul == 0
1695 */
1696 NIR_INTRINSIC_ALIGN_MUL,
1697 NIR_INTRINSIC_ALIGN_OFFSET,
1698
1699 /**
1700 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1701 */
1702 NIR_INTRINSIC_DESC_TYPE,
1703
1704 /**
1705 * The nir_alu_type of a uniform/input/output
1706 */
1707 NIR_INTRINSIC_TYPE,
1708
1709 /**
1710 * The swizzle mask for the instructions
1711 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1712 */
1713 NIR_INTRINSIC_SWIZZLE_MASK,
1714
1715 /* Separate source/dest access flags for copies */
1716 NIR_INTRINSIC_SRC_ACCESS,
1717 NIR_INTRINSIC_DST_ACCESS,
1718
1719 /* Driver location for nir_load_patch_location_ir3 */
1720 NIR_INTRINSIC_DRIVER_LOCATION,
1721
1722 /**
1723 * Mask of nir_memory_semantics, includes ordering and visibility.
1724 */
1725 NIR_INTRINSIC_MEMORY_SEMANTICS,
1726
1727 /**
1728 * Mask of nir_variable_modes affected by the memory operation.
1729 */
1730 NIR_INTRINSIC_MEMORY_MODES,
1731
1732 /**
1733 * Value of nir_scope.
1734 */
1735 NIR_INTRINSIC_MEMORY_SCOPE,
1736
1737 /**
1738 * Value of nir_scope.
1739 */
1740 NIR_INTRINSIC_EXECUTION_SCOPE,
1741
1742 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1743
1744 } nir_intrinsic_index_flag;
1745
1746 #define NIR_INTRINSIC_MAX_INPUTS 5
1747
1748 typedef struct {
1749 const char *name;
1750
1751 uint8_t num_srcs; /** < number of register/SSA inputs */
1752
1753 /** number of components of each input register
1754 *
1755 * If this value is 0, the number of components is given by the
1756 * num_components field of nir_intrinsic_instr. If this value is -1, the
1757 * intrinsic consumes however many components are provided and it is not
1758 * validated at all.
1759 */
1760 int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1761
1762 bool has_dest;
1763
1764 /** number of components of the output register
1765 *
1766 * If this value is 0, the number of components is given by the
1767 * num_components field of nir_intrinsic_instr.
1768 */
1769 uint8_t dest_components;
1770
1771 /** bitfield of legal bit sizes */
1772 uint8_t dest_bit_sizes;
1773
1774 /** the number of constant indices used by the intrinsic */
1775 uint8_t num_indices;
1776
1777 /** indicates the usage of intr->const_index[n] */
1778 uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1779
1780 /** semantic flags for calls to this intrinsic */
1781 nir_intrinsic_semantic_flag flags;
1782 } nir_intrinsic_info;
1783
1784 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1785
1786 static inline unsigned
1787 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
1788 {
1789 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1790 assert(srcn < info->num_srcs);
1791 if (info->src_components[srcn] > 0)
1792 return info->src_components[srcn];
1793 else if (info->src_components[srcn] == 0)
1794 return intr->num_components;
1795 else
1796 return nir_src_num_components(intr->src[srcn]);
1797 }
1798
1799 static inline unsigned
1800 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1801 {
1802 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1803 if (!info->has_dest)
1804 return 0;
1805 else if (info->dest_components)
1806 return info->dest_components;
1807 else
1808 return intr->num_components;
1809 }
1810
1811 /**
1812 * Helper to copy const_index[] from src to dst, without assuming they
1813 * match in order.
1814 */
1815 static inline void
1816 nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
1817 {
1818 if (src->intrinsic == dst->intrinsic) {
1819 memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
1820 return;
1821 }
1822
1823 const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
1824 const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
1825
1826 for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
1827 if (src_info->index_map[i] == 0)
1828 continue;
1829
1830 /* require that dst instruction also uses the same const_index[]: */
1831 assert(dst_info->index_map[i] > 0);
1832
1833 dst->const_index[dst_info->index_map[i] - 1] =
1834 src->const_index[src_info->index_map[i] - 1];
1835 }
1836 }
1837
1838 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1839 static inline type \
1840 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1841 { \
1842 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1843 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1844 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1845 } \
1846 static inline void \
1847 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1848 { \
1849 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1850 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1851 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1852 }
1853
1854 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1855 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1856 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1857 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1858 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1859 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1860 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1861 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1862 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1863 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1864 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1865 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1866 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1867 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1868 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1869 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1870 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1871 INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
1872 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1873 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1874 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1875 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1876 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1877 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1878 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1879 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1880 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1881 INTRINSIC_IDX_ACCESSORS(execution_scope, EXECUTION_SCOPE, nir_scope)
1882
1883 static inline void
1884 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1885 unsigned align_mul, unsigned align_offset)
1886 {
1887 assert(util_is_power_of_two_nonzero(align_mul));
1888 assert(align_offset < align_mul);
1889 nir_intrinsic_set_align_mul(intrin, align_mul);
1890 nir_intrinsic_set_align_offset(intrin, align_offset);
1891 }
1892
1893 /** Returns a simple alignment for a load/store intrinsic offset
1894 *
1895 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1896 * and ALIGN_OFFSET parameters, this helper takes both into account and
1897 * provides a single simple alignment parameter. The offset X is guaranteed
1898 * to satisfy X % align == 0.
1899 */
1900 static inline unsigned
1901 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1902 {
1903 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1904 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1905 assert(align_offset < align_mul);
1906 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1907 }
1908
1909 unsigned
1910 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
1911
1912 /* Converts a image_deref_* intrinsic into a image_* one */
1913 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1914 nir_ssa_def *handle, bool bindless);
1915
1916 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1917 static inline bool
1918 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1919 {
1920 if (instr->intrinsic == nir_intrinsic_load_deref ||
1921 instr->intrinsic == nir_intrinsic_load_ssbo ||
1922 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1923 instr->intrinsic == nir_intrinsic_image_deref_load ||
1924 instr->intrinsic == nir_intrinsic_image_load) {
1925 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1926 } else {
1927 const nir_intrinsic_info *info =
1928 &nir_intrinsic_infos[instr->intrinsic];
1929 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1930 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1931 }
1932 }
1933
1934 /**
1935 * \group texture information
1936 *
1937 * This gives semantic information about textures which is useful to the
1938 * frontend, the backend, and lowering passes, but not the optimizer.
1939 */
1940
1941 typedef enum {
1942 nir_tex_src_coord,
1943 nir_tex_src_projector,
1944 nir_tex_src_comparator, /* shadow comparator */
1945 nir_tex_src_offset,
1946 nir_tex_src_bias,
1947 nir_tex_src_lod,
1948 nir_tex_src_min_lod,
1949 nir_tex_src_ms_index, /* MSAA sample index */
1950 nir_tex_src_ms_mcs, /* MSAA compression value */
1951 nir_tex_src_ddx,
1952 nir_tex_src_ddy,
1953 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1954 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1955 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1956 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1957 nir_tex_src_texture_handle, /* < bindless texture handle */
1958 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1959 nir_tex_src_plane, /* < selects plane for planar textures */
1960 nir_num_tex_src_types
1961 } nir_tex_src_type;
1962
1963 typedef struct {
1964 nir_src src;
1965 nir_tex_src_type src_type;
1966 } nir_tex_src;
1967
1968 typedef enum {
1969 nir_texop_tex, /**< Regular texture look-up */
1970 nir_texop_txb, /**< Texture look-up with LOD bias */
1971 nir_texop_txl, /**< Texture look-up with explicit LOD */
1972 nir_texop_txd, /**< Texture look-up with partial derivatives */
1973 nir_texop_txf, /**< Texel fetch with explicit LOD */
1974 nir_texop_txf_ms, /**< Multisample texture fetch */
1975 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1976 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1977 nir_texop_txs, /**< Texture size */
1978 nir_texop_lod, /**< Texture lod query */
1979 nir_texop_tg4, /**< Texture gather */
1980 nir_texop_query_levels, /**< Texture levels query */
1981 nir_texop_texture_samples, /**< Texture samples query */
1982 nir_texop_samples_identical, /**< Query whether all samples are definitely
1983 * identical.
1984 */
1985 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1986 nir_texop_fragment_fetch, /**< Multisample fragment color texture fetch */
1987 nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
1988 } nir_texop;
1989
1990 typedef struct {
1991 nir_instr instr;
1992
1993 enum glsl_sampler_dim sampler_dim;
1994 nir_alu_type dest_type;
1995
1996 nir_texop op;
1997 nir_dest dest;
1998 nir_tex_src *src;
1999 unsigned num_srcs, coord_components;
2000 bool is_array, is_shadow;
2001
2002 /**
2003 * If is_shadow is true, whether this is the old-style shadow that outputs 4
2004 * components or the new-style shadow that outputs 1 component.
2005 */
2006 bool is_new_style_shadow;
2007
2008 /* gather component selector */
2009 unsigned component : 2;
2010
2011 /* gather offsets */
2012 int8_t tg4_offsets[4][2];
2013
2014 /* True if the texture index or handle is not dynamically uniform */
2015 bool texture_non_uniform;
2016
2017 /* True if the sampler index or handle is not dynamically uniform */
2018 bool sampler_non_uniform;
2019
2020 /** The texture index
2021 *
2022 * If this texture instruction has a nir_tex_src_texture_offset source,
2023 * then the texture index is given by texture_index + texture_offset.
2024 */
2025 unsigned texture_index;
2026
2027 /** The sampler index
2028 *
2029 * The following operations do not require a sampler and, as such, this
2030 * field should be ignored:
2031 * - nir_texop_txf
2032 * - nir_texop_txf_ms
2033 * - nir_texop_txs
2034 * - nir_texop_lod
2035 * - nir_texop_query_levels
2036 * - nir_texop_texture_samples
2037 * - nir_texop_samples_identical
2038 *
2039 * If this texture instruction has a nir_tex_src_sampler_offset source,
2040 * then the sampler index is given by sampler_index + sampler_offset.
2041 */
2042 unsigned sampler_index;
2043 } nir_tex_instr;
2044
2045 /*
2046 * Returns true if the texture operation requires a sampler as a general rule,
2047 * see the documentation of sampler_index.
2048 *
2049 * Note that the specific hw/driver backend could require to a sampler
2050 * object/configuration packet in any case, for some other reason.
2051 */
2052 static inline bool
2053 nir_tex_instr_need_sampler(const nir_tex_instr *instr)
2054 {
2055 switch (instr->op) {
2056 case nir_texop_txf:
2057 case nir_texop_txf_ms:
2058 case nir_texop_txs:
2059 case nir_texop_lod:
2060 case nir_texop_query_levels:
2061 case nir_texop_texture_samples:
2062 case nir_texop_samples_identical:
2063 return false;
2064 default:
2065 return true;
2066 }
2067 }
2068
2069 static inline unsigned
2070 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2071 {
2072 switch (instr->op) {
2073 case nir_texop_txs: {
2074 unsigned ret;
2075 switch (instr->sampler_dim) {
2076 case GLSL_SAMPLER_DIM_1D:
2077 case GLSL_SAMPLER_DIM_BUF:
2078 ret = 1;
2079 break;
2080 case GLSL_SAMPLER_DIM_2D:
2081 case GLSL_SAMPLER_DIM_CUBE:
2082 case GLSL_SAMPLER_DIM_MS:
2083 case GLSL_SAMPLER_DIM_RECT:
2084 case GLSL_SAMPLER_DIM_EXTERNAL:
2085 case GLSL_SAMPLER_DIM_SUBPASS:
2086 ret = 2;
2087 break;
2088 case GLSL_SAMPLER_DIM_3D:
2089 ret = 3;
2090 break;
2091 default:
2092 unreachable("not reached");
2093 }
2094 if (instr->is_array)
2095 ret++;
2096 return ret;
2097 }
2098
2099 case nir_texop_lod:
2100 return 2;
2101
2102 case nir_texop_texture_samples:
2103 case nir_texop_query_levels:
2104 case nir_texop_samples_identical:
2105 case nir_texop_fragment_mask_fetch:
2106 return 1;
2107
2108 default:
2109 if (instr->is_shadow && instr->is_new_style_shadow)
2110 return 1;
2111
2112 return 4;
2113 }
2114 }
2115
2116 /* Returns true if this texture operation queries something about the texture
2117 * rather than actually sampling it.
2118 */
2119 static inline bool
2120 nir_tex_instr_is_query(const nir_tex_instr *instr)
2121 {
2122 switch (instr->op) {
2123 case nir_texop_txs:
2124 case nir_texop_lod:
2125 case nir_texop_texture_samples:
2126 case nir_texop_query_levels:
2127 case nir_texop_txf_ms_mcs:
2128 return true;
2129 case nir_texop_tex:
2130 case nir_texop_txb:
2131 case nir_texop_txl:
2132 case nir_texop_txd:
2133 case nir_texop_txf:
2134 case nir_texop_txf_ms:
2135 case nir_texop_txf_ms_fb:
2136 case nir_texop_tg4:
2137 return false;
2138 default:
2139 unreachable("Invalid texture opcode");
2140 }
2141 }
2142
2143 static inline bool
2144 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2145 {
2146 switch (instr->op) {
2147 case nir_texop_tex:
2148 case nir_texop_txb:
2149 case nir_texop_lod:
2150 return true;
2151 default:
2152 return false;
2153 }
2154 }
2155
2156 static inline nir_alu_type
2157 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2158 {
2159 switch (instr->src[src].src_type) {
2160 case nir_tex_src_coord:
2161 switch (instr->op) {
2162 case nir_texop_txf:
2163 case nir_texop_txf_ms:
2164 case nir_texop_txf_ms_fb:
2165 case nir_texop_txf_ms_mcs:
2166 case nir_texop_samples_identical:
2167 return nir_type_int;
2168
2169 default:
2170 return nir_type_float;
2171 }
2172
2173 case nir_tex_src_lod:
2174 switch (instr->op) {
2175 case nir_texop_txs:
2176 case nir_texop_txf:
2177 return nir_type_int;
2178
2179 default:
2180 return nir_type_float;
2181 }
2182
2183 case nir_tex_src_projector:
2184 case nir_tex_src_comparator:
2185 case nir_tex_src_bias:
2186 case nir_tex_src_min_lod:
2187 case nir_tex_src_ddx:
2188 case nir_tex_src_ddy:
2189 return nir_type_float;
2190
2191 case nir_tex_src_offset:
2192 case nir_tex_src_ms_index:
2193 case nir_tex_src_plane:
2194 return nir_type_int;
2195
2196 case nir_tex_src_ms_mcs:
2197 case nir_tex_src_texture_deref:
2198 case nir_tex_src_sampler_deref:
2199 case nir_tex_src_texture_offset:
2200 case nir_tex_src_sampler_offset:
2201 case nir_tex_src_texture_handle:
2202 case nir_tex_src_sampler_handle:
2203 return nir_type_uint;
2204
2205 case nir_num_tex_src_types:
2206 unreachable("nir_num_tex_src_types is not a valid source type");
2207 }
2208
2209 unreachable("Invalid texture source type");
2210 }
2211
2212 static inline unsigned
2213 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2214 {
2215 if (instr->src[src].src_type == nir_tex_src_coord)
2216 return instr->coord_components;
2217
2218 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2219 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2220 return 4;
2221
2222 if (instr->src[src].src_type == nir_tex_src_ddx ||
2223 instr->src[src].src_type == nir_tex_src_ddy) {
2224 if (instr->is_array)
2225 return instr->coord_components - 1;
2226 else
2227 return instr->coord_components;
2228 }
2229
2230 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2231 * the offset, since a cube maps to a single face.
2232 */
2233 if (instr->src[src].src_type == nir_tex_src_offset) {
2234 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2235 return 2;
2236 else if (instr->is_array)
2237 return instr->coord_components - 1;
2238 else
2239 return instr->coord_components;
2240 }
2241
2242 return 1;
2243 }
2244
2245 static inline int
2246 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2247 {
2248 for (unsigned i = 0; i < instr->num_srcs; i++)
2249 if (instr->src[i].src_type == type)
2250 return (int) i;
2251
2252 return -1;
2253 }
2254
2255 void nir_tex_instr_add_src(nir_tex_instr *tex,
2256 nir_tex_src_type src_type,
2257 nir_src src);
2258
2259 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2260
2261 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2262
2263 typedef struct {
2264 nir_instr instr;
2265
2266 nir_ssa_def def;
2267
2268 nir_const_value value[];
2269 } nir_load_const_instr;
2270
2271 typedef enum {
2272 /** Return from a function
2273 *
2274 * This instruction is a classic function return. It jumps to
2275 * nir_function_impl::end_block. No return value is provided in this
2276 * instruction. Instead, the function is expected to write any return
2277 * data to a deref passed in from the caller.
2278 */
2279 nir_jump_return,
2280
2281 /** Break out of the inner-most loop
2282 *
2283 * This has the same semantics as C's "break" statement.
2284 */
2285 nir_jump_break,
2286
2287 /** Jump back to the top of the inner-most loop
2288 *
2289 * This has the same semantics as C's "continue" statement assuming that a
2290 * NIR loop is implemented as "while (1) { body }".
2291 */
2292 nir_jump_continue,
2293 } nir_jump_type;
2294
2295 typedef struct {
2296 nir_instr instr;
2297 nir_jump_type type;
2298 } nir_jump_instr;
2299
2300 /* creates a new SSA variable in an undefined state */
2301
2302 typedef struct {
2303 nir_instr instr;
2304 nir_ssa_def def;
2305 } nir_ssa_undef_instr;
2306
2307 typedef struct {
2308 struct exec_node node;
2309
2310 /* The predecessor block corresponding to this source */
2311 struct nir_block *pred;
2312
2313 nir_src src;
2314 } nir_phi_src;
2315
2316 #define nir_foreach_phi_src(phi_src, phi) \
2317 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2318 #define nir_foreach_phi_src_safe(phi_src, phi) \
2319 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2320
2321 typedef struct {
2322 nir_instr instr;
2323
2324 struct exec_list srcs; /** < list of nir_phi_src */
2325
2326 nir_dest dest;
2327 } nir_phi_instr;
2328
2329 typedef struct {
2330 struct exec_node node;
2331 nir_src src;
2332 nir_dest dest;
2333 } nir_parallel_copy_entry;
2334
2335 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2336 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2337
2338 typedef struct {
2339 nir_instr instr;
2340
2341 /* A list of nir_parallel_copy_entrys. The sources of all of the
2342 * entries are copied to the corresponding destinations "in parallel".
2343 * In other words, if we have two entries: a -> b and b -> a, the values
2344 * get swapped.
2345 */
2346 struct exec_list entries;
2347 } nir_parallel_copy_instr;
2348
2349 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2350 type, nir_instr_type_alu)
2351 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2352 type, nir_instr_type_deref)
2353 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2354 type, nir_instr_type_call)
2355 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2356 type, nir_instr_type_jump)
2357 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2358 type, nir_instr_type_tex)
2359 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2360 type, nir_instr_type_intrinsic)
2361 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2362 type, nir_instr_type_load_const)
2363 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2364 type, nir_instr_type_ssa_undef)
2365 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2366 type, nir_instr_type_phi)
2367 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2368 nir_parallel_copy_instr, instr,
2369 type, nir_instr_type_parallel_copy)
2370
2371
2372 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2373 static inline type \
2374 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2375 { \
2376 assert(nir_src_is_const(src)); \
2377 nir_load_const_instr *load = \
2378 nir_instr_as_load_const(src.ssa->parent_instr); \
2379 assert(comp < load->def.num_components); \
2380 return nir_const_value_as_##suffix(load->value[comp], \
2381 load->def.bit_size); \
2382 } \
2383 \
2384 static inline type \
2385 nir_src_as_##suffix(nir_src src) \
2386 { \
2387 assert(nir_src_num_components(src) == 1); \
2388 return nir_src_comp_as_##suffix(src, 0); \
2389 }
2390
2391 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2392 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2393 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2394 NIR_DEFINE_SRC_AS_CONST(double, float)
2395
2396 #undef NIR_DEFINE_SRC_AS_CONST
2397
2398
2399 typedef struct {
2400 nir_ssa_def *def;
2401 unsigned comp;
2402 } nir_ssa_scalar;
2403
2404 static inline bool
2405 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2406 {
2407 return s.def->parent_instr->type == nir_instr_type_load_const;
2408 }
2409
2410 static inline nir_const_value
2411 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2412 {
2413 assert(s.comp < s.def->num_components);
2414 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2415 return load->value[s.comp];
2416 }
2417
2418 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2419 static inline type \
2420 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2421 { \
2422 return nir_const_value_as_##suffix( \
2423 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2424 }
2425
2426 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2427 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2428 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2429 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2430
2431 #undef NIR_DEFINE_SCALAR_AS_CONST
2432
2433 static inline bool
2434 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2435 {
2436 return s.def->parent_instr->type == nir_instr_type_alu;
2437 }
2438
2439 static inline nir_op
2440 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2441 {
2442 return nir_instr_as_alu(s.def->parent_instr)->op;
2443 }
2444
2445 static inline nir_ssa_scalar
2446 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2447 {
2448 nir_ssa_scalar out = { NULL, 0 };
2449
2450 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2451 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2452
2453 /* Our component must be written */
2454 assert(s.comp < s.def->num_components);
2455 assert(alu->dest.write_mask & (1u << s.comp));
2456
2457 assert(alu->src[alu_src_idx].src.is_ssa);
2458 out.def = alu->src[alu_src_idx].src.ssa;
2459
2460 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2461 /* The ALU src is unsized so the source component follows the
2462 * destination component.
2463 */
2464 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2465 } else {
2466 /* This is a sized source so all source components work together to
2467 * produce all the destination components. Since we need to return a
2468 * scalar, this only works if the source is a scalar.
2469 */
2470 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2471 out.comp = alu->src[alu_src_idx].swizzle[0];
2472 }
2473 assert(out.comp < out.def->num_components);
2474
2475 return out;
2476 }
2477
2478
2479 /*
2480 * Control flow
2481 *
2482 * Control flow consists of a tree of control flow nodes, which include
2483 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2484 * instructions that always run start-to-finish. Each basic block also keeps
2485 * track of its successors (blocks which may run immediately after the current
2486 * block) and predecessors (blocks which could have run immediately before the
2487 * current block). Each function also has a start block and an end block which
2488 * all return statements point to (which is always empty). Together, all the
2489 * blocks with their predecessors and successors make up the control flow
2490 * graph (CFG) of the function. There are helpers that modify the tree of
2491 * control flow nodes while modifying the CFG appropriately; these should be
2492 * used instead of modifying the tree directly.
2493 */
2494
2495 typedef enum {
2496 nir_cf_node_block,
2497 nir_cf_node_if,
2498 nir_cf_node_loop,
2499 nir_cf_node_function
2500 } nir_cf_node_type;
2501
2502 typedef struct nir_cf_node {
2503 struct exec_node node;
2504 nir_cf_node_type type;
2505 struct nir_cf_node *parent;
2506 } nir_cf_node;
2507
2508 typedef struct nir_block {
2509 nir_cf_node cf_node;
2510
2511 struct exec_list instr_list; /** < list of nir_instr */
2512
2513 /** generic block index; generated by nir_index_blocks */
2514 unsigned index;
2515
2516 /*
2517 * Each block can only have up to 2 successors, so we put them in a simple
2518 * array - no need for anything more complicated.
2519 */
2520 struct nir_block *successors[2];
2521
2522 /* Set of nir_block predecessors in the CFG */
2523 struct set *predecessors;
2524
2525 /*
2526 * this node's immediate dominator in the dominance tree - set to NULL for
2527 * the start block.
2528 */
2529 struct nir_block *imm_dom;
2530
2531 /* This node's children in the dominance tree */
2532 unsigned num_dom_children;
2533 struct nir_block **dom_children;
2534
2535 /* Set of nir_blocks on the dominance frontier of this block */
2536 struct set *dom_frontier;
2537
2538 /*
2539 * These two indices have the property that dom_{pre,post}_index for each
2540 * child of this block in the dominance tree will always be between
2541 * dom_pre_index and dom_post_index for this block, which makes testing if
2542 * a given block is dominated by another block an O(1) operation.
2543 */
2544 int16_t dom_pre_index, dom_post_index;
2545
2546 /* live in and out for this block; used for liveness analysis */
2547 BITSET_WORD *live_in;
2548 BITSET_WORD *live_out;
2549 } nir_block;
2550
2551 static inline bool
2552 nir_block_is_reachable(nir_block *b)
2553 {
2554 /* See also nir_block_dominates */
2555 return b->dom_post_index != -1;
2556 }
2557
2558 static inline nir_instr *
2559 nir_block_first_instr(nir_block *block)
2560 {
2561 struct exec_node *head = exec_list_get_head(&block->instr_list);
2562 return exec_node_data(nir_instr, head, node);
2563 }
2564
2565 static inline nir_instr *
2566 nir_block_last_instr(nir_block *block)
2567 {
2568 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2569 return exec_node_data(nir_instr, tail, node);
2570 }
2571
2572 static inline bool
2573 nir_block_ends_in_jump(nir_block *block)
2574 {
2575 return !exec_list_is_empty(&block->instr_list) &&
2576 nir_block_last_instr(block)->type == nir_instr_type_jump;
2577 }
2578
2579 #define nir_foreach_instr(instr, block) \
2580 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2581 #define nir_foreach_instr_reverse(instr, block) \
2582 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2583 #define nir_foreach_instr_safe(instr, block) \
2584 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2585 #define nir_foreach_instr_reverse_safe(instr, block) \
2586 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2587
2588 typedef enum {
2589 nir_selection_control_none = 0x0,
2590 nir_selection_control_flatten = 0x1,
2591 nir_selection_control_dont_flatten = 0x2,
2592 } nir_selection_control;
2593
2594 typedef struct nir_if {
2595 nir_cf_node cf_node;
2596 nir_src condition;
2597 nir_selection_control control;
2598
2599 struct exec_list then_list; /** < list of nir_cf_node */
2600 struct exec_list else_list; /** < list of nir_cf_node */
2601 } nir_if;
2602
2603 typedef struct {
2604 nir_if *nif;
2605
2606 /** Instruction that generates nif::condition. */
2607 nir_instr *conditional_instr;
2608
2609 /** Block within ::nif that has the break instruction. */
2610 nir_block *break_block;
2611
2612 /** Last block for the then- or else-path that does not contain the break. */
2613 nir_block *continue_from_block;
2614
2615 /** True when ::break_block is in the else-path of ::nif. */
2616 bool continue_from_then;
2617 bool induction_rhs;
2618
2619 /* This is true if the terminators exact trip count is unknown. For
2620 * example:
2621 *
2622 * for (int i = 0; i < imin(x, 4); i++)
2623 * ...
2624 *
2625 * Here loop analysis would have set a max_trip_count of 4 however we dont
2626 * know for sure that this is the exact trip count.
2627 */
2628 bool exact_trip_count_unknown;
2629
2630 struct list_head loop_terminator_link;
2631 } nir_loop_terminator;
2632
2633 typedef struct {
2634 /* Estimated cost (in number of instructions) of the loop */
2635 unsigned instr_cost;
2636
2637 /* Guessed trip count based on array indexing */
2638 unsigned guessed_trip_count;
2639
2640 /* Maximum number of times the loop is run (if known) */
2641 unsigned max_trip_count;
2642
2643 /* Do we know the exact number of times the loop will be run */
2644 bool exact_trip_count_known;
2645
2646 /* Unroll the loop regardless of its size */
2647 bool force_unroll;
2648
2649 /* Does the loop contain complex loop terminators, continues or other
2650 * complex behaviours? If this is true we can't rely on
2651 * loop_terminator_list to be complete or accurate.
2652 */
2653 bool complex_loop;
2654
2655 nir_loop_terminator *limiting_terminator;
2656
2657 /* A list of loop_terminators terminating this loop. */
2658 struct list_head loop_terminator_list;
2659 } nir_loop_info;
2660
2661 typedef enum {
2662 nir_loop_control_none = 0x0,
2663 nir_loop_control_unroll = 0x1,
2664 nir_loop_control_dont_unroll = 0x2,
2665 } nir_loop_control;
2666
2667 typedef struct {
2668 nir_cf_node cf_node;
2669
2670 struct exec_list body; /** < list of nir_cf_node */
2671
2672 nir_loop_info *info;
2673 nir_loop_control control;
2674 bool partially_unrolled;
2675 } nir_loop;
2676
2677 /**
2678 * Various bits of metadata that can may be created or required by
2679 * optimization and analysis passes
2680 */
2681 typedef enum {
2682 nir_metadata_none = 0x0,
2683
2684 /** Indicates that nir_block::index values are valid.
2685 *
2686 * The start block has index 0 and they increase through a natural walk of
2687 * the CFG. nir_function_impl::num_blocks is the number of blocks and
2688 * every block index is in the range [0, nir_function_impl::num_blocks].
2689 *
2690 * A pass can preserve this metadata type if it doesn't touch the CFG.
2691 */
2692 nir_metadata_block_index = 0x1,
2693
2694 /** Indicates that block dominance information is valid
2695 *
2696 * This includes:
2697 *
2698 * - nir_block::num_dom_children
2699 * - nir_block::dom_children
2700 * - nir_block::dom_frontier
2701 * - nir_block::dom_pre_index
2702 * - nir_block::dom_post_index
2703 *
2704 * A pass can preserve this metadata type if it doesn't touch the CFG.
2705 */
2706 nir_metadata_dominance = 0x2,
2707
2708 /** Indicates that SSA def data-flow liveness information is valid
2709 *
2710 * This includes:
2711 *
2712 * - nir_ssa_def::live_index
2713 * - nir_block::live_in
2714 * - nir_block::live_out
2715 *
2716 * A pass can preserve this metadata type if it never adds or removes any
2717 * SSA defs (most passes shouldn't preserve this metadata type).
2718 */
2719 nir_metadata_live_ssa_defs = 0x4,
2720
2721 /** A dummy metadata value to track when a pass forgot to call
2722 * nir_metadata_preserve.
2723 *
2724 * A pass should always clear this value even if it doesn't make any
2725 * progress to indicate that it thought about preserving metadata.
2726 */
2727 nir_metadata_not_properly_reset = 0x8,
2728
2729 /** Indicates that loop analysis information is valid.
2730 *
2731 * This includes everything pointed to by nir_loop::info.
2732 *
2733 * A pass can preserve this metadata type if it is guaranteed to not affect
2734 * any loop metadata. However, since loop metadata includes things like
2735 * loop counts which depend on arithmetic in the loop, this is very hard to
2736 * determine. Most passes shouldn't preserve this metadata type.
2737 */
2738 nir_metadata_loop_analysis = 0x10,
2739
2740 /** All metadata
2741 *
2742 * This includes all nir_metadata flags except not_properly_reset. Passes
2743 * which do not change the shader in any way should call
2744 *
2745 * nir_metadata_preserve(impl, nir_metadata_all);
2746 */
2747 nir_metadata_all = ~nir_metadata_not_properly_reset,
2748 } nir_metadata;
2749
2750 typedef struct {
2751 nir_cf_node cf_node;
2752
2753 /** pointer to the function of which this is an implementation */
2754 struct nir_function *function;
2755
2756 struct exec_list body; /** < list of nir_cf_node */
2757
2758 nir_block *end_block;
2759
2760 /** list for all local variables in the function */
2761 struct exec_list locals;
2762
2763 /** list of local registers in the function */
2764 struct exec_list registers;
2765
2766 /** next available local register index */
2767 unsigned reg_alloc;
2768
2769 /** next available SSA value index */
2770 unsigned ssa_alloc;
2771
2772 /* total number of basic blocks, only valid when block_index_dirty = false */
2773 unsigned num_blocks;
2774
2775 nir_metadata valid_metadata;
2776 } nir_function_impl;
2777
2778 #define nir_foreach_function_temp_variable(var, impl) \
2779 foreach_list_typed(nir_variable, var, node, &(impl)->locals)
2780
2781 #define nir_foreach_function_temp_variable_safe(var, impl) \
2782 foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
2783
2784 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2785 nir_start_block(nir_function_impl *impl)
2786 {
2787 return (nir_block *) impl->body.head_sentinel.next;
2788 }
2789
2790 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2791 nir_impl_last_block(nir_function_impl *impl)
2792 {
2793 return (nir_block *) impl->body.tail_sentinel.prev;
2794 }
2795
2796 static inline nir_cf_node *
2797 nir_cf_node_next(nir_cf_node *node)
2798 {
2799 struct exec_node *next = exec_node_get_next(&node->node);
2800 if (exec_node_is_tail_sentinel(next))
2801 return NULL;
2802 else
2803 return exec_node_data(nir_cf_node, next, node);
2804 }
2805
2806 static inline nir_cf_node *
2807 nir_cf_node_prev(nir_cf_node *node)
2808 {
2809 struct exec_node *prev = exec_node_get_prev(&node->node);
2810 if (exec_node_is_head_sentinel(prev))
2811 return NULL;
2812 else
2813 return exec_node_data(nir_cf_node, prev, node);
2814 }
2815
2816 static inline bool
2817 nir_cf_node_is_first(const nir_cf_node *node)
2818 {
2819 return exec_node_is_head_sentinel(node->node.prev);
2820 }
2821
2822 static inline bool
2823 nir_cf_node_is_last(const nir_cf_node *node)
2824 {
2825 return exec_node_is_tail_sentinel(node->node.next);
2826 }
2827
2828 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2829 type, nir_cf_node_block)
2830 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2831 type, nir_cf_node_if)
2832 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2833 type, nir_cf_node_loop)
2834 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2835 nir_function_impl, cf_node, type, nir_cf_node_function)
2836
2837 static inline nir_block *
2838 nir_if_first_then_block(nir_if *if_stmt)
2839 {
2840 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2841 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2842 }
2843
2844 static inline nir_block *
2845 nir_if_last_then_block(nir_if *if_stmt)
2846 {
2847 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2848 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2849 }
2850
2851 static inline nir_block *
2852 nir_if_first_else_block(nir_if *if_stmt)
2853 {
2854 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2855 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2856 }
2857
2858 static inline nir_block *
2859 nir_if_last_else_block(nir_if *if_stmt)
2860 {
2861 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2862 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2863 }
2864
2865 static inline nir_block *
2866 nir_loop_first_block(nir_loop *loop)
2867 {
2868 struct exec_node *head = exec_list_get_head(&loop->body);
2869 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2870 }
2871
2872 static inline nir_block *
2873 nir_loop_last_block(nir_loop *loop)
2874 {
2875 struct exec_node *tail = exec_list_get_tail(&loop->body);
2876 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2877 }
2878
2879 /**
2880 * Return true if this list of cf_nodes contains a single empty block.
2881 */
2882 static inline bool
2883 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2884 {
2885 if (exec_list_is_singular(cf_list)) {
2886 struct exec_node *head = exec_list_get_head(cf_list);
2887 nir_block *block =
2888 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2889 return exec_list_is_empty(&block->instr_list);
2890 }
2891 return false;
2892 }
2893
2894 typedef struct {
2895 uint8_t num_components;
2896 uint8_t bit_size;
2897 } nir_parameter;
2898
2899 typedef struct nir_function {
2900 struct exec_node node;
2901
2902 const char *name;
2903 struct nir_shader *shader;
2904
2905 unsigned num_params;
2906 nir_parameter *params;
2907
2908 /** The implementation of this function.
2909 *
2910 * If the function is only declared and not implemented, this is NULL.
2911 */
2912 nir_function_impl *impl;
2913
2914 bool is_entrypoint;
2915 } nir_function;
2916
2917 typedef enum {
2918 nir_lower_imul64 = (1 << 0),
2919 nir_lower_isign64 = (1 << 1),
2920 /** Lower all int64 modulus and division opcodes */
2921 nir_lower_divmod64 = (1 << 2),
2922 /** Lower all 64-bit umul_high and imul_high opcodes */
2923 nir_lower_imul_high64 = (1 << 3),
2924 nir_lower_mov64 = (1 << 4),
2925 nir_lower_icmp64 = (1 << 5),
2926 nir_lower_iadd64 = (1 << 6),
2927 nir_lower_iabs64 = (1 << 7),
2928 nir_lower_ineg64 = (1 << 8),
2929 nir_lower_logic64 = (1 << 9),
2930 nir_lower_minmax64 = (1 << 10),
2931 nir_lower_shift64 = (1 << 11),
2932 nir_lower_imul_2x32_64 = (1 << 12),
2933 nir_lower_extract64 = (1 << 13),
2934 nir_lower_ufind_msb64 = (1 << 14),
2935 } nir_lower_int64_options;
2936
2937 typedef enum {
2938 nir_lower_drcp = (1 << 0),
2939 nir_lower_dsqrt = (1 << 1),
2940 nir_lower_drsq = (1 << 2),
2941 nir_lower_dtrunc = (1 << 3),
2942 nir_lower_dfloor = (1 << 4),
2943 nir_lower_dceil = (1 << 5),
2944 nir_lower_dfract = (1 << 6),
2945 nir_lower_dround_even = (1 << 7),
2946 nir_lower_dmod = (1 << 8),
2947 nir_lower_dsub = (1 << 9),
2948 nir_lower_ddiv = (1 << 10),
2949 nir_lower_fp64_full_software = (1 << 11),
2950 } nir_lower_doubles_options;
2951
2952 typedef enum {
2953 nir_divergence_single_prim_per_subgroup = (1 << 0),
2954 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2955 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2956 nir_divergence_view_index_uniform = (1 << 3),
2957 } nir_divergence_options;
2958
2959 typedef struct nir_shader_compiler_options {
2960 bool lower_fdiv;
2961 bool lower_ffma;
2962 bool fuse_ffma;
2963 bool lower_flrp16;
2964 bool lower_flrp32;
2965 /** Lowers flrp when it does not support doubles */
2966 bool lower_flrp64;
2967 bool lower_fpow;
2968 bool lower_fsat;
2969 bool lower_fsqrt;
2970 bool lower_sincos;
2971 bool lower_fmod;
2972 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2973 bool lower_bitfield_extract;
2974 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2975 bool lower_bitfield_extract_to_shifts;
2976 /** Lowers bitfield_insert to bfi/bfm */
2977 bool lower_bitfield_insert;
2978 /** Lowers bitfield_insert to compares, and shifts. */
2979 bool lower_bitfield_insert_to_shifts;
2980 /** Lowers bitfield_insert to bfm/bitfield_select. */
2981 bool lower_bitfield_insert_to_bitfield_select;
2982 /** Lowers bitfield_reverse to shifts. */
2983 bool lower_bitfield_reverse;
2984 /** Lowers bit_count to shifts. */
2985 bool lower_bit_count;
2986 /** Lowers ifind_msb to compare and ufind_msb */
2987 bool lower_ifind_msb;
2988 /** Lowers find_lsb to ufind_msb and logic ops */
2989 bool lower_find_lsb;
2990 bool lower_uadd_carry;
2991 bool lower_usub_borrow;
2992 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2993 bool lower_mul_high;
2994 /** lowers fneg and ineg to fsub and isub. */
2995 bool lower_negate;
2996 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2997 bool lower_sub;
2998
2999 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
3000 bool lower_scmp;
3001
3002 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3003 bool lower_vector_cmp;
3004
3005 /** enables rules to lower idiv by power-of-two: */
3006 bool lower_idiv;
3007
3008 /** enable rules to avoid bit ops */
3009 bool lower_bitops;
3010
3011 /** enables rules to lower isign to imin+imax */
3012 bool lower_isign;
3013
3014 /** enables rules to lower fsign to fsub and flt */
3015 bool lower_fsign;
3016
3017 /* lower fdph to fdot4 */
3018 bool lower_fdph;
3019
3020 /** lower fdot to fmul and fsum/fadd. */
3021 bool lower_fdot;
3022
3023 /* Does the native fdot instruction replicate its result for four
3024 * components? If so, then opt_algebraic_late will turn all fdotN
3025 * instructions into fdot_replicatedN instructions.
3026 */
3027 bool fdot_replicates;
3028
3029 /** lowers ffloor to fsub+ffract: */
3030 bool lower_ffloor;
3031
3032 /** lowers ffract to fsub+ffloor: */
3033 bool lower_ffract;
3034
3035 /** lowers fceil to fneg+ffloor+fneg: */
3036 bool lower_fceil;
3037
3038 bool lower_ftrunc;
3039
3040 bool lower_ldexp;
3041
3042 bool lower_pack_half_2x16;
3043 bool lower_pack_unorm_2x16;
3044 bool lower_pack_snorm_2x16;
3045 bool lower_pack_unorm_4x8;
3046 bool lower_pack_snorm_4x8;
3047 bool lower_unpack_half_2x16;
3048 bool lower_unpack_unorm_2x16;
3049 bool lower_unpack_snorm_2x16;
3050 bool lower_unpack_unorm_4x8;
3051 bool lower_unpack_snorm_4x8;
3052
3053 bool lower_pack_split;
3054
3055 bool lower_extract_byte;
3056 bool lower_extract_word;
3057
3058 bool lower_all_io_to_temps;
3059 bool lower_all_io_to_elements;
3060
3061 /* Indicates that the driver only has zero-based vertex id */
3062 bool vertex_id_zero_based;
3063
3064 /**
3065 * If enabled, gl_BaseVertex will be lowered as:
3066 * is_indexed_draw (~0/0) & firstvertex
3067 */
3068 bool lower_base_vertex;
3069
3070 /**
3071 * If enabled, gl_HelperInvocation will be lowered as:
3072 *
3073 * !((1 << sample_id) & sample_mask_in))
3074 *
3075 * This depends on some possibly hw implementation details, which may
3076 * not be true for all hw. In particular that the FS is only executed
3077 * for covered samples or for helper invocations. So, do not blindly
3078 * enable this option.
3079 *
3080 * Note: See also issue #22 in ARB_shader_image_load_store
3081 */
3082 bool lower_helper_invocation;
3083
3084 /**
3085 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3086 *
3087 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3088 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3089 */
3090 bool optimize_sample_mask_in;
3091
3092 bool lower_cs_local_index_from_id;
3093 bool lower_cs_local_id_from_index;
3094
3095 bool lower_device_index_to_zero;
3096
3097 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
3098 bool lower_wpos_pntc;
3099
3100 /**
3101 * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3102 * lowered to simple arithmetic.
3103 *
3104 * If this flag is set, the lowering will be applied to all bit-sizes of
3105 * these instructions.
3106 *
3107 * \sa ::lower_hadd64
3108 */
3109 bool lower_hadd;
3110
3111 /**
3112 * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3113 * should be lowered to simple arithmetic.
3114 *
3115 * If this flag is set, the lowering will be applied to only 64-bit
3116 * versions of these instructions.
3117 *
3118 * \sa ::lower_hadd
3119 */
3120 bool lower_hadd64;
3121
3122 /**
3123 * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
3124 * arithmetic.
3125 *
3126 * If this flag is set, the lowering will be applied to all bit-sizes of
3127 * these instructions.
3128 *
3129 * \sa ::lower_usub_sat64
3130 */
3131 bool lower_add_sat;
3132
3133 /**
3134 * Set if only 64-bit nir_op_usub_sat should be lowered to simple
3135 * arithmetic.
3136 *
3137 * \sa ::lower_add_sat
3138 */
3139 bool lower_usub_sat64;
3140
3141 /**
3142 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
3143 * for IO purposes and would prefer loads/stores be vectorized.
3144 */
3145 bool vectorize_io;
3146 bool lower_to_scalar;
3147
3148 /**
3149 * Whether nir_opt_vectorize should only create 16-bit 2D vectors.
3150 */
3151 bool vectorize_vec2_16bit;
3152
3153 /**
3154 * Should the linker unify inputs_read/outputs_written between adjacent
3155 * shader stages which are linked into a single program?
3156 */
3157 bool unify_interfaces;
3158
3159 /**
3160 * Should nir_lower_io() create load_interpolated_input intrinsics?
3161 *
3162 * If not, it generates regular load_input intrinsics and interpolation
3163 * information must be inferred from the list of input nir_variables.
3164 */
3165 bool use_interpolated_input_intrinsics;
3166
3167 /* Lowers when 32x32->64 bit multiplication is not supported */
3168 bool lower_mul_2x32_64;
3169
3170 /* Lowers when rotate instruction is not supported */
3171 bool lower_rotate;
3172
3173 /**
3174 * Backend supports imul24, and would like to use it (when possible)
3175 * for address/offset calculation. If true, driver should call
3176 * nir_lower_amul(). (If not set, amul will automatically be lowered
3177 * to imul.)
3178 */
3179 bool has_imul24;
3180
3181 /** Backend supports umul24, if not set umul24 will automatically be lowered
3182 * to imul with masked inputs */
3183 bool has_umul24;
3184
3185 /** Backend supports umad24, if not set umad24 will automatically be lowered
3186 * to imul with masked inputs and iadd */
3187 bool has_umad24;
3188
3189 /* Whether to generate only scoped_barrier intrinsics instead of the set of
3190 * memory and control barrier intrinsics based on GLSL.
3191 */
3192 bool use_scoped_barrier;
3193
3194 /**
3195 * Is this the Intel vec4 backend?
3196 *
3197 * Used to inhibit algebraic optimizations that are known to be harmful on
3198 * the Intel vec4 backend. This is generally applicable to any
3199 * optimization that might cause more immediate values to be used in
3200 * 3-source (e.g., ffma and flrp) instructions.
3201 */
3202 bool intel_vec4;
3203
3204 /** Lower nir_op_ibfe and nir_op_ubfe that have two constant sources. */
3205 bool lower_bfe_with_two_constants;
3206
3207 /** Whether 8-bit ALU is supported. */
3208 bool support_8bit_alu;
3209
3210 /** Whether 16-bit ALU is supported. */
3211 bool support_16bit_alu;
3212
3213 unsigned max_unroll_iterations;
3214
3215 nir_lower_int64_options lower_int64_options;
3216 nir_lower_doubles_options lower_doubles_options;
3217 } nir_shader_compiler_options;
3218
3219 typedef struct nir_shader {
3220 /** list of uniforms (nir_variable) */
3221 struct exec_list uniforms;
3222
3223 /** list of inputs (nir_variable) */
3224 struct exec_list inputs;
3225
3226 /** list of outputs (nir_variable) */
3227 struct exec_list outputs;
3228
3229 /** list of shared compute variables (nir_variable) */
3230 struct exec_list shared;
3231
3232 /** Set of driver-specific options for the shader.
3233 *
3234 * The memory for the options is expected to be kept in a single static
3235 * copy by the driver.
3236 */
3237 const struct nir_shader_compiler_options *options;
3238
3239 /** Various bits of compile-time information about a given shader */
3240 struct shader_info info;
3241
3242 /** list of global variables in the shader (nir_variable) */
3243 struct exec_list globals;
3244
3245 /** list of system value variables in the shader (nir_variable) */
3246 struct exec_list system_values;
3247
3248 struct exec_list functions; /** < list of nir_function */
3249
3250 /**
3251 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
3252 * access plus one
3253 */
3254 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
3255
3256 /** Size in bytes of required scratch space */
3257 unsigned scratch_size;
3258
3259 /** Constant data associated with this shader.
3260 *
3261 * Constant data is loaded through load_constant intrinsics. See also
3262 * nir_opt_large_constants.
3263 */
3264 void *constant_data;
3265 unsigned constant_data_size;
3266 } nir_shader;
3267
3268 #define nir_foreach_function(func, shader) \
3269 foreach_list_typed(nir_function, func, node, &(shader)->functions)
3270
3271 static inline nir_function_impl *
3272 nir_shader_get_entrypoint(nir_shader *shader)
3273 {
3274 nir_function *func = NULL;
3275
3276 nir_foreach_function(function, shader) {
3277 assert(func == NULL);
3278 if (function->is_entrypoint) {
3279 func = function;
3280 #ifndef NDEBUG
3281 break;
3282 #endif
3283 }
3284 }
3285
3286 if (!func)
3287 return NULL;
3288
3289 assert(func->num_params == 0);
3290 assert(func->impl);
3291 return func->impl;
3292 }
3293
3294 nir_shader *nir_shader_create(void *mem_ctx,
3295 gl_shader_stage stage,
3296 const nir_shader_compiler_options *options,
3297 shader_info *si);
3298
3299 nir_register *nir_local_reg_create(nir_function_impl *impl);
3300
3301 void nir_reg_remove(nir_register *reg);
3302
3303 struct exec_list *
3304 nir_variable_list_for_mode(nir_shader *shader, nir_variable_mode mode);
3305
3306 /** Adds a variable to the appropriate list in nir_shader */
3307 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3308
3309 static inline void
3310 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3311 {
3312 assert(var->data.mode == nir_var_function_temp);
3313 exec_list_push_tail(&impl->locals, &var->node);
3314 }
3315
3316 /** creates a variable, sets a few defaults, and adds it to the list */
3317 nir_variable *nir_variable_create(nir_shader *shader,
3318 nir_variable_mode mode,
3319 const struct glsl_type *type,
3320 const char *name);
3321 /** creates a local variable and adds it to the list */
3322 nir_variable *nir_local_variable_create(nir_function_impl *impl,
3323 const struct glsl_type *type,
3324 const char *name);
3325
3326 /** creates a function and adds it to the shader's list of functions */
3327 nir_function *nir_function_create(nir_shader *shader, const char *name);
3328
3329 nir_function_impl *nir_function_impl_create(nir_function *func);
3330 /** creates a function_impl that isn't tied to any particular function */
3331 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3332
3333 nir_block *nir_block_create(nir_shader *shader);
3334 nir_if *nir_if_create(nir_shader *shader);
3335 nir_loop *nir_loop_create(nir_shader *shader);
3336
3337 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3338
3339 /** requests that the given pieces of metadata be generated */
3340 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3341 /** dirties all but the preserved metadata */
3342 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3343 /** Preserves all metadata for the given shader */
3344 void nir_shader_preserve_all_metadata(nir_shader *shader);
3345
3346 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3347 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3348
3349 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3350 nir_deref_type deref_type);
3351
3352 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3353
3354 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3355 unsigned num_components,
3356 unsigned bit_size);
3357
3358 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3359 nir_intrinsic_op op);
3360
3361 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3362 nir_function *callee);
3363
3364 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3365
3366 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3367
3368 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3369
3370 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3371 unsigned num_components,
3372 unsigned bit_size);
3373
3374 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3375
3376 /**
3377 * NIR Cursors and Instruction Insertion API
3378 * @{
3379 *
3380 * A tiny struct representing a point to insert/extract instructions or
3381 * control flow nodes. Helps reduce the combinatorial explosion of possible
3382 * points to insert/extract.
3383 *
3384 * \sa nir_control_flow.h
3385 */
3386 typedef enum {
3387 nir_cursor_before_block,
3388 nir_cursor_after_block,
3389 nir_cursor_before_instr,
3390 nir_cursor_after_instr,
3391 } nir_cursor_option;
3392
3393 typedef struct {
3394 nir_cursor_option option;
3395 union {
3396 nir_block *block;
3397 nir_instr *instr;
3398 };
3399 } nir_cursor;
3400
3401 static inline nir_block *
3402 nir_cursor_current_block(nir_cursor cursor)
3403 {
3404 if (cursor.option == nir_cursor_before_instr ||
3405 cursor.option == nir_cursor_after_instr) {
3406 return cursor.instr->block;
3407 } else {
3408 return cursor.block;
3409 }
3410 }
3411
3412 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3413
3414 static inline nir_cursor
3415 nir_before_block(nir_block *block)
3416 {
3417 nir_cursor cursor;
3418 cursor.option = nir_cursor_before_block;
3419 cursor.block = block;
3420 return cursor;
3421 }
3422
3423 static inline nir_cursor
3424 nir_after_block(nir_block *block)
3425 {
3426 nir_cursor cursor;
3427 cursor.option = nir_cursor_after_block;
3428 cursor.block = block;
3429 return cursor;
3430 }
3431
3432 static inline nir_cursor
3433 nir_before_instr(nir_instr *instr)
3434 {
3435 nir_cursor cursor;
3436 cursor.option = nir_cursor_before_instr;
3437 cursor.instr = instr;
3438 return cursor;
3439 }
3440
3441 static inline nir_cursor
3442 nir_after_instr(nir_instr *instr)
3443 {
3444 nir_cursor cursor;
3445 cursor.option = nir_cursor_after_instr;
3446 cursor.instr = instr;
3447 return cursor;
3448 }
3449
3450 static inline nir_cursor
3451 nir_after_block_before_jump(nir_block *block)
3452 {
3453 nir_instr *last_instr = nir_block_last_instr(block);
3454 if (last_instr && last_instr->type == nir_instr_type_jump) {
3455 return nir_before_instr(last_instr);
3456 } else {
3457 return nir_after_block(block);
3458 }
3459 }
3460
3461 static inline nir_cursor
3462 nir_before_src(nir_src *src, bool is_if_condition)
3463 {
3464 if (is_if_condition) {
3465 nir_block *prev_block =
3466 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3467 assert(!nir_block_ends_in_jump(prev_block));
3468 return nir_after_block(prev_block);
3469 } else if (src->parent_instr->type == nir_instr_type_phi) {
3470 #ifndef NDEBUG
3471 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3472 bool found = false;
3473 nir_foreach_phi_src(phi_src, cond_phi) {
3474 if (phi_src->src.ssa == src->ssa) {
3475 found = true;
3476 break;
3477 }
3478 }
3479 assert(found);
3480 #endif
3481 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3482 * to have a more specific name.
3483 */
3484 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3485 return nir_after_block_before_jump(phi_src->pred);
3486 } else {
3487 return nir_before_instr(src->parent_instr);
3488 }
3489 }
3490
3491 static inline nir_cursor
3492 nir_before_cf_node(nir_cf_node *node)
3493 {
3494 if (node->type == nir_cf_node_block)
3495 return nir_before_block(nir_cf_node_as_block(node));
3496
3497 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3498 }
3499
3500 static inline nir_cursor
3501 nir_after_cf_node(nir_cf_node *node)
3502 {
3503 if (node->type == nir_cf_node_block)
3504 return nir_after_block(nir_cf_node_as_block(node));
3505
3506 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3507 }
3508
3509 static inline nir_cursor
3510 nir_after_phis(nir_block *block)
3511 {
3512 nir_foreach_instr(instr, block) {
3513 if (instr->type != nir_instr_type_phi)
3514 return nir_before_instr(instr);
3515 }
3516 return nir_after_block(block);
3517 }
3518
3519 static inline nir_cursor
3520 nir_after_cf_node_and_phis(nir_cf_node *node)
3521 {
3522 if (node->type == nir_cf_node_block)
3523 return nir_after_block(nir_cf_node_as_block(node));
3524
3525 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3526
3527 return nir_after_phis(block);
3528 }
3529
3530 static inline nir_cursor
3531 nir_before_cf_list(struct exec_list *cf_list)
3532 {
3533 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3534 exec_list_get_head(cf_list), node);
3535 return nir_before_cf_node(first_node);
3536 }
3537
3538 static inline nir_cursor
3539 nir_after_cf_list(struct exec_list *cf_list)
3540 {
3541 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3542 exec_list_get_tail(cf_list), node);
3543 return nir_after_cf_node(last_node);
3544 }
3545
3546 /**
3547 * Insert a NIR instruction at the given cursor.
3548 *
3549 * Note: This does not update the cursor.
3550 */
3551 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3552
3553 static inline void
3554 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3555 {
3556 nir_instr_insert(nir_before_instr(instr), before);
3557 }
3558
3559 static inline void
3560 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3561 {
3562 nir_instr_insert(nir_after_instr(instr), after);
3563 }
3564
3565 static inline void
3566 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3567 {
3568 nir_instr_insert(nir_before_block(block), before);
3569 }
3570
3571 static inline void
3572 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3573 {
3574 nir_instr_insert(nir_after_block(block), after);
3575 }
3576
3577 static inline void
3578 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3579 {
3580 nir_instr_insert(nir_before_cf_node(node), before);
3581 }
3582
3583 static inline void
3584 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3585 {
3586 nir_instr_insert(nir_after_cf_node(node), after);
3587 }
3588
3589 static inline void
3590 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3591 {
3592 nir_instr_insert(nir_before_cf_list(list), before);
3593 }
3594
3595 static inline void
3596 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3597 {
3598 nir_instr_insert(nir_after_cf_list(list), after);
3599 }
3600
3601 void nir_instr_remove_v(nir_instr *instr);
3602
3603 static inline nir_cursor
3604 nir_instr_remove(nir_instr *instr)
3605 {
3606 nir_cursor cursor;
3607 nir_instr *prev = nir_instr_prev(instr);
3608 if (prev) {
3609 cursor = nir_after_instr(prev);
3610 } else {
3611 cursor = nir_before_block(instr->block);
3612 }
3613 nir_instr_remove_v(instr);
3614 return cursor;
3615 }
3616
3617 /** @} */
3618
3619 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3620
3621 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3622 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3623 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3624 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3625 void *state);
3626 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3627 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3628 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
3629 nir_foreach_src_cb cb,
3630 void *state);
3631
3632 nir_const_value *nir_src_as_const_value(nir_src src);
3633
3634 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3635 static inline c_type * \
3636 nir_src_as_ ## name (nir_src src) \
3637 { \
3638 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3639 ? cast_macro(src.ssa->parent_instr) : NULL; \
3640 }
3641
3642 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3643 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3644 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3645 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3646
3647 bool nir_src_is_dynamically_uniform(nir_src src);
3648 bool nir_srcs_equal(nir_src src1, nir_src src2);
3649 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3650 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3651 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3652 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3653 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3654 nir_dest new_dest);
3655
3656 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3657 unsigned num_components, unsigned bit_size,
3658 const char *name);
3659 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3660 unsigned num_components, unsigned bit_size,
3661 const char *name);
3662 static inline void
3663 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3664 const struct glsl_type *type,
3665 const char *name)
3666 {
3667 assert(glsl_type_is_vector_or_scalar(type));
3668 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3669 glsl_get_bit_size(type), name);
3670 }
3671 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3672 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3673 nir_instr *after_me);
3674
3675 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3676
3677 /*
3678 * finds the next basic block in source-code order, returns NULL if there is
3679 * none
3680 */
3681
3682 nir_block *nir_block_cf_tree_next(nir_block *block);
3683
3684 /* Performs the opposite of nir_block_cf_tree_next() */
3685
3686 nir_block *nir_block_cf_tree_prev(nir_block *block);
3687
3688 /* Gets the first block in a CF node in source-code order */
3689
3690 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3691
3692 /* Gets the last block in a CF node in source-code order */
3693
3694 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3695
3696 /* Gets the next block after a CF node in source-code order */
3697
3698 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3699
3700 /* Macros for loops that visit blocks in source-code order */
3701
3702 #define nir_foreach_block(block, impl) \
3703 for (nir_block *block = nir_start_block(impl); block != NULL; \
3704 block = nir_block_cf_tree_next(block))
3705
3706 #define nir_foreach_block_safe(block, impl) \
3707 for (nir_block *block = nir_start_block(impl), \
3708 *next = nir_block_cf_tree_next(block); \
3709 block != NULL; \
3710 block = next, next = nir_block_cf_tree_next(block))
3711
3712 #define nir_foreach_block_reverse(block, impl) \
3713 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3714 block = nir_block_cf_tree_prev(block))
3715
3716 #define nir_foreach_block_reverse_safe(block, impl) \
3717 for (nir_block *block = nir_impl_last_block(impl), \
3718 *prev = nir_block_cf_tree_prev(block); \
3719 block != NULL; \
3720 block = prev, prev = nir_block_cf_tree_prev(block))
3721
3722 #define nir_foreach_block_in_cf_node(block, node) \
3723 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3724 block != nir_cf_node_cf_tree_next(node); \
3725 block = nir_block_cf_tree_next(block))
3726
3727 /* If the following CF node is an if, this function returns that if.
3728 * Otherwise, it returns NULL.
3729 */
3730 nir_if *nir_block_get_following_if(nir_block *block);
3731
3732 nir_loop *nir_block_get_following_loop(nir_block *block);
3733
3734 void nir_index_local_regs(nir_function_impl *impl);
3735 void nir_index_ssa_defs(nir_function_impl *impl);
3736 unsigned nir_index_instrs(nir_function_impl *impl);
3737
3738 void nir_index_blocks(nir_function_impl *impl);
3739
3740 void nir_index_vars(nir_shader *shader, nir_function_impl *impl, nir_variable_mode modes);
3741
3742 void nir_print_shader(nir_shader *shader, FILE *fp);
3743 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3744 void nir_print_instr(const nir_instr *instr, FILE *fp);
3745 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3746
3747 /** Shallow clone of a single ALU instruction. */
3748 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3749
3750 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3751 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3752 const nir_function_impl *fi);
3753 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3754 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3755
3756 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3757
3758 void nir_shader_serialize_deserialize(nir_shader *s);
3759
3760 #ifndef NDEBUG
3761 void nir_validate_shader(nir_shader *shader, const char *when);
3762 void nir_metadata_set_validation_flag(nir_shader *shader);
3763 void nir_metadata_check_validation_flag(nir_shader *shader);
3764
3765 static inline bool
3766 should_skip_nir(const char *name)
3767 {
3768 static const char *list = NULL;
3769 if (!list) {
3770 /* Comma separated list of names to skip. */
3771 list = getenv("NIR_SKIP");
3772 if (!list)
3773 list = "";
3774 }
3775
3776 if (!list[0])
3777 return false;
3778
3779 return comma_separated_list_contains(list, name);
3780 }
3781
3782 static inline bool
3783 should_clone_nir(void)
3784 {
3785 static int should_clone = -1;
3786 if (should_clone < 0)
3787 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3788
3789 return should_clone;
3790 }
3791
3792 static inline bool
3793 should_serialize_deserialize_nir(void)
3794 {
3795 static int test_serialize = -1;
3796 if (test_serialize < 0)
3797 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3798
3799 return test_serialize;
3800 }
3801
3802 static inline bool
3803 should_print_nir(void)
3804 {
3805 static int should_print = -1;
3806 if (should_print < 0)
3807 should_print = env_var_as_boolean("NIR_PRINT", false);
3808
3809 return should_print;
3810 }
3811 #else
3812 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3813 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3814 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3815 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3816 static inline bool should_clone_nir(void) { return false; }
3817 static inline bool should_serialize_deserialize_nir(void) { return false; }
3818 static inline bool should_print_nir(void) { return false; }
3819 #endif /* NDEBUG */
3820
3821 #define _PASS(pass, nir, do_pass) do { \
3822 if (should_skip_nir(#pass)) { \
3823 printf("skipping %s\n", #pass); \
3824 break; \
3825 } \
3826 do_pass \
3827 nir_validate_shader(nir, "after " #pass); \
3828 if (should_clone_nir()) { \
3829 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3830 nir_shader_replace(nir, clone); \
3831 } \
3832 if (should_serialize_deserialize_nir()) { \
3833 nir_shader_serialize_deserialize(nir); \
3834 } \
3835 } while (0)
3836
3837 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3838 nir_metadata_set_validation_flag(nir); \
3839 if (should_print_nir()) \
3840 printf("%s\n", #pass); \
3841 if (pass(nir, ##__VA_ARGS__)) { \
3842 progress = true; \
3843 if (should_print_nir()) \
3844 nir_print_shader(nir, stdout); \
3845 nir_metadata_check_validation_flag(nir); \
3846 } \
3847 )
3848
3849 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3850 if (should_print_nir()) \
3851 printf("%s\n", #pass); \
3852 pass(nir, ##__VA_ARGS__); \
3853 if (should_print_nir()) \
3854 nir_print_shader(nir, stdout); \
3855 )
3856
3857 #define NIR_SKIP(name) should_skip_nir(#name)
3858
3859 /** An instruction filtering callback
3860 *
3861 * Returns true if the instruction should be processed and false otherwise.
3862 */
3863 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3864
3865 /** A simple instruction lowering callback
3866 *
3867 * Many instruction lowering passes can be written as a simple function which
3868 * takes an instruction as its input and returns a sequence of instructions
3869 * that implement the consumed instruction. This function type represents
3870 * such a lowering function. When called, a function with this prototype
3871 * should either return NULL indicating that no lowering needs to be done or
3872 * emit a sequence of instructions using the provided builder (whose cursor
3873 * will already be placed after the instruction to be lowered) and return the
3874 * resulting nir_ssa_def.
3875 */
3876 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3877 nir_instr *, void *);
3878
3879 /**
3880 * Special return value for nir_lower_instr_cb when some progress occurred
3881 * (like changing an input to the instr) that didn't result in a replacement
3882 * SSA def being generated.
3883 */
3884 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3885
3886 /** Iterate over all the instructions in a nir_function_impl and lower them
3887 * using the provided callbacks
3888 *
3889 * This function implements the guts of a standard lowering pass for you. It
3890 * iterates over all of the instructions in a nir_function_impl and calls the
3891 * filter callback on each one. If the filter callback returns true, it then
3892 * calls the lowering call back on the instruction. (Splitting it this way
3893 * allows us to avoid some save/restore work for instructions we know won't be
3894 * lowered.) If the instruction is dead after the lowering is complete, it
3895 * will be removed. If new instructions are added, the lowering callback will
3896 * also be called on them in case multiple lowerings are required.
3897 *
3898 * The metadata for the nir_function_impl will also be updated. If any blocks
3899 * are added (they cannot be removed), dominance and block indices will be
3900 * invalidated.
3901 */
3902 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3903 nir_instr_filter_cb filter,
3904 nir_lower_instr_cb lower,
3905 void *cb_data);
3906 bool nir_shader_lower_instructions(nir_shader *shader,
3907 nir_instr_filter_cb filter,
3908 nir_lower_instr_cb lower,
3909 void *cb_data);
3910
3911 void nir_calc_dominance_impl(nir_function_impl *impl);
3912 void nir_calc_dominance(nir_shader *shader);
3913
3914 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3915 bool nir_block_dominates(nir_block *parent, nir_block *child);
3916 bool nir_block_is_unreachable(nir_block *block);
3917
3918 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3919 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3920
3921 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3922 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3923
3924 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3925 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3926
3927 int nir_gs_count_vertices(const nir_shader *shader);
3928
3929 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3930 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3931 bool nir_split_var_copies(nir_shader *shader);
3932 bool nir_split_per_member_structs(nir_shader *shader);
3933 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3934
3935 bool nir_lower_returns_impl(nir_function_impl *impl);
3936 bool nir_lower_returns(nir_shader *shader);
3937
3938 void nir_inline_function_impl(struct nir_builder *b,
3939 const nir_function_impl *impl,
3940 nir_ssa_def **params);
3941 bool nir_inline_functions(nir_shader *shader);
3942
3943 bool nir_propagate_invariant(nir_shader *shader);
3944
3945 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3946 void nir_lower_deref_copy_instr(struct nir_builder *b,
3947 nir_intrinsic_instr *copy);
3948 bool nir_lower_var_copies(nir_shader *shader);
3949
3950 void nir_fixup_deref_modes(nir_shader *shader);
3951
3952 bool nir_lower_global_vars_to_local(nir_shader *shader);
3953
3954 typedef enum {
3955 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3956 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3957 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3958 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3959 } nir_lower_array_deref_of_vec_options;
3960
3961 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3962 nir_lower_array_deref_of_vec_options options);
3963
3964 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3965
3966 bool nir_lower_locals_to_regs(nir_shader *shader);
3967
3968 void nir_lower_io_to_temporaries(nir_shader *shader,
3969 nir_function_impl *entrypoint,
3970 bool outputs, bool inputs);
3971
3972 bool nir_lower_vars_to_scratch(nir_shader *shader,
3973 nir_variable_mode modes,
3974 int size_threshold,
3975 glsl_type_size_align_func size_align);
3976
3977 void nir_lower_clip_halfz(nir_shader *shader);
3978
3979 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3980
3981 void nir_gather_ssa_types(nir_function_impl *impl,
3982 BITSET_WORD *float_types,
3983 BITSET_WORD *int_types);
3984
3985 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
3986 unsigned *size,
3987 int (*type_size)(const struct glsl_type *, bool));
3988
3989 /* Some helpers to do very simple linking */
3990 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3991 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
3992 uint64_t *used_by_other_stage,
3993 uint64_t *used_by_other_stage_patches);
3994 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3995 bool default_to_smooth_interp);
3996 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3997 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3998
3999 bool nir_lower_amul(nir_shader *shader,
4000 int (*type_size)(const struct glsl_type *, bool));
4001
4002 void nir_assign_io_var_locations(struct exec_list *var_list,
4003 unsigned *size,
4004 gl_shader_stage stage);
4005
4006 typedef struct {
4007 uint8_t num_linked_io_vars;
4008 uint8_t num_linked_patch_io_vars;
4009 } nir_linked_io_var_info;
4010
4011 nir_linked_io_var_info
4012 nir_assign_linked_io_var_locations(nir_shader *producer,
4013 nir_shader *consumer);
4014
4015 typedef enum {
4016 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4017 * to 32-bit operations. This is only valid for nir_var_shader_in/out
4018 * modes.
4019 */
4020 nir_lower_io_lower_64bit_to_32 = (1 << 0),
4021
4022 /* If set, this forces all non-flat fragment shader inputs to be
4023 * interpolated as if with the "sample" qualifier. This requires
4024 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4025 */
4026 nir_lower_io_force_sample_interpolation = (1 << 1),
4027 } nir_lower_io_options;
4028 bool nir_lower_io(nir_shader *shader,
4029 nir_variable_mode modes,
4030 int (*type_size)(const struct glsl_type *, bool),
4031 nir_lower_io_options);
4032
4033 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
4034
4035 bool
4036 nir_lower_vars_to_explicit_types(nir_shader *shader,
4037 nir_variable_mode modes,
4038 glsl_type_size_align_func type_info);
4039
4040 typedef enum {
4041 /**
4042 * An address format which is a simple 32-bit global GPU address.
4043 */
4044 nir_address_format_32bit_global,
4045
4046 /**
4047 * An address format which is a simple 64-bit global GPU address.
4048 */
4049 nir_address_format_64bit_global,
4050
4051 /**
4052 * An address format which is a bounds-checked 64-bit global GPU address.
4053 *
4054 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4055 * address stored with the low bits in .x and high bits in .y, .z is a
4056 * size, and .w is an offset. When the final I/O operation is lowered, .w
4057 * is checked against .z and the operation is predicated on the result.
4058 */
4059 nir_address_format_64bit_bounded_global,
4060
4061 /**
4062 * An address format which is comprised of a vec2 where the first
4063 * component is a buffer index and the second is an offset.
4064 */
4065 nir_address_format_32bit_index_offset,
4066
4067 /**
4068 * An address format which is comprised of a vec3 where the first two
4069 * components specify the buffer and the third is an offset.
4070 */
4071 nir_address_format_vec2_index_32bit_offset,
4072
4073 /**
4074 * An address format which is a simple 32-bit offset.
4075 */
4076 nir_address_format_32bit_offset,
4077
4078 /**
4079 * An address format representing a purely logical addressing model. In
4080 * this model, all deref chains must be complete from the dereference
4081 * operation to the variable. Cast derefs are not allowed. These
4082 * addresses will be 32-bit scalars but the format is immaterial because
4083 * you can always chase the chain.
4084 */
4085 nir_address_format_logical,
4086 } nir_address_format;
4087
4088 static inline unsigned
4089 nir_address_format_bit_size(nir_address_format addr_format)
4090 {
4091 switch (addr_format) {
4092 case nir_address_format_32bit_global: return 32;
4093 case nir_address_format_64bit_global: return 64;
4094 case nir_address_format_64bit_bounded_global: return 32;
4095 case nir_address_format_32bit_index_offset: return 32;
4096 case nir_address_format_vec2_index_32bit_offset: return 32;
4097 case nir_address_format_32bit_offset: return 32;
4098 case nir_address_format_logical: return 32;
4099 }
4100 unreachable("Invalid address format");
4101 }
4102
4103 static inline unsigned
4104 nir_address_format_num_components(nir_address_format addr_format)
4105 {
4106 switch (addr_format) {
4107 case nir_address_format_32bit_global: return 1;
4108 case nir_address_format_64bit_global: return 1;
4109 case nir_address_format_64bit_bounded_global: return 4;
4110 case nir_address_format_32bit_index_offset: return 2;
4111 case nir_address_format_vec2_index_32bit_offset: return 3;
4112 case nir_address_format_32bit_offset: return 1;
4113 case nir_address_format_logical: return 1;
4114 }
4115 unreachable("Invalid address format");
4116 }
4117
4118 static inline const struct glsl_type *
4119 nir_address_format_to_glsl_type(nir_address_format addr_format)
4120 {
4121 unsigned bit_size = nir_address_format_bit_size(addr_format);
4122 assert(bit_size == 32 || bit_size == 64);
4123 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4124 nir_address_format_num_components(addr_format));
4125 }
4126
4127 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4128
4129 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4130 nir_address_format addr_format);
4131
4132 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4133 nir_address_format addr_format);
4134
4135 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4136 nir_deref_instr *deref,
4137 nir_ssa_def *base_addr,
4138 nir_address_format addr_format);
4139 void nir_lower_explicit_io_instr(struct nir_builder *b,
4140 nir_intrinsic_instr *io_instr,
4141 nir_ssa_def *addr,
4142 nir_address_format addr_format);
4143
4144 bool nir_lower_explicit_io(nir_shader *shader,
4145 nir_variable_mode modes,
4146 nir_address_format);
4147
4148 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4149 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
4150
4151 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
4152
4153 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4154 bool nir_lower_regs_to_ssa(nir_shader *shader);
4155 bool nir_lower_vars_to_ssa(nir_shader *shader);
4156
4157 bool nir_remove_dead_derefs(nir_shader *shader);
4158 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4159 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4160 bool (*can_remove_var)(nir_variable *var));
4161 bool nir_lower_variable_initializers(nir_shader *shader,
4162 nir_variable_mode modes);
4163
4164 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4165 bool nir_lower_vec_to_movs(nir_shader *shader);
4166 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4167 bool alpha_to_one,
4168 const gl_state_index16 *alpha_ref_state_tokens);
4169 bool nir_lower_alu(nir_shader *shader);
4170
4171 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4172 bool always_precise, bool have_ffma);
4173
4174 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4175 bool nir_lower_bool_to_bitsize(nir_shader *shader);
4176 bool nir_lower_bool_to_float(nir_shader *shader);
4177 bool nir_lower_bool_to_int32(nir_shader *shader);
4178 bool nir_lower_int_to_float(nir_shader *shader);
4179 bool nir_lower_load_const_to_scalar(nir_shader *shader);
4180 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
4181 bool nir_lower_phis_to_scalar(nir_shader *shader);
4182 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
4183 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
4184 bool outputs_only);
4185 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
4186 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
4187 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
4188
4189 bool nir_lower_fragcolor(nir_shader *shader);
4190 void nir_lower_fragcoord_wtrans(nir_shader *shader);
4191 void nir_lower_viewport_transform(nir_shader *shader);
4192 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
4193
4194 typedef struct nir_lower_subgroups_options {
4195 uint8_t subgroup_size;
4196 uint8_t ballot_bit_size;
4197 bool lower_to_scalar:1;
4198 bool lower_vote_trivial:1;
4199 bool lower_vote_eq_to_ballot:1;
4200 bool lower_subgroup_masks:1;
4201 bool lower_shuffle:1;
4202 bool lower_shuffle_to_32bit:1;
4203 bool lower_shuffle_to_swizzle_amd:1;
4204 bool lower_quad:1;
4205 bool lower_quad_broadcast_dynamic:1;
4206 bool lower_quad_broadcast_dynamic_to_const:1;
4207 } nir_lower_subgroups_options;
4208
4209 bool nir_lower_subgroups(nir_shader *shader,
4210 const nir_lower_subgroups_options *options);
4211
4212 bool nir_lower_system_values(nir_shader *shader);
4213
4214 enum PACKED nir_lower_tex_packing {
4215 nir_lower_tex_packing_none = 0,
4216 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
4217 * or unsigned ints based on the sampler type
4218 */
4219 nir_lower_tex_packing_16,
4220 /* The sampler returns 1 32-bit word of 4x8 unorm */
4221 nir_lower_tex_packing_8,
4222 };
4223
4224 typedef struct nir_lower_tex_options {
4225 /**
4226 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
4227 * sampler types a texture projector is lowered.
4228 */
4229 unsigned lower_txp;
4230
4231 /**
4232 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
4233 */
4234 bool lower_txf_offset;
4235
4236 /**
4237 * If true, lower away nir_tex_src_offset for all rect textures.
4238 */
4239 bool lower_rect_offset;
4240
4241 /**
4242 * If true, lower rect textures to 2D, using txs to fetch the
4243 * texture dimensions and dividing the texture coords by the
4244 * texture dims to normalize.
4245 */
4246 bool lower_rect;
4247
4248 /**
4249 * If true, convert yuv to rgb.
4250 */
4251 unsigned lower_y_uv_external;
4252 unsigned lower_y_u_v_external;
4253 unsigned lower_yx_xuxv_external;
4254 unsigned lower_xy_uxvx_external;
4255 unsigned lower_ayuv_external;
4256 unsigned lower_xyuv_external;
4257
4258 /**
4259 * To emulate certain texture wrap modes, this can be used
4260 * to saturate the specified tex coord to [0.0, 1.0]. The
4261 * bits are according to sampler #, ie. if, for example:
4262 *
4263 * (conf->saturate_s & (1 << n))
4264 *
4265 * is true, then the s coord for sampler n is saturated.
4266 *
4267 * Note that clamping must happen *after* projector lowering
4268 * so any projected texture sample instruction with a clamped
4269 * coordinate gets automatically lowered, regardless of the
4270 * 'lower_txp' setting.
4271 */
4272 unsigned saturate_s;
4273 unsigned saturate_t;
4274 unsigned saturate_r;
4275
4276 /* Bitmask of textures that need swizzling.
4277 *
4278 * If (swizzle_result & (1 << texture_index)), then the swizzle in
4279 * swizzles[texture_index] is applied to the result of the texturing
4280 * operation.
4281 */
4282 unsigned swizzle_result;
4283
4284 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
4285 * while 4 and 5 represent 0 and 1 respectively.
4286 */
4287 uint8_t swizzles[32][4];
4288
4289 /* Can be used to scale sampled values in range required by the format. */
4290 float scale_factors[32];
4291
4292 /**
4293 * Bitmap of textures that need srgb to linear conversion. If
4294 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
4295 * of the texture are lowered to linear.
4296 */
4297 unsigned lower_srgb;
4298
4299 /**
4300 * If true, lower nir_texop_tex on shaders that doesn't support implicit
4301 * LODs to nir_texop_txl.
4302 */
4303 bool lower_tex_without_implicit_lod;
4304
4305 /**
4306 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
4307 */
4308 bool lower_txd_cube_map;
4309
4310 /**
4311 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
4312 */
4313 bool lower_txd_3d;
4314
4315 /**
4316 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
4317 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
4318 * with lower_txd_cube_map.
4319 */
4320 bool lower_txd_shadow;
4321
4322 /**
4323 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
4324 * Implies lower_txd_cube_map and lower_txd_shadow.
4325 */
4326 bool lower_txd;
4327
4328 /**
4329 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
4330 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
4331 */
4332 bool lower_txb_shadow_clamp;
4333
4334 /**
4335 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
4336 * with nir_texop_txl. This includes cube maps.
4337 */
4338 bool lower_txd_shadow_clamp;
4339
4340 /**
4341 * If true, lower nir_texop_txd on when it uses both offset and min_lod
4342 * with nir_texop_txl. This includes cube maps.
4343 */
4344 bool lower_txd_offset_clamp;
4345
4346 /**
4347 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4348 * sampler is bindless.
4349 */
4350 bool lower_txd_clamp_bindless_sampler;
4351
4352 /**
4353 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4354 * sampler index is not statically determinable to be less than 16.
4355 */
4356 bool lower_txd_clamp_if_sampler_index_not_lt_16;
4357
4358 /**
4359 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
4360 * 0-lod followed by a nir_ishr.
4361 */
4362 bool lower_txs_lod;
4363
4364 /**
4365 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
4366 * mixed-up tg4 locations.
4367 */
4368 bool lower_tg4_broadcom_swizzle;
4369
4370 /**
4371 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
4372 */
4373 bool lower_tg4_offsets;
4374
4375 enum nir_lower_tex_packing lower_tex_packing[32];
4376 } nir_lower_tex_options;
4377
4378 bool nir_lower_tex(nir_shader *shader,
4379 const nir_lower_tex_options *options);
4380
4381 enum nir_lower_non_uniform_access_type {
4382 nir_lower_non_uniform_ubo_access = (1 << 0),
4383 nir_lower_non_uniform_ssbo_access = (1 << 1),
4384 nir_lower_non_uniform_texture_access = (1 << 2),
4385 nir_lower_non_uniform_image_access = (1 << 3),
4386 };
4387
4388 bool nir_lower_non_uniform_access(nir_shader *shader,
4389 enum nir_lower_non_uniform_access_type);
4390
4391 enum nir_lower_idiv_path {
4392 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4393 * the two but it is not exact in some cases (for example, 1091317713u /
4394 * 1034u gives 5209173 instead of 1055432) */
4395 nir_lower_idiv_fast,
4396 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4397 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4398 * the nv50 path and many of them are integer multiplications, so it is
4399 * probably slower. It should always return the correct result, though. */
4400 nir_lower_idiv_precise,
4401 };
4402
4403 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4404
4405 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
4406
4407 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4408 bool use_vars,
4409 bool use_clipdist_array,
4410 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4411 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4412 bool use_clipdist_array,
4413 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4414 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4415 bool use_clipdist_array);
4416 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4417 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
4418
4419 void nir_lower_point_size_mov(nir_shader *shader,
4420 const gl_state_index16 *pointsize_state_tokens);
4421
4422 bool nir_lower_frexp(nir_shader *nir);
4423
4424 void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
4425
4426 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4427
4428 bool nir_lower_flatshade(nir_shader *shader);
4429
4430 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4431 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4432 const gl_state_index16 *uniform_state_tokens);
4433
4434 typedef struct nir_lower_wpos_ytransform_options {
4435 gl_state_index16 state_tokens[STATE_LENGTH];
4436 bool fs_coord_origin_upper_left :1;
4437 bool fs_coord_origin_lower_left :1;
4438 bool fs_coord_pixel_center_integer :1;
4439 bool fs_coord_pixel_center_half_integer :1;
4440 } nir_lower_wpos_ytransform_options;
4441
4442 bool nir_lower_wpos_ytransform(nir_shader *shader,
4443 const nir_lower_wpos_ytransform_options *options);
4444 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4445
4446 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4447
4448 bool nir_lower_fb_read(nir_shader *shader);
4449
4450 typedef struct nir_lower_drawpixels_options {
4451 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4452 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4453 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4454 unsigned drawpix_sampler;
4455 unsigned pixelmap_sampler;
4456 bool pixel_maps :1;
4457 bool scale_and_bias :1;
4458 } nir_lower_drawpixels_options;
4459
4460 void nir_lower_drawpixels(nir_shader *shader,
4461 const nir_lower_drawpixels_options *options);
4462
4463 typedef struct nir_lower_bitmap_options {
4464 unsigned sampler;
4465 bool swizzle_xxxx;
4466 } nir_lower_bitmap_options;
4467
4468 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4469
4470 bool nir_lower_atomics_to_ssbo(nir_shader *shader);
4471
4472 typedef enum {
4473 nir_lower_int_source_mods = 1 << 0,
4474 nir_lower_float_source_mods = 1 << 1,
4475 nir_lower_triop_abs = 1 << 2,
4476 nir_lower_all_source_mods = (1 << 3) - 1
4477 } nir_lower_to_source_mods_flags;
4478
4479
4480 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4481
4482 bool nir_lower_gs_intrinsics(nir_shader *shader, bool per_stream);
4483
4484 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4485
4486 bool nir_lower_bit_size(nir_shader *shader,
4487 nir_lower_bit_size_callback callback,
4488 void *callback_data);
4489
4490 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4491 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
4492
4493 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4494 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4495 nir_lower_doubles_options options);
4496 bool nir_lower_pack(nir_shader *shader);
4497
4498 void nir_lower_mediump_outputs(nir_shader *nir);
4499
4500 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4501
4502 typedef enum {
4503 nir_lower_interpolation_at_sample = (1 << 1),
4504 nir_lower_interpolation_at_offset = (1 << 2),
4505 nir_lower_interpolation_centroid = (1 << 3),
4506 nir_lower_interpolation_pixel = (1 << 4),
4507 nir_lower_interpolation_sample = (1 << 5),
4508 } nir_lower_interpolation_options;
4509
4510 bool nir_lower_interpolation(nir_shader *shader,
4511 nir_lower_interpolation_options options);
4512
4513 bool nir_lower_discard_to_demote(nir_shader *shader);
4514
4515 bool nir_lower_memory_model(nir_shader *shader);
4516
4517 bool nir_normalize_cubemap_coords(nir_shader *shader);
4518
4519 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4520
4521 void nir_loop_analyze_impl(nir_function_impl *impl,
4522 nir_variable_mode indirect_mask);
4523
4524 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4525
4526 bool nir_repair_ssa_impl(nir_function_impl *impl);
4527 bool nir_repair_ssa(nir_shader *shader);
4528
4529 void nir_convert_loop_to_lcssa(nir_loop *loop);
4530 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4531 void nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4532
4533 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4534 * registers. If false, convert all values (even those not involved in a phi
4535 * node) to registers.
4536 */
4537 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4538
4539 bool nir_lower_phis_to_regs_block(nir_block *block);
4540 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4541 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4542
4543 bool nir_lower_samplers(nir_shader *shader);
4544 bool nir_lower_ssbo(nir_shader *shader);
4545
4546 /* This is here for unit tests. */
4547 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4548
4549 bool nir_opt_comparison_pre(nir_shader *shader);
4550
4551 bool nir_opt_access(nir_shader *shader);
4552 bool nir_opt_algebraic(nir_shader *shader);
4553 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4554 bool nir_opt_algebraic_late(nir_shader *shader);
4555 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
4556 bool nir_opt_constant_folding(nir_shader *shader);
4557
4558 /* Try to combine a and b into a. Return true if combination was possible,
4559 * which will result in b being removed by the pass. Return false if
4560 * combination wasn't possible.
4561 */
4562 typedef bool (*nir_combine_memory_barrier_cb)(
4563 nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
4564
4565 bool nir_opt_combine_memory_barriers(nir_shader *shader,
4566 nir_combine_memory_barrier_cb combine_cb,
4567 void *data);
4568
4569 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4570
4571 bool nir_copy_prop(nir_shader *shader);
4572
4573 bool nir_opt_copy_prop_vars(nir_shader *shader);
4574
4575 bool nir_opt_cse(nir_shader *shader);
4576
4577 bool nir_opt_dce(nir_shader *shader);
4578
4579 bool nir_opt_dead_cf(nir_shader *shader);
4580
4581 bool nir_opt_dead_write_vars(nir_shader *shader);
4582
4583 bool nir_opt_deref_impl(nir_function_impl *impl);
4584 bool nir_opt_deref(nir_shader *shader);
4585
4586 bool nir_opt_find_array_copies(nir_shader *shader);
4587
4588 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4589
4590 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4591
4592 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4593
4594 bool nir_opt_intrinsics(nir_shader *shader);
4595
4596 bool nir_opt_large_constants(nir_shader *shader,
4597 glsl_type_size_align_func size_align,
4598 unsigned threshold);
4599
4600 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4601
4602 typedef enum {
4603 nir_move_const_undef = (1 << 0),
4604 nir_move_load_ubo = (1 << 1),
4605 nir_move_load_input = (1 << 2),
4606 nir_move_comparisons = (1 << 3),
4607 nir_move_copies = (1 << 4),
4608 } nir_move_options;
4609
4610 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4611
4612 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4613
4614 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4615
4616 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4617 bool indirect_load_ok, bool expensive_alu_ok);
4618
4619 bool nir_opt_rematerialize_compares(nir_shader *shader);
4620
4621 bool nir_opt_remove_phis(nir_shader *shader);
4622 bool nir_opt_remove_phis_block(nir_block *block);
4623
4624 bool nir_opt_shrink_load(nir_shader *shader);
4625
4626 bool nir_opt_trivial_continues(nir_shader *shader);
4627
4628 bool nir_opt_undef(nir_shader *shader);
4629
4630 bool nir_opt_vectorize(nir_shader *shader);
4631
4632 bool nir_opt_conditional_discard(nir_shader *shader);
4633
4634 typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
4635 unsigned num_components, unsigned high_offset,
4636 nir_intrinsic_instr *low, nir_intrinsic_instr *high);
4637
4638 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
4639 nir_should_vectorize_mem_func callback,
4640 nir_variable_mode robust_modes);
4641
4642 void nir_strip(nir_shader *shader);
4643
4644 void nir_sweep(nir_shader *shader);
4645
4646 void nir_remap_dual_slot_attributes(nir_shader *shader,
4647 uint64_t *dual_slot_inputs);
4648 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4649
4650 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4651 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4652
4653 static inline bool
4654 nir_variable_is_in_ubo(const nir_variable *var)
4655 {
4656 return (var->data.mode == nir_var_mem_ubo &&
4657 var->interface_type != NULL);
4658 }
4659
4660 static inline bool
4661 nir_variable_is_in_ssbo(const nir_variable *var)
4662 {
4663 return (var->data.mode == nir_var_mem_ssbo &&
4664 var->interface_type != NULL);
4665 }
4666
4667 static inline bool
4668 nir_variable_is_in_block(const nir_variable *var)
4669 {
4670 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4671 }
4672
4673 typedef struct nir_unsigned_upper_bound_config {
4674 unsigned min_subgroup_size;
4675 unsigned max_subgroup_size;
4676 unsigned max_work_group_invocations;
4677 unsigned max_work_group_count[3];
4678 unsigned max_work_group_size[3];
4679
4680 uint32_t vertex_attrib_max[32];
4681 } nir_unsigned_upper_bound_config;
4682
4683 uint32_t
4684 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
4685 nir_ssa_scalar scalar,
4686 const nir_unsigned_upper_bound_config *config);
4687
4688 bool
4689 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
4690 nir_ssa_scalar ssa, unsigned const_val,
4691 const nir_unsigned_upper_bound_config *config);
4692
4693 #ifdef __cplusplus
4694 } /* extern "C" */
4695 #endif
4696
4697 #endif /* NIR_H */