nir: merge and extend nir_opt_move_comparisons and nir_opt_move_load_ubo
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 static inline nir_const_value
144 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
145 {
146 nir_const_value v;
147 memset(&v, 0, sizeof(v));
148
149 switch (bit_size) {
150 case 1: v.b = x; break;
151 case 8: v.u8 = x; break;
152 case 16: v.u16 = x; break;
153 case 32: v.u32 = x; break;
154 case 64: v.u64 = x; break;
155 default:
156 unreachable("Invalid bit size");
157 }
158
159 return v;
160 }
161
162 static inline nir_const_value
163 nir_const_value_for_int(int64_t i, unsigned bit_size)
164 {
165 nir_const_value v;
166 memset(&v, 0, sizeof(v));
167
168 assert(bit_size <= 64);
169 if (bit_size < 64) {
170 assert(i >= (-(1ll << (bit_size - 1))));
171 assert(i < (1ll << (bit_size - 1)));
172 }
173
174 return nir_const_value_for_raw_uint(i, bit_size);
175 }
176
177 static inline nir_const_value
178 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
179 {
180 nir_const_value v;
181 memset(&v, 0, sizeof(v));
182
183 assert(bit_size <= 64);
184 if (bit_size < 64)
185 assert(u < (1ull << bit_size));
186
187 return nir_const_value_for_raw_uint(u, bit_size);
188 }
189
190 static inline nir_const_value
191 nir_const_value_for_bool(bool b, unsigned bit_size)
192 {
193 /* Booleans use a 0/-1 convention */
194 return nir_const_value_for_int(-(int)b, bit_size);
195 }
196
197 /* This one isn't inline because it requires half-float conversion */
198 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
199
200 static inline int64_t
201 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
202 {
203 switch (bit_size) {
204 /* int1_t uses 0/-1 convention */
205 case 1: return -(int)value.b;
206 case 8: return value.i8;
207 case 16: return value.i16;
208 case 32: return value.i32;
209 case 64: return value.i64;
210 default:
211 unreachable("Invalid bit size");
212 }
213 }
214
215 static inline int64_t
216 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
217 {
218 switch (bit_size) {
219 case 1: return value.b;
220 case 8: return value.u8;
221 case 16: return value.u16;
222 case 32: return value.u32;
223 case 64: return value.u64;
224 default:
225 unreachable("Invalid bit size");
226 }
227 }
228
229 static inline bool
230 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
231 {
232 int64_t i = nir_const_value_as_int(value, bit_size);
233
234 /* Booleans of any size use 0/-1 convention */
235 assert(i == 0 || i == -1);
236
237 return i;
238 }
239
240 /* This one isn't inline because it requires half-float conversion */
241 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
242
243 typedef struct nir_constant {
244 /**
245 * Value of the constant.
246 *
247 * The field used to back the values supplied by the constant is determined
248 * by the type associated with the \c nir_variable. Constants may be
249 * scalars, vectors, or matrices.
250 */
251 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
252
253 /* we could get this from the var->type but makes clone *much* easier to
254 * not have to care about the type.
255 */
256 unsigned num_elements;
257
258 /* Array elements / Structure Fields */
259 struct nir_constant **elements;
260 } nir_constant;
261
262 /**
263 * \brief Layout qualifiers for gl_FragDepth.
264 *
265 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
266 * with a layout qualifier.
267 */
268 typedef enum {
269 nir_depth_layout_none, /**< No depth layout is specified. */
270 nir_depth_layout_any,
271 nir_depth_layout_greater,
272 nir_depth_layout_less,
273 nir_depth_layout_unchanged
274 } nir_depth_layout;
275
276 /**
277 * Enum keeping track of how a variable was declared.
278 */
279 typedef enum {
280 /**
281 * Normal declaration.
282 */
283 nir_var_declared_normally = 0,
284
285 /**
286 * Variable is implicitly generated by the compiler and should not be
287 * visible via the API.
288 */
289 nir_var_hidden,
290 } nir_var_declaration_type;
291
292 /**
293 * Either a uniform, global variable, shader input, or shader output. Based on
294 * ir_variable - it should be easy to translate between the two.
295 */
296
297 typedef struct nir_variable {
298 struct exec_node node;
299
300 /**
301 * Declared type of the variable
302 */
303 const struct glsl_type *type;
304
305 /**
306 * Declared name of the variable
307 */
308 char *name;
309
310 struct nir_variable_data {
311 /**
312 * Storage class of the variable.
313 *
314 * \sa nir_variable_mode
315 */
316 nir_variable_mode mode;
317
318 /**
319 * Is the variable read-only?
320 *
321 * This is set for variables declared as \c const, shader inputs,
322 * and uniforms.
323 */
324 unsigned read_only:1;
325 unsigned centroid:1;
326 unsigned sample:1;
327 unsigned patch:1;
328 unsigned invariant:1;
329
330 /**
331 * Can this variable be coalesced with another?
332 *
333 * This is set by nir_lower_io_to_temporaries to say that any
334 * copies involving this variable should stay put. Propagating it can
335 * duplicate the resulting load/store, which is not wanted, and may
336 * result in a load/store of the variable with an indirect offset which
337 * the backend may not be able to handle.
338 */
339 unsigned cannot_coalesce:1;
340
341 /**
342 * When separate shader programs are enabled, only input/outputs between
343 * the stages of a multi-stage separate program can be safely removed
344 * from the shader interface. Other input/outputs must remains active.
345 *
346 * This is also used to make sure xfb varyings that are unused by the
347 * fragment shader are not removed.
348 */
349 unsigned always_active_io:1;
350
351 /**
352 * Interpolation mode for shader inputs / outputs
353 *
354 * \sa glsl_interp_mode
355 */
356 unsigned interpolation:2;
357
358 /**
359 * If non-zero, then this variable may be packed along with other variables
360 * into a single varying slot, so this offset should be applied when
361 * accessing components. For example, an offset of 1 means that the x
362 * component of this variable is actually stored in component y of the
363 * location specified by \c location.
364 */
365 unsigned location_frac:2;
366
367 /**
368 * If true, this variable represents an array of scalars that should
369 * be tightly packed. In other words, consecutive array elements
370 * should be stored one component apart, rather than one slot apart.
371 */
372 unsigned compact:1;
373
374 /**
375 * Whether this is a fragment shader output implicitly initialized with
376 * the previous contents of the specified render target at the
377 * framebuffer location corresponding to this shader invocation.
378 */
379 unsigned fb_fetch_output:1;
380
381 /**
382 * Non-zero if this variable is considered bindless as defined by
383 * ARB_bindless_texture.
384 */
385 unsigned bindless:1;
386
387 /**
388 * Was an explicit binding set in the shader?
389 */
390 unsigned explicit_binding:1;
391
392 /**
393 * Was a transfer feedback buffer set in the shader?
394 */
395 unsigned explicit_xfb_buffer:1;
396
397 /**
398 * Was a transfer feedback stride set in the shader?
399 */
400 unsigned explicit_xfb_stride:1;
401
402 /**
403 * Was an explicit offset set in the shader?
404 */
405 unsigned explicit_offset:1;
406
407 /**
408 * \brief Layout qualifier for gl_FragDepth.
409 *
410 * This is not equal to \c ir_depth_layout_none if and only if this
411 * variable is \c gl_FragDepth and a layout qualifier is specified.
412 */
413 nir_depth_layout depth_layout;
414
415 /**
416 * Storage location of the base of this variable
417 *
418 * The precise meaning of this field depends on the nature of the variable.
419 *
420 * - Vertex shader input: one of the values from \c gl_vert_attrib.
421 * - Vertex shader output: one of the values from \c gl_varying_slot.
422 * - Geometry shader input: one of the values from \c gl_varying_slot.
423 * - Geometry shader output: one of the values from \c gl_varying_slot.
424 * - Fragment shader input: one of the values from \c gl_varying_slot.
425 * - Fragment shader output: one of the values from \c gl_frag_result.
426 * - Uniforms: Per-stage uniform slot number for default uniform block.
427 * - Uniforms: Index within the uniform block definition for UBO members.
428 * - Non-UBO Uniforms: uniform slot number.
429 * - Other: This field is not currently used.
430 *
431 * If the variable is a uniform, shader input, or shader output, and the
432 * slot has not been assigned, the value will be -1.
433 */
434 int location;
435
436 /**
437 * The actual location of the variable in the IR. Only valid for inputs
438 * and outputs.
439 */
440 unsigned int driver_location;
441
442 /**
443 * Vertex stream output identifier.
444 *
445 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
446 * stream of the i-th component.
447 */
448 unsigned stream;
449
450 /**
451 * output index for dual source blending.
452 */
453 int index;
454
455 /**
456 * Descriptor set binding for sampler or UBO.
457 */
458 int descriptor_set;
459
460 /**
461 * Initial binding point for a sampler or UBO.
462 *
463 * For array types, this represents the binding point for the first element.
464 */
465 int binding;
466
467 /**
468 * Location an atomic counter or transform feedback is stored at.
469 */
470 unsigned offset;
471
472 /**
473 * Transform feedback buffer.
474 */
475 unsigned xfb_buffer;
476
477 /**
478 * Transform feedback stride.
479 */
480 unsigned xfb_stride;
481
482 /**
483 * How the variable was declared. See nir_var_declaration_type.
484 *
485 * This is used to detect variables generated by the compiler, so should
486 * not be visible via the API.
487 */
488 unsigned how_declared:2;
489
490 /**
491 * ARB_shader_image_load_store qualifiers.
492 */
493 struct {
494 enum gl_access_qualifier access;
495
496 /** Image internal format if specified explicitly, otherwise GL_NONE. */
497 GLenum format;
498 } image;
499 } data;
500
501 /**
502 * Built-in state that backs this uniform
503 *
504 * Once set at variable creation, \c state_slots must remain invariant.
505 * This is because, ideally, this array would be shared by all clones of
506 * this variable in the IR tree. In other words, we'd really like for it
507 * to be a fly-weight.
508 *
509 * If the variable is not a uniform, \c num_state_slots will be zero and
510 * \c state_slots will be \c NULL.
511 */
512 /*@{*/
513 unsigned num_state_slots; /**< Number of state slots used */
514 nir_state_slot *state_slots; /**< State descriptors. */
515 /*@}*/
516
517 /**
518 * Constant expression assigned in the initializer of the variable
519 *
520 * This field should only be used temporarily by creators of NIR shaders
521 * and then lower_constant_initializers can be used to get rid of them.
522 * Most of the rest of NIR ignores this field or asserts that it's NULL.
523 */
524 nir_constant *constant_initializer;
525
526 /**
527 * For variables that are in an interface block or are an instance of an
528 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
529 *
530 * \sa ir_variable::location
531 */
532 const struct glsl_type *interface_type;
533
534 /**
535 * Description of per-member data for per-member struct variables
536 *
537 * This is used for variables which are actually an amalgamation of
538 * multiple entities such as a struct of built-in values or a struct of
539 * inputs each with their own layout specifier. This is only allowed on
540 * variables with a struct or array of array of struct type.
541 */
542 unsigned num_members;
543 struct nir_variable_data *members;
544 } nir_variable;
545
546 #define nir_foreach_variable(var, var_list) \
547 foreach_list_typed(nir_variable, var, node, var_list)
548
549 #define nir_foreach_variable_safe(var, var_list) \
550 foreach_list_typed_safe(nir_variable, var, node, var_list)
551
552 static inline bool
553 nir_variable_is_global(const nir_variable *var)
554 {
555 return var->data.mode != nir_var_function_temp;
556 }
557
558 typedef struct nir_register {
559 struct exec_node node;
560
561 unsigned num_components; /** < number of vector components */
562 unsigned num_array_elems; /** < size of array (0 for no array) */
563
564 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
565 uint8_t bit_size;
566
567 /** generic register index. */
568 unsigned index;
569
570 /** only for debug purposes, can be NULL */
571 const char *name;
572
573 /** set of nir_srcs where this register is used (read from) */
574 struct list_head uses;
575
576 /** set of nir_dests where this register is defined (written to) */
577 struct list_head defs;
578
579 /** set of nir_ifs where this register is used as a condition */
580 struct list_head if_uses;
581 } nir_register;
582
583 #define nir_foreach_register(reg, reg_list) \
584 foreach_list_typed(nir_register, reg, node, reg_list)
585 #define nir_foreach_register_safe(reg, reg_list) \
586 foreach_list_typed_safe(nir_register, reg, node, reg_list)
587
588 typedef enum PACKED {
589 nir_instr_type_alu,
590 nir_instr_type_deref,
591 nir_instr_type_call,
592 nir_instr_type_tex,
593 nir_instr_type_intrinsic,
594 nir_instr_type_load_const,
595 nir_instr_type_jump,
596 nir_instr_type_ssa_undef,
597 nir_instr_type_phi,
598 nir_instr_type_parallel_copy,
599 } nir_instr_type;
600
601 typedef struct nir_instr {
602 struct exec_node node;
603 struct nir_block *block;
604 nir_instr_type type;
605
606 /* A temporary for optimization and analysis passes to use for storing
607 * flags. For instance, DCE uses this to store the "dead/live" info.
608 */
609 uint8_t pass_flags;
610
611 /** generic instruction index. */
612 unsigned index;
613 } nir_instr;
614
615 static inline nir_instr *
616 nir_instr_next(nir_instr *instr)
617 {
618 struct exec_node *next = exec_node_get_next(&instr->node);
619 if (exec_node_is_tail_sentinel(next))
620 return NULL;
621 else
622 return exec_node_data(nir_instr, next, node);
623 }
624
625 static inline nir_instr *
626 nir_instr_prev(nir_instr *instr)
627 {
628 struct exec_node *prev = exec_node_get_prev(&instr->node);
629 if (exec_node_is_head_sentinel(prev))
630 return NULL;
631 else
632 return exec_node_data(nir_instr, prev, node);
633 }
634
635 static inline bool
636 nir_instr_is_first(const nir_instr *instr)
637 {
638 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
639 }
640
641 static inline bool
642 nir_instr_is_last(const nir_instr *instr)
643 {
644 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
645 }
646
647 typedef struct nir_ssa_def {
648 /** for debugging only, can be NULL */
649 const char* name;
650
651 /** generic SSA definition index. */
652 unsigned index;
653
654 /** Index into the live_in and live_out bitfields */
655 unsigned live_index;
656
657 /** Instruction which produces this SSA value. */
658 nir_instr *parent_instr;
659
660 /** set of nir_instrs where this register is used (read from) */
661 struct list_head uses;
662
663 /** set of nir_ifs where this register is used as a condition */
664 struct list_head if_uses;
665
666 uint8_t num_components;
667
668 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
669 uint8_t bit_size;
670 } nir_ssa_def;
671
672 struct nir_src;
673
674 typedef struct {
675 nir_register *reg;
676 struct nir_src *indirect; /** < NULL for no indirect offset */
677 unsigned base_offset;
678
679 /* TODO use-def chain goes here */
680 } nir_reg_src;
681
682 typedef struct {
683 nir_instr *parent_instr;
684 struct list_head def_link;
685
686 nir_register *reg;
687 struct nir_src *indirect; /** < NULL for no indirect offset */
688 unsigned base_offset;
689
690 /* TODO def-use chain goes here */
691 } nir_reg_dest;
692
693 struct nir_if;
694
695 typedef struct nir_src {
696 union {
697 /** Instruction that consumes this value as a source. */
698 nir_instr *parent_instr;
699 struct nir_if *parent_if;
700 };
701
702 struct list_head use_link;
703
704 union {
705 nir_reg_src reg;
706 nir_ssa_def *ssa;
707 };
708
709 bool is_ssa;
710 } nir_src;
711
712 static inline nir_src
713 nir_src_init(void)
714 {
715 nir_src src = { { NULL } };
716 return src;
717 }
718
719 #define NIR_SRC_INIT nir_src_init()
720
721 #define nir_foreach_use(src, reg_or_ssa_def) \
722 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
723
724 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
725 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
726
727 #define nir_foreach_if_use(src, reg_or_ssa_def) \
728 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
729
730 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
731 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
732
733 typedef struct {
734 union {
735 nir_reg_dest reg;
736 nir_ssa_def ssa;
737 };
738
739 bool is_ssa;
740 } nir_dest;
741
742 static inline nir_dest
743 nir_dest_init(void)
744 {
745 nir_dest dest = { { { NULL } } };
746 return dest;
747 }
748
749 #define NIR_DEST_INIT nir_dest_init()
750
751 #define nir_foreach_def(dest, reg) \
752 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
753
754 #define nir_foreach_def_safe(dest, reg) \
755 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
756
757 static inline nir_src
758 nir_src_for_ssa(nir_ssa_def *def)
759 {
760 nir_src src = NIR_SRC_INIT;
761
762 src.is_ssa = true;
763 src.ssa = def;
764
765 return src;
766 }
767
768 static inline nir_src
769 nir_src_for_reg(nir_register *reg)
770 {
771 nir_src src = NIR_SRC_INIT;
772
773 src.is_ssa = false;
774 src.reg.reg = reg;
775 src.reg.indirect = NULL;
776 src.reg.base_offset = 0;
777
778 return src;
779 }
780
781 static inline nir_dest
782 nir_dest_for_reg(nir_register *reg)
783 {
784 nir_dest dest = NIR_DEST_INIT;
785
786 dest.reg.reg = reg;
787
788 return dest;
789 }
790
791 static inline unsigned
792 nir_src_bit_size(nir_src src)
793 {
794 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
795 }
796
797 static inline unsigned
798 nir_src_num_components(nir_src src)
799 {
800 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
801 }
802
803 static inline bool
804 nir_src_is_const(nir_src src)
805 {
806 return src.is_ssa &&
807 src.ssa->parent_instr->type == nir_instr_type_load_const;
808 }
809
810 static inline unsigned
811 nir_dest_bit_size(nir_dest dest)
812 {
813 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
814 }
815
816 static inline unsigned
817 nir_dest_num_components(nir_dest dest)
818 {
819 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
820 }
821
822 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
823 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
824
825 typedef struct {
826 nir_src src;
827
828 /**
829 * \name input modifiers
830 */
831 /*@{*/
832 /**
833 * For inputs interpreted as floating point, flips the sign bit. For
834 * inputs interpreted as integers, performs the two's complement negation.
835 */
836 bool negate;
837
838 /**
839 * Clears the sign bit for floating point values, and computes the integer
840 * absolute value for integers. Note that the negate modifier acts after
841 * the absolute value modifier, therefore if both are set then all inputs
842 * will become negative.
843 */
844 bool abs;
845 /*@}*/
846
847 /**
848 * For each input component, says which component of the register it is
849 * chosen from. Note that which elements of the swizzle are used and which
850 * are ignored are based on the write mask for most opcodes - for example,
851 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
852 * a swizzle of {2, x, 1, 0} where x means "don't care."
853 */
854 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
855 } nir_alu_src;
856
857 typedef struct {
858 nir_dest dest;
859
860 /**
861 * \name saturate output modifier
862 *
863 * Only valid for opcodes that output floating-point numbers. Clamps the
864 * output to between 0.0 and 1.0 inclusive.
865 */
866
867 bool saturate;
868
869 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
870 } nir_alu_dest;
871
872 /** NIR sized and unsized types
873 *
874 * The values in this enum are carefully chosen so that the sized type is
875 * just the unsized type OR the number of bits.
876 */
877 typedef enum {
878 nir_type_invalid = 0, /* Not a valid type */
879 nir_type_int = 2,
880 nir_type_uint = 4,
881 nir_type_bool = 6,
882 nir_type_float = 128,
883 nir_type_bool1 = 1 | nir_type_bool,
884 nir_type_bool32 = 32 | nir_type_bool,
885 nir_type_int1 = 1 | nir_type_int,
886 nir_type_int8 = 8 | nir_type_int,
887 nir_type_int16 = 16 | nir_type_int,
888 nir_type_int32 = 32 | nir_type_int,
889 nir_type_int64 = 64 | nir_type_int,
890 nir_type_uint1 = 1 | nir_type_uint,
891 nir_type_uint8 = 8 | nir_type_uint,
892 nir_type_uint16 = 16 | nir_type_uint,
893 nir_type_uint32 = 32 | nir_type_uint,
894 nir_type_uint64 = 64 | nir_type_uint,
895 nir_type_float16 = 16 | nir_type_float,
896 nir_type_float32 = 32 | nir_type_float,
897 nir_type_float64 = 64 | nir_type_float,
898 } nir_alu_type;
899
900 #define NIR_ALU_TYPE_SIZE_MASK 0x79
901 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
902
903 static inline unsigned
904 nir_alu_type_get_type_size(nir_alu_type type)
905 {
906 return type & NIR_ALU_TYPE_SIZE_MASK;
907 }
908
909 static inline unsigned
910 nir_alu_type_get_base_type(nir_alu_type type)
911 {
912 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
913 }
914
915 static inline nir_alu_type
916 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
917 {
918 switch (base_type) {
919 case GLSL_TYPE_BOOL:
920 return nir_type_bool1;
921 break;
922 case GLSL_TYPE_UINT:
923 return nir_type_uint32;
924 break;
925 case GLSL_TYPE_INT:
926 return nir_type_int32;
927 break;
928 case GLSL_TYPE_UINT16:
929 return nir_type_uint16;
930 break;
931 case GLSL_TYPE_INT16:
932 return nir_type_int16;
933 break;
934 case GLSL_TYPE_UINT8:
935 return nir_type_uint8;
936 case GLSL_TYPE_INT8:
937 return nir_type_int8;
938 case GLSL_TYPE_UINT64:
939 return nir_type_uint64;
940 break;
941 case GLSL_TYPE_INT64:
942 return nir_type_int64;
943 break;
944 case GLSL_TYPE_FLOAT:
945 return nir_type_float32;
946 break;
947 case GLSL_TYPE_FLOAT16:
948 return nir_type_float16;
949 break;
950 case GLSL_TYPE_DOUBLE:
951 return nir_type_float64;
952 break;
953
954 case GLSL_TYPE_SAMPLER:
955 case GLSL_TYPE_IMAGE:
956 case GLSL_TYPE_ATOMIC_UINT:
957 case GLSL_TYPE_STRUCT:
958 case GLSL_TYPE_INTERFACE:
959 case GLSL_TYPE_ARRAY:
960 case GLSL_TYPE_VOID:
961 case GLSL_TYPE_SUBROUTINE:
962 case GLSL_TYPE_FUNCTION:
963 case GLSL_TYPE_ERROR:
964 return nir_type_invalid;
965 }
966
967 unreachable("unknown type");
968 }
969
970 static inline nir_alu_type
971 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
972 {
973 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
974 }
975
976 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
977 nir_rounding_mode rnd);
978
979 static inline nir_op
980 nir_op_vec(unsigned components)
981 {
982 switch (components) {
983 case 1: return nir_op_mov;
984 case 2: return nir_op_vec2;
985 case 3: return nir_op_vec3;
986 case 4: return nir_op_vec4;
987 default: unreachable("bad component count");
988 }
989 }
990
991 typedef enum {
992 /**
993 * Operation where the first two sources are commutative.
994 *
995 * For 2-source operations, this just mathematical commutativity. Some
996 * 3-source operations, like ffma, are only commutative in the first two
997 * sources.
998 */
999 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1000 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1001 } nir_op_algebraic_property;
1002
1003 typedef struct {
1004 const char *name;
1005
1006 unsigned num_inputs;
1007
1008 /**
1009 * The number of components in the output
1010 *
1011 * If non-zero, this is the size of the output and input sizes are
1012 * explicitly given; swizzle and writemask are still in effect, but if
1013 * the output component is masked out, then the input component may
1014 * still be in use.
1015 *
1016 * If zero, the opcode acts in the standard, per-component manner; the
1017 * operation is performed on each component (except the ones that are
1018 * masked out) with the input being taken from the input swizzle for
1019 * that component.
1020 *
1021 * The size of some of the inputs may be given (i.e. non-zero) even
1022 * though output_size is zero; in that case, the inputs with a zero
1023 * size act per-component, while the inputs with non-zero size don't.
1024 */
1025 unsigned output_size;
1026
1027 /**
1028 * The type of vector that the instruction outputs. Note that the
1029 * staurate modifier is only allowed on outputs with the float type.
1030 */
1031
1032 nir_alu_type output_type;
1033
1034 /**
1035 * The number of components in each input
1036 */
1037 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1038
1039 /**
1040 * The type of vector that each input takes. Note that negate and
1041 * absolute value are only allowed on inputs with int or float type and
1042 * behave differently on the two.
1043 */
1044 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1045
1046 nir_op_algebraic_property algebraic_properties;
1047
1048 /* Whether this represents a numeric conversion opcode */
1049 bool is_conversion;
1050 } nir_op_info;
1051
1052 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1053
1054 typedef struct nir_alu_instr {
1055 nir_instr instr;
1056 nir_op op;
1057
1058 /** Indicates that this ALU instruction generates an exact value
1059 *
1060 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1061 * really equivalent to either. This indicates that the value generated by
1062 * this operation is high-precision and any code transformations that touch
1063 * it must ensure that the resulting value is bit-for-bit identical to the
1064 * original.
1065 */
1066 bool exact:1;
1067
1068 /**
1069 * Indicates that this instruction do not cause wrapping to occur, in the
1070 * form of overflow or underflow.
1071 */
1072 bool no_signed_wrap:1;
1073 bool no_unsigned_wrap:1;
1074
1075 nir_alu_dest dest;
1076 nir_alu_src src[];
1077 } nir_alu_instr;
1078
1079 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1080 nir_alu_instr *instr);
1081 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1082 nir_alu_instr *instr);
1083
1084 /* is this source channel used? */
1085 static inline bool
1086 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1087 unsigned channel)
1088 {
1089 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1090 return channel < nir_op_infos[instr->op].input_sizes[src];
1091
1092 return (instr->dest.write_mask >> channel) & 1;
1093 }
1094
1095 static inline nir_component_mask_t
1096 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1097 {
1098 nir_component_mask_t read_mask = 0;
1099 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1100 if (!nir_alu_instr_channel_used(instr, src, c))
1101 continue;
1102
1103 read_mask |= (1 << instr->src[src].swizzle[c]);
1104 }
1105 return read_mask;
1106 }
1107
1108 /**
1109 * Get the number of channels used for a source
1110 */
1111 static inline unsigned
1112 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1113 {
1114 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1115 return nir_op_infos[instr->op].input_sizes[src];
1116
1117 return nir_dest_num_components(instr->dest.dest);
1118 }
1119
1120 static inline bool
1121 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1122 {
1123 switch (instr->op) {
1124 case nir_op_flt:
1125 case nir_op_fge:
1126 case nir_op_feq:
1127 case nir_op_fne:
1128 case nir_op_ilt:
1129 case nir_op_ult:
1130 case nir_op_ige:
1131 case nir_op_uge:
1132 case nir_op_ieq:
1133 case nir_op_ine:
1134 case nir_op_i2b1:
1135 case nir_op_f2b1:
1136 case nir_op_inot:
1137 return true;
1138 default:
1139 return false;
1140 }
1141 }
1142
1143 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1144 nir_alu_type full_type);
1145
1146 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1147 unsigned src1, unsigned src2);
1148
1149 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1150 const nir_alu_instr *alu2,
1151 unsigned src1, unsigned src2);
1152
1153 typedef enum {
1154 nir_deref_type_var,
1155 nir_deref_type_array,
1156 nir_deref_type_array_wildcard,
1157 nir_deref_type_ptr_as_array,
1158 nir_deref_type_struct,
1159 nir_deref_type_cast,
1160 } nir_deref_type;
1161
1162 typedef struct {
1163 nir_instr instr;
1164
1165 /** The type of this deref instruction */
1166 nir_deref_type deref_type;
1167
1168 /** The mode of the underlying variable */
1169 nir_variable_mode mode;
1170
1171 /** The dereferenced type of the resulting pointer value */
1172 const struct glsl_type *type;
1173
1174 union {
1175 /** Variable being dereferenced if deref_type is a deref_var */
1176 nir_variable *var;
1177
1178 /** Parent deref if deref_type is not deref_var */
1179 nir_src parent;
1180 };
1181
1182 /** Additional deref parameters */
1183 union {
1184 struct {
1185 nir_src index;
1186 } arr;
1187
1188 struct {
1189 unsigned index;
1190 } strct;
1191
1192 struct {
1193 unsigned ptr_stride;
1194 } cast;
1195 };
1196
1197 /** Destination to store the resulting "pointer" */
1198 nir_dest dest;
1199 } nir_deref_instr;
1200
1201 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1202
1203 static inline nir_deref_instr *
1204 nir_deref_instr_parent(const nir_deref_instr *instr)
1205 {
1206 if (instr->deref_type == nir_deref_type_var)
1207 return NULL;
1208 else
1209 return nir_src_as_deref(instr->parent);
1210 }
1211
1212 static inline nir_variable *
1213 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1214 {
1215 while (instr->deref_type != nir_deref_type_var) {
1216 if (instr->deref_type == nir_deref_type_cast)
1217 return NULL;
1218
1219 instr = nir_deref_instr_parent(instr);
1220 }
1221
1222 return instr->var;
1223 }
1224
1225 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1226 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1227 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1228
1229 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1230
1231 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1232
1233 typedef struct {
1234 nir_instr instr;
1235
1236 struct nir_function *callee;
1237
1238 unsigned num_params;
1239 nir_src params[];
1240 } nir_call_instr;
1241
1242 #include "nir_intrinsics.h"
1243
1244 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1245
1246 /** Represents an intrinsic
1247 *
1248 * An intrinsic is an instruction type for handling things that are
1249 * more-or-less regular operations but don't just consume and produce SSA
1250 * values like ALU operations do. Intrinsics are not for things that have
1251 * special semantic meaning such as phi nodes and parallel copies.
1252 * Examples of intrinsics include variable load/store operations, system
1253 * value loads, and the like. Even though texturing more-or-less falls
1254 * under this category, texturing is its own instruction type because
1255 * trying to represent texturing with intrinsics would lead to a
1256 * combinatorial explosion of intrinsic opcodes.
1257 *
1258 * By having a single instruction type for handling a lot of different
1259 * cases, optimization passes can look for intrinsics and, for the most
1260 * part, completely ignore them. Each intrinsic type also has a few
1261 * possible flags that govern whether or not they can be reordered or
1262 * eliminated. That way passes like dead code elimination can still work
1263 * on intrisics without understanding the meaning of each.
1264 *
1265 * Each intrinsic has some number of constant indices, some number of
1266 * variables, and some number of sources. What these sources, variables,
1267 * and indices mean depends on the intrinsic and is documented with the
1268 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1269 * instructions are the only types of instruction that can operate on
1270 * variables.
1271 */
1272 typedef struct {
1273 nir_instr instr;
1274
1275 nir_intrinsic_op intrinsic;
1276
1277 nir_dest dest;
1278
1279 /** number of components if this is a vectorized intrinsic
1280 *
1281 * Similarly to ALU operations, some intrinsics are vectorized.
1282 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1283 * For vectorized intrinsics, the num_components field specifies the
1284 * number of destination components and the number of source components
1285 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1286 */
1287 uint8_t num_components;
1288
1289 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1290
1291 nir_src src[];
1292 } nir_intrinsic_instr;
1293
1294 static inline nir_variable *
1295 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1296 {
1297 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1298 }
1299
1300 /**
1301 * \name NIR intrinsics semantic flags
1302 *
1303 * information about what the compiler can do with the intrinsics.
1304 *
1305 * \sa nir_intrinsic_info::flags
1306 */
1307 typedef enum {
1308 /**
1309 * whether the intrinsic can be safely eliminated if none of its output
1310 * value is not being used.
1311 */
1312 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1313
1314 /**
1315 * Whether the intrinsic can be reordered with respect to any other
1316 * intrinsic, i.e. whether the only reordering dependencies of the
1317 * intrinsic are due to the register reads/writes.
1318 */
1319 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1320 } nir_intrinsic_semantic_flag;
1321
1322 /**
1323 * \name NIR intrinsics const-index flag
1324 *
1325 * Indicates the usage of a const_index slot.
1326 *
1327 * \sa nir_intrinsic_info::index_map
1328 */
1329 typedef enum {
1330 /**
1331 * Generally instructions that take a offset src argument, can encode
1332 * a constant 'base' value which is added to the offset.
1333 */
1334 NIR_INTRINSIC_BASE = 1,
1335
1336 /**
1337 * For store instructions, a writemask for the store.
1338 */
1339 NIR_INTRINSIC_WRMASK,
1340
1341 /**
1342 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1343 */
1344 NIR_INTRINSIC_STREAM_ID,
1345
1346 /**
1347 * The clip-plane id for load_user_clip_plane intrinsic.
1348 */
1349 NIR_INTRINSIC_UCP_ID,
1350
1351 /**
1352 * The amount of data, starting from BASE, that this instruction may
1353 * access. This is used to provide bounds if the offset is not constant.
1354 */
1355 NIR_INTRINSIC_RANGE,
1356
1357 /**
1358 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1359 */
1360 NIR_INTRINSIC_DESC_SET,
1361
1362 /**
1363 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1364 */
1365 NIR_INTRINSIC_BINDING,
1366
1367 /**
1368 * Component offset.
1369 */
1370 NIR_INTRINSIC_COMPONENT,
1371
1372 /**
1373 * Interpolation mode (only meaningful for FS inputs).
1374 */
1375 NIR_INTRINSIC_INTERP_MODE,
1376
1377 /**
1378 * A binary nir_op to use when performing a reduction or scan operation
1379 */
1380 NIR_INTRINSIC_REDUCTION_OP,
1381
1382 /**
1383 * Cluster size for reduction operations
1384 */
1385 NIR_INTRINSIC_CLUSTER_SIZE,
1386
1387 /**
1388 * Parameter index for a load_param intrinsic
1389 */
1390 NIR_INTRINSIC_PARAM_IDX,
1391
1392 /**
1393 * Image dimensionality for image intrinsics
1394 *
1395 * One of GLSL_SAMPLER_DIM_*
1396 */
1397 NIR_INTRINSIC_IMAGE_DIM,
1398
1399 /**
1400 * Non-zero if we are accessing an array image
1401 */
1402 NIR_INTRINSIC_IMAGE_ARRAY,
1403
1404 /**
1405 * Image format for image intrinsics
1406 */
1407 NIR_INTRINSIC_FORMAT,
1408
1409 /**
1410 * Access qualifiers for image and memory access intrinsics
1411 */
1412 NIR_INTRINSIC_ACCESS,
1413
1414 /**
1415 * Alignment for offsets and addresses
1416 *
1417 * These two parameters, specify an alignment in terms of a multiplier and
1418 * an offset. The offset or address parameter X of the intrinsic is
1419 * guaranteed to satisfy the following:
1420 *
1421 * (X - align_offset) % align_mul == 0
1422 */
1423 NIR_INTRINSIC_ALIGN_MUL,
1424 NIR_INTRINSIC_ALIGN_OFFSET,
1425
1426 /**
1427 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1428 */
1429 NIR_INTRINSIC_DESC_TYPE,
1430
1431 /**
1432 * The nir_alu_type of a uniform/input/output
1433 */
1434 NIR_INTRINSIC_TYPE,
1435
1436 /**
1437 * The swizzle mask for the instructions
1438 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1439 */
1440 NIR_INTRINSIC_SWIZZLE_MASK,
1441
1442 /* Separate source/dest access flags for copies */
1443 NIR_INTRINSIC_SRC_ACCESS,
1444 NIR_INTRINSIC_DST_ACCESS,
1445
1446 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1447
1448 } nir_intrinsic_index_flag;
1449
1450 #define NIR_INTRINSIC_MAX_INPUTS 5
1451
1452 typedef struct {
1453 const char *name;
1454
1455 unsigned num_srcs; /** < number of register/SSA inputs */
1456
1457 /** number of components of each input register
1458 *
1459 * If this value is 0, the number of components is given by the
1460 * num_components field of nir_intrinsic_instr. If this value is -1, the
1461 * intrinsic consumes however many components are provided and it is not
1462 * validated at all.
1463 */
1464 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1465
1466 bool has_dest;
1467
1468 /** number of components of the output register
1469 *
1470 * If this value is 0, the number of components is given by the
1471 * num_components field of nir_intrinsic_instr.
1472 */
1473 unsigned dest_components;
1474
1475 /** bitfield of legal bit sizes */
1476 unsigned dest_bit_sizes;
1477
1478 /** the number of constant indices used by the intrinsic */
1479 unsigned num_indices;
1480
1481 /** indicates the usage of intr->const_index[n] */
1482 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1483
1484 /** semantic flags for calls to this intrinsic */
1485 nir_intrinsic_semantic_flag flags;
1486 } nir_intrinsic_info;
1487
1488 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1489
1490 static inline unsigned
1491 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1492 {
1493 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1494 assert(srcn < info->num_srcs);
1495 if (info->src_components[srcn] > 0)
1496 return info->src_components[srcn];
1497 else if (info->src_components[srcn] == 0)
1498 return intr->num_components;
1499 else
1500 return nir_src_num_components(intr->src[srcn]);
1501 }
1502
1503 static inline unsigned
1504 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1505 {
1506 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1507 if (!info->has_dest)
1508 return 0;
1509 else if (info->dest_components)
1510 return info->dest_components;
1511 else
1512 return intr->num_components;
1513 }
1514
1515 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1516 static inline type \
1517 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1518 { \
1519 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1520 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1521 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1522 } \
1523 static inline void \
1524 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1525 { \
1526 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1527 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1528 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1529 }
1530
1531 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1532 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1533 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1534 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1535 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1536 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1537 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1538 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1539 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1540 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1541 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1542 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1543 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1544 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1545 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1546 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1547 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1548 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1549 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1550 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1551 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1552 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1553 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1554
1555 static inline void
1556 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1557 unsigned align_mul, unsigned align_offset)
1558 {
1559 assert(util_is_power_of_two_nonzero(align_mul));
1560 assert(align_offset < align_mul);
1561 nir_intrinsic_set_align_mul(intrin, align_mul);
1562 nir_intrinsic_set_align_offset(intrin, align_offset);
1563 }
1564
1565 /** Returns a simple alignment for a load/store intrinsic offset
1566 *
1567 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1568 * and ALIGN_OFFSET parameters, this helper takes both into account and
1569 * provides a single simple alignment parameter. The offset X is guaranteed
1570 * to satisfy X % align == 0.
1571 */
1572 static inline unsigned
1573 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1574 {
1575 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1576 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1577 assert(align_offset < align_mul);
1578 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1579 }
1580
1581 /* Converts a image_deref_* intrinsic into a image_* one */
1582 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1583 nir_ssa_def *handle, bool bindless);
1584
1585 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1586 static inline bool
1587 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1588 {
1589 if (instr->intrinsic == nir_intrinsic_load_deref ||
1590 instr->intrinsic == nir_intrinsic_load_ssbo ||
1591 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1592 instr->intrinsic == nir_intrinsic_image_deref_load ||
1593 instr->intrinsic == nir_intrinsic_image_load) {
1594 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1595 } else {
1596 const nir_intrinsic_info *info =
1597 &nir_intrinsic_infos[instr->intrinsic];
1598 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1599 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1600 }
1601 }
1602
1603 /**
1604 * \group texture information
1605 *
1606 * This gives semantic information about textures which is useful to the
1607 * frontend, the backend, and lowering passes, but not the optimizer.
1608 */
1609
1610 typedef enum {
1611 nir_tex_src_coord,
1612 nir_tex_src_projector,
1613 nir_tex_src_comparator, /* shadow comparator */
1614 nir_tex_src_offset,
1615 nir_tex_src_bias,
1616 nir_tex_src_lod,
1617 nir_tex_src_min_lod,
1618 nir_tex_src_ms_index, /* MSAA sample index */
1619 nir_tex_src_ms_mcs, /* MSAA compression value */
1620 nir_tex_src_ddx,
1621 nir_tex_src_ddy,
1622 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1623 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1624 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1625 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1626 nir_tex_src_texture_handle, /* < bindless texture handle */
1627 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1628 nir_tex_src_plane, /* < selects plane for planar textures */
1629 nir_num_tex_src_types
1630 } nir_tex_src_type;
1631
1632 typedef struct {
1633 nir_src src;
1634 nir_tex_src_type src_type;
1635 } nir_tex_src;
1636
1637 typedef enum {
1638 nir_texop_tex, /**< Regular texture look-up */
1639 nir_texop_txb, /**< Texture look-up with LOD bias */
1640 nir_texop_txl, /**< Texture look-up with explicit LOD */
1641 nir_texop_txd, /**< Texture look-up with partial derivatives */
1642 nir_texop_txf, /**< Texel fetch with explicit LOD */
1643 nir_texop_txf_ms, /**< Multisample texture fetch */
1644 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1645 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1646 nir_texop_txs, /**< Texture size */
1647 nir_texop_lod, /**< Texture lod query */
1648 nir_texop_tg4, /**< Texture gather */
1649 nir_texop_query_levels, /**< Texture levels query */
1650 nir_texop_texture_samples, /**< Texture samples query */
1651 nir_texop_samples_identical, /**< Query whether all samples are definitely
1652 * identical.
1653 */
1654 } nir_texop;
1655
1656 typedef struct {
1657 nir_instr instr;
1658
1659 enum glsl_sampler_dim sampler_dim;
1660 nir_alu_type dest_type;
1661
1662 nir_texop op;
1663 nir_dest dest;
1664 nir_tex_src *src;
1665 unsigned num_srcs, coord_components;
1666 bool is_array, is_shadow;
1667
1668 /**
1669 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1670 * components or the new-style shadow that outputs 1 component.
1671 */
1672 bool is_new_style_shadow;
1673
1674 /* gather component selector */
1675 unsigned component : 2;
1676
1677 /* gather offsets */
1678 int8_t tg4_offsets[4][2];
1679
1680 /* True if the texture index or handle is not dynamically uniform */
1681 bool texture_non_uniform;
1682
1683 /* True if the sampler index or handle is not dynamically uniform */
1684 bool sampler_non_uniform;
1685
1686 /** The texture index
1687 *
1688 * If this texture instruction has a nir_tex_src_texture_offset source,
1689 * then the texture index is given by texture_index + texture_offset.
1690 */
1691 unsigned texture_index;
1692
1693 /** The size of the texture array or 0 if it's not an array */
1694 unsigned texture_array_size;
1695
1696 /** The sampler index
1697 *
1698 * The following operations do not require a sampler and, as such, this
1699 * field should be ignored:
1700 * - nir_texop_txf
1701 * - nir_texop_txf_ms
1702 * - nir_texop_txs
1703 * - nir_texop_lod
1704 * - nir_texop_query_levels
1705 * - nir_texop_texture_samples
1706 * - nir_texop_samples_identical
1707 *
1708 * If this texture instruction has a nir_tex_src_sampler_offset source,
1709 * then the sampler index is given by sampler_index + sampler_offset.
1710 */
1711 unsigned sampler_index;
1712 } nir_tex_instr;
1713
1714 static inline unsigned
1715 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1716 {
1717 switch (instr->op) {
1718 case nir_texop_txs: {
1719 unsigned ret;
1720 switch (instr->sampler_dim) {
1721 case GLSL_SAMPLER_DIM_1D:
1722 case GLSL_SAMPLER_DIM_BUF:
1723 ret = 1;
1724 break;
1725 case GLSL_SAMPLER_DIM_2D:
1726 case GLSL_SAMPLER_DIM_CUBE:
1727 case GLSL_SAMPLER_DIM_MS:
1728 case GLSL_SAMPLER_DIM_RECT:
1729 case GLSL_SAMPLER_DIM_EXTERNAL:
1730 case GLSL_SAMPLER_DIM_SUBPASS:
1731 ret = 2;
1732 break;
1733 case GLSL_SAMPLER_DIM_3D:
1734 ret = 3;
1735 break;
1736 default:
1737 unreachable("not reached");
1738 }
1739 if (instr->is_array)
1740 ret++;
1741 return ret;
1742 }
1743
1744 case nir_texop_lod:
1745 return 2;
1746
1747 case nir_texop_texture_samples:
1748 case nir_texop_query_levels:
1749 case nir_texop_samples_identical:
1750 return 1;
1751
1752 default:
1753 if (instr->is_shadow && instr->is_new_style_shadow)
1754 return 1;
1755
1756 return 4;
1757 }
1758 }
1759
1760 /* Returns true if this texture operation queries something about the texture
1761 * rather than actually sampling it.
1762 */
1763 static inline bool
1764 nir_tex_instr_is_query(const nir_tex_instr *instr)
1765 {
1766 switch (instr->op) {
1767 case nir_texop_txs:
1768 case nir_texop_lod:
1769 case nir_texop_texture_samples:
1770 case nir_texop_query_levels:
1771 case nir_texop_txf_ms_mcs:
1772 return true;
1773 case nir_texop_tex:
1774 case nir_texop_txb:
1775 case nir_texop_txl:
1776 case nir_texop_txd:
1777 case nir_texop_txf:
1778 case nir_texop_txf_ms:
1779 case nir_texop_txf_ms_fb:
1780 case nir_texop_tg4:
1781 return false;
1782 default:
1783 unreachable("Invalid texture opcode");
1784 }
1785 }
1786
1787 static inline bool
1788 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
1789 {
1790 switch (instr->op) {
1791 case nir_texop_tex:
1792 case nir_texop_txb:
1793 case nir_texop_lod:
1794 return true;
1795 default:
1796 return false;
1797 }
1798 }
1799
1800 static inline nir_alu_type
1801 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1802 {
1803 switch (instr->src[src].src_type) {
1804 case nir_tex_src_coord:
1805 switch (instr->op) {
1806 case nir_texop_txf:
1807 case nir_texop_txf_ms:
1808 case nir_texop_txf_ms_fb:
1809 case nir_texop_txf_ms_mcs:
1810 case nir_texop_samples_identical:
1811 return nir_type_int;
1812
1813 default:
1814 return nir_type_float;
1815 }
1816
1817 case nir_tex_src_lod:
1818 switch (instr->op) {
1819 case nir_texop_txs:
1820 case nir_texop_txf:
1821 return nir_type_int;
1822
1823 default:
1824 return nir_type_float;
1825 }
1826
1827 case nir_tex_src_projector:
1828 case nir_tex_src_comparator:
1829 case nir_tex_src_bias:
1830 case nir_tex_src_ddx:
1831 case nir_tex_src_ddy:
1832 return nir_type_float;
1833
1834 case nir_tex_src_offset:
1835 case nir_tex_src_ms_index:
1836 case nir_tex_src_texture_offset:
1837 case nir_tex_src_sampler_offset:
1838 return nir_type_int;
1839
1840 default:
1841 unreachable("Invalid texture source type");
1842 }
1843 }
1844
1845 static inline unsigned
1846 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1847 {
1848 if (instr->src[src].src_type == nir_tex_src_coord)
1849 return instr->coord_components;
1850
1851 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1852 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1853 return 4;
1854
1855 if (instr->src[src].src_type == nir_tex_src_ddx ||
1856 instr->src[src].src_type == nir_tex_src_ddy) {
1857 if (instr->is_array)
1858 return instr->coord_components - 1;
1859 else
1860 return instr->coord_components;
1861 }
1862
1863 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1864 * the offset, since a cube maps to a single face.
1865 */
1866 if (instr->src[src].src_type == nir_tex_src_offset) {
1867 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1868 return 2;
1869 else if (instr->is_array)
1870 return instr->coord_components - 1;
1871 else
1872 return instr->coord_components;
1873 }
1874
1875 return 1;
1876 }
1877
1878 static inline int
1879 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1880 {
1881 for (unsigned i = 0; i < instr->num_srcs; i++)
1882 if (instr->src[i].src_type == type)
1883 return (int) i;
1884
1885 return -1;
1886 }
1887
1888 void nir_tex_instr_add_src(nir_tex_instr *tex,
1889 nir_tex_src_type src_type,
1890 nir_src src);
1891
1892 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1893
1894 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1895
1896 typedef struct {
1897 nir_instr instr;
1898
1899 nir_ssa_def def;
1900
1901 nir_const_value value[];
1902 } nir_load_const_instr;
1903
1904 #define nir_const_load_to_arr(arr, l, m) \
1905 { \
1906 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1907 } while (false);
1908
1909 typedef enum {
1910 nir_jump_return,
1911 nir_jump_break,
1912 nir_jump_continue,
1913 } nir_jump_type;
1914
1915 typedef struct {
1916 nir_instr instr;
1917 nir_jump_type type;
1918 } nir_jump_instr;
1919
1920 /* creates a new SSA variable in an undefined state */
1921
1922 typedef struct {
1923 nir_instr instr;
1924 nir_ssa_def def;
1925 } nir_ssa_undef_instr;
1926
1927 typedef struct {
1928 struct exec_node node;
1929
1930 /* The predecessor block corresponding to this source */
1931 struct nir_block *pred;
1932
1933 nir_src src;
1934 } nir_phi_src;
1935
1936 #define nir_foreach_phi_src(phi_src, phi) \
1937 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1938 #define nir_foreach_phi_src_safe(phi_src, phi) \
1939 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1940
1941 typedef struct {
1942 nir_instr instr;
1943
1944 struct exec_list srcs; /** < list of nir_phi_src */
1945
1946 nir_dest dest;
1947 } nir_phi_instr;
1948
1949 typedef struct {
1950 struct exec_node node;
1951 nir_src src;
1952 nir_dest dest;
1953 } nir_parallel_copy_entry;
1954
1955 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1956 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1957
1958 typedef struct {
1959 nir_instr instr;
1960
1961 /* A list of nir_parallel_copy_entrys. The sources of all of the
1962 * entries are copied to the corresponding destinations "in parallel".
1963 * In other words, if we have two entries: a -> b and b -> a, the values
1964 * get swapped.
1965 */
1966 struct exec_list entries;
1967 } nir_parallel_copy_instr;
1968
1969 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1970 type, nir_instr_type_alu)
1971 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1972 type, nir_instr_type_deref)
1973 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1974 type, nir_instr_type_call)
1975 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1976 type, nir_instr_type_jump)
1977 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1978 type, nir_instr_type_tex)
1979 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1980 type, nir_instr_type_intrinsic)
1981 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1982 type, nir_instr_type_load_const)
1983 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1984 type, nir_instr_type_ssa_undef)
1985 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1986 type, nir_instr_type_phi)
1987 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1988 nir_parallel_copy_instr, instr,
1989 type, nir_instr_type_parallel_copy)
1990
1991
1992 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
1993 static inline type \
1994 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
1995 { \
1996 assert(nir_src_is_const(src)); \
1997 nir_load_const_instr *load = \
1998 nir_instr_as_load_const(src.ssa->parent_instr); \
1999 assert(comp < load->def.num_components); \
2000 return nir_const_value_as_##suffix(load->value[comp], \
2001 load->def.bit_size); \
2002 } \
2003 \
2004 static inline type \
2005 nir_src_as_##suffix(nir_src src) \
2006 { \
2007 assert(nir_src_num_components(src) == 1); \
2008 return nir_src_comp_as_##suffix(src, 0); \
2009 }
2010
2011 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2012 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2013 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2014 NIR_DEFINE_SRC_AS_CONST(double, float)
2015
2016 #undef NIR_DEFINE_SRC_AS_CONST
2017
2018
2019 typedef struct {
2020 nir_ssa_def *def;
2021 unsigned comp;
2022 } nir_ssa_scalar;
2023
2024 static inline bool
2025 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2026 {
2027 return s.def->parent_instr->type == nir_instr_type_load_const;
2028 }
2029
2030 static inline nir_const_value
2031 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2032 {
2033 assert(s.comp < s.def->num_components);
2034 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2035 return load->value[s.comp];
2036 }
2037
2038 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2039 static inline type \
2040 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2041 { \
2042 return nir_const_value_as_##suffix( \
2043 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2044 }
2045
2046 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2047 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2048 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2049 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2050
2051 #undef NIR_DEFINE_SCALAR_AS_CONST
2052
2053 static inline bool
2054 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2055 {
2056 return s.def->parent_instr->type == nir_instr_type_alu;
2057 }
2058
2059 static inline nir_op
2060 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2061 {
2062 return nir_instr_as_alu(s.def->parent_instr)->op;
2063 }
2064
2065 static inline nir_ssa_scalar
2066 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2067 {
2068 nir_ssa_scalar out = { NULL, 0 };
2069
2070 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2071 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2072
2073 /* Our component must be written */
2074 assert(s.comp < s.def->num_components);
2075 assert(alu->dest.write_mask & (1u << s.comp));
2076
2077 assert(alu->src[alu_src_idx].src.is_ssa);
2078 out.def = alu->src[alu_src_idx].src.ssa;
2079
2080 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2081 /* The ALU src is unsized so the source component follows the
2082 * destination component.
2083 */
2084 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2085 } else {
2086 /* This is a sized source so all source components work together to
2087 * produce all the destination components. Since we need to return a
2088 * scalar, this only works if the source is a scalar.
2089 */
2090 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2091 out.comp = alu->src[alu_src_idx].swizzle[0];
2092 }
2093 assert(out.comp < out.def->num_components);
2094
2095 return out;
2096 }
2097
2098
2099 /*
2100 * Control flow
2101 *
2102 * Control flow consists of a tree of control flow nodes, which include
2103 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2104 * instructions that always run start-to-finish. Each basic block also keeps
2105 * track of its successors (blocks which may run immediately after the current
2106 * block) and predecessors (blocks which could have run immediately before the
2107 * current block). Each function also has a start block and an end block which
2108 * all return statements point to (which is always empty). Together, all the
2109 * blocks with their predecessors and successors make up the control flow
2110 * graph (CFG) of the function. There are helpers that modify the tree of
2111 * control flow nodes while modifying the CFG appropriately; these should be
2112 * used instead of modifying the tree directly.
2113 */
2114
2115 typedef enum {
2116 nir_cf_node_block,
2117 nir_cf_node_if,
2118 nir_cf_node_loop,
2119 nir_cf_node_function
2120 } nir_cf_node_type;
2121
2122 typedef struct nir_cf_node {
2123 struct exec_node node;
2124 nir_cf_node_type type;
2125 struct nir_cf_node *parent;
2126 } nir_cf_node;
2127
2128 typedef struct nir_block {
2129 nir_cf_node cf_node;
2130
2131 struct exec_list instr_list; /** < list of nir_instr */
2132
2133 /** generic block index; generated by nir_index_blocks */
2134 unsigned index;
2135
2136 /*
2137 * Each block can only have up to 2 successors, so we put them in a simple
2138 * array - no need for anything more complicated.
2139 */
2140 struct nir_block *successors[2];
2141
2142 /* Set of nir_block predecessors in the CFG */
2143 struct set *predecessors;
2144
2145 /*
2146 * this node's immediate dominator in the dominance tree - set to NULL for
2147 * the start block.
2148 */
2149 struct nir_block *imm_dom;
2150
2151 /* This node's children in the dominance tree */
2152 unsigned num_dom_children;
2153 struct nir_block **dom_children;
2154
2155 /* Set of nir_blocks on the dominance frontier of this block */
2156 struct set *dom_frontier;
2157
2158 /*
2159 * These two indices have the property that dom_{pre,post}_index for each
2160 * child of this block in the dominance tree will always be between
2161 * dom_pre_index and dom_post_index for this block, which makes testing if
2162 * a given block is dominated by another block an O(1) operation.
2163 */
2164 unsigned dom_pre_index, dom_post_index;
2165
2166 /* live in and out for this block; used for liveness analysis */
2167 BITSET_WORD *live_in;
2168 BITSET_WORD *live_out;
2169 } nir_block;
2170
2171 static inline nir_instr *
2172 nir_block_first_instr(nir_block *block)
2173 {
2174 struct exec_node *head = exec_list_get_head(&block->instr_list);
2175 return exec_node_data(nir_instr, head, node);
2176 }
2177
2178 static inline nir_instr *
2179 nir_block_last_instr(nir_block *block)
2180 {
2181 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2182 return exec_node_data(nir_instr, tail, node);
2183 }
2184
2185 static inline bool
2186 nir_block_ends_in_jump(nir_block *block)
2187 {
2188 return !exec_list_is_empty(&block->instr_list) &&
2189 nir_block_last_instr(block)->type == nir_instr_type_jump;
2190 }
2191
2192 #define nir_foreach_instr(instr, block) \
2193 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2194 #define nir_foreach_instr_reverse(instr, block) \
2195 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2196 #define nir_foreach_instr_safe(instr, block) \
2197 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2198 #define nir_foreach_instr_reverse_safe(instr, block) \
2199 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2200
2201 typedef enum {
2202 nir_selection_control_none = 0x0,
2203 nir_selection_control_flatten = 0x1,
2204 nir_selection_control_dont_flatten = 0x2,
2205 } nir_selection_control;
2206
2207 typedef struct nir_if {
2208 nir_cf_node cf_node;
2209 nir_src condition;
2210 nir_selection_control control;
2211
2212 struct exec_list then_list; /** < list of nir_cf_node */
2213 struct exec_list else_list; /** < list of nir_cf_node */
2214 } nir_if;
2215
2216 typedef struct {
2217 nir_if *nif;
2218
2219 /** Instruction that generates nif::condition. */
2220 nir_instr *conditional_instr;
2221
2222 /** Block within ::nif that has the break instruction. */
2223 nir_block *break_block;
2224
2225 /** Last block for the then- or else-path that does not contain the break. */
2226 nir_block *continue_from_block;
2227
2228 /** True when ::break_block is in the else-path of ::nif. */
2229 bool continue_from_then;
2230 bool induction_rhs;
2231
2232 /* This is true if the terminators exact trip count is unknown. For
2233 * example:
2234 *
2235 * for (int i = 0; i < imin(x, 4); i++)
2236 * ...
2237 *
2238 * Here loop analysis would have set a max_trip_count of 4 however we dont
2239 * know for sure that this is the exact trip count.
2240 */
2241 bool exact_trip_count_unknown;
2242
2243 struct list_head loop_terminator_link;
2244 } nir_loop_terminator;
2245
2246 typedef struct {
2247 /* Estimated cost (in number of instructions) of the loop */
2248 unsigned instr_cost;
2249
2250 /* Guessed trip count based on array indexing */
2251 unsigned guessed_trip_count;
2252
2253 /* Maximum number of times the loop is run (if known) */
2254 unsigned max_trip_count;
2255
2256 /* Do we know the exact number of times the loop will be run */
2257 bool exact_trip_count_known;
2258
2259 /* Unroll the loop regardless of its size */
2260 bool force_unroll;
2261
2262 /* Does the loop contain complex loop terminators, continues or other
2263 * complex behaviours? If this is true we can't rely on
2264 * loop_terminator_list to be complete or accurate.
2265 */
2266 bool complex_loop;
2267
2268 nir_loop_terminator *limiting_terminator;
2269
2270 /* A list of loop_terminators terminating this loop. */
2271 struct list_head loop_terminator_list;
2272 } nir_loop_info;
2273
2274 typedef enum {
2275 nir_loop_control_none = 0x0,
2276 nir_loop_control_unroll = 0x1,
2277 nir_loop_control_dont_unroll = 0x2,
2278 } nir_loop_control;
2279
2280 typedef struct {
2281 nir_cf_node cf_node;
2282
2283 struct exec_list body; /** < list of nir_cf_node */
2284
2285 nir_loop_info *info;
2286 nir_loop_control control;
2287 bool partially_unrolled;
2288 } nir_loop;
2289
2290 /**
2291 * Various bits of metadata that can may be created or required by
2292 * optimization and analysis passes
2293 */
2294 typedef enum {
2295 nir_metadata_none = 0x0,
2296 nir_metadata_block_index = 0x1,
2297 nir_metadata_dominance = 0x2,
2298 nir_metadata_live_ssa_defs = 0x4,
2299 nir_metadata_not_properly_reset = 0x8,
2300 nir_metadata_loop_analysis = 0x10,
2301 } nir_metadata;
2302
2303 typedef struct {
2304 nir_cf_node cf_node;
2305
2306 /** pointer to the function of which this is an implementation */
2307 struct nir_function *function;
2308
2309 struct exec_list body; /** < list of nir_cf_node */
2310
2311 nir_block *end_block;
2312
2313 /** list for all local variables in the function */
2314 struct exec_list locals;
2315
2316 /** list of local registers in the function */
2317 struct exec_list registers;
2318
2319 /** next available local register index */
2320 unsigned reg_alloc;
2321
2322 /** next available SSA value index */
2323 unsigned ssa_alloc;
2324
2325 /* total number of basic blocks, only valid when block_index_dirty = false */
2326 unsigned num_blocks;
2327
2328 nir_metadata valid_metadata;
2329 } nir_function_impl;
2330
2331 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2332 nir_start_block(nir_function_impl *impl)
2333 {
2334 return (nir_block *) impl->body.head_sentinel.next;
2335 }
2336
2337 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2338 nir_impl_last_block(nir_function_impl *impl)
2339 {
2340 return (nir_block *) impl->body.tail_sentinel.prev;
2341 }
2342
2343 static inline nir_cf_node *
2344 nir_cf_node_next(nir_cf_node *node)
2345 {
2346 struct exec_node *next = exec_node_get_next(&node->node);
2347 if (exec_node_is_tail_sentinel(next))
2348 return NULL;
2349 else
2350 return exec_node_data(nir_cf_node, next, node);
2351 }
2352
2353 static inline nir_cf_node *
2354 nir_cf_node_prev(nir_cf_node *node)
2355 {
2356 struct exec_node *prev = exec_node_get_prev(&node->node);
2357 if (exec_node_is_head_sentinel(prev))
2358 return NULL;
2359 else
2360 return exec_node_data(nir_cf_node, prev, node);
2361 }
2362
2363 static inline bool
2364 nir_cf_node_is_first(const nir_cf_node *node)
2365 {
2366 return exec_node_is_head_sentinel(node->node.prev);
2367 }
2368
2369 static inline bool
2370 nir_cf_node_is_last(const nir_cf_node *node)
2371 {
2372 return exec_node_is_tail_sentinel(node->node.next);
2373 }
2374
2375 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2376 type, nir_cf_node_block)
2377 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2378 type, nir_cf_node_if)
2379 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2380 type, nir_cf_node_loop)
2381 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2382 nir_function_impl, cf_node, type, nir_cf_node_function)
2383
2384 static inline nir_block *
2385 nir_if_first_then_block(nir_if *if_stmt)
2386 {
2387 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2388 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2389 }
2390
2391 static inline nir_block *
2392 nir_if_last_then_block(nir_if *if_stmt)
2393 {
2394 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2395 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2396 }
2397
2398 static inline nir_block *
2399 nir_if_first_else_block(nir_if *if_stmt)
2400 {
2401 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2402 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2403 }
2404
2405 static inline nir_block *
2406 nir_if_last_else_block(nir_if *if_stmt)
2407 {
2408 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2409 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2410 }
2411
2412 static inline nir_block *
2413 nir_loop_first_block(nir_loop *loop)
2414 {
2415 struct exec_node *head = exec_list_get_head(&loop->body);
2416 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2417 }
2418
2419 static inline nir_block *
2420 nir_loop_last_block(nir_loop *loop)
2421 {
2422 struct exec_node *tail = exec_list_get_tail(&loop->body);
2423 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2424 }
2425
2426 /**
2427 * Return true if this list of cf_nodes contains a single empty block.
2428 */
2429 static inline bool
2430 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2431 {
2432 if (exec_list_is_singular(cf_list)) {
2433 struct exec_node *head = exec_list_get_head(cf_list);
2434 nir_block *block =
2435 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2436 return exec_list_is_empty(&block->instr_list);
2437 }
2438 return false;
2439 }
2440
2441 typedef struct {
2442 uint8_t num_components;
2443 uint8_t bit_size;
2444 } nir_parameter;
2445
2446 typedef struct nir_function {
2447 struct exec_node node;
2448
2449 const char *name;
2450 struct nir_shader *shader;
2451
2452 unsigned num_params;
2453 nir_parameter *params;
2454
2455 /** The implementation of this function.
2456 *
2457 * If the function is only declared and not implemented, this is NULL.
2458 */
2459 nir_function_impl *impl;
2460
2461 bool is_entrypoint;
2462 } nir_function;
2463
2464 typedef enum {
2465 nir_lower_imul64 = (1 << 0),
2466 nir_lower_isign64 = (1 << 1),
2467 /** Lower all int64 modulus and division opcodes */
2468 nir_lower_divmod64 = (1 << 2),
2469 /** Lower all 64-bit umul_high and imul_high opcodes */
2470 nir_lower_imul_high64 = (1 << 3),
2471 nir_lower_mov64 = (1 << 4),
2472 nir_lower_icmp64 = (1 << 5),
2473 nir_lower_iadd64 = (1 << 6),
2474 nir_lower_iabs64 = (1 << 7),
2475 nir_lower_ineg64 = (1 << 8),
2476 nir_lower_logic64 = (1 << 9),
2477 nir_lower_minmax64 = (1 << 10),
2478 nir_lower_shift64 = (1 << 11),
2479 nir_lower_imul_2x32_64 = (1 << 12),
2480 nir_lower_extract64 = (1 << 13),
2481 } nir_lower_int64_options;
2482
2483 typedef enum {
2484 nir_lower_drcp = (1 << 0),
2485 nir_lower_dsqrt = (1 << 1),
2486 nir_lower_drsq = (1 << 2),
2487 nir_lower_dtrunc = (1 << 3),
2488 nir_lower_dfloor = (1 << 4),
2489 nir_lower_dceil = (1 << 5),
2490 nir_lower_dfract = (1 << 6),
2491 nir_lower_dround_even = (1 << 7),
2492 nir_lower_dmod = (1 << 8),
2493 nir_lower_dsub = (1 << 9),
2494 nir_lower_ddiv = (1 << 10),
2495 nir_lower_fp64_full_software = (1 << 11),
2496 } nir_lower_doubles_options;
2497
2498 typedef struct nir_shader_compiler_options {
2499 bool lower_fdiv;
2500 bool lower_ffma;
2501 bool fuse_ffma;
2502 bool lower_flrp16;
2503 bool lower_flrp32;
2504 /** Lowers flrp when it does not support doubles */
2505 bool lower_flrp64;
2506 bool lower_fpow;
2507 bool lower_fsat;
2508 bool lower_fsqrt;
2509 bool lower_sincos;
2510 bool lower_fmod;
2511 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2512 bool lower_bitfield_extract;
2513 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2514 bool lower_bitfield_extract_to_shifts;
2515 /** Lowers bitfield_insert to bfi/bfm */
2516 bool lower_bitfield_insert;
2517 /** Lowers bitfield_insert to compares, and shifts. */
2518 bool lower_bitfield_insert_to_shifts;
2519 /** Lowers bitfield_insert to bfm/bitfield_select. */
2520 bool lower_bitfield_insert_to_bitfield_select;
2521 /** Lowers bitfield_reverse to shifts. */
2522 bool lower_bitfield_reverse;
2523 /** Lowers bit_count to shifts. */
2524 bool lower_bit_count;
2525 /** Lowers ifind_msb to compare and ufind_msb */
2526 bool lower_ifind_msb;
2527 /** Lowers find_lsb to ufind_msb and logic ops */
2528 bool lower_find_lsb;
2529 bool lower_uadd_carry;
2530 bool lower_usub_borrow;
2531 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2532 bool lower_mul_high;
2533 /** lowers fneg and ineg to fsub and isub. */
2534 bool lower_negate;
2535 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2536 bool lower_sub;
2537
2538 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2539 bool lower_scmp;
2540
2541 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
2542 bool lower_vector_cmp;
2543
2544 /** enables rules to lower idiv by power-of-two: */
2545 bool lower_idiv;
2546
2547 /** enable rules to avoid bit ops */
2548 bool lower_bitops;
2549
2550 /** enables rules to lower isign to imin+imax */
2551 bool lower_isign;
2552
2553 /** enables rules to lower fsign to fsub and flt */
2554 bool lower_fsign;
2555
2556 /* lower fdph to fdot4 */
2557 bool lower_fdph;
2558
2559 /** lower fdot to fmul and fsum/fadd. */
2560 bool lower_fdot;
2561
2562 /* Does the native fdot instruction replicate its result for four
2563 * components? If so, then opt_algebraic_late will turn all fdotN
2564 * instructions into fdot_replicatedN instructions.
2565 */
2566 bool fdot_replicates;
2567
2568 /** lowers ffloor to fsub+ffract: */
2569 bool lower_ffloor;
2570
2571 /** lowers ffract to fsub+ffloor: */
2572 bool lower_ffract;
2573
2574 /** lowers fceil to fneg+ffloor+fneg: */
2575 bool lower_fceil;
2576
2577 bool lower_ftrunc;
2578
2579 bool lower_ldexp;
2580
2581 bool lower_pack_half_2x16;
2582 bool lower_pack_unorm_2x16;
2583 bool lower_pack_snorm_2x16;
2584 bool lower_pack_unorm_4x8;
2585 bool lower_pack_snorm_4x8;
2586 bool lower_unpack_half_2x16;
2587 bool lower_unpack_unorm_2x16;
2588 bool lower_unpack_snorm_2x16;
2589 bool lower_unpack_unorm_4x8;
2590 bool lower_unpack_snorm_4x8;
2591
2592 bool lower_extract_byte;
2593 bool lower_extract_word;
2594
2595 bool lower_all_io_to_temps;
2596 bool lower_all_io_to_elements;
2597
2598 /* Indicates that the driver only has zero-based vertex id */
2599 bool vertex_id_zero_based;
2600
2601 /**
2602 * If enabled, gl_BaseVertex will be lowered as:
2603 * is_indexed_draw (~0/0) & firstvertex
2604 */
2605 bool lower_base_vertex;
2606
2607 /**
2608 * If enabled, gl_HelperInvocation will be lowered as:
2609 *
2610 * !((1 << sample_id) & sample_mask_in))
2611 *
2612 * This depends on some possibly hw implementation details, which may
2613 * not be true for all hw. In particular that the FS is only executed
2614 * for covered samples or for helper invocations. So, do not blindly
2615 * enable this option.
2616 *
2617 * Note: See also issue #22 in ARB_shader_image_load_store
2618 */
2619 bool lower_helper_invocation;
2620
2621 /**
2622 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2623 *
2624 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2625 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2626 */
2627 bool optimize_sample_mask_in;
2628
2629 bool lower_cs_local_index_from_id;
2630 bool lower_cs_local_id_from_index;
2631
2632 bool lower_device_index_to_zero;
2633
2634 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2635 bool lower_wpos_pntc;
2636
2637 bool lower_hadd;
2638 bool lower_add_sat;
2639
2640 /**
2641 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2642 * for IO purposes and would prefer loads/stores be vectorized.
2643 */
2644 bool vectorize_io;
2645
2646 /**
2647 * Should nir_lower_io() create load_interpolated_input intrinsics?
2648 *
2649 * If not, it generates regular load_input intrinsics and interpolation
2650 * information must be inferred from the list of input nir_variables.
2651 */
2652 bool use_interpolated_input_intrinsics;
2653
2654 /* Lowers when 32x32->64 bit multiplication is not supported */
2655 bool lower_mul_2x32_64;
2656
2657 /* Lowers when rotate instruction is not supported */
2658 bool lower_rotate;
2659
2660 /**
2661 * Is this the Intel vec4 backend?
2662 *
2663 * Used to inhibit algebraic optimizations that are known to be harmful on
2664 * the Intel vec4 backend. This is generally applicable to any
2665 * optimization that might cause more immediate values to be used in
2666 * 3-source (e.g., ffma and flrp) instructions.
2667 */
2668 bool intel_vec4;
2669
2670 unsigned max_unroll_iterations;
2671
2672 nir_lower_int64_options lower_int64_options;
2673 nir_lower_doubles_options lower_doubles_options;
2674 } nir_shader_compiler_options;
2675
2676 typedef struct nir_shader {
2677 /** list of uniforms (nir_variable) */
2678 struct exec_list uniforms;
2679
2680 /** list of inputs (nir_variable) */
2681 struct exec_list inputs;
2682
2683 /** list of outputs (nir_variable) */
2684 struct exec_list outputs;
2685
2686 /** list of shared compute variables (nir_variable) */
2687 struct exec_list shared;
2688
2689 /** Set of driver-specific options for the shader.
2690 *
2691 * The memory for the options is expected to be kept in a single static
2692 * copy by the driver.
2693 */
2694 const struct nir_shader_compiler_options *options;
2695
2696 /** Various bits of compile-time information about a given shader */
2697 struct shader_info info;
2698
2699 /** list of global variables in the shader (nir_variable) */
2700 struct exec_list globals;
2701
2702 /** list of system value variables in the shader (nir_variable) */
2703 struct exec_list system_values;
2704
2705 struct exec_list functions; /** < list of nir_function */
2706
2707 /**
2708 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2709 * access plus one
2710 */
2711 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2712
2713 /** Size in bytes of required scratch space */
2714 unsigned scratch_size;
2715
2716 /** Constant data associated with this shader.
2717 *
2718 * Constant data is loaded through load_constant intrinsics. See also
2719 * nir_opt_large_constants.
2720 */
2721 void *constant_data;
2722 unsigned constant_data_size;
2723 } nir_shader;
2724
2725 #define nir_foreach_function(func, shader) \
2726 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2727
2728 static inline nir_function_impl *
2729 nir_shader_get_entrypoint(nir_shader *shader)
2730 {
2731 nir_function *func = NULL;
2732
2733 nir_foreach_function(function, shader) {
2734 assert(func == NULL);
2735 if (function->is_entrypoint) {
2736 func = function;
2737 #ifndef NDEBUG
2738 break;
2739 #endif
2740 }
2741 }
2742
2743 if (!func)
2744 return NULL;
2745
2746 assert(func->num_params == 0);
2747 assert(func->impl);
2748 return func->impl;
2749 }
2750
2751 nir_shader *nir_shader_create(void *mem_ctx,
2752 gl_shader_stage stage,
2753 const nir_shader_compiler_options *options,
2754 shader_info *si);
2755
2756 nir_register *nir_local_reg_create(nir_function_impl *impl);
2757
2758 void nir_reg_remove(nir_register *reg);
2759
2760 /** Adds a variable to the appropriate list in nir_shader */
2761 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2762
2763 static inline void
2764 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2765 {
2766 assert(var->data.mode == nir_var_function_temp);
2767 exec_list_push_tail(&impl->locals, &var->node);
2768 }
2769
2770 /** creates a variable, sets a few defaults, and adds it to the list */
2771 nir_variable *nir_variable_create(nir_shader *shader,
2772 nir_variable_mode mode,
2773 const struct glsl_type *type,
2774 const char *name);
2775 /** creates a local variable and adds it to the list */
2776 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2777 const struct glsl_type *type,
2778 const char *name);
2779
2780 /** creates a function and adds it to the shader's list of functions */
2781 nir_function *nir_function_create(nir_shader *shader, const char *name);
2782
2783 nir_function_impl *nir_function_impl_create(nir_function *func);
2784 /** creates a function_impl that isn't tied to any particular function */
2785 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2786
2787 nir_block *nir_block_create(nir_shader *shader);
2788 nir_if *nir_if_create(nir_shader *shader);
2789 nir_loop *nir_loop_create(nir_shader *shader);
2790
2791 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2792
2793 /** requests that the given pieces of metadata be generated */
2794 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2795 /** dirties all but the preserved metadata */
2796 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2797
2798 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2799 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2800
2801 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2802 nir_deref_type deref_type);
2803
2804 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2805
2806 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2807 unsigned num_components,
2808 unsigned bit_size);
2809
2810 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2811 nir_intrinsic_op op);
2812
2813 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2814 nir_function *callee);
2815
2816 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2817
2818 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2819
2820 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2821
2822 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2823 unsigned num_components,
2824 unsigned bit_size);
2825
2826 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2827
2828 /**
2829 * NIR Cursors and Instruction Insertion API
2830 * @{
2831 *
2832 * A tiny struct representing a point to insert/extract instructions or
2833 * control flow nodes. Helps reduce the combinatorial explosion of possible
2834 * points to insert/extract.
2835 *
2836 * \sa nir_control_flow.h
2837 */
2838 typedef enum {
2839 nir_cursor_before_block,
2840 nir_cursor_after_block,
2841 nir_cursor_before_instr,
2842 nir_cursor_after_instr,
2843 } nir_cursor_option;
2844
2845 typedef struct {
2846 nir_cursor_option option;
2847 union {
2848 nir_block *block;
2849 nir_instr *instr;
2850 };
2851 } nir_cursor;
2852
2853 static inline nir_block *
2854 nir_cursor_current_block(nir_cursor cursor)
2855 {
2856 if (cursor.option == nir_cursor_before_instr ||
2857 cursor.option == nir_cursor_after_instr) {
2858 return cursor.instr->block;
2859 } else {
2860 return cursor.block;
2861 }
2862 }
2863
2864 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2865
2866 static inline nir_cursor
2867 nir_before_block(nir_block *block)
2868 {
2869 nir_cursor cursor;
2870 cursor.option = nir_cursor_before_block;
2871 cursor.block = block;
2872 return cursor;
2873 }
2874
2875 static inline nir_cursor
2876 nir_after_block(nir_block *block)
2877 {
2878 nir_cursor cursor;
2879 cursor.option = nir_cursor_after_block;
2880 cursor.block = block;
2881 return cursor;
2882 }
2883
2884 static inline nir_cursor
2885 nir_before_instr(nir_instr *instr)
2886 {
2887 nir_cursor cursor;
2888 cursor.option = nir_cursor_before_instr;
2889 cursor.instr = instr;
2890 return cursor;
2891 }
2892
2893 static inline nir_cursor
2894 nir_after_instr(nir_instr *instr)
2895 {
2896 nir_cursor cursor;
2897 cursor.option = nir_cursor_after_instr;
2898 cursor.instr = instr;
2899 return cursor;
2900 }
2901
2902 static inline nir_cursor
2903 nir_after_block_before_jump(nir_block *block)
2904 {
2905 nir_instr *last_instr = nir_block_last_instr(block);
2906 if (last_instr && last_instr->type == nir_instr_type_jump) {
2907 return nir_before_instr(last_instr);
2908 } else {
2909 return nir_after_block(block);
2910 }
2911 }
2912
2913 static inline nir_cursor
2914 nir_before_src(nir_src *src, bool is_if_condition)
2915 {
2916 if (is_if_condition) {
2917 nir_block *prev_block =
2918 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2919 assert(!nir_block_ends_in_jump(prev_block));
2920 return nir_after_block(prev_block);
2921 } else if (src->parent_instr->type == nir_instr_type_phi) {
2922 #ifndef NDEBUG
2923 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2924 bool found = false;
2925 nir_foreach_phi_src(phi_src, cond_phi) {
2926 if (phi_src->src.ssa == src->ssa) {
2927 found = true;
2928 break;
2929 }
2930 }
2931 assert(found);
2932 #endif
2933 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2934 * to have a more specific name.
2935 */
2936 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2937 return nir_after_block_before_jump(phi_src->pred);
2938 } else {
2939 return nir_before_instr(src->parent_instr);
2940 }
2941 }
2942
2943 static inline nir_cursor
2944 nir_before_cf_node(nir_cf_node *node)
2945 {
2946 if (node->type == nir_cf_node_block)
2947 return nir_before_block(nir_cf_node_as_block(node));
2948
2949 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2950 }
2951
2952 static inline nir_cursor
2953 nir_after_cf_node(nir_cf_node *node)
2954 {
2955 if (node->type == nir_cf_node_block)
2956 return nir_after_block(nir_cf_node_as_block(node));
2957
2958 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2959 }
2960
2961 static inline nir_cursor
2962 nir_after_phis(nir_block *block)
2963 {
2964 nir_foreach_instr(instr, block) {
2965 if (instr->type != nir_instr_type_phi)
2966 return nir_before_instr(instr);
2967 }
2968 return nir_after_block(block);
2969 }
2970
2971 static inline nir_cursor
2972 nir_after_cf_node_and_phis(nir_cf_node *node)
2973 {
2974 if (node->type == nir_cf_node_block)
2975 return nir_after_block(nir_cf_node_as_block(node));
2976
2977 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2978
2979 return nir_after_phis(block);
2980 }
2981
2982 static inline nir_cursor
2983 nir_before_cf_list(struct exec_list *cf_list)
2984 {
2985 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2986 exec_list_get_head(cf_list), node);
2987 return nir_before_cf_node(first_node);
2988 }
2989
2990 static inline nir_cursor
2991 nir_after_cf_list(struct exec_list *cf_list)
2992 {
2993 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2994 exec_list_get_tail(cf_list), node);
2995 return nir_after_cf_node(last_node);
2996 }
2997
2998 /**
2999 * Insert a NIR instruction at the given cursor.
3000 *
3001 * Note: This does not update the cursor.
3002 */
3003 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3004
3005 static inline void
3006 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3007 {
3008 nir_instr_insert(nir_before_instr(instr), before);
3009 }
3010
3011 static inline void
3012 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3013 {
3014 nir_instr_insert(nir_after_instr(instr), after);
3015 }
3016
3017 static inline void
3018 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3019 {
3020 nir_instr_insert(nir_before_block(block), before);
3021 }
3022
3023 static inline void
3024 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3025 {
3026 nir_instr_insert(nir_after_block(block), after);
3027 }
3028
3029 static inline void
3030 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3031 {
3032 nir_instr_insert(nir_before_cf_node(node), before);
3033 }
3034
3035 static inline void
3036 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3037 {
3038 nir_instr_insert(nir_after_cf_node(node), after);
3039 }
3040
3041 static inline void
3042 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3043 {
3044 nir_instr_insert(nir_before_cf_list(list), before);
3045 }
3046
3047 static inline void
3048 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3049 {
3050 nir_instr_insert(nir_after_cf_list(list), after);
3051 }
3052
3053 void nir_instr_remove_v(nir_instr *instr);
3054
3055 static inline nir_cursor
3056 nir_instr_remove(nir_instr *instr)
3057 {
3058 nir_cursor cursor;
3059 nir_instr *prev = nir_instr_prev(instr);
3060 if (prev) {
3061 cursor = nir_after_instr(prev);
3062 } else {
3063 cursor = nir_before_block(instr->block);
3064 }
3065 nir_instr_remove_v(instr);
3066 return cursor;
3067 }
3068
3069 /** @} */
3070
3071 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3072
3073 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3074 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3075 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3076 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3077 void *state);
3078 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3079 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3080
3081 nir_const_value *nir_src_as_const_value(nir_src src);
3082
3083 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3084 static inline c_type * \
3085 nir_src_as_ ## name (nir_src src) \
3086 { \
3087 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3088 ? cast_macro(src.ssa->parent_instr) : NULL; \
3089 }
3090
3091 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3092 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3093 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3094 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3095
3096 bool nir_src_is_dynamically_uniform(nir_src src);
3097 bool nir_srcs_equal(nir_src src1, nir_src src2);
3098 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3099 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3100 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3101 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3102 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3103 nir_dest new_dest);
3104
3105 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3106 unsigned num_components, unsigned bit_size,
3107 const char *name);
3108 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3109 unsigned num_components, unsigned bit_size,
3110 const char *name);
3111 static inline void
3112 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3113 const struct glsl_type *type,
3114 const char *name)
3115 {
3116 assert(glsl_type_is_vector_or_scalar(type));
3117 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3118 glsl_get_bit_size(type), name);
3119 }
3120 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3121 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3122 nir_instr *after_me);
3123
3124 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3125
3126 /*
3127 * finds the next basic block in source-code order, returns NULL if there is
3128 * none
3129 */
3130
3131 nir_block *nir_block_cf_tree_next(nir_block *block);
3132
3133 /* Performs the opposite of nir_block_cf_tree_next() */
3134
3135 nir_block *nir_block_cf_tree_prev(nir_block *block);
3136
3137 /* Gets the first block in a CF node in source-code order */
3138
3139 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3140
3141 /* Gets the last block in a CF node in source-code order */
3142
3143 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3144
3145 /* Gets the next block after a CF node in source-code order */
3146
3147 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3148
3149 /* Macros for loops that visit blocks in source-code order */
3150
3151 #define nir_foreach_block(block, impl) \
3152 for (nir_block *block = nir_start_block(impl); block != NULL; \
3153 block = nir_block_cf_tree_next(block))
3154
3155 #define nir_foreach_block_safe(block, impl) \
3156 for (nir_block *block = nir_start_block(impl), \
3157 *next = nir_block_cf_tree_next(block); \
3158 block != NULL; \
3159 block = next, next = nir_block_cf_tree_next(block))
3160
3161 #define nir_foreach_block_reverse(block, impl) \
3162 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3163 block = nir_block_cf_tree_prev(block))
3164
3165 #define nir_foreach_block_reverse_safe(block, impl) \
3166 for (nir_block *block = nir_impl_last_block(impl), \
3167 *prev = nir_block_cf_tree_prev(block); \
3168 block != NULL; \
3169 block = prev, prev = nir_block_cf_tree_prev(block))
3170
3171 #define nir_foreach_block_in_cf_node(block, node) \
3172 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3173 block != nir_cf_node_cf_tree_next(node); \
3174 block = nir_block_cf_tree_next(block))
3175
3176 /* If the following CF node is an if, this function returns that if.
3177 * Otherwise, it returns NULL.
3178 */
3179 nir_if *nir_block_get_following_if(nir_block *block);
3180
3181 nir_loop *nir_block_get_following_loop(nir_block *block);
3182
3183 void nir_index_local_regs(nir_function_impl *impl);
3184 void nir_index_ssa_defs(nir_function_impl *impl);
3185 unsigned nir_index_instrs(nir_function_impl *impl);
3186
3187 void nir_index_blocks(nir_function_impl *impl);
3188
3189 void nir_print_shader(nir_shader *shader, FILE *fp);
3190 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3191 void nir_print_instr(const nir_instr *instr, FILE *fp);
3192 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3193
3194 /** Shallow clone of a single ALU instruction. */
3195 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3196
3197 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3198 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3199 const nir_function_impl *fi);
3200 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3201 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3202
3203 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3204
3205 void nir_shader_serialize_deserialize(nir_shader *s);
3206
3207 #ifndef NDEBUG
3208 void nir_validate_shader(nir_shader *shader, const char *when);
3209 void nir_metadata_set_validation_flag(nir_shader *shader);
3210 void nir_metadata_check_validation_flag(nir_shader *shader);
3211
3212 static inline bool
3213 should_skip_nir(const char *name)
3214 {
3215 static const char *list = NULL;
3216 if (!list) {
3217 /* Comma separated list of names to skip. */
3218 list = getenv("NIR_SKIP");
3219 if (!list)
3220 list = "";
3221 }
3222
3223 if (!list[0])
3224 return false;
3225
3226 return comma_separated_list_contains(list, name);
3227 }
3228
3229 static inline bool
3230 should_clone_nir(void)
3231 {
3232 static int should_clone = -1;
3233 if (should_clone < 0)
3234 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3235
3236 return should_clone;
3237 }
3238
3239 static inline bool
3240 should_serialize_deserialize_nir(void)
3241 {
3242 static int test_serialize = -1;
3243 if (test_serialize < 0)
3244 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3245
3246 return test_serialize;
3247 }
3248
3249 static inline bool
3250 should_print_nir(void)
3251 {
3252 static int should_print = -1;
3253 if (should_print < 0)
3254 should_print = env_var_as_boolean("NIR_PRINT", false);
3255
3256 return should_print;
3257 }
3258 #else
3259 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3260 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3261 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3262 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3263 static inline bool should_clone_nir(void) { return false; }
3264 static inline bool should_serialize_deserialize_nir(void) { return false; }
3265 static inline bool should_print_nir(void) { return false; }
3266 #endif /* NDEBUG */
3267
3268 #define _PASS(pass, nir, do_pass) do { \
3269 if (should_skip_nir(#pass)) { \
3270 printf("skipping %s\n", #pass); \
3271 break; \
3272 } \
3273 do_pass \
3274 nir_validate_shader(nir, "after " #pass); \
3275 if (should_clone_nir()) { \
3276 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3277 nir_shader_replace(nir, clone); \
3278 } \
3279 if (should_serialize_deserialize_nir()) { \
3280 nir_shader_serialize_deserialize(nir); \
3281 } \
3282 } while (0)
3283
3284 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3285 nir_metadata_set_validation_flag(nir); \
3286 if (should_print_nir()) \
3287 printf("%s\n", #pass); \
3288 if (pass(nir, ##__VA_ARGS__)) { \
3289 progress = true; \
3290 if (should_print_nir()) \
3291 nir_print_shader(nir, stdout); \
3292 nir_metadata_check_validation_flag(nir); \
3293 } \
3294 )
3295
3296 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3297 if (should_print_nir()) \
3298 printf("%s\n", #pass); \
3299 pass(nir, ##__VA_ARGS__); \
3300 if (should_print_nir()) \
3301 nir_print_shader(nir, stdout); \
3302 )
3303
3304 #define NIR_SKIP(name) should_skip_nir(#name)
3305
3306 /** An instruction filtering callback
3307 *
3308 * Returns true if the instruction should be processed and false otherwise.
3309 */
3310 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3311
3312 /** A simple instruction lowering callback
3313 *
3314 * Many instruction lowering passes can be written as a simple function which
3315 * takes an instruction as its input and returns a sequence of instructions
3316 * that implement the consumed instruction. This function type represents
3317 * such a lowering function. When called, a function with this prototype
3318 * should either return NULL indicating that no lowering needs to be done or
3319 * emit a sequence of instructions using the provided builder (whose cursor
3320 * will already be placed after the instruction to be lowered) and return the
3321 * resulting nir_ssa_def.
3322 */
3323 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3324 nir_instr *, void *);
3325
3326 /**
3327 * Special return value for nir_lower_instr_cb when some progress occurred
3328 * (like changing an input to the instr) that didn't result in a replacement
3329 * SSA def being generated.
3330 */
3331 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3332
3333 /** Iterate over all the instructions in a nir_function_impl and lower them
3334 * using the provided callbacks
3335 *
3336 * This function implements the guts of a standard lowering pass for you. It
3337 * iterates over all of the instructions in a nir_function_impl and calls the
3338 * filter callback on each one. If the filter callback returns true, it then
3339 * calls the lowering call back on the instruction. (Splitting it this way
3340 * allows us to avoid some save/restore work for instructions we know won't be
3341 * lowered.) If the instruction is dead after the lowering is complete, it
3342 * will be removed. If new instructions are added, the lowering callback will
3343 * also be called on them in case multiple lowerings are required.
3344 *
3345 * The metadata for the nir_function_impl will also be updated. If any blocks
3346 * are added (they cannot be removed), dominance and block indices will be
3347 * invalidated.
3348 */
3349 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3350 nir_instr_filter_cb filter,
3351 nir_lower_instr_cb lower,
3352 void *cb_data);
3353 bool nir_shader_lower_instructions(nir_shader *shader,
3354 nir_instr_filter_cb filter,
3355 nir_lower_instr_cb lower,
3356 void *cb_data);
3357
3358 void nir_calc_dominance_impl(nir_function_impl *impl);
3359 void nir_calc_dominance(nir_shader *shader);
3360
3361 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3362 bool nir_block_dominates(nir_block *parent, nir_block *child);
3363
3364 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3365 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3366
3367 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3368 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3369
3370 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3371 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3372
3373 int nir_gs_count_vertices(const nir_shader *shader);
3374
3375 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3376 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3377 bool nir_split_var_copies(nir_shader *shader);
3378 bool nir_split_per_member_structs(nir_shader *shader);
3379 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3380
3381 bool nir_lower_returns_impl(nir_function_impl *impl);
3382 bool nir_lower_returns(nir_shader *shader);
3383
3384 void nir_inline_function_impl(struct nir_builder *b,
3385 const nir_function_impl *impl,
3386 nir_ssa_def **params);
3387 bool nir_inline_functions(nir_shader *shader);
3388
3389 bool nir_propagate_invariant(nir_shader *shader);
3390
3391 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3392 void nir_lower_deref_copy_instr(struct nir_builder *b,
3393 nir_intrinsic_instr *copy);
3394 bool nir_lower_var_copies(nir_shader *shader);
3395
3396 void nir_fixup_deref_modes(nir_shader *shader);
3397
3398 bool nir_lower_global_vars_to_local(nir_shader *shader);
3399
3400 typedef enum {
3401 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3402 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3403 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3404 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3405 } nir_lower_array_deref_of_vec_options;
3406
3407 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3408 nir_lower_array_deref_of_vec_options options);
3409
3410 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3411
3412 bool nir_lower_locals_to_regs(nir_shader *shader);
3413
3414 void nir_lower_io_to_temporaries(nir_shader *shader,
3415 nir_function_impl *entrypoint,
3416 bool outputs, bool inputs);
3417
3418 bool nir_lower_vars_to_scratch(nir_shader *shader,
3419 nir_variable_mode modes,
3420 int size_threshold,
3421 glsl_type_size_align_func size_align);
3422
3423 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3424
3425 void nir_gather_ssa_types(nir_function_impl *impl,
3426 BITSET_WORD *float_types,
3427 BITSET_WORD *int_types);
3428
3429 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3430 int (*type_size)(const struct glsl_type *, bool));
3431
3432 /* Some helpers to do very simple linking */
3433 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3434 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3435 uint64_t *used_by_other_stage,
3436 uint64_t *used_by_other_stage_patches);
3437 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3438 bool default_to_smooth_interp);
3439 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3440 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3441
3442
3443 void nir_assign_io_var_locations(struct exec_list *var_list,
3444 unsigned *size,
3445 gl_shader_stage stage);
3446
3447 typedef enum {
3448 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
3449 * to 32-bit operations. This is only valid for nir_var_shader_in/out
3450 * modes.
3451 */
3452 nir_lower_io_lower_64bit_to_32 = (1 << 0),
3453
3454 /* If set, this forces all non-flat fragment shader inputs to be
3455 * interpolated as if with the "sample" qualifier. This requires
3456 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3457 */
3458 nir_lower_io_force_sample_interpolation = (1 << 1),
3459 } nir_lower_io_options;
3460 bool nir_lower_io(nir_shader *shader,
3461 nir_variable_mode modes,
3462 int (*type_size)(const struct glsl_type *, bool),
3463 nir_lower_io_options);
3464
3465 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3466
3467 bool
3468 nir_lower_vars_to_explicit_types(nir_shader *shader,
3469 nir_variable_mode modes,
3470 glsl_type_size_align_func type_info);
3471
3472 typedef enum {
3473 /**
3474 * An address format which is a simple 32-bit global GPU address.
3475 */
3476 nir_address_format_32bit_global,
3477
3478 /**
3479 * An address format which is a simple 64-bit global GPU address.
3480 */
3481 nir_address_format_64bit_global,
3482
3483 /**
3484 * An address format which is a bounds-checked 64-bit global GPU address.
3485 *
3486 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3487 * address stored with the low bits in .x and high bits in .y, .z is a
3488 * size, and .w is an offset. When the final I/O operation is lowered, .w
3489 * is checked against .z and the operation is predicated on the result.
3490 */
3491 nir_address_format_64bit_bounded_global,
3492
3493 /**
3494 * An address format which is comprised of a vec2 where the first
3495 * component is a buffer index and the second is an offset.
3496 */
3497 nir_address_format_32bit_index_offset,
3498
3499 /**
3500 * An address format which is a simple 32-bit offset.
3501 */
3502 nir_address_format_32bit_offset,
3503
3504 /**
3505 * An address format representing a purely logical addressing model. In
3506 * this model, all deref chains must be complete from the dereference
3507 * operation to the variable. Cast derefs are not allowed. These
3508 * addresses will be 32-bit scalars but the format is immaterial because
3509 * you can always chase the chain.
3510 */
3511 nir_address_format_logical,
3512 } nir_address_format;
3513
3514 static inline unsigned
3515 nir_address_format_bit_size(nir_address_format addr_format)
3516 {
3517 switch (addr_format) {
3518 case nir_address_format_32bit_global: return 32;
3519 case nir_address_format_64bit_global: return 64;
3520 case nir_address_format_64bit_bounded_global: return 32;
3521 case nir_address_format_32bit_index_offset: return 32;
3522 case nir_address_format_32bit_offset: return 32;
3523 case nir_address_format_logical: return 32;
3524 }
3525 unreachable("Invalid address format");
3526 }
3527
3528 static inline unsigned
3529 nir_address_format_num_components(nir_address_format addr_format)
3530 {
3531 switch (addr_format) {
3532 case nir_address_format_32bit_global: return 1;
3533 case nir_address_format_64bit_global: return 1;
3534 case nir_address_format_64bit_bounded_global: return 4;
3535 case nir_address_format_32bit_index_offset: return 2;
3536 case nir_address_format_32bit_offset: return 1;
3537 case nir_address_format_logical: return 1;
3538 }
3539 unreachable("Invalid address format");
3540 }
3541
3542 static inline const struct glsl_type *
3543 nir_address_format_to_glsl_type(nir_address_format addr_format)
3544 {
3545 unsigned bit_size = nir_address_format_bit_size(addr_format);
3546 assert(bit_size == 32 || bit_size == 64);
3547 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3548 nir_address_format_num_components(addr_format));
3549 }
3550
3551 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3552
3553 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3554 nir_address_format addr_format);
3555
3556 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3557 nir_address_format addr_format);
3558
3559 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3560 nir_deref_instr *deref,
3561 nir_ssa_def *base_addr,
3562 nir_address_format addr_format);
3563 void nir_lower_explicit_io_instr(struct nir_builder *b,
3564 nir_intrinsic_instr *io_instr,
3565 nir_ssa_def *addr,
3566 nir_address_format addr_format);
3567
3568 bool nir_lower_explicit_io(nir_shader *shader,
3569 nir_variable_mode modes,
3570 nir_address_format);
3571
3572 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3573 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3574
3575 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3576
3577 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3578 bool nir_lower_regs_to_ssa(nir_shader *shader);
3579 bool nir_lower_vars_to_ssa(nir_shader *shader);
3580
3581 bool nir_remove_dead_derefs(nir_shader *shader);
3582 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3583 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3584 bool nir_lower_constant_initializers(nir_shader *shader,
3585 nir_variable_mode modes);
3586
3587 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3588 bool nir_lower_vec_to_movs(nir_shader *shader);
3589 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3590 bool alpha_to_one);
3591 bool nir_lower_alu(nir_shader *shader);
3592
3593 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3594 bool always_precise, bool have_ffma);
3595
3596 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3597 bool nir_lower_bool_to_float(nir_shader *shader);
3598 bool nir_lower_bool_to_int32(nir_shader *shader);
3599 bool nir_lower_int_to_float(nir_shader *shader);
3600 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3601 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3602 bool nir_lower_phis_to_scalar(nir_shader *shader);
3603 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3604 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3605 bool outputs_only);
3606 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3607 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3608 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3609
3610 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3611 void nir_lower_viewport_transform(nir_shader *shader);
3612 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3613
3614 typedef struct nir_lower_subgroups_options {
3615 uint8_t subgroup_size;
3616 uint8_t ballot_bit_size;
3617 bool lower_to_scalar:1;
3618 bool lower_vote_trivial:1;
3619 bool lower_vote_eq_to_ballot:1;
3620 bool lower_subgroup_masks:1;
3621 bool lower_shuffle:1;
3622 bool lower_shuffle_to_32bit:1;
3623 bool lower_quad:1;
3624 } nir_lower_subgroups_options;
3625
3626 bool nir_lower_subgroups(nir_shader *shader,
3627 const nir_lower_subgroups_options *options);
3628
3629 bool nir_lower_system_values(nir_shader *shader);
3630
3631 enum PACKED nir_lower_tex_packing {
3632 nir_lower_tex_packing_none = 0,
3633 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3634 * or unsigned ints based on the sampler type
3635 */
3636 nir_lower_tex_packing_16,
3637 /* The sampler returns 1 32-bit word of 4x8 unorm */
3638 nir_lower_tex_packing_8,
3639 };
3640
3641 typedef struct nir_lower_tex_options {
3642 /**
3643 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3644 * sampler types a texture projector is lowered.
3645 */
3646 unsigned lower_txp;
3647
3648 /**
3649 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3650 */
3651 bool lower_txf_offset;
3652
3653 /**
3654 * If true, lower away nir_tex_src_offset for all rect textures.
3655 */
3656 bool lower_rect_offset;
3657
3658 /**
3659 * If true, lower rect textures to 2D, using txs to fetch the
3660 * texture dimensions and dividing the texture coords by the
3661 * texture dims to normalize.
3662 */
3663 bool lower_rect;
3664
3665 /**
3666 * If true, convert yuv to rgb.
3667 */
3668 unsigned lower_y_uv_external;
3669 unsigned lower_y_u_v_external;
3670 unsigned lower_yx_xuxv_external;
3671 unsigned lower_xy_uxvx_external;
3672 unsigned lower_ayuv_external;
3673 unsigned lower_xyuv_external;
3674
3675 /**
3676 * To emulate certain texture wrap modes, this can be used
3677 * to saturate the specified tex coord to [0.0, 1.0]. The
3678 * bits are according to sampler #, ie. if, for example:
3679 *
3680 * (conf->saturate_s & (1 << n))
3681 *
3682 * is true, then the s coord for sampler n is saturated.
3683 *
3684 * Note that clamping must happen *after* projector lowering
3685 * so any projected texture sample instruction with a clamped
3686 * coordinate gets automatically lowered, regardless of the
3687 * 'lower_txp' setting.
3688 */
3689 unsigned saturate_s;
3690 unsigned saturate_t;
3691 unsigned saturate_r;
3692
3693 /* Bitmask of textures that need swizzling.
3694 *
3695 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3696 * swizzles[texture_index] is applied to the result of the texturing
3697 * operation.
3698 */
3699 unsigned swizzle_result;
3700
3701 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3702 * while 4 and 5 represent 0 and 1 respectively.
3703 */
3704 uint8_t swizzles[32][4];
3705
3706 /* Can be used to scale sampled values in range required by the format. */
3707 float scale_factors[32];
3708
3709 /**
3710 * Bitmap of textures that need srgb to linear conversion. If
3711 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3712 * of the texture are lowered to linear.
3713 */
3714 unsigned lower_srgb;
3715
3716 /**
3717 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3718 * LODs to nir_texop_txl.
3719 */
3720 bool lower_tex_without_implicit_lod;
3721
3722 /**
3723 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3724 */
3725 bool lower_txd_cube_map;
3726
3727 /**
3728 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3729 */
3730 bool lower_txd_3d;
3731
3732 /**
3733 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3734 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3735 * with lower_txd_cube_map.
3736 */
3737 bool lower_txd_shadow;
3738
3739 /**
3740 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3741 * Implies lower_txd_cube_map and lower_txd_shadow.
3742 */
3743 bool lower_txd;
3744
3745 /**
3746 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3747 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3748 */
3749 bool lower_txb_shadow_clamp;
3750
3751 /**
3752 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3753 * with nir_texop_txl. This includes cube maps.
3754 */
3755 bool lower_txd_shadow_clamp;
3756
3757 /**
3758 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3759 * with nir_texop_txl. This includes cube maps.
3760 */
3761 bool lower_txd_offset_clamp;
3762
3763 /**
3764 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3765 * sampler is bindless.
3766 */
3767 bool lower_txd_clamp_bindless_sampler;
3768
3769 /**
3770 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3771 * sampler index is not statically determinable to be less than 16.
3772 */
3773 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3774
3775 /**
3776 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3777 * 0-lod followed by a nir_ishr.
3778 */
3779 bool lower_txs_lod;
3780
3781 /**
3782 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3783 * mixed-up tg4 locations.
3784 */
3785 bool lower_tg4_broadcom_swizzle;
3786
3787 /**
3788 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3789 */
3790 bool lower_tg4_offsets;
3791
3792 enum nir_lower_tex_packing lower_tex_packing[32];
3793 } nir_lower_tex_options;
3794
3795 bool nir_lower_tex(nir_shader *shader,
3796 const nir_lower_tex_options *options);
3797
3798 enum nir_lower_non_uniform_access_type {
3799 nir_lower_non_uniform_ubo_access = (1 << 0),
3800 nir_lower_non_uniform_ssbo_access = (1 << 1),
3801 nir_lower_non_uniform_texture_access = (1 << 2),
3802 nir_lower_non_uniform_image_access = (1 << 3),
3803 };
3804
3805 bool nir_lower_non_uniform_access(nir_shader *shader,
3806 enum nir_lower_non_uniform_access_type);
3807
3808 bool nir_lower_idiv(nir_shader *shader);
3809
3810 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3811
3812 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3813 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables);
3814 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3815 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3816
3817 bool nir_lower_frexp(nir_shader *nir);
3818
3819 void nir_lower_two_sided_color(nir_shader *shader);
3820
3821 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3822
3823 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3824 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3825 const gl_state_index16 *uniform_state_tokens);
3826
3827 typedef struct nir_lower_wpos_ytransform_options {
3828 gl_state_index16 state_tokens[STATE_LENGTH];
3829 bool fs_coord_origin_upper_left :1;
3830 bool fs_coord_origin_lower_left :1;
3831 bool fs_coord_pixel_center_integer :1;
3832 bool fs_coord_pixel_center_half_integer :1;
3833 } nir_lower_wpos_ytransform_options;
3834
3835 bool nir_lower_wpos_ytransform(nir_shader *shader,
3836 const nir_lower_wpos_ytransform_options *options);
3837 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3838
3839 bool nir_lower_fb_read(nir_shader *shader);
3840
3841 typedef struct nir_lower_drawpixels_options {
3842 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3843 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3844 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3845 unsigned drawpix_sampler;
3846 unsigned pixelmap_sampler;
3847 bool pixel_maps :1;
3848 bool scale_and_bias :1;
3849 } nir_lower_drawpixels_options;
3850
3851 void nir_lower_drawpixels(nir_shader *shader,
3852 const nir_lower_drawpixels_options *options);
3853
3854 typedef struct nir_lower_bitmap_options {
3855 unsigned sampler;
3856 bool swizzle_xxxx;
3857 } nir_lower_bitmap_options;
3858
3859 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3860
3861 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3862
3863 typedef enum {
3864 nir_lower_int_source_mods = 1 << 0,
3865 nir_lower_float_source_mods = 1 << 1,
3866 nir_lower_triop_abs = 1 << 2,
3867 nir_lower_all_source_mods = (1 << 3) - 1
3868 } nir_lower_to_source_mods_flags;
3869
3870
3871 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3872
3873 bool nir_lower_gs_intrinsics(nir_shader *shader);
3874
3875 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3876
3877 bool nir_lower_bit_size(nir_shader *shader,
3878 nir_lower_bit_size_callback callback,
3879 void *callback_data);
3880
3881 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3882 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3883
3884 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3885 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3886 nir_lower_doubles_options options);
3887 bool nir_lower_pack(nir_shader *shader);
3888
3889 typedef enum {
3890 nir_lower_interpolation_at_sample = (1 << 1),
3891 nir_lower_interpolation_at_offset = (1 << 2),
3892 nir_lower_interpolation_centroid = (1 << 3),
3893 nir_lower_interpolation_pixel = (1 << 4),
3894 nir_lower_interpolation_sample = (1 << 5),
3895 } nir_lower_interpolation_options;
3896
3897 bool nir_lower_interpolation(nir_shader *shader,
3898 nir_lower_interpolation_options options);
3899
3900 bool nir_normalize_cubemap_coords(nir_shader *shader);
3901
3902 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3903
3904 void nir_loop_analyze_impl(nir_function_impl *impl,
3905 nir_variable_mode indirect_mask);
3906
3907 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3908
3909 bool nir_repair_ssa_impl(nir_function_impl *impl);
3910 bool nir_repair_ssa(nir_shader *shader);
3911
3912 void nir_convert_loop_to_lcssa(nir_loop *loop);
3913
3914 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3915 * registers. If false, convert all values (even those not involved in a phi
3916 * node) to registers.
3917 */
3918 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3919
3920 bool nir_lower_phis_to_regs_block(nir_block *block);
3921 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3922 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3923
3924 /* This is here for unit tests. */
3925 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
3926
3927 bool nir_opt_comparison_pre(nir_shader *shader);
3928
3929 bool nir_opt_algebraic(nir_shader *shader);
3930 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3931 bool nir_opt_algebraic_late(nir_shader *shader);
3932 bool nir_opt_constant_folding(nir_shader *shader);
3933
3934 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3935
3936 bool nir_copy_prop(nir_shader *shader);
3937
3938 bool nir_opt_copy_prop_vars(nir_shader *shader);
3939
3940 bool nir_opt_cse(nir_shader *shader);
3941
3942 bool nir_opt_dce(nir_shader *shader);
3943
3944 bool nir_opt_dead_cf(nir_shader *shader);
3945
3946 bool nir_opt_dead_write_vars(nir_shader *shader);
3947
3948 bool nir_opt_deref_impl(nir_function_impl *impl);
3949 bool nir_opt_deref(nir_shader *shader);
3950
3951 bool nir_opt_find_array_copies(nir_shader *shader);
3952
3953 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3954
3955 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3956
3957 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3958
3959 bool nir_opt_intrinsics(nir_shader *shader);
3960
3961 bool nir_opt_large_constants(nir_shader *shader,
3962 glsl_type_size_align_func size_align,
3963 unsigned threshold);
3964
3965 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3966
3967 typedef enum {
3968 nir_move_const_undef = (1 << 0),
3969 nir_move_load_ubo = (1 << 1),
3970 nir_move_load_input = (1 << 2),
3971 nir_move_comparisons = (1 << 3),
3972 } nir_move_options;
3973
3974 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
3975
3976 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
3977
3978 bool nir_opt_move(nir_shader *shader, nir_move_options options);
3979
3980 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3981 bool indirect_load_ok, bool expensive_alu_ok);
3982
3983 bool nir_opt_rematerialize_compares(nir_shader *shader);
3984
3985 bool nir_opt_remove_phis(nir_shader *shader);
3986 bool nir_opt_remove_phis_block(nir_block *block);
3987
3988 bool nir_opt_shrink_load(nir_shader *shader);
3989
3990 bool nir_opt_trivial_continues(nir_shader *shader);
3991
3992 bool nir_opt_undef(nir_shader *shader);
3993
3994 bool nir_opt_vectorize(nir_shader *shader);
3995
3996 bool nir_opt_conditional_discard(nir_shader *shader);
3997
3998 void nir_strip(nir_shader *shader);
3999
4000 void nir_sweep(nir_shader *shader);
4001
4002 void nir_remap_dual_slot_attributes(nir_shader *shader,
4003 uint64_t *dual_slot_inputs);
4004 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4005
4006 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4007 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4008
4009 static inline bool
4010 nir_variable_is_in_ubo(const nir_variable *var)
4011 {
4012 return (var->data.mode == nir_var_mem_ubo &&
4013 var->interface_type != NULL);
4014 }
4015
4016 static inline bool
4017 nir_variable_is_in_ssbo(const nir_variable *var)
4018 {
4019 return (var->data.mode == nir_var_mem_ssbo &&
4020 var->interface_type != NULL);
4021 }
4022
4023 static inline bool
4024 nir_variable_is_in_block(const nir_variable *var)
4025 {
4026 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4027 }
4028
4029 #ifdef __cplusplus
4030 } /* extern "C" */
4031 #endif
4032
4033 #endif /* NIR_H */