8b5e777246a0c5fd8bc857017d24c59edc36be7e
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 #define NIR_STREAM_PACKED (1 << 8)
64 typedef uint8_t nir_component_mask_t;
65
66 /** Defines a cast function
67 *
68 * This macro defines a cast function from in_type to out_type where
69 * out_type is some structure type that contains a field of type out_type.
70 *
71 * Note that you have to be a bit careful as the generated cast function
72 * destroys constness.
73 */
74 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
75 type_field, type_value) \
76 static inline out_type * \
77 name(const in_type *parent) \
78 { \
79 assert(parent && parent->type_field == type_value); \
80 return exec_node_data(out_type, parent, field); \
81 }
82
83 struct nir_function;
84 struct nir_shader;
85 struct nir_instr;
86 struct nir_builder;
87
88
89 /**
90 * Description of built-in state associated with a uniform
91 *
92 * \sa nir_variable::state_slots
93 */
94 typedef struct {
95 gl_state_index16 tokens[STATE_LENGTH];
96 uint16_t swizzle;
97 } nir_state_slot;
98
99 typedef enum {
100 nir_var_shader_in = (1 << 0),
101 nir_var_shader_out = (1 << 1),
102 nir_var_shader_temp = (1 << 2),
103 nir_var_function_temp = (1 << 3),
104 nir_var_uniform = (1 << 4),
105 nir_var_mem_ubo = (1 << 5),
106 nir_var_system_value = (1 << 6),
107 nir_var_mem_ssbo = (1 << 7),
108 nir_var_mem_shared = (1 << 8),
109 nir_var_mem_global = (1 << 9),
110 nir_var_mem_push_const = (1 << 10), /* not actually used for variables */
111 nir_num_variable_modes = 11,
112 nir_var_all = (1 << nir_num_variable_modes) - 1,
113 } nir_variable_mode;
114
115 /**
116 * Rounding modes.
117 */
118 typedef enum {
119 nir_rounding_mode_undef = 0,
120 nir_rounding_mode_rtne = 1, /* round to nearest even */
121 nir_rounding_mode_ru = 2, /* round up */
122 nir_rounding_mode_rd = 3, /* round down */
123 nir_rounding_mode_rtz = 4, /* round towards zero */
124 } nir_rounding_mode;
125
126 typedef union {
127 bool b;
128 float f32;
129 double f64;
130 int8_t i8;
131 uint8_t u8;
132 int16_t i16;
133 uint16_t u16;
134 int32_t i32;
135 uint32_t u32;
136 int64_t i64;
137 uint64_t u64;
138 } nir_const_value;
139
140 #define nir_const_value_to_array(arr, c, components, m) \
141 { \
142 for (unsigned i = 0; i < components; ++i) \
143 arr[i] = c[i].m; \
144 } while (false)
145
146 static inline nir_const_value
147 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
148 {
149 nir_const_value v;
150 memset(&v, 0, sizeof(v));
151
152 switch (bit_size) {
153 case 1: v.b = x; break;
154 case 8: v.u8 = x; break;
155 case 16: v.u16 = x; break;
156 case 32: v.u32 = x; break;
157 case 64: v.u64 = x; break;
158 default:
159 unreachable("Invalid bit size");
160 }
161
162 return v;
163 }
164
165 static inline nir_const_value
166 nir_const_value_for_int(int64_t i, unsigned bit_size)
167 {
168 nir_const_value v;
169 memset(&v, 0, sizeof(v));
170
171 assert(bit_size <= 64);
172 if (bit_size < 64) {
173 assert(i >= (-(1ll << (bit_size - 1))));
174 assert(i < (1ll << (bit_size - 1)));
175 }
176
177 return nir_const_value_for_raw_uint(i, bit_size);
178 }
179
180 static inline nir_const_value
181 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
182 {
183 nir_const_value v;
184 memset(&v, 0, sizeof(v));
185
186 assert(bit_size <= 64);
187 if (bit_size < 64)
188 assert(u < (1ull << bit_size));
189
190 return nir_const_value_for_raw_uint(u, bit_size);
191 }
192
193 static inline nir_const_value
194 nir_const_value_for_bool(bool b, unsigned bit_size)
195 {
196 /* Booleans use a 0/-1 convention */
197 return nir_const_value_for_int(-(int)b, bit_size);
198 }
199
200 /* This one isn't inline because it requires half-float conversion */
201 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
202
203 static inline int64_t
204 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
205 {
206 switch (bit_size) {
207 /* int1_t uses 0/-1 convention */
208 case 1: return -(int)value.b;
209 case 8: return value.i8;
210 case 16: return value.i16;
211 case 32: return value.i32;
212 case 64: return value.i64;
213 default:
214 unreachable("Invalid bit size");
215 }
216 }
217
218 static inline uint64_t
219 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
220 {
221 switch (bit_size) {
222 case 1: return value.b;
223 case 8: return value.u8;
224 case 16: return value.u16;
225 case 32: return value.u32;
226 case 64: return value.u64;
227 default:
228 unreachable("Invalid bit size");
229 }
230 }
231
232 static inline bool
233 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
234 {
235 int64_t i = nir_const_value_as_int(value, bit_size);
236
237 /* Booleans of any size use 0/-1 convention */
238 assert(i == 0 || i == -1);
239
240 return i;
241 }
242
243 /* This one isn't inline because it requires half-float conversion */
244 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
245
246 typedef struct nir_constant {
247 /**
248 * Value of the constant.
249 *
250 * The field used to back the values supplied by the constant is determined
251 * by the type associated with the \c nir_variable. Constants may be
252 * scalars, vectors, or matrices.
253 */
254 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
255
256 /* we could get this from the var->type but makes clone *much* easier to
257 * not have to care about the type.
258 */
259 unsigned num_elements;
260
261 /* Array elements / Structure Fields */
262 struct nir_constant **elements;
263 } nir_constant;
264
265 /**
266 * \brief Layout qualifiers for gl_FragDepth.
267 *
268 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
269 * with a layout qualifier.
270 */
271 typedef enum {
272 nir_depth_layout_none, /**< No depth layout is specified. */
273 nir_depth_layout_any,
274 nir_depth_layout_greater,
275 nir_depth_layout_less,
276 nir_depth_layout_unchanged
277 } nir_depth_layout;
278
279 /**
280 * Enum keeping track of how a variable was declared.
281 */
282 typedef enum {
283 /**
284 * Normal declaration.
285 */
286 nir_var_declared_normally = 0,
287
288 /**
289 * Variable is implicitly generated by the compiler and should not be
290 * visible via the API.
291 */
292 nir_var_hidden,
293 } nir_var_declaration_type;
294
295 /**
296 * Either a uniform, global variable, shader input, or shader output. Based on
297 * ir_variable - it should be easy to translate between the two.
298 */
299
300 typedef struct nir_variable {
301 struct exec_node node;
302
303 /**
304 * Declared type of the variable
305 */
306 const struct glsl_type *type;
307
308 /**
309 * Declared name of the variable
310 */
311 char *name;
312
313 struct nir_variable_data {
314 /**
315 * Storage class of the variable.
316 *
317 * \sa nir_variable_mode
318 */
319 nir_variable_mode mode:11;
320
321 /**
322 * Is the variable read-only?
323 *
324 * This is set for variables declared as \c const, shader inputs,
325 * and uniforms.
326 */
327 unsigned read_only:1;
328 unsigned centroid:1;
329 unsigned sample:1;
330 unsigned patch:1;
331 unsigned invariant:1;
332
333 /**
334 * Can this variable be coalesced with another?
335 *
336 * This is set by nir_lower_io_to_temporaries to say that any
337 * copies involving this variable should stay put. Propagating it can
338 * duplicate the resulting load/store, which is not wanted, and may
339 * result in a load/store of the variable with an indirect offset which
340 * the backend may not be able to handle.
341 */
342 unsigned cannot_coalesce:1;
343
344 /**
345 * When separate shader programs are enabled, only input/outputs between
346 * the stages of a multi-stage separate program can be safely removed
347 * from the shader interface. Other input/outputs must remains active.
348 *
349 * This is also used to make sure xfb varyings that are unused by the
350 * fragment shader are not removed.
351 */
352 unsigned always_active_io:1;
353
354 /**
355 * Interpolation mode for shader inputs / outputs
356 *
357 * \sa glsl_interp_mode
358 */
359 unsigned interpolation:2;
360
361 /**
362 * If non-zero, then this variable may be packed along with other variables
363 * into a single varying slot, so this offset should be applied when
364 * accessing components. For example, an offset of 1 means that the x
365 * component of this variable is actually stored in component y of the
366 * location specified by \c location.
367 */
368 unsigned location_frac:2;
369
370 /**
371 * If true, this variable represents an array of scalars that should
372 * be tightly packed. In other words, consecutive array elements
373 * should be stored one component apart, rather than one slot apart.
374 */
375 unsigned compact:1;
376
377 /**
378 * Whether this is a fragment shader output implicitly initialized with
379 * the previous contents of the specified render target at the
380 * framebuffer location corresponding to this shader invocation.
381 */
382 unsigned fb_fetch_output:1;
383
384 /**
385 * Non-zero if this variable is considered bindless as defined by
386 * ARB_bindless_texture.
387 */
388 unsigned bindless:1;
389
390 /**
391 * Was an explicit binding set in the shader?
392 */
393 unsigned explicit_binding:1;
394
395 /**
396 * Was a transfer feedback buffer set in the shader?
397 */
398 unsigned explicit_xfb_buffer:1;
399
400 /**
401 * Was a transfer feedback stride set in the shader?
402 */
403 unsigned explicit_xfb_stride:1;
404
405 /**
406 * Was an explicit offset set in the shader?
407 */
408 unsigned explicit_offset:1;
409
410 /**
411 * How the variable was declared. See nir_var_declaration_type.
412 *
413 * This is used to detect variables generated by the compiler, so should
414 * not be visible via the API.
415 */
416 unsigned how_declared:2;
417
418 /**
419 * \brief Layout qualifier for gl_FragDepth.
420 *
421 * This is not equal to \c ir_depth_layout_none if and only if this
422 * variable is \c gl_FragDepth and a layout qualifier is specified.
423 */
424 nir_depth_layout depth_layout:3;
425
426 /**
427 * Vertex stream output identifier.
428 *
429 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
430 * indicate the stream of the i-th component.
431 */
432 unsigned stream:9;
433
434 /**
435 * Access flags for memory variables (SSBO/global), image uniforms, and
436 * bindless images in uniforms/inputs/outputs.
437 */
438 enum gl_access_qualifier access:8;
439
440 /**
441 * Descriptor set binding for sampler or UBO.
442 */
443 unsigned descriptor_set:5;
444
445 /**
446 * output index for dual source blending.
447 */
448 unsigned index;
449
450 /**
451 * Initial binding point for a sampler or UBO.
452 *
453 * For array types, this represents the binding point for the first element.
454 */
455 unsigned binding;
456
457 /**
458 * Storage location of the base of this variable
459 *
460 * The precise meaning of this field depends on the nature of the variable.
461 *
462 * - Vertex shader input: one of the values from \c gl_vert_attrib.
463 * - Vertex shader output: one of the values from \c gl_varying_slot.
464 * - Geometry shader input: one of the values from \c gl_varying_slot.
465 * - Geometry shader output: one of the values from \c gl_varying_slot.
466 * - Fragment shader input: one of the values from \c gl_varying_slot.
467 * - Fragment shader output: one of the values from \c gl_frag_result.
468 * - Uniforms: Per-stage uniform slot number for default uniform block.
469 * - Uniforms: Index within the uniform block definition for UBO members.
470 * - Non-UBO Uniforms: uniform slot number.
471 * - Other: This field is not currently used.
472 *
473 * If the variable is a uniform, shader input, or shader output, and the
474 * slot has not been assigned, the value will be -1.
475 */
476 int location;
477
478 /**
479 * The actual location of the variable in the IR. Only valid for inputs,
480 * outputs, and uniforms (including samplers and images).
481 */
482 unsigned driver_location;
483
484 /**
485 * Location an atomic counter or transform feedback is stored at.
486 */
487 unsigned offset;
488
489 union {
490 struct {
491 /** Image internal format if specified explicitly, otherwise GL_NONE. */
492 uint16_t format; /* GLenum */
493 } image;
494
495 struct {
496 /**
497 * Transform feedback buffer.
498 */
499 uint16_t buffer:2;
500
501 /**
502 * Transform feedback stride.
503 */
504 uint16_t stride;
505 } xfb;
506 };
507 } data;
508
509 /**
510 * Identifier for this variable generated by nir_index_vars() that is unique
511 * among other variables in the same exec_list.
512 */
513 unsigned index;
514
515 /* Number of nir_variable_data members */
516 uint16_t num_members;
517
518 /**
519 * Built-in state that backs this uniform
520 *
521 * Once set at variable creation, \c state_slots must remain invariant.
522 * This is because, ideally, this array would be shared by all clones of
523 * this variable in the IR tree. In other words, we'd really like for it
524 * to be a fly-weight.
525 *
526 * If the variable is not a uniform, \c num_state_slots will be zero and
527 * \c state_slots will be \c NULL.
528 */
529 /*@{*/
530 uint16_t num_state_slots; /**< Number of state slots used */
531 nir_state_slot *state_slots; /**< State descriptors. */
532 /*@}*/
533
534 /**
535 * Constant expression assigned in the initializer of the variable
536 *
537 * This field should only be used temporarily by creators of NIR shaders
538 * and then lower_constant_initializers can be used to get rid of them.
539 * Most of the rest of NIR ignores this field or asserts that it's NULL.
540 */
541 nir_constant *constant_initializer;
542
543 /**
544 * For variables that are in an interface block or are an instance of an
545 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
546 *
547 * \sa ir_variable::location
548 */
549 const struct glsl_type *interface_type;
550
551 /**
552 * Description of per-member data for per-member struct variables
553 *
554 * This is used for variables which are actually an amalgamation of
555 * multiple entities such as a struct of built-in values or a struct of
556 * inputs each with their own layout specifier. This is only allowed on
557 * variables with a struct or array of array of struct type.
558 */
559 struct nir_variable_data *members;
560 } nir_variable;
561
562 #define nir_foreach_variable(var, var_list) \
563 foreach_list_typed(nir_variable, var, node, var_list)
564
565 #define nir_foreach_variable_safe(var, var_list) \
566 foreach_list_typed_safe(nir_variable, var, node, var_list)
567
568 static inline bool
569 nir_variable_is_global(const nir_variable *var)
570 {
571 return var->data.mode != nir_var_function_temp;
572 }
573
574 typedef struct nir_register {
575 struct exec_node node;
576
577 unsigned num_components; /** < number of vector components */
578 unsigned num_array_elems; /** < size of array (0 for no array) */
579
580 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
581 uint8_t bit_size;
582
583 /** generic register index. */
584 unsigned index;
585
586 /** only for debug purposes, can be NULL */
587 const char *name;
588
589 /** set of nir_srcs where this register is used (read from) */
590 struct list_head uses;
591
592 /** set of nir_dests where this register is defined (written to) */
593 struct list_head defs;
594
595 /** set of nir_ifs where this register is used as a condition */
596 struct list_head if_uses;
597 } nir_register;
598
599 #define nir_foreach_register(reg, reg_list) \
600 foreach_list_typed(nir_register, reg, node, reg_list)
601 #define nir_foreach_register_safe(reg, reg_list) \
602 foreach_list_typed_safe(nir_register, reg, node, reg_list)
603
604 typedef enum PACKED {
605 nir_instr_type_alu,
606 nir_instr_type_deref,
607 nir_instr_type_call,
608 nir_instr_type_tex,
609 nir_instr_type_intrinsic,
610 nir_instr_type_load_const,
611 nir_instr_type_jump,
612 nir_instr_type_ssa_undef,
613 nir_instr_type_phi,
614 nir_instr_type_parallel_copy,
615 } nir_instr_type;
616
617 typedef struct nir_instr {
618 struct exec_node node;
619 struct nir_block *block;
620 nir_instr_type type;
621
622 /* A temporary for optimization and analysis passes to use for storing
623 * flags. For instance, DCE uses this to store the "dead/live" info.
624 */
625 uint8_t pass_flags;
626
627 /** generic instruction index. */
628 unsigned index;
629 } nir_instr;
630
631 static inline nir_instr *
632 nir_instr_next(nir_instr *instr)
633 {
634 struct exec_node *next = exec_node_get_next(&instr->node);
635 if (exec_node_is_tail_sentinel(next))
636 return NULL;
637 else
638 return exec_node_data(nir_instr, next, node);
639 }
640
641 static inline nir_instr *
642 nir_instr_prev(nir_instr *instr)
643 {
644 struct exec_node *prev = exec_node_get_prev(&instr->node);
645 if (exec_node_is_head_sentinel(prev))
646 return NULL;
647 else
648 return exec_node_data(nir_instr, prev, node);
649 }
650
651 static inline bool
652 nir_instr_is_first(const nir_instr *instr)
653 {
654 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
655 }
656
657 static inline bool
658 nir_instr_is_last(const nir_instr *instr)
659 {
660 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
661 }
662
663 typedef struct nir_ssa_def {
664 /** for debugging only, can be NULL */
665 const char* name;
666
667 /** generic SSA definition index. */
668 unsigned index;
669
670 /** Index into the live_in and live_out bitfields */
671 unsigned live_index;
672
673 /** Instruction which produces this SSA value. */
674 nir_instr *parent_instr;
675
676 /** set of nir_instrs where this register is used (read from) */
677 struct list_head uses;
678
679 /** set of nir_ifs where this register is used as a condition */
680 struct list_head if_uses;
681
682 uint8_t num_components;
683
684 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
685 uint8_t bit_size;
686 } nir_ssa_def;
687
688 struct nir_src;
689
690 typedef struct {
691 nir_register *reg;
692 struct nir_src *indirect; /** < NULL for no indirect offset */
693 unsigned base_offset;
694
695 /* TODO use-def chain goes here */
696 } nir_reg_src;
697
698 typedef struct {
699 nir_instr *parent_instr;
700 struct list_head def_link;
701
702 nir_register *reg;
703 struct nir_src *indirect; /** < NULL for no indirect offset */
704 unsigned base_offset;
705
706 /* TODO def-use chain goes here */
707 } nir_reg_dest;
708
709 struct nir_if;
710
711 typedef struct nir_src {
712 union {
713 /** Instruction that consumes this value as a source. */
714 nir_instr *parent_instr;
715 struct nir_if *parent_if;
716 };
717
718 struct list_head use_link;
719
720 union {
721 nir_reg_src reg;
722 nir_ssa_def *ssa;
723 };
724
725 bool is_ssa;
726 } nir_src;
727
728 static inline nir_src
729 nir_src_init(void)
730 {
731 nir_src src = { { NULL } };
732 return src;
733 }
734
735 #define NIR_SRC_INIT nir_src_init()
736
737 #define nir_foreach_use(src, reg_or_ssa_def) \
738 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
739
740 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
741 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
742
743 #define nir_foreach_if_use(src, reg_or_ssa_def) \
744 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
745
746 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
747 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
748
749 typedef struct {
750 union {
751 nir_reg_dest reg;
752 nir_ssa_def ssa;
753 };
754
755 bool is_ssa;
756 } nir_dest;
757
758 static inline nir_dest
759 nir_dest_init(void)
760 {
761 nir_dest dest = { { { NULL } } };
762 return dest;
763 }
764
765 #define NIR_DEST_INIT nir_dest_init()
766
767 #define nir_foreach_def(dest, reg) \
768 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
769
770 #define nir_foreach_def_safe(dest, reg) \
771 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
772
773 static inline nir_src
774 nir_src_for_ssa(nir_ssa_def *def)
775 {
776 nir_src src = NIR_SRC_INIT;
777
778 src.is_ssa = true;
779 src.ssa = def;
780
781 return src;
782 }
783
784 static inline nir_src
785 nir_src_for_reg(nir_register *reg)
786 {
787 nir_src src = NIR_SRC_INIT;
788
789 src.is_ssa = false;
790 src.reg.reg = reg;
791 src.reg.indirect = NULL;
792 src.reg.base_offset = 0;
793
794 return src;
795 }
796
797 static inline nir_dest
798 nir_dest_for_reg(nir_register *reg)
799 {
800 nir_dest dest = NIR_DEST_INIT;
801
802 dest.reg.reg = reg;
803
804 return dest;
805 }
806
807 static inline unsigned
808 nir_src_bit_size(nir_src src)
809 {
810 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
811 }
812
813 static inline unsigned
814 nir_src_num_components(nir_src src)
815 {
816 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
817 }
818
819 static inline bool
820 nir_src_is_const(nir_src src)
821 {
822 return src.is_ssa &&
823 src.ssa->parent_instr->type == nir_instr_type_load_const;
824 }
825
826 static inline unsigned
827 nir_dest_bit_size(nir_dest dest)
828 {
829 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
830 }
831
832 static inline unsigned
833 nir_dest_num_components(nir_dest dest)
834 {
835 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
836 }
837
838 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
839 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
840
841 typedef struct {
842 nir_src src;
843
844 /**
845 * \name input modifiers
846 */
847 /*@{*/
848 /**
849 * For inputs interpreted as floating point, flips the sign bit. For
850 * inputs interpreted as integers, performs the two's complement negation.
851 */
852 bool negate;
853
854 /**
855 * Clears the sign bit for floating point values, and computes the integer
856 * absolute value for integers. Note that the negate modifier acts after
857 * the absolute value modifier, therefore if both are set then all inputs
858 * will become negative.
859 */
860 bool abs;
861 /*@}*/
862
863 /**
864 * For each input component, says which component of the register it is
865 * chosen from. Note that which elements of the swizzle are used and which
866 * are ignored are based on the write mask for most opcodes - for example,
867 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
868 * a swizzle of {2, x, 1, 0} where x means "don't care."
869 */
870 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
871 } nir_alu_src;
872
873 typedef struct {
874 nir_dest dest;
875
876 /**
877 * \name saturate output modifier
878 *
879 * Only valid for opcodes that output floating-point numbers. Clamps the
880 * output to between 0.0 and 1.0 inclusive.
881 */
882
883 bool saturate;
884
885 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
886 } nir_alu_dest;
887
888 /** NIR sized and unsized types
889 *
890 * The values in this enum are carefully chosen so that the sized type is
891 * just the unsized type OR the number of bits.
892 */
893 typedef enum {
894 nir_type_invalid = 0, /* Not a valid type */
895 nir_type_int = 2,
896 nir_type_uint = 4,
897 nir_type_bool = 6,
898 nir_type_float = 128,
899 nir_type_bool1 = 1 | nir_type_bool,
900 nir_type_bool8 = 8 | nir_type_bool,
901 nir_type_bool16 = 16 | nir_type_bool,
902 nir_type_bool32 = 32 | nir_type_bool,
903 nir_type_int1 = 1 | nir_type_int,
904 nir_type_int8 = 8 | nir_type_int,
905 nir_type_int16 = 16 | nir_type_int,
906 nir_type_int32 = 32 | nir_type_int,
907 nir_type_int64 = 64 | nir_type_int,
908 nir_type_uint1 = 1 | nir_type_uint,
909 nir_type_uint8 = 8 | nir_type_uint,
910 nir_type_uint16 = 16 | nir_type_uint,
911 nir_type_uint32 = 32 | nir_type_uint,
912 nir_type_uint64 = 64 | nir_type_uint,
913 nir_type_float16 = 16 | nir_type_float,
914 nir_type_float32 = 32 | nir_type_float,
915 nir_type_float64 = 64 | nir_type_float,
916 } nir_alu_type;
917
918 #define NIR_ALU_TYPE_SIZE_MASK 0x79
919 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
920
921 static inline unsigned
922 nir_alu_type_get_type_size(nir_alu_type type)
923 {
924 return type & NIR_ALU_TYPE_SIZE_MASK;
925 }
926
927 static inline unsigned
928 nir_alu_type_get_base_type(nir_alu_type type)
929 {
930 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
931 }
932
933 static inline nir_alu_type
934 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
935 {
936 switch (base_type) {
937 case GLSL_TYPE_BOOL:
938 return nir_type_bool1;
939 break;
940 case GLSL_TYPE_UINT:
941 return nir_type_uint32;
942 break;
943 case GLSL_TYPE_INT:
944 return nir_type_int32;
945 break;
946 case GLSL_TYPE_UINT16:
947 return nir_type_uint16;
948 break;
949 case GLSL_TYPE_INT16:
950 return nir_type_int16;
951 break;
952 case GLSL_TYPE_UINT8:
953 return nir_type_uint8;
954 case GLSL_TYPE_INT8:
955 return nir_type_int8;
956 case GLSL_TYPE_UINT64:
957 return nir_type_uint64;
958 break;
959 case GLSL_TYPE_INT64:
960 return nir_type_int64;
961 break;
962 case GLSL_TYPE_FLOAT:
963 return nir_type_float32;
964 break;
965 case GLSL_TYPE_FLOAT16:
966 return nir_type_float16;
967 break;
968 case GLSL_TYPE_DOUBLE:
969 return nir_type_float64;
970 break;
971
972 case GLSL_TYPE_SAMPLER:
973 case GLSL_TYPE_IMAGE:
974 case GLSL_TYPE_ATOMIC_UINT:
975 case GLSL_TYPE_STRUCT:
976 case GLSL_TYPE_INTERFACE:
977 case GLSL_TYPE_ARRAY:
978 case GLSL_TYPE_VOID:
979 case GLSL_TYPE_SUBROUTINE:
980 case GLSL_TYPE_FUNCTION:
981 case GLSL_TYPE_ERROR:
982 return nir_type_invalid;
983 }
984
985 unreachable("unknown type");
986 }
987
988 static inline nir_alu_type
989 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
990 {
991 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
992 }
993
994 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
995 nir_rounding_mode rnd);
996
997 static inline nir_op
998 nir_op_vec(unsigned components)
999 {
1000 switch (components) {
1001 case 1: return nir_op_mov;
1002 case 2: return nir_op_vec2;
1003 case 3: return nir_op_vec3;
1004 case 4: return nir_op_vec4;
1005 default: unreachable("bad component count");
1006 }
1007 }
1008
1009 static inline bool
1010 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1011 {
1012 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1013 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1014 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1015 }
1016
1017 static inline bool
1018 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1019 {
1020 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1021 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1022 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1023 }
1024
1025 static inline bool
1026 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1027 {
1028 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1029 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1030 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1031 }
1032
1033 static inline bool
1034 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1035 {
1036 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1037 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1038 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1039 }
1040
1041 static inline bool
1042 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1043 {
1044 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1045 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1046 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1047 }
1048
1049 static inline bool
1050 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1051 {
1052 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1053 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1054 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1055 }
1056
1057 static inline bool
1058 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1059 {
1060 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1061 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1062 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1063 }
1064
1065 static inline nir_rounding_mode
1066 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1067 nir_alu_type type)
1068 {
1069 if (nir_alu_type_get_base_type(type) != nir_type_float)
1070 return nir_rounding_mode_undef;
1071
1072 unsigned bit_size = nir_alu_type_get_type_size(type);
1073
1074 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1075 return nir_rounding_mode_rtz;
1076 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1077 return nir_rounding_mode_rtne;
1078 return nir_rounding_mode_undef;
1079 }
1080
1081 static inline bool
1082 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1083 {
1084 bool result =
1085 nir_has_any_rounding_mode_rtne(execution_mode) ||
1086 nir_has_any_rounding_mode_rtz(execution_mode);
1087 return result;
1088 }
1089
1090 typedef enum {
1091 /**
1092 * Operation where the first two sources are commutative.
1093 *
1094 * For 2-source operations, this just mathematical commutativity. Some
1095 * 3-source operations, like ffma, are only commutative in the first two
1096 * sources.
1097 */
1098 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1099 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1100 } nir_op_algebraic_property;
1101
1102 typedef struct {
1103 const char *name;
1104
1105 unsigned num_inputs;
1106
1107 /**
1108 * The number of components in the output
1109 *
1110 * If non-zero, this is the size of the output and input sizes are
1111 * explicitly given; swizzle and writemask are still in effect, but if
1112 * the output component is masked out, then the input component may
1113 * still be in use.
1114 *
1115 * If zero, the opcode acts in the standard, per-component manner; the
1116 * operation is performed on each component (except the ones that are
1117 * masked out) with the input being taken from the input swizzle for
1118 * that component.
1119 *
1120 * The size of some of the inputs may be given (i.e. non-zero) even
1121 * though output_size is zero; in that case, the inputs with a zero
1122 * size act per-component, while the inputs with non-zero size don't.
1123 */
1124 unsigned output_size;
1125
1126 /**
1127 * The type of vector that the instruction outputs. Note that the
1128 * staurate modifier is only allowed on outputs with the float type.
1129 */
1130
1131 nir_alu_type output_type;
1132
1133 /**
1134 * The number of components in each input
1135 */
1136 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1137
1138 /**
1139 * The type of vector that each input takes. Note that negate and
1140 * absolute value are only allowed on inputs with int or float type and
1141 * behave differently on the two.
1142 */
1143 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1144
1145 nir_op_algebraic_property algebraic_properties;
1146
1147 /* Whether this represents a numeric conversion opcode */
1148 bool is_conversion;
1149 } nir_op_info;
1150
1151 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1152
1153 typedef struct nir_alu_instr {
1154 nir_instr instr;
1155 nir_op op;
1156
1157 /** Indicates that this ALU instruction generates an exact value
1158 *
1159 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1160 * really equivalent to either. This indicates that the value generated by
1161 * this operation is high-precision and any code transformations that touch
1162 * it must ensure that the resulting value is bit-for-bit identical to the
1163 * original.
1164 */
1165 bool exact:1;
1166
1167 /**
1168 * Indicates that this instruction do not cause wrapping to occur, in the
1169 * form of overflow or underflow.
1170 */
1171 bool no_signed_wrap:1;
1172 bool no_unsigned_wrap:1;
1173
1174 nir_alu_dest dest;
1175 nir_alu_src src[];
1176 } nir_alu_instr;
1177
1178 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1179 nir_alu_instr *instr);
1180 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1181 nir_alu_instr *instr);
1182
1183 /* is this source channel used? */
1184 static inline bool
1185 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1186 unsigned channel)
1187 {
1188 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1189 return channel < nir_op_infos[instr->op].input_sizes[src];
1190
1191 return (instr->dest.write_mask >> channel) & 1;
1192 }
1193
1194 static inline nir_component_mask_t
1195 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1196 {
1197 nir_component_mask_t read_mask = 0;
1198 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1199 if (!nir_alu_instr_channel_used(instr, src, c))
1200 continue;
1201
1202 read_mask |= (1 << instr->src[src].swizzle[c]);
1203 }
1204 return read_mask;
1205 }
1206
1207 /**
1208 * Get the number of channels used for a source
1209 */
1210 static inline unsigned
1211 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1212 {
1213 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1214 return nir_op_infos[instr->op].input_sizes[src];
1215
1216 return nir_dest_num_components(instr->dest.dest);
1217 }
1218
1219 static inline bool
1220 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1221 {
1222 switch (instr->op) {
1223 case nir_op_flt:
1224 case nir_op_fge:
1225 case nir_op_feq:
1226 case nir_op_fne:
1227 case nir_op_ilt:
1228 case nir_op_ult:
1229 case nir_op_ige:
1230 case nir_op_uge:
1231 case nir_op_ieq:
1232 case nir_op_ine:
1233 case nir_op_i2b1:
1234 case nir_op_f2b1:
1235 case nir_op_inot:
1236 return true;
1237 default:
1238 return false;
1239 }
1240 }
1241
1242 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1243 nir_alu_type full_type);
1244
1245 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1246 unsigned src1, unsigned src2);
1247
1248 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1249 const nir_alu_instr *alu2,
1250 unsigned src1, unsigned src2);
1251
1252 typedef enum {
1253 nir_deref_type_var,
1254 nir_deref_type_array,
1255 nir_deref_type_array_wildcard,
1256 nir_deref_type_ptr_as_array,
1257 nir_deref_type_struct,
1258 nir_deref_type_cast,
1259 } nir_deref_type;
1260
1261 typedef struct {
1262 nir_instr instr;
1263
1264 /** The type of this deref instruction */
1265 nir_deref_type deref_type;
1266
1267 /** The mode of the underlying variable */
1268 nir_variable_mode mode;
1269
1270 /** The dereferenced type of the resulting pointer value */
1271 const struct glsl_type *type;
1272
1273 union {
1274 /** Variable being dereferenced if deref_type is a deref_var */
1275 nir_variable *var;
1276
1277 /** Parent deref if deref_type is not deref_var */
1278 nir_src parent;
1279 };
1280
1281 /** Additional deref parameters */
1282 union {
1283 struct {
1284 nir_src index;
1285 } arr;
1286
1287 struct {
1288 unsigned index;
1289 } strct;
1290
1291 struct {
1292 unsigned ptr_stride;
1293 } cast;
1294 };
1295
1296 /** Destination to store the resulting "pointer" */
1297 nir_dest dest;
1298 } nir_deref_instr;
1299
1300 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1301
1302 static inline nir_deref_instr *
1303 nir_deref_instr_parent(const nir_deref_instr *instr)
1304 {
1305 if (instr->deref_type == nir_deref_type_var)
1306 return NULL;
1307 else
1308 return nir_src_as_deref(instr->parent);
1309 }
1310
1311 static inline nir_variable *
1312 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1313 {
1314 while (instr->deref_type != nir_deref_type_var) {
1315 if (instr->deref_type == nir_deref_type_cast)
1316 return NULL;
1317
1318 instr = nir_deref_instr_parent(instr);
1319 }
1320
1321 return instr->var;
1322 }
1323
1324 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1325 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1326 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1327
1328 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1329
1330 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1331
1332 typedef struct {
1333 nir_instr instr;
1334
1335 struct nir_function *callee;
1336
1337 unsigned num_params;
1338 nir_src params[];
1339 } nir_call_instr;
1340
1341 #include "nir_intrinsics.h"
1342
1343 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1344
1345 /** Represents an intrinsic
1346 *
1347 * An intrinsic is an instruction type for handling things that are
1348 * more-or-less regular operations but don't just consume and produce SSA
1349 * values like ALU operations do. Intrinsics are not for things that have
1350 * special semantic meaning such as phi nodes and parallel copies.
1351 * Examples of intrinsics include variable load/store operations, system
1352 * value loads, and the like. Even though texturing more-or-less falls
1353 * under this category, texturing is its own instruction type because
1354 * trying to represent texturing with intrinsics would lead to a
1355 * combinatorial explosion of intrinsic opcodes.
1356 *
1357 * By having a single instruction type for handling a lot of different
1358 * cases, optimization passes can look for intrinsics and, for the most
1359 * part, completely ignore them. Each intrinsic type also has a few
1360 * possible flags that govern whether or not they can be reordered or
1361 * eliminated. That way passes like dead code elimination can still work
1362 * on intrisics without understanding the meaning of each.
1363 *
1364 * Each intrinsic has some number of constant indices, some number of
1365 * variables, and some number of sources. What these sources, variables,
1366 * and indices mean depends on the intrinsic and is documented with the
1367 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1368 * instructions are the only types of instruction that can operate on
1369 * variables.
1370 */
1371 typedef struct {
1372 nir_instr instr;
1373
1374 nir_intrinsic_op intrinsic;
1375
1376 nir_dest dest;
1377
1378 /** number of components if this is a vectorized intrinsic
1379 *
1380 * Similarly to ALU operations, some intrinsics are vectorized.
1381 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1382 * For vectorized intrinsics, the num_components field specifies the
1383 * number of destination components and the number of source components
1384 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1385 */
1386 uint8_t num_components;
1387
1388 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1389
1390 nir_src src[];
1391 } nir_intrinsic_instr;
1392
1393 static inline nir_variable *
1394 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1395 {
1396 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1397 }
1398
1399 typedef enum {
1400 /* Memory ordering. */
1401 NIR_MEMORY_ACQUIRE = 1 << 0,
1402 NIR_MEMORY_RELEASE = 1 << 1,
1403
1404 /* Memory visibility operations. */
1405 NIR_MEMORY_MAKE_AVAILABLE = 1 << 3,
1406 NIR_MEMORY_MAKE_VISIBLE = 1 << 4,
1407 } nir_memory_semantics;
1408
1409 typedef enum {
1410 NIR_SCOPE_DEVICE,
1411 NIR_SCOPE_QUEUE_FAMILY,
1412 NIR_SCOPE_WORKGROUP,
1413 NIR_SCOPE_SUBGROUP,
1414 NIR_SCOPE_INVOCATION,
1415 } nir_scope;
1416
1417 /**
1418 * \name NIR intrinsics semantic flags
1419 *
1420 * information about what the compiler can do with the intrinsics.
1421 *
1422 * \sa nir_intrinsic_info::flags
1423 */
1424 typedef enum {
1425 /**
1426 * whether the intrinsic can be safely eliminated if none of its output
1427 * value is not being used.
1428 */
1429 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1430
1431 /**
1432 * Whether the intrinsic can be reordered with respect to any other
1433 * intrinsic, i.e. whether the only reordering dependencies of the
1434 * intrinsic are due to the register reads/writes.
1435 */
1436 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1437 } nir_intrinsic_semantic_flag;
1438
1439 /**
1440 * \name NIR intrinsics const-index flag
1441 *
1442 * Indicates the usage of a const_index slot.
1443 *
1444 * \sa nir_intrinsic_info::index_map
1445 */
1446 typedef enum {
1447 /**
1448 * Generally instructions that take a offset src argument, can encode
1449 * a constant 'base' value which is added to the offset.
1450 */
1451 NIR_INTRINSIC_BASE = 1,
1452
1453 /**
1454 * For store instructions, a writemask for the store.
1455 */
1456 NIR_INTRINSIC_WRMASK,
1457
1458 /**
1459 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1460 */
1461 NIR_INTRINSIC_STREAM_ID,
1462
1463 /**
1464 * The clip-plane id for load_user_clip_plane intrinsic.
1465 */
1466 NIR_INTRINSIC_UCP_ID,
1467
1468 /**
1469 * The amount of data, starting from BASE, that this instruction may
1470 * access. This is used to provide bounds if the offset is not constant.
1471 */
1472 NIR_INTRINSIC_RANGE,
1473
1474 /**
1475 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1476 */
1477 NIR_INTRINSIC_DESC_SET,
1478
1479 /**
1480 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1481 */
1482 NIR_INTRINSIC_BINDING,
1483
1484 /**
1485 * Component offset.
1486 */
1487 NIR_INTRINSIC_COMPONENT,
1488
1489 /**
1490 * Interpolation mode (only meaningful for FS inputs).
1491 */
1492 NIR_INTRINSIC_INTERP_MODE,
1493
1494 /**
1495 * A binary nir_op to use when performing a reduction or scan operation
1496 */
1497 NIR_INTRINSIC_REDUCTION_OP,
1498
1499 /**
1500 * Cluster size for reduction operations
1501 */
1502 NIR_INTRINSIC_CLUSTER_SIZE,
1503
1504 /**
1505 * Parameter index for a load_param intrinsic
1506 */
1507 NIR_INTRINSIC_PARAM_IDX,
1508
1509 /**
1510 * Image dimensionality for image intrinsics
1511 *
1512 * One of GLSL_SAMPLER_DIM_*
1513 */
1514 NIR_INTRINSIC_IMAGE_DIM,
1515
1516 /**
1517 * Non-zero if we are accessing an array image
1518 */
1519 NIR_INTRINSIC_IMAGE_ARRAY,
1520
1521 /**
1522 * Image format for image intrinsics
1523 */
1524 NIR_INTRINSIC_FORMAT,
1525
1526 /**
1527 * Access qualifiers for image and memory access intrinsics
1528 */
1529 NIR_INTRINSIC_ACCESS,
1530
1531 /**
1532 * Alignment for offsets and addresses
1533 *
1534 * These two parameters, specify an alignment in terms of a multiplier and
1535 * an offset. The offset or address parameter X of the intrinsic is
1536 * guaranteed to satisfy the following:
1537 *
1538 * (X - align_offset) % align_mul == 0
1539 */
1540 NIR_INTRINSIC_ALIGN_MUL,
1541 NIR_INTRINSIC_ALIGN_OFFSET,
1542
1543 /**
1544 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1545 */
1546 NIR_INTRINSIC_DESC_TYPE,
1547
1548 /**
1549 * The nir_alu_type of a uniform/input/output
1550 */
1551 NIR_INTRINSIC_TYPE,
1552
1553 /**
1554 * The swizzle mask for the instructions
1555 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1556 */
1557 NIR_INTRINSIC_SWIZZLE_MASK,
1558
1559 /* Separate source/dest access flags for copies */
1560 NIR_INTRINSIC_SRC_ACCESS,
1561 NIR_INTRINSIC_DST_ACCESS,
1562
1563 /* Driver location for nir_load_patch_location_ir3 */
1564 NIR_INTRINSIC_DRIVER_LOCATION,
1565
1566 /**
1567 * Mask of nir_memory_semantics, includes ordering and visibility.
1568 */
1569 NIR_INTRINSIC_MEMORY_SEMANTICS,
1570
1571 /**
1572 * Mask of nir_variable_modes affected by the memory operation.
1573 */
1574 NIR_INTRINSIC_MEMORY_MODES,
1575
1576 /**
1577 * Value of nir_scope.
1578 */
1579 NIR_INTRINSIC_MEMORY_SCOPE,
1580
1581 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1582
1583 } nir_intrinsic_index_flag;
1584
1585 #define NIR_INTRINSIC_MAX_INPUTS 5
1586
1587 typedef struct {
1588 const char *name;
1589
1590 unsigned num_srcs; /** < number of register/SSA inputs */
1591
1592 /** number of components of each input register
1593 *
1594 * If this value is 0, the number of components is given by the
1595 * num_components field of nir_intrinsic_instr. If this value is -1, the
1596 * intrinsic consumes however many components are provided and it is not
1597 * validated at all.
1598 */
1599 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1600
1601 bool has_dest;
1602
1603 /** number of components of the output register
1604 *
1605 * If this value is 0, the number of components is given by the
1606 * num_components field of nir_intrinsic_instr.
1607 */
1608 unsigned dest_components;
1609
1610 /** bitfield of legal bit sizes */
1611 unsigned dest_bit_sizes;
1612
1613 /** the number of constant indices used by the intrinsic */
1614 unsigned num_indices;
1615
1616 /** indicates the usage of intr->const_index[n] */
1617 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1618
1619 /** semantic flags for calls to this intrinsic */
1620 nir_intrinsic_semantic_flag flags;
1621 } nir_intrinsic_info;
1622
1623 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1624
1625 static inline unsigned
1626 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1627 {
1628 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1629 assert(srcn < info->num_srcs);
1630 if (info->src_components[srcn] > 0)
1631 return info->src_components[srcn];
1632 else if (info->src_components[srcn] == 0)
1633 return intr->num_components;
1634 else
1635 return nir_src_num_components(intr->src[srcn]);
1636 }
1637
1638 static inline unsigned
1639 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1640 {
1641 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1642 if (!info->has_dest)
1643 return 0;
1644 else if (info->dest_components)
1645 return info->dest_components;
1646 else
1647 return intr->num_components;
1648 }
1649
1650 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1651 static inline type \
1652 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1653 { \
1654 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1655 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1656 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1657 } \
1658 static inline void \
1659 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1660 { \
1661 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1662 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1663 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1664 }
1665
1666 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1667 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1668 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1669 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1670 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1671 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1672 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1673 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1674 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1675 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1676 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1677 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1678 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1679 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1680 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1681 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1682 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1683 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1684 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1685 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1686 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1687 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1688 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1689 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1690 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1691 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1692 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1693
1694 static inline void
1695 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1696 unsigned align_mul, unsigned align_offset)
1697 {
1698 assert(util_is_power_of_two_nonzero(align_mul));
1699 assert(align_offset < align_mul);
1700 nir_intrinsic_set_align_mul(intrin, align_mul);
1701 nir_intrinsic_set_align_offset(intrin, align_offset);
1702 }
1703
1704 /** Returns a simple alignment for a load/store intrinsic offset
1705 *
1706 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1707 * and ALIGN_OFFSET parameters, this helper takes both into account and
1708 * provides a single simple alignment parameter. The offset X is guaranteed
1709 * to satisfy X % align == 0.
1710 */
1711 static inline unsigned
1712 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1713 {
1714 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1715 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1716 assert(align_offset < align_mul);
1717 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1718 }
1719
1720 /* Converts a image_deref_* intrinsic into a image_* one */
1721 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1722 nir_ssa_def *handle, bool bindless);
1723
1724 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1725 static inline bool
1726 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1727 {
1728 if (instr->intrinsic == nir_intrinsic_load_deref ||
1729 instr->intrinsic == nir_intrinsic_load_ssbo ||
1730 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1731 instr->intrinsic == nir_intrinsic_image_deref_load ||
1732 instr->intrinsic == nir_intrinsic_image_load) {
1733 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1734 } else {
1735 const nir_intrinsic_info *info =
1736 &nir_intrinsic_infos[instr->intrinsic];
1737 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1738 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1739 }
1740 }
1741
1742 /**
1743 * \group texture information
1744 *
1745 * This gives semantic information about textures which is useful to the
1746 * frontend, the backend, and lowering passes, but not the optimizer.
1747 */
1748
1749 typedef enum {
1750 nir_tex_src_coord,
1751 nir_tex_src_projector,
1752 nir_tex_src_comparator, /* shadow comparator */
1753 nir_tex_src_offset,
1754 nir_tex_src_bias,
1755 nir_tex_src_lod,
1756 nir_tex_src_min_lod,
1757 nir_tex_src_ms_index, /* MSAA sample index */
1758 nir_tex_src_ms_mcs, /* MSAA compression value */
1759 nir_tex_src_ddx,
1760 nir_tex_src_ddy,
1761 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1762 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1763 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1764 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1765 nir_tex_src_texture_handle, /* < bindless texture handle */
1766 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1767 nir_tex_src_plane, /* < selects plane for planar textures */
1768 nir_num_tex_src_types
1769 } nir_tex_src_type;
1770
1771 typedef struct {
1772 nir_src src;
1773 nir_tex_src_type src_type;
1774 } nir_tex_src;
1775
1776 typedef enum {
1777 nir_texop_tex, /**< Regular texture look-up */
1778 nir_texop_txb, /**< Texture look-up with LOD bias */
1779 nir_texop_txl, /**< Texture look-up with explicit LOD */
1780 nir_texop_txd, /**< Texture look-up with partial derivatives */
1781 nir_texop_txf, /**< Texel fetch with explicit LOD */
1782 nir_texop_txf_ms, /**< Multisample texture fetch */
1783 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1784 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1785 nir_texop_txs, /**< Texture size */
1786 nir_texop_lod, /**< Texture lod query */
1787 nir_texop_tg4, /**< Texture gather */
1788 nir_texop_query_levels, /**< Texture levels query */
1789 nir_texop_texture_samples, /**< Texture samples query */
1790 nir_texop_samples_identical, /**< Query whether all samples are definitely
1791 * identical.
1792 */
1793 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1794 } nir_texop;
1795
1796 typedef struct {
1797 nir_instr instr;
1798
1799 enum glsl_sampler_dim sampler_dim;
1800 nir_alu_type dest_type;
1801
1802 nir_texop op;
1803 nir_dest dest;
1804 nir_tex_src *src;
1805 unsigned num_srcs, coord_components;
1806 bool is_array, is_shadow;
1807
1808 /**
1809 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1810 * components or the new-style shadow that outputs 1 component.
1811 */
1812 bool is_new_style_shadow;
1813
1814 /* gather component selector */
1815 unsigned component : 2;
1816
1817 /* gather offsets */
1818 int8_t tg4_offsets[4][2];
1819
1820 /* True if the texture index or handle is not dynamically uniform */
1821 bool texture_non_uniform;
1822
1823 /* True if the sampler index or handle is not dynamically uniform */
1824 bool sampler_non_uniform;
1825
1826 /** The texture index
1827 *
1828 * If this texture instruction has a nir_tex_src_texture_offset source,
1829 * then the texture index is given by texture_index + texture_offset.
1830 */
1831 unsigned texture_index;
1832
1833 /** The size of the texture array or 0 if it's not an array */
1834 unsigned texture_array_size;
1835
1836 /** The sampler index
1837 *
1838 * The following operations do not require a sampler and, as such, this
1839 * field should be ignored:
1840 * - nir_texop_txf
1841 * - nir_texop_txf_ms
1842 * - nir_texop_txs
1843 * - nir_texop_lod
1844 * - nir_texop_query_levels
1845 * - nir_texop_texture_samples
1846 * - nir_texop_samples_identical
1847 *
1848 * If this texture instruction has a nir_tex_src_sampler_offset source,
1849 * then the sampler index is given by sampler_index + sampler_offset.
1850 */
1851 unsigned sampler_index;
1852 } nir_tex_instr;
1853
1854 static inline unsigned
1855 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1856 {
1857 switch (instr->op) {
1858 case nir_texop_txs: {
1859 unsigned ret;
1860 switch (instr->sampler_dim) {
1861 case GLSL_SAMPLER_DIM_1D:
1862 case GLSL_SAMPLER_DIM_BUF:
1863 ret = 1;
1864 break;
1865 case GLSL_SAMPLER_DIM_2D:
1866 case GLSL_SAMPLER_DIM_CUBE:
1867 case GLSL_SAMPLER_DIM_MS:
1868 case GLSL_SAMPLER_DIM_RECT:
1869 case GLSL_SAMPLER_DIM_EXTERNAL:
1870 case GLSL_SAMPLER_DIM_SUBPASS:
1871 ret = 2;
1872 break;
1873 case GLSL_SAMPLER_DIM_3D:
1874 ret = 3;
1875 break;
1876 default:
1877 unreachable("not reached");
1878 }
1879 if (instr->is_array)
1880 ret++;
1881 return ret;
1882 }
1883
1884 case nir_texop_lod:
1885 return 2;
1886
1887 case nir_texop_texture_samples:
1888 case nir_texop_query_levels:
1889 case nir_texop_samples_identical:
1890 return 1;
1891
1892 default:
1893 if (instr->is_shadow && instr->is_new_style_shadow)
1894 return 1;
1895
1896 return 4;
1897 }
1898 }
1899
1900 /* Returns true if this texture operation queries something about the texture
1901 * rather than actually sampling it.
1902 */
1903 static inline bool
1904 nir_tex_instr_is_query(const nir_tex_instr *instr)
1905 {
1906 switch (instr->op) {
1907 case nir_texop_txs:
1908 case nir_texop_lod:
1909 case nir_texop_texture_samples:
1910 case nir_texop_query_levels:
1911 case nir_texop_txf_ms_mcs:
1912 return true;
1913 case nir_texop_tex:
1914 case nir_texop_txb:
1915 case nir_texop_txl:
1916 case nir_texop_txd:
1917 case nir_texop_txf:
1918 case nir_texop_txf_ms:
1919 case nir_texop_txf_ms_fb:
1920 case nir_texop_tg4:
1921 return false;
1922 default:
1923 unreachable("Invalid texture opcode");
1924 }
1925 }
1926
1927 static inline bool
1928 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
1929 {
1930 switch (instr->op) {
1931 case nir_texop_tex:
1932 case nir_texop_txb:
1933 case nir_texop_lod:
1934 return true;
1935 default:
1936 return false;
1937 }
1938 }
1939
1940 static inline nir_alu_type
1941 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1942 {
1943 switch (instr->src[src].src_type) {
1944 case nir_tex_src_coord:
1945 switch (instr->op) {
1946 case nir_texop_txf:
1947 case nir_texop_txf_ms:
1948 case nir_texop_txf_ms_fb:
1949 case nir_texop_txf_ms_mcs:
1950 case nir_texop_samples_identical:
1951 return nir_type_int;
1952
1953 default:
1954 return nir_type_float;
1955 }
1956
1957 case nir_tex_src_lod:
1958 switch (instr->op) {
1959 case nir_texop_txs:
1960 case nir_texop_txf:
1961 return nir_type_int;
1962
1963 default:
1964 return nir_type_float;
1965 }
1966
1967 case nir_tex_src_projector:
1968 case nir_tex_src_comparator:
1969 case nir_tex_src_bias:
1970 case nir_tex_src_min_lod:
1971 case nir_tex_src_ddx:
1972 case nir_tex_src_ddy:
1973 return nir_type_float;
1974
1975 case nir_tex_src_offset:
1976 case nir_tex_src_ms_index:
1977 case nir_tex_src_plane:
1978 return nir_type_int;
1979
1980 case nir_tex_src_ms_mcs:
1981 case nir_tex_src_texture_deref:
1982 case nir_tex_src_sampler_deref:
1983 case nir_tex_src_texture_offset:
1984 case nir_tex_src_sampler_offset:
1985 case nir_tex_src_texture_handle:
1986 case nir_tex_src_sampler_handle:
1987 return nir_type_uint;
1988
1989 case nir_num_tex_src_types:
1990 unreachable("nir_num_tex_src_types is not a valid source type");
1991 }
1992
1993 unreachable("Invalid texture source type");
1994 }
1995
1996 static inline unsigned
1997 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1998 {
1999 if (instr->src[src].src_type == nir_tex_src_coord)
2000 return instr->coord_components;
2001
2002 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2003 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2004 return 4;
2005
2006 if (instr->src[src].src_type == nir_tex_src_ddx ||
2007 instr->src[src].src_type == nir_tex_src_ddy) {
2008 if (instr->is_array)
2009 return instr->coord_components - 1;
2010 else
2011 return instr->coord_components;
2012 }
2013
2014 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2015 * the offset, since a cube maps to a single face.
2016 */
2017 if (instr->src[src].src_type == nir_tex_src_offset) {
2018 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2019 return 2;
2020 else if (instr->is_array)
2021 return instr->coord_components - 1;
2022 else
2023 return instr->coord_components;
2024 }
2025
2026 return 1;
2027 }
2028
2029 static inline int
2030 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2031 {
2032 for (unsigned i = 0; i < instr->num_srcs; i++)
2033 if (instr->src[i].src_type == type)
2034 return (int) i;
2035
2036 return -1;
2037 }
2038
2039 void nir_tex_instr_add_src(nir_tex_instr *tex,
2040 nir_tex_src_type src_type,
2041 nir_src src);
2042
2043 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2044
2045 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2046
2047 typedef struct {
2048 nir_instr instr;
2049
2050 nir_ssa_def def;
2051
2052 nir_const_value value[];
2053 } nir_load_const_instr;
2054
2055 typedef enum {
2056 nir_jump_return,
2057 nir_jump_break,
2058 nir_jump_continue,
2059 } nir_jump_type;
2060
2061 typedef struct {
2062 nir_instr instr;
2063 nir_jump_type type;
2064 } nir_jump_instr;
2065
2066 /* creates a new SSA variable in an undefined state */
2067
2068 typedef struct {
2069 nir_instr instr;
2070 nir_ssa_def def;
2071 } nir_ssa_undef_instr;
2072
2073 typedef struct {
2074 struct exec_node node;
2075
2076 /* The predecessor block corresponding to this source */
2077 struct nir_block *pred;
2078
2079 nir_src src;
2080 } nir_phi_src;
2081
2082 #define nir_foreach_phi_src(phi_src, phi) \
2083 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2084 #define nir_foreach_phi_src_safe(phi_src, phi) \
2085 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2086
2087 typedef struct {
2088 nir_instr instr;
2089
2090 struct exec_list srcs; /** < list of nir_phi_src */
2091
2092 nir_dest dest;
2093 } nir_phi_instr;
2094
2095 typedef struct {
2096 struct exec_node node;
2097 nir_src src;
2098 nir_dest dest;
2099 } nir_parallel_copy_entry;
2100
2101 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2102 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2103
2104 typedef struct {
2105 nir_instr instr;
2106
2107 /* A list of nir_parallel_copy_entrys. The sources of all of the
2108 * entries are copied to the corresponding destinations "in parallel".
2109 * In other words, if we have two entries: a -> b and b -> a, the values
2110 * get swapped.
2111 */
2112 struct exec_list entries;
2113 } nir_parallel_copy_instr;
2114
2115 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2116 type, nir_instr_type_alu)
2117 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2118 type, nir_instr_type_deref)
2119 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2120 type, nir_instr_type_call)
2121 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2122 type, nir_instr_type_jump)
2123 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2124 type, nir_instr_type_tex)
2125 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2126 type, nir_instr_type_intrinsic)
2127 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2128 type, nir_instr_type_load_const)
2129 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2130 type, nir_instr_type_ssa_undef)
2131 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2132 type, nir_instr_type_phi)
2133 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2134 nir_parallel_copy_instr, instr,
2135 type, nir_instr_type_parallel_copy)
2136
2137
2138 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2139 static inline type \
2140 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2141 { \
2142 assert(nir_src_is_const(src)); \
2143 nir_load_const_instr *load = \
2144 nir_instr_as_load_const(src.ssa->parent_instr); \
2145 assert(comp < load->def.num_components); \
2146 return nir_const_value_as_##suffix(load->value[comp], \
2147 load->def.bit_size); \
2148 } \
2149 \
2150 static inline type \
2151 nir_src_as_##suffix(nir_src src) \
2152 { \
2153 assert(nir_src_num_components(src) == 1); \
2154 return nir_src_comp_as_##suffix(src, 0); \
2155 }
2156
2157 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2158 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2159 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2160 NIR_DEFINE_SRC_AS_CONST(double, float)
2161
2162 #undef NIR_DEFINE_SRC_AS_CONST
2163
2164
2165 typedef struct {
2166 nir_ssa_def *def;
2167 unsigned comp;
2168 } nir_ssa_scalar;
2169
2170 static inline bool
2171 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2172 {
2173 return s.def->parent_instr->type == nir_instr_type_load_const;
2174 }
2175
2176 static inline nir_const_value
2177 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2178 {
2179 assert(s.comp < s.def->num_components);
2180 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2181 return load->value[s.comp];
2182 }
2183
2184 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2185 static inline type \
2186 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2187 { \
2188 return nir_const_value_as_##suffix( \
2189 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2190 }
2191
2192 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2193 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2194 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2195 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2196
2197 #undef NIR_DEFINE_SCALAR_AS_CONST
2198
2199 static inline bool
2200 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2201 {
2202 return s.def->parent_instr->type == nir_instr_type_alu;
2203 }
2204
2205 static inline nir_op
2206 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2207 {
2208 return nir_instr_as_alu(s.def->parent_instr)->op;
2209 }
2210
2211 static inline nir_ssa_scalar
2212 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2213 {
2214 nir_ssa_scalar out = { NULL, 0 };
2215
2216 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2217 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2218
2219 /* Our component must be written */
2220 assert(s.comp < s.def->num_components);
2221 assert(alu->dest.write_mask & (1u << s.comp));
2222
2223 assert(alu->src[alu_src_idx].src.is_ssa);
2224 out.def = alu->src[alu_src_idx].src.ssa;
2225
2226 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2227 /* The ALU src is unsized so the source component follows the
2228 * destination component.
2229 */
2230 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2231 } else {
2232 /* This is a sized source so all source components work together to
2233 * produce all the destination components. Since we need to return a
2234 * scalar, this only works if the source is a scalar.
2235 */
2236 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2237 out.comp = alu->src[alu_src_idx].swizzle[0];
2238 }
2239 assert(out.comp < out.def->num_components);
2240
2241 return out;
2242 }
2243
2244
2245 /*
2246 * Control flow
2247 *
2248 * Control flow consists of a tree of control flow nodes, which include
2249 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2250 * instructions that always run start-to-finish. Each basic block also keeps
2251 * track of its successors (blocks which may run immediately after the current
2252 * block) and predecessors (blocks which could have run immediately before the
2253 * current block). Each function also has a start block and an end block which
2254 * all return statements point to (which is always empty). Together, all the
2255 * blocks with their predecessors and successors make up the control flow
2256 * graph (CFG) of the function. There are helpers that modify the tree of
2257 * control flow nodes while modifying the CFG appropriately; these should be
2258 * used instead of modifying the tree directly.
2259 */
2260
2261 typedef enum {
2262 nir_cf_node_block,
2263 nir_cf_node_if,
2264 nir_cf_node_loop,
2265 nir_cf_node_function
2266 } nir_cf_node_type;
2267
2268 typedef struct nir_cf_node {
2269 struct exec_node node;
2270 nir_cf_node_type type;
2271 struct nir_cf_node *parent;
2272 } nir_cf_node;
2273
2274 typedef struct nir_block {
2275 nir_cf_node cf_node;
2276
2277 struct exec_list instr_list; /** < list of nir_instr */
2278
2279 /** generic block index; generated by nir_index_blocks */
2280 unsigned index;
2281
2282 /*
2283 * Each block can only have up to 2 successors, so we put them in a simple
2284 * array - no need for anything more complicated.
2285 */
2286 struct nir_block *successors[2];
2287
2288 /* Set of nir_block predecessors in the CFG */
2289 struct set *predecessors;
2290
2291 /*
2292 * this node's immediate dominator in the dominance tree - set to NULL for
2293 * the start block.
2294 */
2295 struct nir_block *imm_dom;
2296
2297 /* This node's children in the dominance tree */
2298 unsigned num_dom_children;
2299 struct nir_block **dom_children;
2300
2301 /* Set of nir_blocks on the dominance frontier of this block */
2302 struct set *dom_frontier;
2303
2304 /*
2305 * These two indices have the property that dom_{pre,post}_index for each
2306 * child of this block in the dominance tree will always be between
2307 * dom_pre_index and dom_post_index for this block, which makes testing if
2308 * a given block is dominated by another block an O(1) operation.
2309 */
2310 unsigned dom_pre_index, dom_post_index;
2311
2312 /* live in and out for this block; used for liveness analysis */
2313 BITSET_WORD *live_in;
2314 BITSET_WORD *live_out;
2315 } nir_block;
2316
2317 static inline nir_instr *
2318 nir_block_first_instr(nir_block *block)
2319 {
2320 struct exec_node *head = exec_list_get_head(&block->instr_list);
2321 return exec_node_data(nir_instr, head, node);
2322 }
2323
2324 static inline nir_instr *
2325 nir_block_last_instr(nir_block *block)
2326 {
2327 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2328 return exec_node_data(nir_instr, tail, node);
2329 }
2330
2331 static inline bool
2332 nir_block_ends_in_jump(nir_block *block)
2333 {
2334 return !exec_list_is_empty(&block->instr_list) &&
2335 nir_block_last_instr(block)->type == nir_instr_type_jump;
2336 }
2337
2338 #define nir_foreach_instr(instr, block) \
2339 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2340 #define nir_foreach_instr_reverse(instr, block) \
2341 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2342 #define nir_foreach_instr_safe(instr, block) \
2343 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2344 #define nir_foreach_instr_reverse_safe(instr, block) \
2345 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2346
2347 typedef enum {
2348 nir_selection_control_none = 0x0,
2349 nir_selection_control_flatten = 0x1,
2350 nir_selection_control_dont_flatten = 0x2,
2351 } nir_selection_control;
2352
2353 typedef struct nir_if {
2354 nir_cf_node cf_node;
2355 nir_src condition;
2356 nir_selection_control control;
2357
2358 struct exec_list then_list; /** < list of nir_cf_node */
2359 struct exec_list else_list; /** < list of nir_cf_node */
2360 } nir_if;
2361
2362 typedef struct {
2363 nir_if *nif;
2364
2365 /** Instruction that generates nif::condition. */
2366 nir_instr *conditional_instr;
2367
2368 /** Block within ::nif that has the break instruction. */
2369 nir_block *break_block;
2370
2371 /** Last block for the then- or else-path that does not contain the break. */
2372 nir_block *continue_from_block;
2373
2374 /** True when ::break_block is in the else-path of ::nif. */
2375 bool continue_from_then;
2376 bool induction_rhs;
2377
2378 /* This is true if the terminators exact trip count is unknown. For
2379 * example:
2380 *
2381 * for (int i = 0; i < imin(x, 4); i++)
2382 * ...
2383 *
2384 * Here loop analysis would have set a max_trip_count of 4 however we dont
2385 * know for sure that this is the exact trip count.
2386 */
2387 bool exact_trip_count_unknown;
2388
2389 struct list_head loop_terminator_link;
2390 } nir_loop_terminator;
2391
2392 typedef struct {
2393 /* Estimated cost (in number of instructions) of the loop */
2394 unsigned instr_cost;
2395
2396 /* Guessed trip count based on array indexing */
2397 unsigned guessed_trip_count;
2398
2399 /* Maximum number of times the loop is run (if known) */
2400 unsigned max_trip_count;
2401
2402 /* Do we know the exact number of times the loop will be run */
2403 bool exact_trip_count_known;
2404
2405 /* Unroll the loop regardless of its size */
2406 bool force_unroll;
2407
2408 /* Does the loop contain complex loop terminators, continues or other
2409 * complex behaviours? If this is true we can't rely on
2410 * loop_terminator_list to be complete or accurate.
2411 */
2412 bool complex_loop;
2413
2414 nir_loop_terminator *limiting_terminator;
2415
2416 /* A list of loop_terminators terminating this loop. */
2417 struct list_head loop_terminator_list;
2418 } nir_loop_info;
2419
2420 typedef enum {
2421 nir_loop_control_none = 0x0,
2422 nir_loop_control_unroll = 0x1,
2423 nir_loop_control_dont_unroll = 0x2,
2424 } nir_loop_control;
2425
2426 typedef struct {
2427 nir_cf_node cf_node;
2428
2429 struct exec_list body; /** < list of nir_cf_node */
2430
2431 nir_loop_info *info;
2432 nir_loop_control control;
2433 bool partially_unrolled;
2434 } nir_loop;
2435
2436 /**
2437 * Various bits of metadata that can may be created or required by
2438 * optimization and analysis passes
2439 */
2440 typedef enum {
2441 nir_metadata_none = 0x0,
2442 nir_metadata_block_index = 0x1,
2443 nir_metadata_dominance = 0x2,
2444 nir_metadata_live_ssa_defs = 0x4,
2445 nir_metadata_not_properly_reset = 0x8,
2446 nir_metadata_loop_analysis = 0x10,
2447 } nir_metadata;
2448
2449 typedef struct {
2450 nir_cf_node cf_node;
2451
2452 /** pointer to the function of which this is an implementation */
2453 struct nir_function *function;
2454
2455 struct exec_list body; /** < list of nir_cf_node */
2456
2457 nir_block *end_block;
2458
2459 /** list for all local variables in the function */
2460 struct exec_list locals;
2461
2462 /** list of local registers in the function */
2463 struct exec_list registers;
2464
2465 /** next available local register index */
2466 unsigned reg_alloc;
2467
2468 /** next available SSA value index */
2469 unsigned ssa_alloc;
2470
2471 /* total number of basic blocks, only valid when block_index_dirty = false */
2472 unsigned num_blocks;
2473
2474 nir_metadata valid_metadata;
2475 } nir_function_impl;
2476
2477 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2478 nir_start_block(nir_function_impl *impl)
2479 {
2480 return (nir_block *) impl->body.head_sentinel.next;
2481 }
2482
2483 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2484 nir_impl_last_block(nir_function_impl *impl)
2485 {
2486 return (nir_block *) impl->body.tail_sentinel.prev;
2487 }
2488
2489 static inline nir_cf_node *
2490 nir_cf_node_next(nir_cf_node *node)
2491 {
2492 struct exec_node *next = exec_node_get_next(&node->node);
2493 if (exec_node_is_tail_sentinel(next))
2494 return NULL;
2495 else
2496 return exec_node_data(nir_cf_node, next, node);
2497 }
2498
2499 static inline nir_cf_node *
2500 nir_cf_node_prev(nir_cf_node *node)
2501 {
2502 struct exec_node *prev = exec_node_get_prev(&node->node);
2503 if (exec_node_is_head_sentinel(prev))
2504 return NULL;
2505 else
2506 return exec_node_data(nir_cf_node, prev, node);
2507 }
2508
2509 static inline bool
2510 nir_cf_node_is_first(const nir_cf_node *node)
2511 {
2512 return exec_node_is_head_sentinel(node->node.prev);
2513 }
2514
2515 static inline bool
2516 nir_cf_node_is_last(const nir_cf_node *node)
2517 {
2518 return exec_node_is_tail_sentinel(node->node.next);
2519 }
2520
2521 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2522 type, nir_cf_node_block)
2523 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2524 type, nir_cf_node_if)
2525 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2526 type, nir_cf_node_loop)
2527 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2528 nir_function_impl, cf_node, type, nir_cf_node_function)
2529
2530 static inline nir_block *
2531 nir_if_first_then_block(nir_if *if_stmt)
2532 {
2533 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2534 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2535 }
2536
2537 static inline nir_block *
2538 nir_if_last_then_block(nir_if *if_stmt)
2539 {
2540 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2541 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2542 }
2543
2544 static inline nir_block *
2545 nir_if_first_else_block(nir_if *if_stmt)
2546 {
2547 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2548 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2549 }
2550
2551 static inline nir_block *
2552 nir_if_last_else_block(nir_if *if_stmt)
2553 {
2554 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2555 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2556 }
2557
2558 static inline nir_block *
2559 nir_loop_first_block(nir_loop *loop)
2560 {
2561 struct exec_node *head = exec_list_get_head(&loop->body);
2562 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2563 }
2564
2565 static inline nir_block *
2566 nir_loop_last_block(nir_loop *loop)
2567 {
2568 struct exec_node *tail = exec_list_get_tail(&loop->body);
2569 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2570 }
2571
2572 /**
2573 * Return true if this list of cf_nodes contains a single empty block.
2574 */
2575 static inline bool
2576 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2577 {
2578 if (exec_list_is_singular(cf_list)) {
2579 struct exec_node *head = exec_list_get_head(cf_list);
2580 nir_block *block =
2581 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2582 return exec_list_is_empty(&block->instr_list);
2583 }
2584 return false;
2585 }
2586
2587 typedef struct {
2588 uint8_t num_components;
2589 uint8_t bit_size;
2590 } nir_parameter;
2591
2592 typedef struct nir_function {
2593 struct exec_node node;
2594
2595 const char *name;
2596 struct nir_shader *shader;
2597
2598 unsigned num_params;
2599 nir_parameter *params;
2600
2601 /** The implementation of this function.
2602 *
2603 * If the function is only declared and not implemented, this is NULL.
2604 */
2605 nir_function_impl *impl;
2606
2607 bool is_entrypoint;
2608 } nir_function;
2609
2610 typedef enum {
2611 nir_lower_imul64 = (1 << 0),
2612 nir_lower_isign64 = (1 << 1),
2613 /** Lower all int64 modulus and division opcodes */
2614 nir_lower_divmod64 = (1 << 2),
2615 /** Lower all 64-bit umul_high and imul_high opcodes */
2616 nir_lower_imul_high64 = (1 << 3),
2617 nir_lower_mov64 = (1 << 4),
2618 nir_lower_icmp64 = (1 << 5),
2619 nir_lower_iadd64 = (1 << 6),
2620 nir_lower_iabs64 = (1 << 7),
2621 nir_lower_ineg64 = (1 << 8),
2622 nir_lower_logic64 = (1 << 9),
2623 nir_lower_minmax64 = (1 << 10),
2624 nir_lower_shift64 = (1 << 11),
2625 nir_lower_imul_2x32_64 = (1 << 12),
2626 nir_lower_extract64 = (1 << 13),
2627 nir_lower_ufind_msb64 = (1 << 14),
2628 } nir_lower_int64_options;
2629
2630 typedef enum {
2631 nir_lower_drcp = (1 << 0),
2632 nir_lower_dsqrt = (1 << 1),
2633 nir_lower_drsq = (1 << 2),
2634 nir_lower_dtrunc = (1 << 3),
2635 nir_lower_dfloor = (1 << 4),
2636 nir_lower_dceil = (1 << 5),
2637 nir_lower_dfract = (1 << 6),
2638 nir_lower_dround_even = (1 << 7),
2639 nir_lower_dmod = (1 << 8),
2640 nir_lower_dsub = (1 << 9),
2641 nir_lower_ddiv = (1 << 10),
2642 nir_lower_fp64_full_software = (1 << 11),
2643 } nir_lower_doubles_options;
2644
2645 typedef enum {
2646 nir_divergence_single_prim_per_subgroup = (1 << 0),
2647 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2648 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2649 nir_divergence_view_index_uniform = (1 << 3),
2650 } nir_divergence_options;
2651
2652 typedef struct nir_shader_compiler_options {
2653 bool lower_fdiv;
2654 bool lower_ffma;
2655 bool fuse_ffma;
2656 bool lower_flrp16;
2657 bool lower_flrp32;
2658 /** Lowers flrp when it does not support doubles */
2659 bool lower_flrp64;
2660 bool lower_fpow;
2661 bool lower_fsat;
2662 bool lower_fsqrt;
2663 bool lower_sincos;
2664 bool lower_fmod;
2665 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2666 bool lower_bitfield_extract;
2667 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2668 bool lower_bitfield_extract_to_shifts;
2669 /** Lowers bitfield_insert to bfi/bfm */
2670 bool lower_bitfield_insert;
2671 /** Lowers bitfield_insert to compares, and shifts. */
2672 bool lower_bitfield_insert_to_shifts;
2673 /** Lowers bitfield_insert to bfm/bitfield_select. */
2674 bool lower_bitfield_insert_to_bitfield_select;
2675 /** Lowers bitfield_reverse to shifts. */
2676 bool lower_bitfield_reverse;
2677 /** Lowers bit_count to shifts. */
2678 bool lower_bit_count;
2679 /** Lowers ifind_msb to compare and ufind_msb */
2680 bool lower_ifind_msb;
2681 /** Lowers find_lsb to ufind_msb and logic ops */
2682 bool lower_find_lsb;
2683 bool lower_uadd_carry;
2684 bool lower_usub_borrow;
2685 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2686 bool lower_mul_high;
2687 /** lowers fneg and ineg to fsub and isub. */
2688 bool lower_negate;
2689 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2690 bool lower_sub;
2691
2692 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2693 bool lower_scmp;
2694
2695 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
2696 bool lower_vector_cmp;
2697
2698 /** enables rules to lower idiv by power-of-two: */
2699 bool lower_idiv;
2700
2701 /** enable rules to avoid bit ops */
2702 bool lower_bitops;
2703
2704 /** enables rules to lower isign to imin+imax */
2705 bool lower_isign;
2706
2707 /** enables rules to lower fsign to fsub and flt */
2708 bool lower_fsign;
2709
2710 /* lower fdph to fdot4 */
2711 bool lower_fdph;
2712
2713 /** lower fdot to fmul and fsum/fadd. */
2714 bool lower_fdot;
2715
2716 /* Does the native fdot instruction replicate its result for four
2717 * components? If so, then opt_algebraic_late will turn all fdotN
2718 * instructions into fdot_replicatedN instructions.
2719 */
2720 bool fdot_replicates;
2721
2722 /** lowers ffloor to fsub+ffract: */
2723 bool lower_ffloor;
2724
2725 /** lowers ffract to fsub+ffloor: */
2726 bool lower_ffract;
2727
2728 /** lowers fceil to fneg+ffloor+fneg: */
2729 bool lower_fceil;
2730
2731 bool lower_ftrunc;
2732
2733 bool lower_ldexp;
2734
2735 bool lower_pack_half_2x16;
2736 bool lower_pack_unorm_2x16;
2737 bool lower_pack_snorm_2x16;
2738 bool lower_pack_unorm_4x8;
2739 bool lower_pack_snorm_4x8;
2740 bool lower_unpack_half_2x16;
2741 bool lower_unpack_unorm_2x16;
2742 bool lower_unpack_snorm_2x16;
2743 bool lower_unpack_unorm_4x8;
2744 bool lower_unpack_snorm_4x8;
2745
2746 bool lower_extract_byte;
2747 bool lower_extract_word;
2748
2749 bool lower_all_io_to_temps;
2750 bool lower_all_io_to_elements;
2751
2752 /* Indicates that the driver only has zero-based vertex id */
2753 bool vertex_id_zero_based;
2754
2755 /**
2756 * If enabled, gl_BaseVertex will be lowered as:
2757 * is_indexed_draw (~0/0) & firstvertex
2758 */
2759 bool lower_base_vertex;
2760
2761 /**
2762 * If enabled, gl_HelperInvocation will be lowered as:
2763 *
2764 * !((1 << sample_id) & sample_mask_in))
2765 *
2766 * This depends on some possibly hw implementation details, which may
2767 * not be true for all hw. In particular that the FS is only executed
2768 * for covered samples or for helper invocations. So, do not blindly
2769 * enable this option.
2770 *
2771 * Note: See also issue #22 in ARB_shader_image_load_store
2772 */
2773 bool lower_helper_invocation;
2774
2775 /**
2776 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2777 *
2778 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2779 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2780 */
2781 bool optimize_sample_mask_in;
2782
2783 bool lower_cs_local_index_from_id;
2784 bool lower_cs_local_id_from_index;
2785
2786 bool lower_device_index_to_zero;
2787
2788 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2789 bool lower_wpos_pntc;
2790
2791 bool lower_hadd;
2792 bool lower_add_sat;
2793
2794 /**
2795 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2796 * for IO purposes and would prefer loads/stores be vectorized.
2797 */
2798 bool vectorize_io;
2799 bool lower_to_scalar;
2800
2801 /**
2802 * Should nir_lower_io() create load_interpolated_input intrinsics?
2803 *
2804 * If not, it generates regular load_input intrinsics and interpolation
2805 * information must be inferred from the list of input nir_variables.
2806 */
2807 bool use_interpolated_input_intrinsics;
2808
2809 /* Lowers when 32x32->64 bit multiplication is not supported */
2810 bool lower_mul_2x32_64;
2811
2812 /* Lowers when rotate instruction is not supported */
2813 bool lower_rotate;
2814
2815 /**
2816 * Backend supports imul24, and would like to use it (when possible)
2817 * for address/offset calculation. If true, driver should call
2818 * nir_lower_amul(). (If not set, amul will automatically be lowered
2819 * to imul.)
2820 */
2821 bool has_imul24;
2822
2823 /**
2824 * Is this the Intel vec4 backend?
2825 *
2826 * Used to inhibit algebraic optimizations that are known to be harmful on
2827 * the Intel vec4 backend. This is generally applicable to any
2828 * optimization that might cause more immediate values to be used in
2829 * 3-source (e.g., ffma and flrp) instructions.
2830 */
2831 bool intel_vec4;
2832
2833 unsigned max_unroll_iterations;
2834
2835 nir_lower_int64_options lower_int64_options;
2836 nir_lower_doubles_options lower_doubles_options;
2837 } nir_shader_compiler_options;
2838
2839 typedef struct nir_shader {
2840 /** list of uniforms (nir_variable) */
2841 struct exec_list uniforms;
2842
2843 /** list of inputs (nir_variable) */
2844 struct exec_list inputs;
2845
2846 /** list of outputs (nir_variable) */
2847 struct exec_list outputs;
2848
2849 /** list of shared compute variables (nir_variable) */
2850 struct exec_list shared;
2851
2852 /** Set of driver-specific options for the shader.
2853 *
2854 * The memory for the options is expected to be kept in a single static
2855 * copy by the driver.
2856 */
2857 const struct nir_shader_compiler_options *options;
2858
2859 /** Various bits of compile-time information about a given shader */
2860 struct shader_info info;
2861
2862 /** list of global variables in the shader (nir_variable) */
2863 struct exec_list globals;
2864
2865 /** list of system value variables in the shader (nir_variable) */
2866 struct exec_list system_values;
2867
2868 struct exec_list functions; /** < list of nir_function */
2869
2870 /**
2871 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2872 * access plus one
2873 */
2874 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2875
2876 /** Size in bytes of required scratch space */
2877 unsigned scratch_size;
2878
2879 /** Constant data associated with this shader.
2880 *
2881 * Constant data is loaded through load_constant intrinsics. See also
2882 * nir_opt_large_constants.
2883 */
2884 void *constant_data;
2885 unsigned constant_data_size;
2886 } nir_shader;
2887
2888 #define nir_foreach_function(func, shader) \
2889 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2890
2891 static inline nir_function_impl *
2892 nir_shader_get_entrypoint(nir_shader *shader)
2893 {
2894 nir_function *func = NULL;
2895
2896 nir_foreach_function(function, shader) {
2897 assert(func == NULL);
2898 if (function->is_entrypoint) {
2899 func = function;
2900 #ifndef NDEBUG
2901 break;
2902 #endif
2903 }
2904 }
2905
2906 if (!func)
2907 return NULL;
2908
2909 assert(func->num_params == 0);
2910 assert(func->impl);
2911 return func->impl;
2912 }
2913
2914 nir_shader *nir_shader_create(void *mem_ctx,
2915 gl_shader_stage stage,
2916 const nir_shader_compiler_options *options,
2917 shader_info *si);
2918
2919 nir_register *nir_local_reg_create(nir_function_impl *impl);
2920
2921 void nir_reg_remove(nir_register *reg);
2922
2923 /** Adds a variable to the appropriate list in nir_shader */
2924 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2925
2926 static inline void
2927 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2928 {
2929 assert(var->data.mode == nir_var_function_temp);
2930 exec_list_push_tail(&impl->locals, &var->node);
2931 }
2932
2933 /** creates a variable, sets a few defaults, and adds it to the list */
2934 nir_variable *nir_variable_create(nir_shader *shader,
2935 nir_variable_mode mode,
2936 const struct glsl_type *type,
2937 const char *name);
2938 /** creates a local variable and adds it to the list */
2939 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2940 const struct glsl_type *type,
2941 const char *name);
2942
2943 /** creates a function and adds it to the shader's list of functions */
2944 nir_function *nir_function_create(nir_shader *shader, const char *name);
2945
2946 nir_function_impl *nir_function_impl_create(nir_function *func);
2947 /** creates a function_impl that isn't tied to any particular function */
2948 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2949
2950 nir_block *nir_block_create(nir_shader *shader);
2951 nir_if *nir_if_create(nir_shader *shader);
2952 nir_loop *nir_loop_create(nir_shader *shader);
2953
2954 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2955
2956 /** requests that the given pieces of metadata be generated */
2957 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2958 /** dirties all but the preserved metadata */
2959 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2960
2961 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2962 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2963
2964 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2965 nir_deref_type deref_type);
2966
2967 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2968
2969 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2970 unsigned num_components,
2971 unsigned bit_size);
2972
2973 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2974 nir_intrinsic_op op);
2975
2976 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2977 nir_function *callee);
2978
2979 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2980
2981 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2982
2983 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2984
2985 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2986 unsigned num_components,
2987 unsigned bit_size);
2988
2989 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2990
2991 /**
2992 * NIR Cursors and Instruction Insertion API
2993 * @{
2994 *
2995 * A tiny struct representing a point to insert/extract instructions or
2996 * control flow nodes. Helps reduce the combinatorial explosion of possible
2997 * points to insert/extract.
2998 *
2999 * \sa nir_control_flow.h
3000 */
3001 typedef enum {
3002 nir_cursor_before_block,
3003 nir_cursor_after_block,
3004 nir_cursor_before_instr,
3005 nir_cursor_after_instr,
3006 } nir_cursor_option;
3007
3008 typedef struct {
3009 nir_cursor_option option;
3010 union {
3011 nir_block *block;
3012 nir_instr *instr;
3013 };
3014 } nir_cursor;
3015
3016 static inline nir_block *
3017 nir_cursor_current_block(nir_cursor cursor)
3018 {
3019 if (cursor.option == nir_cursor_before_instr ||
3020 cursor.option == nir_cursor_after_instr) {
3021 return cursor.instr->block;
3022 } else {
3023 return cursor.block;
3024 }
3025 }
3026
3027 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3028
3029 static inline nir_cursor
3030 nir_before_block(nir_block *block)
3031 {
3032 nir_cursor cursor;
3033 cursor.option = nir_cursor_before_block;
3034 cursor.block = block;
3035 return cursor;
3036 }
3037
3038 static inline nir_cursor
3039 nir_after_block(nir_block *block)
3040 {
3041 nir_cursor cursor;
3042 cursor.option = nir_cursor_after_block;
3043 cursor.block = block;
3044 return cursor;
3045 }
3046
3047 static inline nir_cursor
3048 nir_before_instr(nir_instr *instr)
3049 {
3050 nir_cursor cursor;
3051 cursor.option = nir_cursor_before_instr;
3052 cursor.instr = instr;
3053 return cursor;
3054 }
3055
3056 static inline nir_cursor
3057 nir_after_instr(nir_instr *instr)
3058 {
3059 nir_cursor cursor;
3060 cursor.option = nir_cursor_after_instr;
3061 cursor.instr = instr;
3062 return cursor;
3063 }
3064
3065 static inline nir_cursor
3066 nir_after_block_before_jump(nir_block *block)
3067 {
3068 nir_instr *last_instr = nir_block_last_instr(block);
3069 if (last_instr && last_instr->type == nir_instr_type_jump) {
3070 return nir_before_instr(last_instr);
3071 } else {
3072 return nir_after_block(block);
3073 }
3074 }
3075
3076 static inline nir_cursor
3077 nir_before_src(nir_src *src, bool is_if_condition)
3078 {
3079 if (is_if_condition) {
3080 nir_block *prev_block =
3081 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3082 assert(!nir_block_ends_in_jump(prev_block));
3083 return nir_after_block(prev_block);
3084 } else if (src->parent_instr->type == nir_instr_type_phi) {
3085 #ifndef NDEBUG
3086 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3087 bool found = false;
3088 nir_foreach_phi_src(phi_src, cond_phi) {
3089 if (phi_src->src.ssa == src->ssa) {
3090 found = true;
3091 break;
3092 }
3093 }
3094 assert(found);
3095 #endif
3096 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3097 * to have a more specific name.
3098 */
3099 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3100 return nir_after_block_before_jump(phi_src->pred);
3101 } else {
3102 return nir_before_instr(src->parent_instr);
3103 }
3104 }
3105
3106 static inline nir_cursor
3107 nir_before_cf_node(nir_cf_node *node)
3108 {
3109 if (node->type == nir_cf_node_block)
3110 return nir_before_block(nir_cf_node_as_block(node));
3111
3112 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3113 }
3114
3115 static inline nir_cursor
3116 nir_after_cf_node(nir_cf_node *node)
3117 {
3118 if (node->type == nir_cf_node_block)
3119 return nir_after_block(nir_cf_node_as_block(node));
3120
3121 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3122 }
3123
3124 static inline nir_cursor
3125 nir_after_phis(nir_block *block)
3126 {
3127 nir_foreach_instr(instr, block) {
3128 if (instr->type != nir_instr_type_phi)
3129 return nir_before_instr(instr);
3130 }
3131 return nir_after_block(block);
3132 }
3133
3134 static inline nir_cursor
3135 nir_after_cf_node_and_phis(nir_cf_node *node)
3136 {
3137 if (node->type == nir_cf_node_block)
3138 return nir_after_block(nir_cf_node_as_block(node));
3139
3140 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3141
3142 return nir_after_phis(block);
3143 }
3144
3145 static inline nir_cursor
3146 nir_before_cf_list(struct exec_list *cf_list)
3147 {
3148 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3149 exec_list_get_head(cf_list), node);
3150 return nir_before_cf_node(first_node);
3151 }
3152
3153 static inline nir_cursor
3154 nir_after_cf_list(struct exec_list *cf_list)
3155 {
3156 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3157 exec_list_get_tail(cf_list), node);
3158 return nir_after_cf_node(last_node);
3159 }
3160
3161 /**
3162 * Insert a NIR instruction at the given cursor.
3163 *
3164 * Note: This does not update the cursor.
3165 */
3166 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3167
3168 static inline void
3169 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3170 {
3171 nir_instr_insert(nir_before_instr(instr), before);
3172 }
3173
3174 static inline void
3175 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3176 {
3177 nir_instr_insert(nir_after_instr(instr), after);
3178 }
3179
3180 static inline void
3181 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3182 {
3183 nir_instr_insert(nir_before_block(block), before);
3184 }
3185
3186 static inline void
3187 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3188 {
3189 nir_instr_insert(nir_after_block(block), after);
3190 }
3191
3192 static inline void
3193 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3194 {
3195 nir_instr_insert(nir_before_cf_node(node), before);
3196 }
3197
3198 static inline void
3199 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3200 {
3201 nir_instr_insert(nir_after_cf_node(node), after);
3202 }
3203
3204 static inline void
3205 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3206 {
3207 nir_instr_insert(nir_before_cf_list(list), before);
3208 }
3209
3210 static inline void
3211 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3212 {
3213 nir_instr_insert(nir_after_cf_list(list), after);
3214 }
3215
3216 void nir_instr_remove_v(nir_instr *instr);
3217
3218 static inline nir_cursor
3219 nir_instr_remove(nir_instr *instr)
3220 {
3221 nir_cursor cursor;
3222 nir_instr *prev = nir_instr_prev(instr);
3223 if (prev) {
3224 cursor = nir_after_instr(prev);
3225 } else {
3226 cursor = nir_before_block(instr->block);
3227 }
3228 nir_instr_remove_v(instr);
3229 return cursor;
3230 }
3231
3232 /** @} */
3233
3234 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3235
3236 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3237 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3238 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3239 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3240 void *state);
3241 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3242 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3243
3244 nir_const_value *nir_src_as_const_value(nir_src src);
3245
3246 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3247 static inline c_type * \
3248 nir_src_as_ ## name (nir_src src) \
3249 { \
3250 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3251 ? cast_macro(src.ssa->parent_instr) : NULL; \
3252 }
3253
3254 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3255 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3256 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3257 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3258
3259 bool nir_src_is_dynamically_uniform(nir_src src);
3260 bool nir_srcs_equal(nir_src src1, nir_src src2);
3261 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3262 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3263 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3264 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3265 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3266 nir_dest new_dest);
3267
3268 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3269 unsigned num_components, unsigned bit_size,
3270 const char *name);
3271 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3272 unsigned num_components, unsigned bit_size,
3273 const char *name);
3274 static inline void
3275 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3276 const struct glsl_type *type,
3277 const char *name)
3278 {
3279 assert(glsl_type_is_vector_or_scalar(type));
3280 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3281 glsl_get_bit_size(type), name);
3282 }
3283 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3284 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3285 nir_instr *after_me);
3286
3287 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3288
3289 /*
3290 * finds the next basic block in source-code order, returns NULL if there is
3291 * none
3292 */
3293
3294 nir_block *nir_block_cf_tree_next(nir_block *block);
3295
3296 /* Performs the opposite of nir_block_cf_tree_next() */
3297
3298 nir_block *nir_block_cf_tree_prev(nir_block *block);
3299
3300 /* Gets the first block in a CF node in source-code order */
3301
3302 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3303
3304 /* Gets the last block in a CF node in source-code order */
3305
3306 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3307
3308 /* Gets the next block after a CF node in source-code order */
3309
3310 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3311
3312 /* Macros for loops that visit blocks in source-code order */
3313
3314 #define nir_foreach_block(block, impl) \
3315 for (nir_block *block = nir_start_block(impl); block != NULL; \
3316 block = nir_block_cf_tree_next(block))
3317
3318 #define nir_foreach_block_safe(block, impl) \
3319 for (nir_block *block = nir_start_block(impl), \
3320 *next = nir_block_cf_tree_next(block); \
3321 block != NULL; \
3322 block = next, next = nir_block_cf_tree_next(block))
3323
3324 #define nir_foreach_block_reverse(block, impl) \
3325 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3326 block = nir_block_cf_tree_prev(block))
3327
3328 #define nir_foreach_block_reverse_safe(block, impl) \
3329 for (nir_block *block = nir_impl_last_block(impl), \
3330 *prev = nir_block_cf_tree_prev(block); \
3331 block != NULL; \
3332 block = prev, prev = nir_block_cf_tree_prev(block))
3333
3334 #define nir_foreach_block_in_cf_node(block, node) \
3335 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3336 block != nir_cf_node_cf_tree_next(node); \
3337 block = nir_block_cf_tree_next(block))
3338
3339 /* If the following CF node is an if, this function returns that if.
3340 * Otherwise, it returns NULL.
3341 */
3342 nir_if *nir_block_get_following_if(nir_block *block);
3343
3344 nir_loop *nir_block_get_following_loop(nir_block *block);
3345
3346 void nir_index_local_regs(nir_function_impl *impl);
3347 void nir_index_ssa_defs(nir_function_impl *impl);
3348 unsigned nir_index_instrs(nir_function_impl *impl);
3349
3350 void nir_index_blocks(nir_function_impl *impl);
3351
3352 void nir_index_vars(nir_shader *shader, nir_function_impl *impl, nir_variable_mode modes);
3353
3354 void nir_print_shader(nir_shader *shader, FILE *fp);
3355 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3356 void nir_print_instr(const nir_instr *instr, FILE *fp);
3357 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3358
3359 /** Shallow clone of a single ALU instruction. */
3360 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3361
3362 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3363 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3364 const nir_function_impl *fi);
3365 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3366 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3367
3368 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3369
3370 void nir_shader_serialize_deserialize(nir_shader *s);
3371
3372 #ifndef NDEBUG
3373 void nir_validate_shader(nir_shader *shader, const char *when);
3374 void nir_metadata_set_validation_flag(nir_shader *shader);
3375 void nir_metadata_check_validation_flag(nir_shader *shader);
3376
3377 static inline bool
3378 should_skip_nir(const char *name)
3379 {
3380 static const char *list = NULL;
3381 if (!list) {
3382 /* Comma separated list of names to skip. */
3383 list = getenv("NIR_SKIP");
3384 if (!list)
3385 list = "";
3386 }
3387
3388 if (!list[0])
3389 return false;
3390
3391 return comma_separated_list_contains(list, name);
3392 }
3393
3394 static inline bool
3395 should_clone_nir(void)
3396 {
3397 static int should_clone = -1;
3398 if (should_clone < 0)
3399 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3400
3401 return should_clone;
3402 }
3403
3404 static inline bool
3405 should_serialize_deserialize_nir(void)
3406 {
3407 static int test_serialize = -1;
3408 if (test_serialize < 0)
3409 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3410
3411 return test_serialize;
3412 }
3413
3414 static inline bool
3415 should_print_nir(void)
3416 {
3417 static int should_print = -1;
3418 if (should_print < 0)
3419 should_print = env_var_as_boolean("NIR_PRINT", false);
3420
3421 return should_print;
3422 }
3423 #else
3424 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3425 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3426 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3427 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3428 static inline bool should_clone_nir(void) { return false; }
3429 static inline bool should_serialize_deserialize_nir(void) { return false; }
3430 static inline bool should_print_nir(void) { return false; }
3431 #endif /* NDEBUG */
3432
3433 #define _PASS(pass, nir, do_pass) do { \
3434 if (should_skip_nir(#pass)) { \
3435 printf("skipping %s\n", #pass); \
3436 break; \
3437 } \
3438 do_pass \
3439 nir_validate_shader(nir, "after " #pass); \
3440 if (should_clone_nir()) { \
3441 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3442 nir_shader_replace(nir, clone); \
3443 } \
3444 if (should_serialize_deserialize_nir()) { \
3445 nir_shader_serialize_deserialize(nir); \
3446 } \
3447 } while (0)
3448
3449 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3450 nir_metadata_set_validation_flag(nir); \
3451 if (should_print_nir()) \
3452 printf("%s\n", #pass); \
3453 if (pass(nir, ##__VA_ARGS__)) { \
3454 progress = true; \
3455 if (should_print_nir()) \
3456 nir_print_shader(nir, stdout); \
3457 nir_metadata_check_validation_flag(nir); \
3458 } \
3459 )
3460
3461 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3462 if (should_print_nir()) \
3463 printf("%s\n", #pass); \
3464 pass(nir, ##__VA_ARGS__); \
3465 if (should_print_nir()) \
3466 nir_print_shader(nir, stdout); \
3467 )
3468
3469 #define NIR_SKIP(name) should_skip_nir(#name)
3470
3471 /** An instruction filtering callback
3472 *
3473 * Returns true if the instruction should be processed and false otherwise.
3474 */
3475 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3476
3477 /** A simple instruction lowering callback
3478 *
3479 * Many instruction lowering passes can be written as a simple function which
3480 * takes an instruction as its input and returns a sequence of instructions
3481 * that implement the consumed instruction. This function type represents
3482 * such a lowering function. When called, a function with this prototype
3483 * should either return NULL indicating that no lowering needs to be done or
3484 * emit a sequence of instructions using the provided builder (whose cursor
3485 * will already be placed after the instruction to be lowered) and return the
3486 * resulting nir_ssa_def.
3487 */
3488 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3489 nir_instr *, void *);
3490
3491 /**
3492 * Special return value for nir_lower_instr_cb when some progress occurred
3493 * (like changing an input to the instr) that didn't result in a replacement
3494 * SSA def being generated.
3495 */
3496 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3497
3498 /** Iterate over all the instructions in a nir_function_impl and lower them
3499 * using the provided callbacks
3500 *
3501 * This function implements the guts of a standard lowering pass for you. It
3502 * iterates over all of the instructions in a nir_function_impl and calls the
3503 * filter callback on each one. If the filter callback returns true, it then
3504 * calls the lowering call back on the instruction. (Splitting it this way
3505 * allows us to avoid some save/restore work for instructions we know won't be
3506 * lowered.) If the instruction is dead after the lowering is complete, it
3507 * will be removed. If new instructions are added, the lowering callback will
3508 * also be called on them in case multiple lowerings are required.
3509 *
3510 * The metadata for the nir_function_impl will also be updated. If any blocks
3511 * are added (they cannot be removed), dominance and block indices will be
3512 * invalidated.
3513 */
3514 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3515 nir_instr_filter_cb filter,
3516 nir_lower_instr_cb lower,
3517 void *cb_data);
3518 bool nir_shader_lower_instructions(nir_shader *shader,
3519 nir_instr_filter_cb filter,
3520 nir_lower_instr_cb lower,
3521 void *cb_data);
3522
3523 void nir_calc_dominance_impl(nir_function_impl *impl);
3524 void nir_calc_dominance(nir_shader *shader);
3525
3526 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3527 bool nir_block_dominates(nir_block *parent, nir_block *child);
3528 bool nir_block_is_unreachable(nir_block *block);
3529
3530 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3531 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3532
3533 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3534 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3535
3536 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3537 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3538
3539 int nir_gs_count_vertices(const nir_shader *shader);
3540
3541 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3542 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3543 bool nir_split_var_copies(nir_shader *shader);
3544 bool nir_split_per_member_structs(nir_shader *shader);
3545 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3546
3547 bool nir_lower_returns_impl(nir_function_impl *impl);
3548 bool nir_lower_returns(nir_shader *shader);
3549
3550 void nir_inline_function_impl(struct nir_builder *b,
3551 const nir_function_impl *impl,
3552 nir_ssa_def **params);
3553 bool nir_inline_functions(nir_shader *shader);
3554
3555 bool nir_propagate_invariant(nir_shader *shader);
3556
3557 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3558 void nir_lower_deref_copy_instr(struct nir_builder *b,
3559 nir_intrinsic_instr *copy);
3560 bool nir_lower_var_copies(nir_shader *shader);
3561
3562 void nir_fixup_deref_modes(nir_shader *shader);
3563
3564 bool nir_lower_global_vars_to_local(nir_shader *shader);
3565
3566 typedef enum {
3567 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3568 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3569 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3570 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3571 } nir_lower_array_deref_of_vec_options;
3572
3573 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3574 nir_lower_array_deref_of_vec_options options);
3575
3576 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3577
3578 bool nir_lower_locals_to_regs(nir_shader *shader);
3579
3580 void nir_lower_io_to_temporaries(nir_shader *shader,
3581 nir_function_impl *entrypoint,
3582 bool outputs, bool inputs);
3583
3584 bool nir_lower_vars_to_scratch(nir_shader *shader,
3585 nir_variable_mode modes,
3586 int size_threshold,
3587 glsl_type_size_align_func size_align);
3588
3589 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3590
3591 void nir_gather_ssa_types(nir_function_impl *impl,
3592 BITSET_WORD *float_types,
3593 BITSET_WORD *int_types);
3594
3595 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3596 int (*type_size)(const struct glsl_type *, bool));
3597
3598 /* Some helpers to do very simple linking */
3599 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3600 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3601 uint64_t *used_by_other_stage,
3602 uint64_t *used_by_other_stage_patches);
3603 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3604 bool default_to_smooth_interp);
3605 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3606 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3607
3608 bool nir_lower_amul(nir_shader *shader,
3609 int (*type_size)(const struct glsl_type *, bool));
3610
3611 void nir_assign_io_var_locations(struct exec_list *var_list,
3612 unsigned *size,
3613 gl_shader_stage stage);
3614
3615 typedef enum {
3616 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
3617 * to 32-bit operations. This is only valid for nir_var_shader_in/out
3618 * modes.
3619 */
3620 nir_lower_io_lower_64bit_to_32 = (1 << 0),
3621
3622 /* If set, this forces all non-flat fragment shader inputs to be
3623 * interpolated as if with the "sample" qualifier. This requires
3624 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3625 */
3626 nir_lower_io_force_sample_interpolation = (1 << 1),
3627 } nir_lower_io_options;
3628 bool nir_lower_io(nir_shader *shader,
3629 nir_variable_mode modes,
3630 int (*type_size)(const struct glsl_type *, bool),
3631 nir_lower_io_options);
3632
3633 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3634
3635 bool
3636 nir_lower_vars_to_explicit_types(nir_shader *shader,
3637 nir_variable_mode modes,
3638 glsl_type_size_align_func type_info);
3639
3640 typedef enum {
3641 /**
3642 * An address format which is a simple 32-bit global GPU address.
3643 */
3644 nir_address_format_32bit_global,
3645
3646 /**
3647 * An address format which is a simple 64-bit global GPU address.
3648 */
3649 nir_address_format_64bit_global,
3650
3651 /**
3652 * An address format which is a bounds-checked 64-bit global GPU address.
3653 *
3654 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3655 * address stored with the low bits in .x and high bits in .y, .z is a
3656 * size, and .w is an offset. When the final I/O operation is lowered, .w
3657 * is checked against .z and the operation is predicated on the result.
3658 */
3659 nir_address_format_64bit_bounded_global,
3660
3661 /**
3662 * An address format which is comprised of a vec2 where the first
3663 * component is a buffer index and the second is an offset.
3664 */
3665 nir_address_format_32bit_index_offset,
3666
3667 /**
3668 * An address format which is a simple 32-bit offset.
3669 */
3670 nir_address_format_32bit_offset,
3671
3672 /**
3673 * An address format representing a purely logical addressing model. In
3674 * this model, all deref chains must be complete from the dereference
3675 * operation to the variable. Cast derefs are not allowed. These
3676 * addresses will be 32-bit scalars but the format is immaterial because
3677 * you can always chase the chain.
3678 */
3679 nir_address_format_logical,
3680 } nir_address_format;
3681
3682 static inline unsigned
3683 nir_address_format_bit_size(nir_address_format addr_format)
3684 {
3685 switch (addr_format) {
3686 case nir_address_format_32bit_global: return 32;
3687 case nir_address_format_64bit_global: return 64;
3688 case nir_address_format_64bit_bounded_global: return 32;
3689 case nir_address_format_32bit_index_offset: return 32;
3690 case nir_address_format_32bit_offset: return 32;
3691 case nir_address_format_logical: return 32;
3692 }
3693 unreachable("Invalid address format");
3694 }
3695
3696 static inline unsigned
3697 nir_address_format_num_components(nir_address_format addr_format)
3698 {
3699 switch (addr_format) {
3700 case nir_address_format_32bit_global: return 1;
3701 case nir_address_format_64bit_global: return 1;
3702 case nir_address_format_64bit_bounded_global: return 4;
3703 case nir_address_format_32bit_index_offset: return 2;
3704 case nir_address_format_32bit_offset: return 1;
3705 case nir_address_format_logical: return 1;
3706 }
3707 unreachable("Invalid address format");
3708 }
3709
3710 static inline const struct glsl_type *
3711 nir_address_format_to_glsl_type(nir_address_format addr_format)
3712 {
3713 unsigned bit_size = nir_address_format_bit_size(addr_format);
3714 assert(bit_size == 32 || bit_size == 64);
3715 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3716 nir_address_format_num_components(addr_format));
3717 }
3718
3719 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3720
3721 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3722 nir_address_format addr_format);
3723
3724 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3725 nir_address_format addr_format);
3726
3727 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3728 nir_deref_instr *deref,
3729 nir_ssa_def *base_addr,
3730 nir_address_format addr_format);
3731 void nir_lower_explicit_io_instr(struct nir_builder *b,
3732 nir_intrinsic_instr *io_instr,
3733 nir_ssa_def *addr,
3734 nir_address_format addr_format);
3735
3736 bool nir_lower_explicit_io(nir_shader *shader,
3737 nir_variable_mode modes,
3738 nir_address_format);
3739
3740 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3741 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3742
3743 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3744
3745 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3746 bool nir_lower_regs_to_ssa(nir_shader *shader);
3747 bool nir_lower_vars_to_ssa(nir_shader *shader);
3748
3749 bool nir_remove_dead_derefs(nir_shader *shader);
3750 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3751 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3752 bool nir_lower_constant_initializers(nir_shader *shader,
3753 nir_variable_mode modes);
3754
3755 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3756 bool nir_lower_vec_to_movs(nir_shader *shader);
3757 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3758 bool alpha_to_one,
3759 const gl_state_index16 *alpha_ref_state_tokens);
3760 bool nir_lower_alu(nir_shader *shader);
3761
3762 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3763 bool always_precise, bool have_ffma);
3764
3765 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
3766 bool nir_lower_bool_to_float(nir_shader *shader);
3767 bool nir_lower_bool_to_int32(nir_shader *shader);
3768 bool nir_lower_int_to_float(nir_shader *shader);
3769 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3770 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3771 bool nir_lower_phis_to_scalar(nir_shader *shader);
3772 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3773 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3774 bool outputs_only);
3775 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3776 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3777 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3778
3779 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3780 void nir_lower_viewport_transform(nir_shader *shader);
3781 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3782
3783 typedef struct nir_lower_subgroups_options {
3784 uint8_t subgroup_size;
3785 uint8_t ballot_bit_size;
3786 bool lower_to_scalar:1;
3787 bool lower_vote_trivial:1;
3788 bool lower_vote_eq_to_ballot:1;
3789 bool lower_subgroup_masks:1;
3790 bool lower_shuffle:1;
3791 bool lower_shuffle_to_32bit:1;
3792 bool lower_quad:1;
3793 } nir_lower_subgroups_options;
3794
3795 bool nir_lower_subgroups(nir_shader *shader,
3796 const nir_lower_subgroups_options *options);
3797
3798 bool nir_lower_system_values(nir_shader *shader);
3799
3800 enum PACKED nir_lower_tex_packing {
3801 nir_lower_tex_packing_none = 0,
3802 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3803 * or unsigned ints based on the sampler type
3804 */
3805 nir_lower_tex_packing_16,
3806 /* The sampler returns 1 32-bit word of 4x8 unorm */
3807 nir_lower_tex_packing_8,
3808 };
3809
3810 typedef struct nir_lower_tex_options {
3811 /**
3812 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3813 * sampler types a texture projector is lowered.
3814 */
3815 unsigned lower_txp;
3816
3817 /**
3818 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3819 */
3820 bool lower_txf_offset;
3821
3822 /**
3823 * If true, lower away nir_tex_src_offset for all rect textures.
3824 */
3825 bool lower_rect_offset;
3826
3827 /**
3828 * If true, lower rect textures to 2D, using txs to fetch the
3829 * texture dimensions and dividing the texture coords by the
3830 * texture dims to normalize.
3831 */
3832 bool lower_rect;
3833
3834 /**
3835 * If true, convert yuv to rgb.
3836 */
3837 unsigned lower_y_uv_external;
3838 unsigned lower_y_u_v_external;
3839 unsigned lower_yx_xuxv_external;
3840 unsigned lower_xy_uxvx_external;
3841 unsigned lower_ayuv_external;
3842 unsigned lower_xyuv_external;
3843
3844 /**
3845 * To emulate certain texture wrap modes, this can be used
3846 * to saturate the specified tex coord to [0.0, 1.0]. The
3847 * bits are according to sampler #, ie. if, for example:
3848 *
3849 * (conf->saturate_s & (1 << n))
3850 *
3851 * is true, then the s coord for sampler n is saturated.
3852 *
3853 * Note that clamping must happen *after* projector lowering
3854 * so any projected texture sample instruction with a clamped
3855 * coordinate gets automatically lowered, regardless of the
3856 * 'lower_txp' setting.
3857 */
3858 unsigned saturate_s;
3859 unsigned saturate_t;
3860 unsigned saturate_r;
3861
3862 /* Bitmask of textures that need swizzling.
3863 *
3864 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3865 * swizzles[texture_index] is applied to the result of the texturing
3866 * operation.
3867 */
3868 unsigned swizzle_result;
3869
3870 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3871 * while 4 and 5 represent 0 and 1 respectively.
3872 */
3873 uint8_t swizzles[32][4];
3874
3875 /* Can be used to scale sampled values in range required by the format. */
3876 float scale_factors[32];
3877
3878 /**
3879 * Bitmap of textures that need srgb to linear conversion. If
3880 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3881 * of the texture are lowered to linear.
3882 */
3883 unsigned lower_srgb;
3884
3885 /**
3886 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3887 * LODs to nir_texop_txl.
3888 */
3889 bool lower_tex_without_implicit_lod;
3890
3891 /**
3892 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3893 */
3894 bool lower_txd_cube_map;
3895
3896 /**
3897 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3898 */
3899 bool lower_txd_3d;
3900
3901 /**
3902 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3903 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3904 * with lower_txd_cube_map.
3905 */
3906 bool lower_txd_shadow;
3907
3908 /**
3909 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3910 * Implies lower_txd_cube_map and lower_txd_shadow.
3911 */
3912 bool lower_txd;
3913
3914 /**
3915 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3916 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3917 */
3918 bool lower_txb_shadow_clamp;
3919
3920 /**
3921 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3922 * with nir_texop_txl. This includes cube maps.
3923 */
3924 bool lower_txd_shadow_clamp;
3925
3926 /**
3927 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3928 * with nir_texop_txl. This includes cube maps.
3929 */
3930 bool lower_txd_offset_clamp;
3931
3932 /**
3933 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3934 * sampler is bindless.
3935 */
3936 bool lower_txd_clamp_bindless_sampler;
3937
3938 /**
3939 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3940 * sampler index is not statically determinable to be less than 16.
3941 */
3942 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3943
3944 /**
3945 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3946 * 0-lod followed by a nir_ishr.
3947 */
3948 bool lower_txs_lod;
3949
3950 /**
3951 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3952 * mixed-up tg4 locations.
3953 */
3954 bool lower_tg4_broadcom_swizzle;
3955
3956 /**
3957 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3958 */
3959 bool lower_tg4_offsets;
3960
3961 enum nir_lower_tex_packing lower_tex_packing[32];
3962 } nir_lower_tex_options;
3963
3964 bool nir_lower_tex(nir_shader *shader,
3965 const nir_lower_tex_options *options);
3966
3967 enum nir_lower_non_uniform_access_type {
3968 nir_lower_non_uniform_ubo_access = (1 << 0),
3969 nir_lower_non_uniform_ssbo_access = (1 << 1),
3970 nir_lower_non_uniform_texture_access = (1 << 2),
3971 nir_lower_non_uniform_image_access = (1 << 3),
3972 };
3973
3974 bool nir_lower_non_uniform_access(nir_shader *shader,
3975 enum nir_lower_non_uniform_access_type);
3976
3977 enum nir_lower_idiv_path {
3978 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
3979 * the two but it is not exact in some cases (for example, 1091317713u /
3980 * 1034u gives 5209173 instead of 1055432) */
3981 nir_lower_idiv_fast,
3982 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
3983 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
3984 * the nv50 path and many of them are integer multiplications, so it is
3985 * probably slower. It should always return the correct result, though. */
3986 nir_lower_idiv_precise,
3987 };
3988
3989 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
3990
3991 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3992
3993 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
3994 bool use_vars,
3995 bool use_clipdist_array,
3996 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
3997 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
3998 bool use_clipdist_array,
3999 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4000 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4001 bool use_clipdist_array);
4002 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4003
4004 void nir_lower_point_size_mov(nir_shader *shader,
4005 const gl_state_index16 *pointsize_state_tokens);
4006
4007 bool nir_lower_frexp(nir_shader *nir);
4008
4009 void nir_lower_two_sided_color(nir_shader *shader);
4010
4011 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4012
4013 bool nir_lower_flatshade(nir_shader *shader);
4014
4015 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4016 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4017 const gl_state_index16 *uniform_state_tokens);
4018
4019 typedef struct nir_lower_wpos_ytransform_options {
4020 gl_state_index16 state_tokens[STATE_LENGTH];
4021 bool fs_coord_origin_upper_left :1;
4022 bool fs_coord_origin_lower_left :1;
4023 bool fs_coord_pixel_center_integer :1;
4024 bool fs_coord_pixel_center_half_integer :1;
4025 } nir_lower_wpos_ytransform_options;
4026
4027 bool nir_lower_wpos_ytransform(nir_shader *shader,
4028 const nir_lower_wpos_ytransform_options *options);
4029 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4030
4031 bool nir_lower_fb_read(nir_shader *shader);
4032
4033 typedef struct nir_lower_drawpixels_options {
4034 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4035 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4036 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4037 unsigned drawpix_sampler;
4038 unsigned pixelmap_sampler;
4039 bool pixel_maps :1;
4040 bool scale_and_bias :1;
4041 } nir_lower_drawpixels_options;
4042
4043 void nir_lower_drawpixels(nir_shader *shader,
4044 const nir_lower_drawpixels_options *options);
4045
4046 typedef struct nir_lower_bitmap_options {
4047 unsigned sampler;
4048 bool swizzle_xxxx;
4049 } nir_lower_bitmap_options;
4050
4051 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4052
4053 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
4054
4055 typedef enum {
4056 nir_lower_int_source_mods = 1 << 0,
4057 nir_lower_float_source_mods = 1 << 1,
4058 nir_lower_triop_abs = 1 << 2,
4059 nir_lower_all_source_mods = (1 << 3) - 1
4060 } nir_lower_to_source_mods_flags;
4061
4062
4063 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4064
4065 bool nir_lower_gs_intrinsics(nir_shader *shader);
4066
4067 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4068
4069 bool nir_lower_bit_size(nir_shader *shader,
4070 nir_lower_bit_size_callback callback,
4071 void *callback_data);
4072
4073 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4074 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
4075
4076 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4077 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4078 nir_lower_doubles_options options);
4079 bool nir_lower_pack(nir_shader *shader);
4080
4081 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4082
4083 typedef enum {
4084 nir_lower_interpolation_at_sample = (1 << 1),
4085 nir_lower_interpolation_at_offset = (1 << 2),
4086 nir_lower_interpolation_centroid = (1 << 3),
4087 nir_lower_interpolation_pixel = (1 << 4),
4088 nir_lower_interpolation_sample = (1 << 5),
4089 } nir_lower_interpolation_options;
4090
4091 bool nir_lower_interpolation(nir_shader *shader,
4092 nir_lower_interpolation_options options);
4093
4094 bool nir_normalize_cubemap_coords(nir_shader *shader);
4095
4096 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4097
4098 void nir_loop_analyze_impl(nir_function_impl *impl,
4099 nir_variable_mode indirect_mask);
4100
4101 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4102
4103 bool nir_repair_ssa_impl(nir_function_impl *impl);
4104 bool nir_repair_ssa(nir_shader *shader);
4105
4106 void nir_convert_loop_to_lcssa(nir_loop *loop);
4107 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4108 bool* nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4109
4110 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4111 * registers. If false, convert all values (even those not involved in a phi
4112 * node) to registers.
4113 */
4114 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4115
4116 bool nir_lower_phis_to_regs_block(nir_block *block);
4117 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4118 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4119
4120 bool nir_lower_samplers(nir_shader *shader);
4121
4122 /* This is here for unit tests. */
4123 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4124
4125 bool nir_opt_comparison_pre(nir_shader *shader);
4126
4127 bool nir_opt_access(nir_shader *shader);
4128 bool nir_opt_algebraic(nir_shader *shader);
4129 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4130 bool nir_opt_algebraic_late(nir_shader *shader);
4131 bool nir_opt_constant_folding(nir_shader *shader);
4132
4133 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4134
4135 bool nir_copy_prop(nir_shader *shader);
4136
4137 bool nir_opt_copy_prop_vars(nir_shader *shader);
4138
4139 bool nir_opt_cse(nir_shader *shader);
4140
4141 bool nir_opt_dce(nir_shader *shader);
4142
4143 bool nir_opt_dead_cf(nir_shader *shader);
4144
4145 bool nir_opt_dead_write_vars(nir_shader *shader);
4146
4147 bool nir_opt_deref_impl(nir_function_impl *impl);
4148 bool nir_opt_deref(nir_shader *shader);
4149
4150 bool nir_opt_find_array_copies(nir_shader *shader);
4151
4152 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4153
4154 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4155
4156 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4157
4158 bool nir_opt_intrinsics(nir_shader *shader);
4159
4160 bool nir_opt_large_constants(nir_shader *shader,
4161 glsl_type_size_align_func size_align,
4162 unsigned threshold);
4163
4164 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4165
4166 typedef enum {
4167 nir_move_const_undef = (1 << 0),
4168 nir_move_load_ubo = (1 << 1),
4169 nir_move_load_input = (1 << 2),
4170 nir_move_comparisons = (1 << 3),
4171 } nir_move_options;
4172
4173 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4174
4175 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4176
4177 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4178
4179 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4180 bool indirect_load_ok, bool expensive_alu_ok);
4181
4182 bool nir_opt_rematerialize_compares(nir_shader *shader);
4183
4184 bool nir_opt_remove_phis(nir_shader *shader);
4185 bool nir_opt_remove_phis_block(nir_block *block);
4186
4187 bool nir_opt_shrink_load(nir_shader *shader);
4188
4189 bool nir_opt_trivial_continues(nir_shader *shader);
4190
4191 bool nir_opt_undef(nir_shader *shader);
4192
4193 bool nir_opt_vectorize(nir_shader *shader);
4194
4195 bool nir_opt_conditional_discard(nir_shader *shader);
4196
4197 typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
4198 unsigned num_components, unsigned high_offset,
4199 nir_intrinsic_instr *low, nir_intrinsic_instr *high);
4200
4201 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
4202 nir_should_vectorize_mem_func callback);
4203
4204 void nir_sweep(nir_shader *shader);
4205
4206 void nir_remap_dual_slot_attributes(nir_shader *shader,
4207 uint64_t *dual_slot_inputs);
4208 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4209
4210 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4211 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4212
4213 static inline bool
4214 nir_variable_is_in_ubo(const nir_variable *var)
4215 {
4216 return (var->data.mode == nir_var_mem_ubo &&
4217 var->interface_type != NULL);
4218 }
4219
4220 static inline bool
4221 nir_variable_is_in_ssbo(const nir_variable *var)
4222 {
4223 return (var->data.mode == nir_var_mem_ssbo &&
4224 var->interface_type != NULL);
4225 }
4226
4227 static inline bool
4228 nir_variable_is_in_block(const nir_variable *var)
4229 {
4230 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4231 }
4232
4233 #ifdef __cplusplus
4234 } /* extern "C" */
4235 #endif
4236
4237 #endif /* NIR_H */